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Abstract

Rapid recession of glaciers and snowfields is threatening the habitats of cold-water biodi-
versity worldwide. In many ice-sourced headwaters of western North America, stoneflies
in the genus Lednia (Plecoptera: Nemouridae) are a prominent member of the invertebrate
community. With a broad distribution in mountain streams and close ties to declining gla-
cier cover, Lednia has emerged as a sentinel of climate change threats to high-elevation
aquatic biodiversity. Lednia tumana, which is endemic to Glacier National Park, USA
and the surrounding mountains, is the most well-studied species in the genus and in 2019
became federally protected under the U.S. Endangered Species Act (ESA) due to climate-
induced loss of meltwater habitats. Three other Lednia species have also been described,
and like L. tumana, each is endemic to a mountain region of western North America: Led-
nia sierra in the Sierra Nevada, Lednia borealis in the Cascade Range, and Lednia teton-
ica in the Teton Range. In this review, we provide a comprehensive overview of Lednia
ecology, genetics, and physiology, with an emphasis on the conservation outlook for the
group and species with similar headwater distributions. We highlight substantial progress
made in the last decade to better understand the ecology and evolution of Lednia, includ-
ing the identification of 140 Lednia-containing streams (an increase from 12 streams in
2010), and a more complete understanding of the degree to which warming streams may
imperil species in the genus. In light of the ESA listing of L. tumana, we show that similar
conservation threats likely face all extant Lednia species. However, substantial gaps in our
knowledge remain, primarily centering around their distributions (and the potential for as
yet undescribed species), life history, ecophysiology, and trophic ecology. We conclude by
describing pressing questions for Lednia that when addressed will expand knowledge of
the genus and its conservation as well as broader understanding of climate risks to moun-
tain stream biodiversity worldwide.
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Introduction

Climate change is having a multi-faceted impact on alpine habitats worldwide. For alpine
freshwaters, receding glaciers and snowfields (Rauscher et al. 2008; Pederson et al. 2010)
along with changing precipitation regimes (Herbst and Cooper 2010) are altering hydro-
logical regimes, species distributions, the availability of basal resources, and threatening
the existence of habitats and species (Hotaling et al. 2017). Alpine streams harbor sub-
stantial biodiversity due to their unique spatial position in the uppermost branches within
river networks and high environmental heterogeneity (Finn et al. 2011). However, despite
the importance of alpine streams as water resources and the vulnerability of these ecosys-
tems to climate change, biodiversity in the highest, coldest headwaters is poorly known. In
North America, stoneflies in the genus Lednia are sentinels of climate impacts on head-
water ecosystems due to their affinity for high-elevation coldwater streams. In this review,
we provide an overview of Lednia research with an emphasis on the progress that has been
made in the last~ 10 years. Throughout, we highlight how Lednia can act as a conservation
surrogate for issues facing mountain stream species worldwide.

The genus Lednia: past and present

Since its first description from a glacial stream in Glacier National Park (GNP), USA,
Lednia tumana (Ricker, 1952) and congeneric species have remained a largely overlooked
component of alpine aquatic fauna. The last decade, however, has been marked by a surge
of Lednia research with the description of three new species, Lednia borealis, Lednia
tetonica, and Lednia sierra (Baumann and Kondratieff, 2010; Baumann and Call, 2012).
Since their discovery and description, subsequent research has established links between
glacier cover and Lednia distributions (Muhlfeld et al. 2011; Giersch et al. 2017), exam-
ined physiological tolerances (Treanor et al. 2013; Hotaling et al. 2020a, 2021a), and
resulted in the first genetic perspectives for the genus (Hotaling et al. 2019b, c). Alongside
this progress, and no doubt one of its drivers, has been the increased attention paid to L.
tumana as a harbinger of climate-induced habitat loss (Rumsey et al. 2003; Stagliano et al.
2007; Muhlfeld et al. 2011; Giersch et al. 2017). In November 2019, L. tumana was feder-
ally listed as threatened under the U.S. Endangered Species Act due to habitat loss that is
primarily being driven by declining stream flows and rising water temperatures (US Fish
and Wildlife Service 2019).

Though Lednia research has greatly expanded in recent years, three points should be
acknowledged when discussing this progress. First, aside from morphology-based system-
atics and species distributions, nearly all Lednia research has stemmed from studies of L.
tumana (but see Hotaling et al. 2019b, 2020b; Fallon et al. in press). While much has been
learned from these efforts, better understanding of the ecological similarities between L.
tumana and other Lednia species will shed important light on how knowledge gained from
L. tumana can be applied to other species in the genus. Second, the existing Lednia tax-
onomy is based on morphology and phylogenetic insight from a single marker (cyfochrome
oxidase 1, Hotaling et al. 2019b). A more robust phylogenomic perspective on interspe-
cies relationships within Lednia and the family Nemouridae is needed to give context to
the deeper relationships revealed by a recent phylogenomic study of Plecoptera in North
America (South et al. 2021). This is particularly relevant given the potential for cryptic
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species diversity to be present even when morphological variation is lacking (e.g., Leache
and Fujita 2010; Hotaling et al. 2016; Hime et al. 2016). Third, the number of discovered
Lednia populations has increased dramatically during the past decade, and this expansion
has been driven primarily by increases in sampling effort. Continued research and monitor-
ing efforts will undoubtedly reveal additional Lednia localities and perhaps new species.

