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In materials that undergo martensitic phase transformation, distinct elastic phases often
form layered microstructures — a phenomenon known as twinning. In some settings the
volume fractions of the phases vary macroscopically; this has been seen, in particular, in
experiments involving the bending of a bar. We study a 2D model problem of this type,
involving two geometrically nonlinear phases with a single rank-one connection. We adopt
a variational perspective, focusing on the minimization of elastic plus surface energy. To
get started, we show that twinning with variable volume fraction must occur when bend-
ing is imposed by a Dirichlet-type boundary condition. We then turn to paper’s main
goal, which is to determine how the minimum energy scales with respect to the surface
energy density and the transformation strain. Our analysis combines ansatz-based up-
per bounds with ansatz-free lower bounds. For the upper bounds we consider two very
different candidates for the microstructure: one that involves self-similar refinement of
its length scale near the boundary, and another based on piecewise-linear approximation
with a single length scale. Our lower bounds adapt methods previously introduced by
Chan and Conti to address a problem involving twinning with constant volume fraction.
The energy minimization problem considered in this paper is not intended to model
twinning with variable volume fraction involving two martensite variants; rather, it pro-
vides a convenient starting point for the development of a mathematical toolkit for the
study of twinning with variable volume fraction.
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1. Introduction

Martensitic phase transformation of a crystalline solid leads to the formation of
elastic domains. The associated pattern formation problems have been studied by
many authors, using a variety of methods including the crystallographic theory
of martensite, phase-field-type numerical algorithms, and variational approaches
involving minimization of elastic energy or elastic plus surface energy. This paper
is motivated by the variational perspective.

It often occurs that two phases form a layered microstructure — a phenomenon
known as twinning (see for example Refs. 1, 4, 19, 29). Problems involving twinning
with constant volume fraction have received a lot of attention over the years. The
length scale of twinning near an austenite interface has been a particular focus of
research (see Ref. 12 for some recent developments and references to prior work).
Interestingly, in that setting the length scale of twinning can be very nonuniform
— small where the twins meet the austenite, but much larger at points far from
this interface. The change of length scale is accomplished by branching, which is
predicted (at least by one model'!) to be self-similar.

In this paper we study a similar yet different microstructure — one we like to
call “twinning with variable volume fraction” — which has thus far received much
less attention. As we shall see, the situation is quite different from — though it has
connections to — twinning at constant volume fraction.

Why might the volume fraction vary macroscopically? We focus in this paper on
a simple two-dimensional thought-experiment involving the bending of a bar (see
Figure 1). We introduce it informally here, then more mathematically in Section 2.1.
The bar is initially rectangular (with long direction parallel to the y axis), occupied
entirely by one of our two elastic phases. Suppose the transformation strain taking
this phase to the other one expands the y direction but leaves the x direction invari-
ant. Then bending the bar should create a two-phase mixture to accommodate the
required expansion without substantial elastic energy, as shown on the right hand
side of Figure 1. While this thought-experiment is somewhat stylized, it captures
many features of some real-world examples, as we shall explain in Section 2.6.

This paper studies the minimization of elastic plus surface energy, for a math-
ematical model of this thought-experiment. The bending is imposed not by forces,
but rather by a suitable Dirichlet-type boundary condition. Since the variational
problem being considered is highly nonconvex, it is unreasonable to expect to iden-
tify the exact energy minimizer either analytically or numerically. Instead, we focus
on understanding the energy scaling law — that is, how the minimum energy scales
with respect to the surface energy coefficient and the transformation strain. Upper
bounds come from specific test functions, which are built around candidate two-
phase geometries. One of our upper bounds is built around the geometry shown
in Figure 1; another uses self-similar branching to make the length scale of the
microstructure near the curved boundaries much smaller than in the center. To
identify the energy scaling law, one must prove an ansatz-free lower bound that
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Fig. 1. Explanation why bending of a bar leads to twinning with variable volume fraction. The two
phases are dark (B) and light (A) respectively. LEFT: the unbent bar (short in the z direction and
long in the y direction) is entirely in the dark phase (though an unbent bar could also be a mixture
of the two phases, in twins parallel to the = axis). RIGHT: if transformation from the dark phase
to the light phase expands the material in the y direction, then the bent bar can keep its elastic
energy small by using a piecewise affine mixture of the two phases with one phase dominating on
the left and the other dominating on the right. The sequence of pictures shows how refinement
of the microstructure leads to a better approximation of the relaxed solution v* in (1.3) and of
the chosen boundary conditions, at the expense of higher surface energy. The optimal length scale
depends on the cost of interfaces and is therefore material dependent. The construction used to
prove Lemma 3.1 is based on this picture. Since the deformation associated with this picture is
piecewise affine, the bent structure it achieves has a polygonal boundary. To make the left and
right boundaries exactly pieces of circles a somewhat different construction is needed, in which
the length scale of the twinning approaches zero near the left and right edges. Lemma 3.5 uses a
branching pattern to achieve this.

scales the same way as the upper bound. When this program is successful — as hap-
pens here — the impact of the lower bound is two-fold: on the one hand it confirms
the near-optimality of a configuration achieving the upper bound; and on the other
hand, the proof of the lower bound provides an explanation why no configuration
can do much better.

The preceding paragraph and Figure 1 provide an equation-free summary of
our goals. Section 2.1 explains in detail the variational problem we consider. An
impatient (and sufficiently expert) reader might, however, appreciate the following
summary of our setting. Working in two spatial dimensions, we assume that there
are two variants of martensite, characterized by the eigenstrains

1 0 1 0
(00w me(00)

where a € (0, %] is a parameter. Obviously %(A + B) = Id. The elastic energy

measures the distance of the deformation gradient from the set K = SO(2)A U
SO(2)B, see (2.1)—(2.5) for details. The matrices A and B are rank-one connected,

with rank(A — @QB) = 1 having a single solution at @ = Id. The quasiconvex
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envelope of K turns out to be
K€ ={QtA+(1—-1t)B):t€[0,1],Q € SO(2)} (1.2)

(see Lemma 2.1). It is natural to interpret the parameter ¢ in (1.2) as the local
volume fraction of the variant A, with 1 — ¢ being the local volume fraction of the
variant B. We choose a prototypical deformation v* with Du* € K9 and with
volume fraction depending on position, of the form

1+ ax (cos(ay)
* = 1.

w(@,y) a <sin(ay) (1.3)
for (z,y) € (—1,1) x R. One can check that the deformations illustrated in Figure 1
would converge, as the microstructure becomes finer, to u* (weakly in Wé’f((fl, 1)x

R;R?)). A short computation shows that
1+ 11—z

—A
2 +2

Du*(2,y) = Qay ( B) € Ka° (1.4)

pointwise, showing that the local volume fraction of the A variant is H'Tz Here
Qay € SO(2) is a rotation, defined in (3.4) below. It turns out that u* is the only
minimizer of the relaxed problem if we prescribe Dirichlet boundary conditions on
the vertical sides, x = +1, see Lemma 2.2. Therefore approximate solutions of the
unrelaxed problem with these boundary conditions converge to u*, and the volume
fraction of the two phases converges to the ones obtained for u*.

The variational problem we consider is then to minimize an unrelaxed elastic
energy, of the form dist?(Du, K), plus a singular perturbation proportional to the
total variation of Du, subject to the condition that u = u* for x = £1, see (2.8)—
(2.9). In the limit of small surface energy e, minimizers u. converge to u*, and
therefore locally the volume fraction of the A phase approximates H?I With ref-
erence to the deformations shown in Figure 1, we remark that for any finite length
scale h > 0 the A/B interfaces are not parallel to the B/A interfaces. Indeed, this
is a necessary consequence of the fact that the volume fractions depend on x. Since
the interfaces deviate from the rank-one direction, the elastic energy cannot van-
ish, even if the boundary conditions are satisfied only approximately. However, the
slope of the interfaces depends on h, which in turn relates to the surface energy.
We refer to Remark 2.2 for a brief discussion of the relevant scalings, and to the
upper bounds in Section 3 for a detailed computation. Therefore in the current
problem a competition between elastic and surface energy is present for any map
that approximates u*, and does not depend on the detailed boundary conditions.