Systematics

In 1952, Ricker described a new subgenus of Nemoura, and the first species within the
subgenus, Nemoura tumana (Ricker 1952), which is now recognized as Lednia tumana.
The circumstances of the collection of the type material—a misty day near a glacier-fed
stream in GNP—inspired the species’ etymology (Lednia from the Russian “led” meaning
“ice,” and tumana from the Russian “tuman” meaning “mist,” Ricker 1992). Later revi-
sion of Plecoptera elevated Lednia to a genus (Illies 1966). A second L. tumana locality
from GNP was described by Gaufin et al. (1972) and in Baumann’s (1975) revision of the
Nemouridae, a cladistic analysis of morphological characters placed Lednia as the sister
taxon to Visoka. Soon after, L. tumana was documented in Waterton Lakes National Park
(WNP), Alberta, representing the first record from Canada (Donald and Anderson 1977).
Decades later, Kondratieff and Lechleitner (2002) reported a significant range extension
of L. tumana to Mount Rainier National Park, Washington, USA. However, these speci-
mens were later confirmed to be a new species—L. borealis—as were specimens from the
Sierra Nevada, California, USA—L. sierra (Baumann and Kondratieff 2010). During the
same year, a putative fossil Lednia species—Lednia zilli—was described from an inclusion
in Eocene Baltic amber collected in present-day Poland (Caruso and Wichard 2010). Two
years later, the fourth extant species—L. tetonica—was described from the Teton Range,
Wyoming, USA (Baumann and Call 2012).

Phylogenetics, morphology, and the fossil record

The common ancestors of stoneflies diverged from other insect groups (e.g., the clade
containing Orthoptera, Dictyoptera, and allies)~275-350 million years before present
(ybp) near the boundary of the Permian and Pennsylvanian periods (Béthoux et al. 2011;
Misof et al. 2014; Tong et al. 2015). Within Plecoptera, molecular analyses have placed
Nemouridae as sister to the small winter stoneflies (Capniidae; Terry 2004; South et al.
2021). Within Nemouridae, Lednia is closely related to Podmosta and Prostoia (South
et al. 2021). Nymphs and adults of extant Lednia are small, darkly pigmented, and roughly
4.5-7.5 mm long (Fig. la—c). Species are differentiated in the adult stage by morphological
differences in the male epiproct (Ricker 1952; Baumann and Call 2012). External gills are
absent in Lednia nymphs (Baumann and Kondratieft 2010).

Differentiating Lednia from most other nemourids as adults can be done by assessing
the 9™ abdominal sternite as only two nemourid genera, Lednia and Paranemoura, lack the
vesicle of the 9™ abdominal sternite. Adults of these two genera can then be differentiated
by wing venation. For Lednia, the terminal costal crossvein Sc2 joins radius R1, whereas
in Paranemoura Sc2 joins Scl (Caruso and Wichard 2010). However, since Lednia and
Paranemoura species have yet to be included in the same molecular phylogeny, it remains
unclear if this diagnostic character is indicative of shared ancestry or has occurred inde-
pendently in both groups.
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Fig. 1 Examples of Lednia and the high-elevation habitats they reside in. a—¢ Nymphs and adults across
species (a Lednia tetonica, b—¢ Lednia tumana). d A snowmelt-fed stream, Rock Creek, in the high Sierra
Nevada, California, USA, hosts a population of Lednia sierra. e A stream fed by subterranean ice emanat-
ing from Wind Cave in the Teton Range, Wyoming, USA, and the type locality for L. tetonica. f A snow-
melt-fed stream in Glacier National Park, Montana, USA containing L. tumana. g A researcher collecting
Lednia borealis adults emerging from a meltwater seep on the margins of the Sholes Glacier, Washington,
USA. h A meltwater pond unofficially referred to as “Tetonica Pond” where a population of L. tetonica
resides in Grand Teton National Park, Wyoming, USA. i A meltwater stream emerging from the Sexton
Glacier (center of the photo) in Glacier National Park, Montana, USA. Despite harsh conditions, L. tumana
are dominant members of the non-Dipteran aquatic invertebrate community in this stream (Giersch et al.
2017). Photos by: a—c Joe Giersch, d Matthew Green, e, f, h, i Scott Hotaling, and g Emilie Blevins

The putative fossil L. zilli specimen identified by Caruso and Wichard (2010) bore the
characteristic 9th abdominal sternite (lack of a vesicle) and wing venation characteristic
(the terminal costal crossvein Sc2 joins radius R1) of Lednia but differed significantly
in features of the male epiproct from L. tumana, the only Lednia species at the time of
description (Caruso and Wichard 2010). Given that all extant Lednia are known from west-
ern North America, the description of a European species from~34 to 56 million ybp in
the Eocene is striking and suggests the genus may have historically been much more widely
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distributed. Alternatively, however, the Caruso and Wichard (2010) specimen, despite sim-
ilar morphology, may not represent a species of Lednia. It is plausible, and perhaps likely,
that rather than Lednia once spanning a Nearctic and Palearctic distribution, the L. zilli
specimen may have belonged to a common ancestor of Lednia and similar Palearctic spe-
cies. However, without more fossil evidence, identification of contemporary Lednia out-
side of North America, or further study using advanced technologies (e.g., X-ray microto-
mography, Pepinelli and Currie 2017), the placement of L. zilli in Lednia should remain
tentative.