Our main results are stated in Section 2.5, but let us summarize them informally
here:

(a) We evaluate the energy scaling obtained using a piecewise linear test function
with the phase geometry shown in Figure 1. We also evaluate the energy scal-
ing obtained using a construction involving self-similar branching of the elas-
tic domains. The two constructions achieve the same energy scaling law. Their
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boundary behavior is slightly different: the self-similar construction achieves our
“bending boundary condition” exactly (the deformed rectangle occupies a sector
of an annulus) while the unrefined piecewise linear construction achieves it only
approximately (the deformed rectangle occupies a piecewise linear approxmation
of an annulus).

(b) We prove an ansatz-free lower bound, showing that the energy scaling law
achieved by these two constructions is optimal.

(¢) We consider whether a construction similar to Figure 1 can be adapted to achieve
our bending boundary condition exactly (mapping the deformed rectangle to a
sector of an annulus) without changing its energy scaling law. The answer is no.
In fact, the obvious adaptation — an interpolation near the edges — achieves a
different scaling law. Moreover we prove a lower bound showing that this different
scaling law is optimal among constructions whose local length scale near the
boundary is similar to that in the interior. Thus, while the details of our self-
similar construction are surely not unique, achievement of the exact bending
boundary condition seems to require something of this sort.

Item (a) summarizes the upper-bound parts of Theorems 2.1 and 2.2; (b) summa-
rizes the lower-bound parts of the same theorems; and (¢) summarizes Theorem 2.3.

It might seem surprising that the unrefined construction and the one with self-
similar branching lead to the same scaling of the energy. This is quite different from
situation for twinning with constant volume fraction, as considered for example
in Refs. 21, 22, 23. To explain why branching doesn’t change our energy scaling
law, it is useful to point out that in the branching construction the total energy
is estimated (much as in the papers just cited and other work on similar patterns
discussed in Section 2.6 below) by a converging geometric series (see (3.47)). The
scaling behavior is therefore controlled by the first term of the series, which decribes
the bulk behavior. In our setting, the behavior in the bulk involves both elastic and
surface energy. (The elastic energy is inescapable since the volume fractions are
position-dependent — a feature that’s present whether or not one uses branching.)
This is quite different from the situation with constant volume fraction, where the
unrefined construction has zero elastic energy in the bulk. This is, we believe, the
essential reason why the two constructions lead to the same scaling.

As we have just summarized, our paper presents two rather different construc-
tions with the same energy scaling law. One may wonder which is more likely to be
observed in practice. Within the variational setting, one would have to compare the
energy of the two constructions, which would require understanding the prefactor
in the energy scaling, and is beyond the scope of the present paper. It seems natural
to expect that the simplest pattern will have a smaller prefactor, but one should
keep in mind that many other patterns are also possible, for example with partial
branching. However, energy minimization alone cannot predict what is observed in
nature, and indeed it is known that experiments in the presence of highly nonconvex
energies are typically not fully described by energy minimization. In practice, devel-
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opment of microstructure strongly depends on nucleation phenomena. Whereas it
seems natural to think that the simpler, unrefined structure might be preferred, the
precise answer may depend on other details of the problem not modeled here, and
be history-dependent. We stress that the advantage of branching obtained in item
(¢) above stems from the idealized rigid boundary conditions. Although the fact
that the volume fraction depends on position seems robust in this setting, the ap-
pearance of branching might be due to the specific Dirichlet boundary data chosen
here.

Concerning methods: in the limit as the surface energy density tends to zero,
the energy minimizer must converge (weakly in H') to the minimizer of a suitable
“relaxed problem” involving the quasiconvexification of the elastic energy. Therefore
our analysis begins with a discussion of the relaxed problem (Lemmas 2.1 and 2.2).
We then turn, in Section 3, to the constructions that give our upper bounds. The
piecewise linear test function motivated by Figure 1 resembles one that was briefly
discussed in an analogous scalar setting in Ref. 25. The test function involving self-
similar branching is conceptually similar to those previously used to model twinning
with constant volume fraction near an austenite interface; we draw ideas especially
from the work of Chan and Conti®%, which uses geometrically nonlinear elasticity (as
we do here). However the details are quite different in the present variable-volume-
fraction setting; therefore we present the self-similarly branched construction in full
detail. Our lower bounds are presented in Section 4. The bounds mentioned in item
(b) above are proved by adapting arguments from Refs. 5, 6 to our variable-volume-
fraction setting. For those mentioned in item (c) above, even the statement of the
theorem requires a new idea. Indeed, we need to formalize what it means for a
test function to “have no microstructure near the boundary” (that is, to have its
local length scale near the boundary similar to that in the interior). This is done
by defining what it means to “have no microstructure on a set c(u v)vith constant m”
S m

onescale that have, in

(Definition 2.1), then using it to define a class of deformations
a very precise sense, no microstructure near the boundary (Definition 2.2). Besides
the definitions just discussed, the proof of the lower bound summarized by item (c)
uses the Friesecke-James-Miiller rigidity theorem, and a straightforward estimate
of how well our bending boundary condition can be approximated by a piecewise
linear function.

Two papers closely related to this work are in preparation. The paper in Ref. 24
considers twinning with variable volume fraction in the context of the scalar model
briefly discussed in Ref. 25 (a variant of the scalar model introduced by Kohn
and Miiller?*22:23 to study the length scale of twinning near an austenite-twinned-
martensite interface). The analysis in Ref. 24 goes beyond the energy scaling law,
using well-chosen comparison functions to draw conclusions about the geometrical
character of an energy minimizer. In a different direction, the paper in Ref. 13 ex-
amines a 3D linear elastic model of the bending of a bar consisting of two martensite
variants. The model considered there is basically a quantitative version of those in
Refs. 7, 31; in particular, the transformation strain considered there is appropriate
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for variants created by a cubic—tetragonal phase transformation. (Subsequent exper-
imental work® by the authors of Ref. 7 reported that their bars had microstructures
more complex than anticipated by the models in Refs. 7, 13, 31; in fact bending
produced “polydomain phases,” specifically a type of microstructure known in the
mathematical literature as a “order-two laminate.” Such microstructures have also
recently been observed in another system.? It remains an interesting open prob-
lem to understand these bending-induced order-two laminates as minimizers of an
appropriate energy functional.)

2. Mathematical formulation, main results, and scientific context
2.1. Owur variational problem

The spatial arrangements of phases in systems undergoing coherent phase trans-
formation have long been studied using the minimization of elastic energy, with
or without surface energy; see e.g. Refs. 19, 29 for early work using geometrically
linear elasticity, Refs. 1, 2 for early work using geometrically nonlinear elasticity,
and Ref. 21 for early work about the effect of surface energy. In this paper we use
a geometrically nonlinear elastic energy, and a formulation permitting sharp inter-
faces for the surface energy. Our variational problem is among the ones studied in
Refs. 5, 6, though our boundary condition is different. Here and throughout the
paper (except for Section 2.2), we discuss the problem in its nondimensional form.
(The nondimensionalization is briefly discussed in Section 2.2.)