Geographic distributions

Lednia species appear to be restricted to cold streams in mountainous areas of western
North America. All known populations are in the contiguous United States (USA) with
the exception of one L. borealis population in central British Columbia, Canada, and a L.
tumana population in southern Alberta, Canada, just north of the core range for the species
in GNP (Fig. 2, Table S1; Donald and Anderson 1977). Across all locations, the number
of streams containing each species are: L. tumana (N=111), L. tetonica (N=16), L. borea-
lis (N=17), and L. sierra (N=28; Fig. 2; Tables S1). Prior to 2010, only 12 streams were
known to harbor Lednia and three species would eventually be described from these locali-
ties (L. borealis, L. sierra, L. tumana). In the years since, 140 new Lednia populations and
one new species (L. fetonica) have been documented (Fig. 3). Beyond increases in popula-
tion number, expanded search efforts have broadened the geographic range of each spe-
cies, most notably for L. borealis and L. tumana. For L. borealis, new records from Wash-
ington, USA, in the Alpine Lakes and Glacier Peak Wildernesses filled in distributional
gaps between Mount Rainier and North Cascades National Parks (Fallon et al. in press;
Fig. 2). The identification of a new L. borealis population from central British Columbia in
this study (see “Molecular ecology and genomics” below) represents an ~600 km northern
expansion for the species and the first record outside of the United States. Recently discov-
ered populations have reconfirmed L. tumana’s presence in Waterton Lakes National Park
in Canada, as well as expanded the known distribution in GNP while also extending its
range by ~45 km to the south (Fig. 2; Giersch et al. 2017).

Generally speaking, the discovery of new Lednia species and populations has followed
a consistent rule: the greater the search effort, the more populations have been discovered
(Fig. 3). In light of climate-induced alteration of headwater streams, there is a pressing
need for dedicated surveys of potential habitat. New efforts should focus on regions known
to contain small numbers of Lednia populations (e.g., Sierra Nevada, California, USA;
Alpine Lakes and Glacier Peak Wildernesses, Washington, USA) as well as mountain
ranges within the broader distribution of Lednia that have not been surveyed. Likely can-
didates include: the Wallowa Mountains (northeastern Oregon, USA), the Olympic Range
(western Washington, USA), the Sawtooth Range (central Idaho, USA), the Cabinet Moun-
tains (western Montana, USA), and the Wind River Range (central Wyoming, USA). How-
ever, with the discovery of L. borealis in central British Columbia, perhaps the most press-
ing areas to survey are the Canadian Rockies and Coast Mountains in western Canada.

When possible, future surveys should leverage emerging ecological tools. For
instance, species distribution models that incorporate environmental conditions known
to affect Lednia populations (e.g., distance from source and stream temperature, Giersch
et al. 2017) with remote sensing data could be used to inform survey efforts on a
range-by-range basis. The publicly accessible Google Earth platform is a powerful and
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Fig.2 All known extant populations of Lednia, color-coded by species. Green outlines in inset views of
terrain represent national park boundaries. Locality information is included in Table S1 and stems from an
array of published (Ricker 1952; Gaufin et al. 1972; Donald and Anderson 1977; Kondratieff and Lechleit-
ner 2002; Baumann and Kondratieff 2010; Muhlfeld et al. 2011; Kubo et al. 2013; Giersch et al. 2017;
Hotaling et al. 2018; Hotaling et al. 2018; Tronstad et al. 2020; Fallon et al. in press) and unpublished data
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Fig.3 The cumulative number of populations discovered through time for all Lednia and each species,
respectively. The year of discovery corresponds to the publication year for the study detailing the findings
(if published) and is included for each population in Table S1

accessible tool for reconnaissance of rare species habitats. Passive sampling techniques,
particularly the use of environmental DNA (eDNA; Thomsen and Willerslev 2015),
which has been applied to rare stoneflies elsewhere (Mauvisseau et al. 2019), also hold
considerable potential to refine our understanding of distributional ranges.

Ecological links to glaciers and snowfields

Lednia populations are associated with high-elevation streams, often emanating from gla-
ciers, perennial snowfields, cold springs, or subterranean ice (e.g., rock glaciers; Giersch
et al. 2017; Tronstad et al. 2020; Brighenti et al. 2021; Fallon et al. in press; Fig. 1d-i).
Populations living in the outflows of subterranean ice—termed “icy seeps” (Hotaling et al.
2019c)—are of particular recent interest as these streams are predicted to respond more
slowly to climate change than those fed by surface ice and snow, and thus, may act as key
climate refugia for Lednia and other coldwater taxa (Brighenti et al. 2021).

Lednia species vary in their elevational distributions likely due to differences in latitude
and annual snowfall (and thus the elevation of permanent snowpack in a given region).
Lednia sierra inhabit the highest elevations (mean=3273 m), followed by L. tetonica
(mean=2872 m), L. tumana (mean=2023 m), and L. borealis (mean=1589 m; Fig. 4a,
Tables S2-S3). However, despite significant differences in the average elevation of pop-
ulations, no difference exists among species in their average distance to a stream source
(Fig. 4b; Tables S2-S3). Across all populations and species, Lednia are on average just
383.5 m (SD=659.1) from their hydrological source.
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Fig.4 Variation in a elevation and b distance to source across Lednia species. Complete methods and
results for these figures are provided in Supporting Information and Tables S2—-S3, respectively. Approxi-
mate treeline in (a) was visually estimated using Google Earth imagery

While Lednia may exhibit species-specific variation in habitat preferences, too few pop-
ulations of species other than L. tumana have been identified to draw strong conclusions.
However, some general rules appear to exist for the genus: Lednia inhabit higher eleva-
tion, perennial flowing waters and shallow lentic habitats (less than ~4000 m? in area). For
the best-studied species, L. tumana, populations inhabit the full array of alpine hydrology
from heavily glacier-influenced streams to groundwater springs, subterranean icy seeps,
and the margins of small meltwater ponds. Densities of L. tumana decline with increasing
distance from a stream source and increasing water temperatures; however, the modeled
effect of water temperature explains just half the variability compared to that of distance
from source (Giersch et al. 2017). Lednia borealis generally occurs in forested stream eco-
systems up to the melting edges of snowfield, glaciers, and permanent ice (Fallon et al. in
press). Lednia borealis is also the only species regularly found below treeline (Fig. 4a),
likely due to the lower elevation of meltwater sources in the Pacific Northwest, USA, stem-
ming from substantial annual snowfall.

For L. borealis, L. sierra, and L. tetonica, a link between population occurrence and
the presence of a meltwater source (e.g., a glacier, snowfield, or rock glacier) has been
hypothesized (e.g., Tronstad et al. 2020) but not formally tested. However, for L. tumana,
Muhlfeld et al. (2011) established a clear link between L. tumana distributions and perma-
nent, but declining, glacier masses in the northern Rocky Mountains. Later, Giersch et al.
(2017) used expanded sampling to confirm and extend the conclusions of Muhlfeld et al.
(2011), showing that the occurrence and abundance of L. fumana declines precipitously
with increased stream temperatures and distance from source. More recently, Muhlfeld
et al. (2020) explicitly tested how the scale and timeline of glacier cover has influenced the
entire community of alpine macroinvertebrates in GNP and the surrounding mountains. A
key pattern emerged: a coldwater community, of which L tumana is a major component,
has persisted in catchments that have not been glaciated for at least~ 170 years (Muhlfeld
et al. 2020). Thus, for at least L. tumana, runoff from surface glaciers appears important
but not required for persistence.
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Life history

The life histories of Lednia species, beyond anecdotal field observations of emergence tim-
ing, are poorly known. Given the importance of life history in shaping species distribu-
tions, as well as informing management decisions and evolutionary models, this is a sig-
nificant research gap. Current knowledge suggests L. tumana has a semivoltine, two-year
life cycle comprised of 15—-18 instars (Treanor et al. 2013; J.G., personal observation). This
is supported by co-occurring mature, late-instar nymphs and smaller, early-instar nymphs
late in the summer season (e.g., September; J.G., personal observation). Limited evidence,
however, suggests life histories may vary among Lednia species. For instance, L. tefonica
populations tend to exhibit a single nymph size class during summer collection periods and
thus appears univoltine (L.M.T., personal observation).

All Lednia appear to emerge as adults in mid- to late-summer (late July to early Sep-
tember; Baumann and Call 2012) with variation among streams, likely depending on
thermal regime and snow cover. Lednia sierra adults have only been collected in August
and September; however, as the least studied species in the genus, this may reflect lim-
ited observations rather than a truly narrow emergence window. Conversely, L. tumana, the
most-studied species in the genus, has been observed emerging as early as mid-July and
as late as mid-October (Baumann and Kondratieff 2010). Alpine aquatic insects can have
temperature-dependent emergence patterns based upon sex (Nebeker 1971; Finn and Poff
2008). For example, Zapada haysi males emerge first then swarm later-emerging females
(Cather and Gaufin 1976; Finn and Poff 2008). Lednia tumana likely also display tempera-
ture-dependent emergence patterns based upon sex; of the 96 nymphs collected by Treanor
et al. (2013) in late August, only five were male.

Variation in emergence timing, whether due to sex, snow cover variation, or other fac-
tors, may also affect the connectivity of Lednia populations and the potential for gene flow
across stream types which could, in turn, influence patterns of local adaptation. While dis-
persal capacity for Lednia has not been quantified, nemourid stoneflies are generally con-
sidered weak fliers with particularly low rates of female dispersal (Finn and Poff 2008; but
see DeWalt and South 2015). However, genomic data do support some degree of connec-
tivity within and across basins; for instance, L. tumana populations within 1-2 km of each
other in the GNP alpine exhibit very low levels of differentiation (Hotaling et al. 2018).

Biotic interactions

The diet of Lednia has not been studied, but current knowledge suggests nemourid
stoneflies primarily consume decaying plant material, biofilms, and other organic mate-
rial (Ledger and Hildrew 2000; Feeley and Kelly-Quinn 2015; Merritt et al. 2019). Led-
nia occurs in many locations that lack conspicuous vegetation and with limited biofilm
growth on stream substrate. An important food resource for macroinvertebrates in other
alpine environments comes from glaciers, ice, snow and their associated algal communi-
ties, which may also be used by Lednia (Skidmore et al. 2000; Milner et al. 2001; Hagvar
et al. 2016; Ono et al. 2021). Gut content analyses of Lednia nymphs, stable isotopes of
insect body tissues to identify food web linkages (e.g., Coat et al. 2009), and molecular
identification of gut contents through metabarcoding (e.g., Jo et al. 2020) would all offer
crucial trophic insights for Lednia and similar species.
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Beyond Lednia’s trophic role, a standing question in alpine stream biology cent-
ers around the degree to which species require cold conditions for survival or if they are
instead tolerating harsh habitats as a means of escaping biotic stressors (Hotaling et al.
2020a). Lednia may be poor competitors that are outcompeted for space and resources at
lower elevations by taxa that are cold intolerant (e.g., Flory and Milner 1999). In addi-
tion to competition, many insects are predators in mountain stream habitats (Niedrist and
Fuereder 2017) and may exhibit high plasticity in prey species affinity depending upon
environmental conditions (Zah et al. 2001; Fiireder et al. 2003). An experimental test of
predation on alpine stream community structure highlighted the potential for a large preda-
tory stonefly transplanted to a new stream to alter densities of native prey (Khamis et al.
2015). Thus, biotic interactions in lower elevation streams by cold intolerant taxa could
constrain Lednia to higher elevation habitats (see “Thermal physiology” below).