OUR ELASTIC ENERGY: In a geometrically nonlinear theory, the elastic energy
should have the form

/ W (Du) dL", (2.1)
Q

where W is frame-indifferent in the sense that W(F) = W(RF) for every
orientation-preserving rotation R. Here we work in space dimension two, with a
special “two-well” elastic energy density of the form

W (F) = dist*(F, K) = inf{|F — G>,G € K}. (2.2)
The set K (which represents the material’s stress-free states) has the form

K =S0(2)AUSO(2)B (2.3)

) ) e

where « is a parameter satisfying

with

0<a<1/2 (2.5)

(The upper bound serves to keep us away from the singular case oo = 1.)
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As usual in nonlinear elasticity, the elastic deformation u takes a reference do-
main € to a deformed configuration «(£2). We shall focus on the reference domain

Q=(-1,1) % (-1,1) (2.6)

though we briefly comment on rectangular domains in Section 2.2.

Our elastic energy density (2.2) describes a two-phase elastic material. The
stress-free strains of the two phases are A and B, and the Hooke’s law of each phase
is the identity. The choice of such a simple Hooke’s law is, however, not essential.
Indeed, since our results concern only the energy scaling law (not the prefactor
associated with this law), they apply to any elastic energy density that is bounded
above and below by a constant times our W.

Experts will notice that our two-well energy is different from those that typically
arise in connection with shape-memory materials (see e.g. Ref. 4). Indeed, for an
energy density of the form (2.2) with K = SO(2)A’ USO(2)B’ for two symmetric
matrices A’ and B’ with B’ ¢ SO(2)A’, there are three different cases:

(i) If RA’ — B’ has rank 2 for every R € SO(2), then the two phases cannot coexist
in their stress-free states.

(ii) If RA’ — B’ has rank 1 for a unique R € SO(2), then the two phases can “twin”
(that is, they can mix in layers in their stress-free states) in just one way. In fact,
if RA" — B’ = a ® n, then stress-free twinning uses layers normal to n.

(iii) If RA’ — B’ has rank 1 for two distinct choices of R € SO(2) then the two
phases can twin in two different ways. In fact, if R1A’ — B’ = a1 ® n; and
Ry A’ — B’ = as ® no, then stress-free twinning can use either layers normal to
ny or layers normal to ns.

Our elastic energy density is typical of case (ii), while a pair of low-temperature
variants in a shape-memory material would be in case (iii). We have chosen to focus
on (ii) because it is the simplest nonlinear setting where the phenomenology cap-
tured by Figure 1 can be discussed. Our upper bound constructions have analogues
in the setting of case (iii) (though the associated scaling laws are different from
those of the present paper, reflecting differences between the two cases that are
well-understood in the constant-volume fraction setting®%). With respect to lower
bounds, however, the situation in case (iii) seems quite different from that of the
present paper, since there are stress-free mixtures of the two phases that achieve
something like bending without any need for microstructure (see Ref. 17 for an
up-to-date discussion with references to earlier work). It would, of course, be in-
teresting to understand case (iii) better. The paper in Ref. 13 takes a step in this
direction, by using geometrically linear elasticity to model the bending of a three
dimensional bar made from a two-phase material to which (iii) applies.

OUR SURFACE ENERGY: Our upper bound constructions use continuous, piecewise
smooth deformations u. In the smooth parts Du is close to either SO(2)A or SO(2) B,
making the elastic energy small; where u is not smooth, it is because Du jumps
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across a curve that can be thought of as a phase boundary. In a physical setting,
the surface energy might have a complicated dependence on the orientation of the
phase boundary and the deformation gradients on each side. But since we focus
only on the scaling law of the minimum energy (not the prefactor), it is sufficient
to use a simpler model: we require that Du be a (matrix-valued) BV function, we
take the surface energy to be a multiple of its total variation:

e|D%u|(Q) (2.7)

(Here and throughout the paper, our norm on the space of matrices is the Euclidean
one: |F| = (Z” Ff]
Du would take the values RA and RB in layers parallel to the = axis, and the surface

)1/2.) The coefficient £ > 0 is a parameter. For stress-free twins,

energy would be 2ae times the arclength of the phase boundary. Thus the surface
energy density is not e, but rather 2ce.

OUR BENDING BOUNDARY CONDITION: Figure 1 visualized the bending of a rect-
angle. However, the bending of a square Q = (—1,1)? captures all the problem’s
essential mathematical issues, so we shall focus on this case (except in Section 2.2).
We further specialize to the case when the deformed square has pure phase A on the
right edge and pure phase B at the left edge (like Figure 1). The deformed square
is then a sector of an annulus whose curved sides have length 2(1 — ) and 2(1 4 «)
(see Figure 2). Our bending boundary condition imposes such behavior:

1-a <cos(ay)

u(—1,y) =
(=1y) a sin(ay)

) for y € (—-1,1),
(2.8)

14« [cos(ay)
Ly = a (sin(ay)

This condition constrains only the left and right sides of the reference domain
(x=-1land z=1).

> for y € (—1,1).

Fig. 2. The undeformed square, and its image. The image of the left and right boundaries is
determined by our bending boundary condition (2.8). The grid shows the relaxed solution u*,
which is discussed in Section 2.3.

It makes perfect sense to consider the limit & — 0 (indeed, our scaling laws
show how the energy depends on both a and € as they approach 0). It may therefore
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seem strange that our bending boundary condition (2.8) diverges as @ — 0. But
remember: the elastic and surface energy do not change if we subtract a constant
from u. Subtracting the a-dependent constant a='(1,0) would assure that u fixes
the points (—1,0) and (1,0) for all « > 0, eliminating the apparent divergence. We
do not include this translation in (2.8), since the formulas are simpler without it.

IN sUMMARY: This paper studies the minimization of
E [u] := / dist?*(Du, K) dz dy + €| D*u|(2) (2.9)
Q

over u € WH2(Q;R?) such that Du € BV(2;R?*2), where u is constrained to
satisfy the bending boundary condition (2.8) either approximately or exactly.

2.2. The problem in physical variables

We briefly discuss how our nondimensionalized problem (2.9) is related to the min-
imization of elastic plus surface energy in dimensional variables. To this end, let us
consider a 2D strip of height 2H and width 2L, and contemplate the minimization
of

/ dist?>(Dv, K) dz dij + 6| D*v|((=L, L) x (—H, H)) (2.10)
(—L,L)x(—H,H)

where § > 0 has the dimensions of length. The set K is the same as before — it
is defined by (2.3) — since the deformation gradient is dimensionless. If u(z,y) =
L=Yv(Lx, Ly) then (2.10) is equal to

12 / dist?(Du, K) da dy + > | D?u|((—1,1) x (—H/L, H/L)) \
(=1,1)x(—H/L,H/L) L

(2.11)
which is the same as L? times our functional E. (with e = §/L), except that the
domain is (—1,1) x (=H/L, H/L) rather than (—1,1) x (=1,1).

While our mathematical results are presented, for simplicity, on a square domain,
their extension to (a broad range of ) rectangular domains is straightforward. Indeed,
our upper bounds are in a certain sense periodic in y (see (3.4)), so they extend
straightforwardly to rectangular domains provided that the height is larger than the
vertical period. And while our lower bounds are stated for Q = (—1,1)x(—1,1), they
extend straightforwardly to the domain (—1,1) x (=H/L, H/L) for any H > L, by
recognizing that this rectangle contains | H/L| disjoint copies of € and our bound
applies to each one separately. (Actually, our lower bounds should also extend to
the case where H/L is smaller than 1, provided H/L is large compared to the period
of the relevant upper bound construction.)

2.3. Solution of the relaxed problem

It is natural to consider the case € = 0 — in other words, the minimization of elastic
energy alone. In view of Figure 1, we don’t expect the minimum of the elastic energy
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(subject to our bending boundary conditions) to be achieved. Rather, we expect a
minimizing sequence to involve small-scale spatial oscillations, converging weakly
to the solution of the associated relaxed variational problem. This subsection shows
that the weak limit is unique, and identifies it.