Molecular ecology and genomics

With the growing ease of generating molecular data for non-model species (e.g., Hotaling
et al. 2021b), substantial advances have been made in the genetics of alpine biodiversity
(e.g., Dussex et al. 2016; Hotaling et al. 2018). For Lednia, we have learned a great deal
about relationships among species (Hotaling et al. 2019b), the underlying drivers and tem-
poral changes in differentiation within species (Jordan et al. 2016; Hotaling et al. 2018),
and how patterns of genetic structure in Lednia compare to related species (e.g., Zapada
glacier, Hotaling et al. 2019b).

In the first population genetic study of L. fumana, Jordan et al. (2016) compared mito-
chondrial DNA (mtDNA) haplotypes of two genes, cytochrome oxidase I (COI) and
cytochrome b, for L. tumana specimens collected in 2010 versus historical samples (col-
lected 10 or more years earlier). The 2010 samples exhibited reduced haplotype diversity
(a proxy for genetic diversity and/or population size) versus historical samples, indicating
that contemporary recession of glaciers and snowfields may be driving a loss of genetic
diversity (Jordan et al. 2016). Next, Hotaling et al. (2018) used genome-scale data col-
lected with restriction-site associated DNA sequencing (RADseq) to provide fine-scale
resolution of genetic structure within L. fumana and the origins of population-level differ-
entiation within the species. Analyses revealed three genetic clusters that generally aligned
with geography and diverged despite gene flow ~ 13,000-18,000 ybp, likely as continental
ice sheets receded into the high mountains at the end of the Wisconsin glaciation (~20,000
ybp, Carrara 1987).

Later, Hotaling et al. (2019b) added the first comparative genetic study of Lednia spe-
cies. Using COL Hotaling et al. (2019b) showed that L. tumana and L. tetonica are sibling
species, with L. sierra as the outgroup to the rest of the genus (Fig. 5). When compared to
a confamilial stonefly with a similar distribution in the high Rocky Mountains—the ESA-
listed Zapada glacier—genetic divergence between L. tumana and L. tetonica was nearly
an order of magnitude greater than divergence among Z. glacier populations across the
same area. Given the overlapping distributions of the two groups (L. tumana and L. teton-
ica vs. Z. glacier)—both geographically and environmentally—this result highlights the
importance of not assuming underlying genetic patterns from distributional or phylogenetic
evidence alone.
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Fig.5 A re-analysis of sequence data included in Hotaling et al. (2019b) with new samples of Lednia bore-
alis added (see Supporting Information). a Cytochrome oxidase ¢ subunit I (COI) haplotype network of all
available Lednia sequences. Colored circles represent haplotypes and N indicates the number of substitution
steps (i.e., one nucleotide difference) between haplotypes. b COI gene trees for all Lednia sequences. Ter-
minal nodes for everything except L. borealis (the new sequences included in this study) were compressed
into triangles and scaled according to the number of sequences. Numbers above nodes are posterior prob-
abilities

Here, we re-analyzed the data of Hotaling et al. (2019b), adding 11 new sequences
available on the Barcode of Life Database (BOLD; Ratnasingham and Hebert 2007) that
were either morphologically identified as L. borealis (N=9) or a close relative Prostoia
besametsa (N=2). In addition to L. borealis, we were particularly interested in the P. besa-
metsa sequences because they clustered with L. borealis despite being collected from cen-
tral British Columbia, the furthest north of any known Lednia range. Phylogenetic and hap-
lotype network analysis of the expanded data set and communications with the collectors
of the putative P. besametsa samples revealed two key findings: (1) new L. borealis sam-
ples from the Glacier Peak Wilderness represented a distinct genetic cluster that is more
diverged from conspecifics than any other Lednia populations (Fig. 5); (2) the P. besametsa
specimens were originally misidentified and instead represent L. borealis samples from
central British Columbia. This analysis provided the data to infer an expanded known dis-
tribution of L. borealis by ~800 km to the northwest.

In addition to new genetic insight, we have also recently gained a first look into the
genome of L. tumana (Hotaling et al. 2019c), the first for any stonefly (Hotaling et al.
2020b). This first nuclear genome assembly for L. tumana comprised ~520.2 million base-
pairs and its mtDNA genome was~ 16.7 thousand basepairs (Hotaling et al. 2019c¢), the
latter being similar to that found in other stonefly mtDNA genomes (Chen and Du 2017).
Both assemblies, and particularly the nuclear genome, will greatly empower genomic
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research in the system, including future efforts to understand the genetic basis of L. fuma-
na’s extreme life history.

Looking ahead, although research has moved beyond morphology for understanding
Lednia taxonomy and population relatedness, considerable potential for molecular insight
remains. First, a calibrated, multi-locus Lednia phylogeny is needed to confirm the existing
topology (e.g., Hotaling et al. 2019b) and understand the group’s evolutionary timeline.
Additional lines of systematic evidence are also necessary because cryptic, undescribed
species are common among mountain stream insects (e.g., Balint et al. 2011; Hotaling
et al. 2019b). For instance, a calibrated phylogeny could reveal whether Lednia species
evolved in response to mountain-building in their respective ranges, similar to the evolu-
tionary history of the glacier ice worm Mesenchytraues solifigus (e.g., Lang et al. 2017)
or whether they iteratively invaded mountain headwaters more recently. Such an approach
could also shed light on whether the extinct Lednia species (L. zilli) described from Europe
should be grouped with extant Lednia by providing an age for the most recent common
ancestor for the genus. If this age is more recent than the fossil species, then it likely lived
before the emergence of the genus and thus, should not be classified within it. Second,
because Lednia habitats vary among and within species due to difference in their primary
hydrological source (see Hotaling et al. 2017; Brighenti et al. 2021), Lednia populations
may be locally adapted (Whitlock 2015). If evidence for local adaptation is found, linking
these results to improved genomic resources to understand the genetic variation underlying
local adaptation would provide a powerful means for identifying which populations may be
most at risk under climate change. Finally, given the potential for a multi-year life history
in Lednia species, the possibility of molecular differences existing between cohorts should
be considered (e.g., Leys et al. 2017).

Thermal physiology

The link between Lednia (particularly L. tumana) and cold, high-elevation stream habitats
(e.g., Muhlfeld et al. 2011; Giersch et al. 2017; Fallon et al. in press) suggests that Led-
nia nymphs are cold stenotherms, capable of surviving only at very low temperatures, and
perhaps intolerant of warmer streams (e.g.,> 10 °C). This widely accepted hypothesis has
led to predictions of extreme vulnerability for Lednia and similar high-elevation stream
taxa to warming (Birrell et al. 2020). For reference, the mean August temperatures of L.
tumana localities across 43 sites rarely exceed 5.5 °C (Giersch et al. 2017). However, an
extant, cold-water distribution does not necessarily imply adaptation to cold climates or
stenothermy but simply highlights that Lednia are tolerant of cold, harsh streams. As previ-
ously discussed, an alternative hypothesis to cold adaptation is that Lednia are relegated to
high-elevations because of biotic interactions in lower elevation, warmer stream reaches
that are more distant from the source (Richter et al. 1997).

At a minimum, disentangling these alternative hypotheses requires experimental meas-
urements of Lednia thermal limits. Treanor et al. (2013) measured two physiological met-
rics, the critical thermal maximum (CTysx) and upper lethal limit (ULT), in late-instar
nymphs collected from a snowmelt-fed stream (Lunch Creek, GNP). CT;,x is a non-lethal
metric of tolerance of acute heat stress and represents the temperature at which an organ-
ism’s locomotor activity becomes disorganized and involuntary, akin to seizures. The
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second metric, ULT, is the temperature at which death occurs. Lednia tumana nymphs
from Lunch Creek had surprisingly high tolerance to heat stress (CTy;4x =20.6-21.85 °C,
ULT=31.1-32.3 °C) and could withstand temperatures nearly three times those which nat-
urally occur in their habitat (Treanor et al. 2013).

The high thermal limits of Lednia observed by Treanor et al. (2013) could be the result
of adaptation to thermal regimes typical of snowmelt rather than glacier-fed streams, which
tend to have larger temperature fluctuations and higher summer maximums (Hotaling
et al. 2017). Depending on the source, other streams in the high Rocky Mountains remain
extremely cold even in summer. More recently, Hotaling et al. (2020b) assessed population-
level variation in CT,;,x in three nemourid species, L. tumana, L. tetonica, and Zapada
sp., a confamilial taxon that also occurs in high-elevation streams (Fig. 6a, b). CTysx of L.
tetonica—the only taxon with multiple populations included in the study—correlated with
maximum stream temperatures such that populations from colder streams had lower heat
tolerance than those from warmer streams (Hotaling et al. 2020a). Thus, population level
thermal physiology in Lednia appears to vary within species, even across small geographic
scales, and may be linked to local conditions. Overall, Lednia exhibited relatively high
CTyax Vvalues (~28°C; Fig. 6a, b), which were comparable to other high-elevation aquatic
insects (Shah et al. 2017a) as well as the previous Treanor et al. (2013) study on L. tumana.

Unlike other studies of heat stress in aquatic insects, Hotaling et al. (2020b) linked ther-
mal physiology to underlying cellular processes via RNA sequencing and gene expression
comparison. Heat shock proteins (HSPs) are common in animals and high levels of HSP
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expression are typical in organisms experiencing heat or other stressful conditions (King
and MacRae 2015). Surprisingly, comparisons of L. fetonica exposed to normal (~3°C)
versus hot (~28°C) water temperatures revealed no differences in expression of HSPs.
Thus, it appears cold temperatures may be just as stressful for Lednia as hot temperatures.
This important result, along with measures of high heat tolerance limits, suggests that Led-
nia are not cold stenotherms, but instead are unusually tolerant of cold conditions. Thus,
identifying the mechanism(s) underlying the distribution of Lednia in cold, high-elevation
streams warrants further investigation. As speculated above, it is possible that biotic inter-
actions at lower elevations could explain Lednia’s high-elevation distribution—an impor-
tant consideration as climate change shifts species distributions in mountain ecosystems
worldwide (Shah et al. 2020a)—but this hypothesis has not been tested.