The functional

Eolu] = [ dist?(Du, K) dx dy
Q
is not lower semicontinuous. The theory of relaxation studies the asymptotic be-
havior of its minimizing sequences — characterizing, roughly speaking, the aver-
age behavior of low-energy states. More mathematically: the relaxed functional
E*[u] is defined as the minimum of the possible limits of Fy[u/] along all se-
quences u’ converging to u in L' (;R?). In the present setting, where our integrand
W (F) = dist?(F, K) has quadratic growth at infinity, it can be shown to take the

fOI‘Hl14’28

E*[u]:/QWqC(Du) dz dy

where W4 : R2%2 — R is the quasiconvex envelope of the energy density W, defined
by

WAI(F) = inf W(F + Dy) dx dy.
PEW ™ ((0,1)%5R?) J (0,1)2
The set of minimizers of W9°, in turn, is the quasiconvezr hull of K, denoted by K9°;
it is the smallest quasiconvex set containing K. It is easy to see that E*[u] = 0 if
and only if Du € K9° almost everywhere; therefore once we have found K9 it will
be easy to identify the minimizer of the relaxed functional E*. We therefore turn
to the identification of K9°.

Lemma 2.1. For any « € (0, %], the quasiconvex hull of the set K is given by

ch:{Q (é?) . QeS0(2), te[l—a,1+a]}. (2.12)

Proof. Let K9° denote the quasiconvex hull of K. Then the Lemma asserts two
inclusions: that K9¢ is contained in the RHS of (2.12) and that K9° contains the
RHS of (2.12).

To prove the first inclusion, suppose F' € K9°. From the quasiconvexity of
&+ det € and of £ — —det & we see that det F' € [1 — «, 1 + ], and by convexity
of the norm we see that

[Fel| < 1. (2.13)
Using the identity
det F' = (Fep) x (Fes)
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and (2.13) we have
det F' < |Feq||Fes| < |Feal. (2.14)

To conclude we consider the function f(&) := |€es| — det&. Since f(£) = 0 for all
¢ € K, using the quasiconvexity of the determinant and hence of f, we have f(£§) <0
for all £ € K9 and in particular

|Fea| < det F. (2.15)
Combining (2.14) and (2.15), we have
det F = |Fes|.
It follows from (2.14) that |Fe;| =1 and Fea L Fey. Hence F' must have the form
F:a®61+taL®eg

for some a € S, t € [1 — a, 1 + a. This shows that

K© ¢ {Q (é ?) . QeS0(2), te [1—a,1+a]}. (2.16)

To prove the opposite inclusion, we fix a matrix F' of the form

)

for some @ € SO(2) and t € [1—a, 1+a]. If t € {1+a}, then obviously F' € K C K9°.
Assume now that ¢ € (1 — a, 1+ «) and define

~ 1 0 ~ 1 0
At:Q(Ol—l—a) andB::Q(Ol_a>.

Then A, B € K and rank(fl - B) = 1, hence every convex combination of A and
B belongs to K9°; in particular,

t—(1—-a): l4+a-—t-
A B e K. 2.17
2a + 2a < ( )

F =

(The construction associated with (2.17) layers A and B in layers normal to (0, 1),
with volume fractions given by their coefficients in (2.17). Thus, for any F' € K9
we can infer the relative volume fractions of the two phases from (2.17).) Combining
(2.16) and (2.17), the statement of Lemma follows. O

We next show that the relaxed problem with the boundary condition (2.8) has
a unique minimizer.

Lemma 2.2. Let o € (0, 1]. Suppose that u € W (Q; R?) satisfies the boundary
condition (2.8) and Du € K9 almost everywhere. Then u = u* a.e., where

. _1+ax (cos(ay)
u*(z,y) = Y (sin(ay)) . (2.18)
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Proof. Using the boundary conditions in (2.8), we obtain that for almost every
y € (=1,1) one has

/_11 ovu(x,y)de =u(l,y) —u(—1,y) =2 (cos(ay)> ’

sin(ay)
1 1
2= ‘/ Oudz S/ |01 ul dz.
-1 -1

On the other hand, from Du € K9° almost everywhere, we have |Due;y| = [01u] = 1.

Thus
1
2= ‘/ Ohudx
—1

is possible if and only if 9;u is constant in z (up to null sets). Using the boundary

which implies

conditions (2.8) once again, we deduce that u must coincide with u* given by (2.18[0

In view of the preceding Lemma, we call the function v* given by (2.18) the
relazed solution of our variational problem. It takes the reference domain to an
annulus, as shown in Figure 2. A brief calculation shows that

. cos(ay) —sin(ay)\ [1+z (1 0 11—z /1 0
D = — 2.1
w(@,y) <Sin(ay) cos(oy) 2 \0l+a« + 2 \0l—-a/]’ (2.19)
so the relaxed solution represents our two phases layered (infinitesimally) with vol-

ume fractions (1 + x)/2 and (1 — x)/2, which (as expected) vary linearly in x.
The infimum of our elastic energy Fy subject to the bending boundary condition

is 0, since u* achieves value 0 for the associated relaxed problem. However this
infimum is not achieved:

Corollary 2.1. Let o € (0,%]. If u € WH2(;R?) satisfies the boundary condition
(2.8), then Eylu] > 0. As a consequence, we also have E.[u] > 0 for any e > 0.

Proof. If Ey[u] where 0, then Du would have to be in K almost everywhere. Since
K C K9, the previous Lemma applies and gives that v = u*, whence Du = Du*
almost everywhere. But one easily checks that Du* ¢ K for —1 < x < 1 (for
example because |02u*| = |1 + ax|) — a contradiction. So Eplu] > 0. Since the
surface energy term is nonnegative, it follows immediately that E.[u] > 0. |

2.4. Defining a microstructure with just one length scale

In summarizing our results in the Introduction, we wrote in point (c) that one of our
scaling laws applies to “constructions whose local length scale near the boundary is
similar to that in the interior.” To justify this statement in an ansatz-free setting,
we need to make it more precise. Our approach is roughly as follows: we use the
surface energy |D?u|(f2) to estimate the typical length scale of u in the interior;
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then we say w has a single length scale if, near the left and right boundaries, it
doesn’t mix the phases on a significantly smaller length scale. To make this precise,
we start with what it means for u not to mix the two phases.

Definition 2.1. We say that u € W12(Q;R?) has no microstructure in w C Q with
constant m for some m > 1, if
min / dist?(Du, SO(2).J) dz dy < m / dist?*(Du, K) dz dy. (2.20)
Je{A,B} J,, w

While this definition depends on the choice of m, the choice is not very impor-
tant; in practice, we shall often use m = 2. We view (2.20) as assuring that Du
doesn’t mix the two phases on a length scale smaller than the size of w. To explain
why, let J = A be optimal for the left side of (2.20), and let w4 and wp be the
subsets of w where Du is closest to SO(2)A and SO(2)B respectively. Then (2.20)
assures that

clwp| < (m—1) dist?(Du, SO(2)A) dx dy + m dist?(Du, SO(2) B) dzx dy
wA wB

where c¢ is a positive constant. If (as happens in our constructions) Du is everywhere
close to one of the two wells — say, distQ(Du,K) < ¢ with § small — then we can
conclude that

(¢ —=md)|wp| < (m —1)d|w].

Since m > 1 this assures (if 0 is small enough) that most of w is in phase A.
We can now define our notion of a single-scale construction.

Definition 2.2. Let m > 1. Given any u € WH2(Q;R?), any h € (0, 1], and any
y € [-1,1 — h], we write Q% (y) for the squares at height y along the left and right
boundaries,

Q}l(y> = (_17 -1+ h) X (y7y + h)a Q}Jlr = (1 - h7 1) X (y7y + h)7
and we consider the sets of heights where u has no microstructure in these regions:

G .= {y € (=1,1— h) : u has no microstructure with constant m in Q" (y)}.

(2.21)
Using these notions, we define S(():lne)scale be the set of u € W12(;R?) such that
there is h € (0, 1] which satisfies the following three conditions:
m/ |D?u| dx dy > 97 (2.22)
Q h
m,h 1
NG > oo (2.23)
1
LYG™) > —. 2.24
@z - (2.21)

Informally: (2.22) assures that the typical length scale in the interior is at least
of order h, while (2.23) and (2.24) assure the absence of microstructure on this
length scale near the edges, for a significant fraction of heights .
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We shall show in Section 3 that a construction along the lines of Figure 1 is in
S(m)

onescale
— in which the local length scale tends to zero near the left or right boundaries (as

in the construction we use to prove Lemma 3.5) — does not belong to Ség?scale
any m.

for any m > 2. It is easy to see that a self-similar branching construction

for

Remark 2.1. It is clear from the definition that if 1 < m < m/ then G?’h C G?’h
and therefore S cs (m’)

onescale = “~onescale’

2.5. Statements of our main theorems

Our theorems identify how the minimum energy scales with « and e. The proofs
carry additional information, of course: the proof of each upper bound identifies the
scaling law of a particular test function; and the proof of each lower bound identifies
an ansatz-free reason why no construction can achieve a better scaling law.

Our main results concern the energy (2.9) when our bending boundary condition
(2.8) is imposed either exactly (Theorem 2.1) or else in a certain approximate sense
(Theorem 2.2). When the boundary condition is imposed exactly the scaling law is
a%/5¢4/5 and it is achieved by a construction involving self-similar branching. When
the boundary condition is imposed only up to an error of order o*/5¢%/% the energy
scaling law remains the same, but it is also achieved by a single-scale construction
along the lines of Figure 1.

It is natural to ask whether a single-scale construction can achieve the optimal
scaling and also satisfy our bending boundary condition exactly. The answer is no:
Theorem 2.3 shows that if we impose the boundary condition exactly and consider
constructions with a single length scale then the energy scaling law changes to
ab/4e3/4

The attentive reader will have noticed the exponents of & and € sum to 2 in both
of the scaling laws just stated. We shall explain the reason for this in Remark 2.2.

We turn now to precise statements of our theorems, indicating for each how it
follows from the upper bounds we prove in Section 3 and the lower bounds we prove
in Section 4.

Theorem 2.1. Let S be the class of functions u € W5Y2(Q;R?) such that
u(tl,y) = uw*(£l,y) for almost all y € (=1,1). There is ¢ > 0 such that for
all a € (0,1/2] and all € € (0,a] we have

1046/554/5 < inf E fu] < cab/54/5,

c UE Sex

Proof. The upper bound follows from Lemma 3.5, and the lower bound from
Lemma 4.3. O

We remark that the same result holds if we assume ¢ € (0, M« for some M > 1,
with a constant ¢ = ¢(M). Indeed, it suffices to apply the previous result to E. /s
and to use that E./y < E. < ME_ /.
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Theorem 2.2. There are ¢ > 0, ¢c; > 0 with the following property. Let Sapp, be the
set of all u € WH2(Q;R?) such that

lu— u*|(£1,y) < c1a®°e2/5 for all y € [-1,1]. (2.25)

For all a € (0,1/2], all € € (0, ] and all m € [2,00) we have

1
—ab5eh5 < inf ELfu) < inf E.[u] < ca®e*/?.
c UE Sapp UESappnS™)

onescale

Proof. The lower bound follows from Lemma 4.3, where in particular the constant
¢ is introduced. The upper bound follows from Lemma 3.2, using that S(()i)escale C

s for m > 2. O

onescale

Theorem 2.3. Let Sex be as in Theorem 2.1, m > 2, and Sé:fc)scalc as in Defini-

tion 2.2. There is ¢,y > 0 (depending only on m) such that for all a € (0,1/2], and
all e € (0,q],

1
e inf E.lu] < emal! e,

Cm UESexNS™)

onescale

Proof. The upper bound follows from Lemma 3.6, the lower bound from
Lemma 4.4. O

Remark 2.2. As noted earlier, the exponents in our scaling laws sum to 2. To
explain why this is natural, we observe that in the limit a — 0 one expects the
elastic energy to be quadratic in «, while the surface energy is proportional to
ae. Our upper-bound constructions do indeed have this property. For example, the
energy of a construction like Figure 1 with microstructural length scale i turns out
to be of order

a2kt + ach™! = o?(h* + Sh7Y)
@
(see Lemma 3.1) and optimization in h gives o(e/a)*® = a%/%¢%/5. The emergence
of the other scaling law is similar: when the construction motivated by Figure 1 is
adjusted to near the boundary to achieve our exact bending boundary condition,

the elastic energy changes to a?h? (see (3.70)), so the preceding calculation changes
to optimization of

a®h® 4+ ash™ = o*(h3 + Eifl),
a

which gives a?(g/a)3/* = a®/43/4,

2.6. Scientific context

As we have already mentioned in the Introduction, this work is motivated by the
modeling of martensitic phase transformation, where twinning with variable volume
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fraction is seen in a number of different settings. The example that specifically mo-
tivates this paper involves the bending of a bar made from two martensite variants
(a situation discussed theoretically in Ref. 31 and experimentally as well as theo-
retically in Refs. 3, 7). These papers discusses a situation slightly different from the
thought-experiment represented by Figure 1: the unbent sample has pre-existing
twins (which have no reason to be equally spaced). Bending makes the twin bound-
aries tilt, and also changes the spacing between them, establishing a highly-ordered
periodic pattern similar to the deformed state shown in Figure 1. When the forces
inducing bending are removed the twin boundaries return to their preferred orien-
tations, while the spacing between them remains periodic. (As noted earlier, work
subsequent to Ref. 7 on the same system revealed twinning on two distinct length
scales,® a phenomenon also seen in similar experiments on other material systems.’
Understanding this phenomenon using tools similar to those of the present paper
remains a challenge for future work.)

This paper does not claim to model any of the systems just discussed. Indeed, as
already noted in Section 2.1, our elastic energy is different from the one associated
with a mixture of two martensite variants. Our goal is more methodological: to begin
development of a mathematical toolkit for the analysis of twinning with variable
volume fraction.

The bending of a bar is not the only setting where twinning with variable volume
fraction seems to occur. Some other examples involving two martensite variants are
discussed in Ref. 3 (see especially their Figure 4). Perhaps the “zigzag walls” seen in

some ferroelastic and ferroeletric systems!®26:27,30

can be viewed as examples. By
the way, something similar has been seen in certain optimal design problems, since
the optimal structures sometimes involve layered composites with varying volume
fractions (see for example Section 1.3 of Ref. 18 and Figures 2 and 8 of Ref. 10).
Our work’s mathematical context is the use of nonconvex variational problems to
model the microstructures seen in materials that undergo martensitic phase trans-
formations. Some of this work focuses on the elastic energy alone, without the
inclusion of surface energy. Much attention has focused on determining, in various
settings, where the quasiconvexification of the elastic energy is zero; this amounts
to understanding which constant deformation gradients can be achieved by essen-
tially stress-free microstructures. Without attempting a systematic review we note
the seminal paper Ref. 2, which solved this problem for two compatible martensite
variants in a 3D geometrically nonlinear setting. The book Ref. 4 discusses numer-
ous examples using both geometrically linear and geometrically nonlinear models.
Constructions involving twinning (and twins of twins, also known as laminates of
order two or more) play a crucial role in this theory. In such constructions the vol-
ume fraction is constant (at least locally). The constructions in the present paper
show (in the limit € — 0) that the class of essentially stress-free microstructures is
not limited to those built from twinning with locally constant volume fraction.
The work discussed in the last paragraph ignored surface energy, whereas we in-
clude it. The point is that while the inclusion of surface energy produces a relatively
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small change in the value of the energy, surface energy may nevertheless serve as a
selection mechanism (preferring some constructions over others); moreover, within
a given type of construction it should set the length scale of the microstructure.
Actually, for the problems considered in this paper, it is not yet clear whether sur-
face energy selects between the construction based on Figure 1 and the branched
self-similar construction used to prove Lemma 3.5, since both achieve the same
energy scaling law. However, within each of these constructions the presence of sur-
face energy does, as expected, offer a prediction concerning local length scale of the
microstructure.