Although warming temperatures pose obvious risks to mountain biodiversity, an equally
important but often overlooked trait for species like Lednia is cold temperature tolerance.
To investigate tolerance to cold stress and freezing in Lednia, Hotaling et al. (2021a) meas-
ured the supercooling points (SCPs) of L. tumana, L. tetonica, and Zapada sp. inhabiting
multiple stream types in the Rocky Mountains (Fig. 6¢,d). Stream types were defined by
landscape geomorphology and primary hydrological source (e.g., glaciers or subterranean
ice). Briefly, the SCP is the temperature at which an organism’s body transitions to a frozen
state (Renault et al. 2002). During this transition, the formation of internal ice results in a
rapid release of heat, which can be detected by thermocouples placed in contact with the
organism’s body. Lednia tumana from Lunch Creek, GNP, exhibited a slightly higher mean
SCP (- 5.9+2 °C) than the overall mean SCP for five L. tetonica populations representing
a variety of stream types (— 6.6 +2 °C; Fig. 6¢). These values fall within the upper range of
supercooling points measured for terrestrial insects (Moore and Lee 1991; Sinclair 1999)
but are higher than many aquatic insects, such as Diamesa mendotae (SCP: —21.6 °C) and
other stonefly species like Allocapnia granulata (SCP: — 13.15+0.44 °C) and Allocap-
nia pygmaea (SCP: — 11.95+0.47 °C; Danks 2008; Bouchard et al. 2009). A population
of L. tetonica from a small, high-elevation alpine pond exhibited the lowest mean SCP
of any population in the study (— 7.5+2 °C, Fig. 6d; Hotaling et al. 2021a). This find-
ing was particularly compelling as the geomorphology and hydrology of high-elevation
ponds may induce lower SCPs. Generally, high-elevation ponds are shallow (<1 m) with
flat bottoms and extremely slow-moving water. Unlike steeper, fast-flowing streams, high-
elevation pond populations are more likely to experience freezing stress (Hotaling et al.
2021a). Thus, much like the upper thermal limits, there is variation in SCP across species,
populations, and habitat types in Lednia and closely related species that can be linked, at
least in part, to local stream conditions. Although SCPs can be indicative of biochemical
adaptations to internal ice-formation, most aquatic insects likely do not survive exposure
to subzero temperatures below their supercooling points (Irons et al. 1993, but see Walters
et al. 2009). Hotaling et al. (2021a, b) assessed tolerance to ice enclosure for late-instar L.
tumana nymphs from Lunch Creek, GNP. No L. tumana nymphs survived the experiment,
indicating that contact with ice in the environment is lethal. As a result, understanding how
(and where) Lednia nymphs overwinter to either avoid or cope with freezing temperatures
remains an open question.

Although efforts to understand the thermal ecology of Lednia represent important first
steps, the results should be interpreted with caution. Metrics like CTy,x and ULT only
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measure response to short-term thermal stress and are often sensitive to methodological
parameters (e.g., rates of temperature change, Rezende et al. 2011). Whether Lednia can
withstand higher temperatures throughout development or whether there are trade-offs
that become apparent at specific life stages are just some of the gaps that remain to be
filled. Future studies should emphasize understanding the link between warming in alpine
streams and organismal fitness, particularly when multiple factors are considered simulta-
neously. Warming will likely affect shifts in growth trajectories, developmental timelines,
egg production, and adult flight performance (Mccauley et al. 2015). Links between Led-
nia, stream temperature, and metabolic rates will also provide a comprehensive framework
for predicting how subtle temperature change will affect energy budgets and organismal
performance (Shah et al. 2020b). Warmer temperatures and lower stream flows will reduce
the oxygen content of stream water (Birrell et al. 2020) and can result in decreased toler-
ance to heat stress (Portner and Knust 2007). Evidence for this reduced tolerance to heat
stress has been observed for a lower elevation stonefly (Frakes et al. 2021), and the joint
effects of warming and decreased flow may be especially problematic at high elevation,
where low atmospheric partial pressure exacerbates oxygen limitations (Jacobsen 2020).
However, like many other organisms, Lednia may escape or mitigate unfavorable stream
conditions through intrinsically broad thermal tolerance, thermal plasticity (e.g., Shah et al.
2017b), or behavioral thermoregulation (McNamara et al. 2020). Whether Lednia accli-
mates to warmer conditions or physically moves within the stream to avoid higher tem-
peratures is unknown. Similarly, during winter when Lednia habitats are snow-covered
with temperatures near freezing, Lednia may seek refuge in the interstitial spaces of the
streambed to avoid contact with ice (Danks 2008; Wissinger et al. 2016). If Lednia move
around the stream to behaviorally thermoregulate in winter, they may also do so during the
hottest times of the summer.

The future of Lednia and alpine stream ecosystems

Anthropogenic climate change is driving massive recession of glaciers and perennial snow-
fields in mountain ecosystems (Riedel et al. 2015; Zemp et al. 2015). For example, of the
150 glaciers documented in GNP and the surrounding area in 1850, only 25 remain, and
these may vanish within the twenty-first century (Hall and Fagre 2003). As glaciers retreat,
cold water habitats will be greatly reduced (Muhlfeld et al. 2011), although, the degree to
which L. tumana, L. tetonica, and other Lednia species require cold meltwater for their per-
sistence has been complicated by conflicting ecological, physiological, and molecular evi-
dence (Hotaling et al. 2020a; Muhlfeld et al. 2020). Still, loss of coldwater habitat is likely
to decrease gene flow and genetic diversity, hampering the potential for adaptive evolution,
and increasing the risk of local extirpation and extinction for Lednia.

Thus far, predictions of climate change threats to Lednia and other alpine stream biota
rests on the assumption that perennial streams will continue to flow on a deglaciated land-
scape. This may not be true (Haldorsen and Heim 1999), especially in the Teton Range
and the Sierra Nevada where springs fed by groundwater aquifers, which are less likely to
be impacted by cryosphere decline, are uncommon (Tronstad et al. 2020; M.G., personal
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observation). However, though groundwater-fed springs are rare in landscapes like the high
Teton Range, many of these places have a rich distribution of geological features that com-
monly harbor internal ice (e.g., rock glaciers); these “cold rocky landforms” essentially
act as aquifers (Brighenti et al. 2021). At any rate, with restricted distributions and the
potential for multi-year life histories within Lednia, streams transitioning from high-flow to
intermittency or no flow will have dire consequences for the group.