There is a body of work exploring the influence of surface energy on constant-
volume-fraction twinning in various settings. About 20 years ago Kohn and Miiller
suggested?! that the essential physics of twinning near an austenite-twinned-
martensite interface could be captured by the scalar variational problem

min / v2 dx dy + €|vy,|(Q) (2.26)
vy==%1 Jo
in which v is a scalar-valued function defined on a rectangle Q = (0, H) x (0, L),
with an additional term or boundary condition at x = 0 to model the effect of a
neighboring region of austenite. Using this model, they obtained results in Ref. 23
concerning not only the energy scaling law but also the local length scale of the min-
imizer (see also Ref. 22 for an expository version). Subsequent work has improved
our understanding of this scalar model and has obtained related results using fully-
elastic models (see Refs. 5, 6, 12 for some recent developments and brief summaries
of the literature).

It is natural to ask whether the methods developed in connection with constant-
volume-fraction twinning can be adapted to the variable-volume-fraction setting.
The present work addresses a particular instance of this question. Our arguments
draw substantially on Refs. 5, 6 (and the self-similarly branched construction used
to prove Lemma 3.5 has its roots in work on the scalar model problem (2.26)). We
note, however, that the upper bound construction inspired by Figure 1 is basically
new — though something analogous was considered in Ref. 25 for the scalar model
(2.26) with boundary condition v, =1 at x =0 and v, = —1 at = L.

Broadly speaking, the problem considered in this paper involves a nonconvex
variational problem regularized by a higher-order term with a small coefficient.
Problems of this type occur in many areas of physics. Understanding the defects
and patterns that characterize the minimizers in a limit analogous to our € — 0 has
sometimes been called the analysis of energy-driven pattern formation.?? Without
attempting to review the literature (which is by now vast), we note that these
problems share some common features. Indeed, finding an upper bound on the
minimum energy is conceptually straightforward, since it suffices to find a good test
function (and nature often gives us a hint). Finding a good lower bound is usually
more subtle, since the problem’s nonconvexity means there is no tool analogous to
convex duality. Successful treatments often start by showing that relaxed variational
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problem (which characterizes the limits of minimizers as ¢ — 0) has a unique
solution; then one shows that € > 0 forces deviation from the relaxed solution, and
one estimates the energetic cost of that. This is indeed the conceptual basis of our
lower bounds.

The results in this paper are limited to the energy scaling law; in other words, we
prove upper and lower bounds that scale the same way in a and €. The proofs never
use any properties that would be specific to a minimizer (such as vanishing of the
Euler-Lagrange equation or positivity of the second variation). Properties specific
to a minimizer have been used in the setting of (2.26) in Refs. 11, 23 and are also at
the heart of our forthcoming paper 24. In the setting of the present paper — where a
construction inspired by Figure 1 and one using a self-similar branched construction
share the same energy scaling law — we wonder whether arguments based on such
properties might reveal whether the minimizer resembles one of these two very
different constructions.

3. The upper bounds
3.1. The upper bound in Theorem 2.2

In this section we construct an appropriate test function in order to estimate the
energy from above. Note that for u = (u1,us) € WH2(Q; R?) we have

dist?(Du, K) = (0yuy —cos 0)* + (9puz— sin 0)% + (9yu1 +x sin 6)% + (9, ua — x cos §)?
(3.1)

for some O(x,y) € [0,27) (rotation) and x(z,y) € {1 —a,1 + a} (selection of the

wells). Thus, the construction of a test function has the following ingredients:

[i] the test pattern y = x. € L®(2;{1 — o, 1 + a});
[ii] the test rotation § = 6. € L>°(Q), and
[iii] the actual test function @ = 4. € WH2(Q;R?).

We decompose the strip [—1, 1] x R in triangles as sketched in Figure 3. Specifically,
we fix h > 0 and for j € Z we set y; := jh, and consider the triangles

Ty with vertices (—1)7*,y,), (—1/sy—1), (<D0 gier). (3:2)
so that in particular the triangle Ty has vertices in (—1,0), (1,—h), and (1, k), and
the triangle Ty has vertices in (1, 4), (—1,0), and (-1, 2h).

The test pattern ¥ and the rotation 6 are constant on each of the triangles,
the test function @ is globally continuous and affine on each triangle. In suitable
coordinates, the construction is periodic, in a sense made precise in (3.4) below. In
order to avoid degeneracies in the case that the triangles are too large compared
with €2, we assume h < 1/4. The main result is the following.

Lemma 3.1. There is ¢ > 0 such that the following holds. For any « € (0, %] and
h € (0, 1] there is u € W2 ((—1,1) x R;R?) such that

u(—=1,25h) = u*(—=1,25h), wu(l,(25+1)h) =u*(1,(2j+1)h) forallj € Z, (3.3)
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L./
{-)

N

Fig. 3. Sketch of the piecewise affine construction of Lemma 3.1. We note that the set u(Q2) is
different from u*(92); in fact, the former is a polygonal approximation of the latter.

u(x,y + 2h) = Qapau(x,y) where Qg = <:?jz _021:99> , (3.4)
which is continuous, piecewise affine, obeys the pointwise bounds
dist(Du, K) < cah?, (3.5)
lu — u*|(£1,y) < ah? (3.6)
and
4o < |D?ul((—1,1) x (0,2h]) < ca. (3.7)

Further, uh|Q € S(()izescale,
Proof. We decompose [—1,1] x R in triangles according to (3.2). We set u := u*
on all vertices of the triangles, and equal to the affine interpolation inside each
triangle. This construction is automatically continuous and piecewise affine, and it
obeys (3.3) by definition, and (3.4) because u* does.

We prove (3.5). By (3.4) it suffices to do so in Ty and T7. We start with Ty. The
definition of u gives

w(Lh) —u*(1,~h)  1+a Kcosah) - ( cos ah ﬂ

Oaulz, = -

2h 2ah sin ach —sinah
. (3.8)
—(1+a) sinah (0) 0
B ah 1) \01+a+0(a?h?)
and
Drulr, = $(u*(1,h) +u*(1,—h)) — u*(—1,0)
2 (3.9)

_l4a fcosah\ 1-a (1) _ (1+0(ah?)
20 0 200 \0/) 0 '
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In particular, this implies
dist(Du, K) < |Du — A| < cah?® in Ty. (3.10)
1

To prove (3.6), we observe that u(1,y) = u*(1,y) for y = £h and that u(1,-) is
affine in [—h, h]. Also, we note that if g maps [—h, h] to R? with g(—h) = g(h) =0
and |8§yg| < 7, then [g(y)| < 1h%y. (Indeed, for any unit vector £ € R?, g & —
Z(y[* —h?) is concave and g-£+ 3 (|y|*> — h?) is convex. Since each of these functions
vanishes at y = +h, the first is nonnegative and the second is nonpositive.) Taking
9(y) = u(l,y) —u*(1,y) gives [u(l,y) —u*(L,y)| < zh?*sup |9y, u*| < 3(1+a)ah® <
ah?. Therefore (3.6) holds in Tp.