Altered flow and habitat conditions are likely already influencing Lednia distributions.
Range contractions have been demonstrated for another alpine nemourid stonefly, Zapada
glacier, which can be sympatric with Lednia species. (Giersch et al. 2015; Hotaling et al.
2019b). Zapada glacier populations appear to be retreating upstream to track colder condi-
tions driven by ongoing loss of glacial coverage in GNP (Giersch et al. 2015). However,
the specific drivers of these range shifts remain unclear. Species may move uphill to track
cooler conditions, move downhill to balance the effects of rising temperatures and oxy-
gen availability (Jacobsen 2020), or move in unpredictable ways due to the pressures of
biotic interactions (e.g., predation or competition; Khamis et al. 2015). The challenge of
understanding and predicting these range shifts is intensified by the fact that organismal
responses to changing alpine stream conditions will likely be species, and perhaps even
population, specific (Shah et al. 2020b).

Conservation of Lednia and headwater biodiversity

The listing of L. tumana as threatened under the U.S. Endangered Species Act highlights the
risks facing Lednia and other high-elevation species under climate change (e.g., Z. glacier; US
Fish and Wildlife Service 2019). While this policy decision highlights the need for L. tumana
to receive considerable research attention going forward, the high degree of ecological simi-
larity among Lednia species paired with fewer known locations for non-L. tumana species
highlights that the entire genus is likely facing similar threats. According to the NatureServe
Explorer database of conservation statuses for rare and endangered species in the Americas,
L. borealis, L. tetonica, and L. tumana are both classified as G1: critically imperiled (Nature-
Serve 2021). Lednia sierra has not been ranked.

The vast majority of Lednia populations occur on federally managed lands (e.g., National
Park Service; Fig. 2). While this distribution affords the group with some degree of protection,
the ultimate fate of Lednia may be inextricably linked to anthropogenic climate change. Thus,
a practical challenge remains: what concrete steps can be taken to conserve aquatic insects
living in high-elevation streams whose sources are imperiled by climate change? To date, no
Lednia species has been successfully reared in captivity so supporting populations through
breeding programs is not currently feasible. Another option is identifying suitable habitat out-
side of existing ranges of Lednia species for managed relocation (also referred to as “assisted
migration”, Schwartz et al. 2012). However, managed relocation raises a host of ecological
and ethical concerns as it is essentially an intentional invasive species introduction (Ricciardi
and Simberloff 2009). For a group as poorly known as Lednia, proper mitigation of these con-
cerns while ensuring a high likelihood of post-relocation success likely presents a challenge
too great to overcome—at least until the ecology of the species is better understood.
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Perhaps the best practical solution for Lednia conservation will be identification, man-
agement, and monitoring of existing in situ climate refugia within the range of each species
(Morelli et al. 2020). Climate refugia are areas of habitat within a species’ range that are
expected to be maintained in their current condition while nearby habitats degrade and become
unsuitable (e.g., due to climate change, Ashcroft 2010). Rock glaciers and related “cold rocky
landforms” (CRLs) that support subterranean ice and cold outflow streams (termed “icy
seeps”, Hotaling et al. 2019c¢) in mountain ecosystems may provide climate refugia for Led-
nia and other alpine biota (Brighenti et al. 2021). For example, research suggests that rock
and debris-covered glaciers will likely persist on the landscape longer than surface glacier and
snowfields due to thermal buffering afforded by debris cover (Clark et al. 1994; Anderson
et al. 2018; Knight et al. 2019), and cold rocky landforms are common in the western United
States and outnumber surface glaciers and perennial snowfields by a margin of ~2:1 (Fountain
et al. 2017; Johnson 2018). Additionally, the biotic communities supported by rock glaciers
and related features commonly overlap with nearby glacier-fed streams (Brighenti et al. 2021).
Thus, an effective approach for Lednia conservation going forward could center around con-
ducting surveys to identify currently unmapped Lednia populations, identifying the degree to
which they are linked to CRLs, targeting management towards CRL-linked populations and
similar Lednia climate refugia, and followed by regular monitoring of population sizes and
environmental conditions to monitor stability through time (see Brighenti et al. 2021). This
approach could be empowered at multiple levels by molecular (e.g., metabarcoding, eDNA)
and modeling (e.g., SDM) approaches to improve search efficacy and accuracy of detection as
well as the use of demographic stability metrics (or related approaches) to identify populations
that are most likely to persist through future habitat change (e.g., Finn et al. 2009).

Future directions

Research in the last decade has greatly expanded our knowledge of Lednia; three new spe-
cies were described, known populations of the genus expanded from 12 to 154, and a major
extension of the L. borealis range was discovered in the mountains of British Columbia,
Canada. We have also learned a great deal about the ecological and evolutionary charac-
teristics of individual species and the genus overall. Along the way, this research trans-
formed our capacity to predict climate change impacts on alpine stream biodiversity and
transitioned Lednia from an enigma of the Rocky Mountain alpine streams to one of the
best-known mountain stream residents in western North America and a sentinel of climate
change impacts on headwaters. Still, our knowledge of Lednia and ecologically similar spe-
cies remains incomplete. In Table 1, we offer a range of pressing areas for future research
across the disciplines described above.
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Conclusion

As mountain streams rapidly change around the world, we are faced with an increasingly
pressing challenge to predict how these changes will affect Lednia and other alpine stream
taxa. While recent studies (e.g., Hotaling et al. 2020a; Muhlfeld et al. 2020; Brighenti
et al. 2021) suggest that stream biodiversity may be more tolerant of mountain cryosphere
decline than previously anticipated, major research gaps remain. Ultimately, we need bet-
ter predictive knowledge of the abiotic and biotic factors influencing the persistence of
mountain stream communities. Going forward, we expect coordinated efforts, empowered
by a growing interest in long-term ecological monitoring of mountain streams, to greatly
improve understanding of high-elevation aquatic ecosystems and the unique biota they
contain.
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