We turn now to T;. We have

=152 ). -t ().

wtom = =@ <cos(2ah)>_

a \sin(2ah)
Hence
_u(=1,2h) —u(-1,0) (cos(2ah) — 1)/(2ach)
Oaulr, = oh =(l-a) ( sin(2ah) /(2ah) ) 1)
B —ah + O(a®h?) .
and
ah?
Orulr, = gu(1,h) — 2(u(~1,0) + u(~1,2h)) = (azig((af;hé» L (312

Choosing the rotation 0 := ah in Ty, we conclude dist(Du, K) < |Du — QunB| <

cah? in Ti. Moreover, by arguments similar to those we used for T, we have

lu(—1,y) — u*(—1,y)| < ah? in Ty. This concludes the proof of (3.5) and (3.6).
We now turn to (3.7). From (3.8) and (3.11) we obtain

in(ah in(2ach
82U2\T0—821L2|T1:(1+a)%—( —a)%

which gives

sin(2ah)
2ah

—1)—(1=a)

sin(ah)
ah -

Oouia| 1y — Ooualp, — 204’ = ‘(1 +a)(
1 2

where we used 0 < 1 — #2% < 3¢ for ¢ € (0,1) and then h € (0, }]. The same holds
for Oous|y, — Ogus|r_,. Therefore the jump of Du across the interfaces between
triangles is larger than «; since the length of each interface is larger than 2 the first
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h
h—hh'/2
y+n

h’
Y

h/
—h+hh'/2
—h

Fig. 4. Sketch of the proof that u € 5@

in Lemma 3.1.
onescale

inequality in (3.7) follows. Using that there are at least + — 2 > 5= copies of the
rectangle (—1,1) x (0,2h) inside 2, we obtain

1 2
/ \D?u|dzdy > (= — 2)4a > . (3.13)
(-1,0) h h
By the above computations we also easily obtain
|Dulr, — Dulzy| < ca, (3.14)

and with the periodicity this implies |Du|r, — Du|z, | < ca. Condition (3.7) follows.

Finally, we prove that u has one scale in the sense of Definition 2.2. Let b’ := h/4,
y€ H :=(—h+hh'/2,h — ' — hh'/2). Then u is affine on the square (1 — h',1) x
(y,y + h') C Ty (see Figure 4), and in particular it has no microstructure in this
set, so that H C Gi’h,. There are at least 2Lﬁj > % -2> ﬁ disjoint copies of
this set in (—1,1), and L1(H) = 2h — I’ — hl' > 3h, hence £1(G>"") > 1. Similar
arguments apply, of course, to G2, Recalling (3.13) and the definition of A/, this
implies that u € S(()ilscale. DO
Lemma 3.2. There is ¢ > 0 such that for all o € (0,1/2] and all € € (0, a] there
is U € Sapp N 52 with

onescale

E.[u.] < ca®e*/5, (3.15)

Proof. The desired u will be provided by Lemma 3.1 with an appropriate choice
of h. To be in Sapp, u must satisfy

lu —u*|(£1,y)| < c1a/°e?/° (3.16)

for all y € [—1,1] (see the statement of Theorem 2.2). For the present argument
c1 could be any positive constant; ultimately, its value must be taken to make the
lower bound part of Theorem 2.2 true (so its value is set by Lemma 4.3). Our claim
is that h < 1/4 can be chosen so that the uj provided by Lemma 3.1 satisfies both
(3.15) and (3.16). This is easy: since

lup, — u*|(£1,9) < ah?® and E.[uy] < ca?h? + c%,
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Q/ Q'r' Qé

Fig. 5. Geometry of the construction in Section 3.2. The dots mark the points where u coincides
with v* and mark the periodicity (as usual, up to rotations); the gray areas are those where
interpolation is used (called Qs in the text). In each of the rectangles a period-doubling pattern
as in Figure 7 is used.

it suffices to choose h := min{?, 01/2}(§)1/5. (This choice gives h < 1/4 because we

assumed that ¢ < a.) m|

3.2. The upper bound in Theorem 2.1

This subsection constructs a test function that satisfies our bending boundary con-
dition exactly. In this construction, the twins branch so that their length scale
approaches zero near the boundary. Our treatment consists of three Lemmas. We
start by constructing a piecewise affine discretization of the relaxed solution u*
in the vertical direction, described in Lemma 3.3. This discretization is used in
Lemma 3.4 to introduce a period-doubling branching construction in a single box.
Finally, Lemma 3.5 concludes the proof of the upper bound, by showing how to as-
semble the building blocks that were constructed in Lemma 3.4. The overall pattern
of the period-doubling is shown in Figure 5.
Recall that the relaxed solution is

(2, y) = (l L a)f, = 1+ ax <cos(ay)> Cf= <cos(ay)> . (3.17)

« ! sin(ay) sin(ay)

In particular, 01u*(z,y) = fy and Oou*(z,y) = (1+ ax)f;-. As already observed in

(2.19), at any x € [—1,1], the volume fraction of the phase 1 & o is 15Z.

We begin by introducing a discretization of u* in the vertical direction on a
segment {xzo} X [yo—h, yo+h], as illustrated in Figure 6. This is a continuous function

which is affine on the three intervals which compose [yo — h,yo + h] \ {yo £ hiZ2},
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Yo+ h +
l+a r(l+a)fit
Yo + higke -
1-—a +
Yot r(l—a)fs
1-«a +
yo — iR -
1+« r(1 +oz)ffh
Yo—h +

Fig. 6. Sketch of the discretization of u*, see Lemma 3.3. Left: decomposition of the domain.
Middle: u*(xo,-) (green arc) and its piecewise affine approximation v (blue). Right: same figure
for two periods, as in the boundary conditions at z; in Lemma 3.4.

coincides with u* on the endpoints, and has (up to a factor) the same derivative as
u* at the endpoints and at the midpoint. Specifically, we have the following Lemma:

Lemma 3.3. Leta € (0,1], h € (0,1], zo € (—1,1), yo € R. Then there is a unique
continuous map v : [yo — h,yo + h] — R? such that

v(yo + h) = u*(zo,yo + h), v(yo—h) =u"(xo,yo — h), (3.18)
and, for some r > 0,

—
2

V(y) = r(L+ ) [ an for £ (y—yo) € (A2, h) (3.19)

and

11—z
V(y) =7l —a) ;(‘) for ly —yo|l < h 5 9. (3.20)

Proof. The conditions on the derivative v’ show that

1+
v(yo + h) —v(yo — h) =r(1 — a)h(l — zg) yLO +7r(1+ a)h 5 O( yLOJrh + fylo,h)

=rh ;0[(1 —a)(1 —x0) + (1 + a)(1 4 xg) cos(ah)]
=rhfL[2(14 azg) + (1 + a)(1 + zo)(cos(ah) — 1)].

Yo

From (3.17),

_1+ax

u*(zo, Yo +h) — u* (20, y0 — h) (fyo+n — fyo—n)

1
:7—‘_ a%o 2sin(ah) yJ;)

We define rp, : [-1,1] — (0,00) by

sin(ah) (14 ) (1 + ) !
1-— 1-— h 3.21
A (1 B o) (3:21)
so that v(yo + h) — v(yo — h) = u*(xo,y0 + h) — u*(z0,y0 — h). This concludes
the definition of the discretization v on the segment {zo} X [yo — h,yo + h|. The
argument just presented also proves uniqueness. O

rh(zo) 1=
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Now we introduce the basic building block of our period-doubling construction.

Lemma 3.4. There are ¢, A > 0 with the following property. Let —1 < z, < x, < 1,
Yo € R, h > 0, 0 := xp — x,. Assume that h < M and o € (0, %] Then there is
u: [1q, 1) X R — R2, 2h-periodic in the second variable in the sense of (3.4), such
that

(i) w(z,yo £ h) = u*(z,y0 £ h) for all x € [T4,xp),
(i) w(xq,-) is a discretization of u* on {x.} x[yo—h,yo+h] (the term “discretization”
being understood in the sense of Lemma 3.3);
(111) u(zp,yo) = u*(xp,90), and u(xyp, -) is a discretization of u* on both {xp} X [yo, Yo+
h] and {xp} X [yo — h, yo).

It also obeys

ah?
dist(Du, K) < R pointwise, (3.22)
|Du — Du*| < ca pointwise, (3.23)
and
9 1
|D?u|([xq, ] X [-1,1]) < cap. (3.24)

The same holds if (it) and (iii) are replaced by

(ii’) u(xp,-) is a discretization of u* on {xp} X [yo — h,yo + hl;
(112°) w(xa,yo) = u*(Ta,y0), and u(z,,-) is a discretization of u* on both {x,} x
[vo, Yo + h] and {za} X [yo — h, yo)-

The construction we present is parametrized by the shapes of the interfaces. In
the proof, the interfaces will ultimately be determined by functions go = 0, g1 (z),
92(x), g3(z) and g4 = h (see Figure 7), though at the beginning of the argument
we permit a larger or smaller number of interfaces, determined by an even integer
N. Taking N = 2 and g9 = 0, g1(x) = hl_T’”7 g2 = h in the construction used
in the proof (with z, = —1, x, = 1) gives the piecewise affine construction from
Lemma 3.1 (in particular, in this case the constant v, defined by (3.33) takes the
value 71, = ah). However, this choice does not have the properties at x; that are
required by Lemma 3.4.

Proof. By periodicity, it suffices to construct u in the set R := |24, 2] X [y0 —
h,yo + h]. Without loss of generality we can assume yo = 0 and A € (0,1]. We
construct the function in [z4, 2] x [0, k] and then set

u(z,y) == (uéizjx”yjlo for (x,y) € [xq, 2] X [—h,0).

If ug(x,0) = 0 this does not introduce any discontinuity.
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h Gt
reh _W
1l—z4 h
: 11—«
gU
1+«
—h

Fig. 7. Sketch of the construction in Lemma 3.4.

For N even (in the end we shall use N = 4), we consider functions go,...,gn :
[€a, 2] — [0,R] such that 0 = g9 < g1 < -+ < gy—1 < gy = h pointwise, see
Figure 7. We assume that the regions (g;, gj+1) with j even are in the 1 — o phase,
the ones with j odd are in the 1 + a phase. To keep notation simple we denote by
aj := (—1) "'« the order parameter in the layer (g;, gj+1). The condition of having
the appropriate volume fractions then becomes

N-1

3" ajlgje — g5)(x) = azh, (3.25)
7=0

which we assume to hold for all x € [z, zp]. This can be rewritten as 2 Z - ozjgj =
ah(1 — z). We shall choose the functions g; so that

h
/ "
lg;l < h, g5l < e, lgjl <c 62’ 191 < ez (3.26)
We define f) := e; and, for some function ¢ € C?([za,xp); R) to be chosen

below,

u(z,0) = (= +0(@) fo)-

This obeys us(z,0) = 0, as required for the reflection to [x4, xp] X [—h,0). Further,
we require u to be continuous with

dpu(z,y) = p(a)(1+ ax) fi)(2)  if gr(2) <y < grsa(2), (3.27)

where the functions f) € C*([xq,x3); S') and p € C?([xq, x3); (0,00)) are still to
be chosen. This concludes the definition of u. Indeed, for gx(x) <y < gxy1(x), one
easily obtains

) k—1
u(z,y) :(a + o(z) ]go 1+ o f(] )(9j+1 - gj)(:c) (3.28)

+ p(@)(1+ ak)f(k) (Y — gr(2)).
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It remains to show that the various parameters can be chosen so that the stated
properties are fulfilled.

We start from the nonlinear elastic energy. As the vertical derivative was already
fixed in (3.27), we need to evaluate the horizontal one. In particular, the distance
from K can be estimated by

dist(Du, K) <|Du — (fo)y ® ey + (1 + ak)f(i) ® es)]
<|01u = fiiyl + |02u — (1 + ax) | (3.29)
<|0vu — fayl +2lp — 1].
The leading-order terms in dyu will ultimately be those arising from the derivative

of ¢, which will be close to 1, and from the derivatives of the g; functions. From
(3.28) we obtain

k—1

ovu=Ffo)+ | >_(1+a)(gjp —gj) — 1+ ar)gr| fo)+ R (3.30)
j=0

which implicitly defines a remainder term R, that will be estimated below. Since
go = 0, rearranging terms we obtain

k
Ou=Ffo)— > _20;9;f) + R (3.31)
j=1
Recalling (3.29), we define
i n COS Vi
:: = . 2
firy := cos Yk f(o) + sin vk f(g) (sinfyk> (3.32)
where
k
V= — Z 2045 (3.33)
j=1
From (3.26) we then obtain
ah ah ah
|A/k| < 07, |’71/€| < Cﬁv |'71/cl < CET» (3'34)

and correspondingly (recalling that h < ¢ to simplify the last estimate)

ah ah

ah
[fo = foyl < e |f(ry] < ez Ml < e (3.35)

In particular, (3.31) gives

a?h?

B = gl < cll? + R| < e

+R|. (3.36)
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It remains to estimate the remainder term R. From (3.28) and (3.30) we obtain

k—1
IR <|¢' =1+ > _(1+a)lpf) — fol g1 — 9]
j=0 k
+ (L +a)lpfuy = Fol 191l + 1011+ )k +p Y (L + )| f{lh - (3.37)

=0
ah? h ah?

where in the second step we used (3.26) and (3.35) as well as a < % In particular,
we conclude [01u — fuy| < c¢(p+ 1)ah? /02 +|¢" — 1]+ c|p'|h + c[p — 1]h/L.

Now we turn to the boundary conditions. This will lead to the choices of p and
©. From (3.28),

N-1
ule, ) = (= + g fioy + () 3o (1 S @) — @) (339)
7=0

We choose p so that the component along f(Jé) matches the boundary data. Indeed,
by (3.32) we have f(o) f(J) f(o) - fj) = cos7y;, and recalling (3.25) we obtain

N—

fo) - u Z (1 + o) (cosy;(@))(gj+1 — ;) (2)

N-1
=p(z) | (1 +az) + Y (1+a;)(cosy;(2) — 1)(gj41 — 95)(x)
7=0

Since

1+ ax
«

f(J(‘)) ~u*(x,h) = sin(ah),

the mentioned boundary conditions is fulfilled if we choose

-1

sin( o =
pla)i= S 1 s Y (1 (1 0080 9501~ 09))
7=0

We choose A so that (3.34) implies |yx| < §. Then (recalling (3.25)) the value of
the sum is in [0, £2(1 + ax)], so that one does not divide by zero. Recalling (3.26)
and (3.34), we estimate

2 2 2

h 2 h
lp—1] < Ca272a 0| < ca® 75 = 004274-

This in particular implies p < c.

(3.39)

Now we use ¢ to fix the other component. From (3.38),

N-1

iy -l h) =+ ) — pl) 3 (1+ ) sin 5 2)) (0541 — 95)().

=0
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We require this to coincide with

N 1+ax
foy - u(z,h) =

(67

cos(ah).

This defines ¢,

(1 + ax) cos(ah) — 1 e

[0

pla) = (14 a;)(sin; (2))(g5+1 — )(2),
j:O
which by (3.26), (3.34) and (3.39) obeys

h2 , h2 h2
p(z) —al s catp, | = 1| < capg, "] < ca g (3.40)

At this point u = u* on the top boundary; by symmetry the same holds on the
bottom boundary. From (3.29), inserting (3.39), (3.36), (3.37), (3.40), and (3.39)
again, we obtain the pointwise estimate

2

dist(Du, K) < ccuZ—2 (3.41)

The same computation, using ah < 1 and that (3.35) implies |f(x) — fo| < ca, leads
to

|Du —1d| < [01u — fioy| + |Oou — f(Lo)| < ca

which, since the same holds for Du*, proves (3.23).

It remains to choose the functions g;, so that the conditions at the left and right
boundary are fulfilled as well. We set N = 4 and observe that (3.25) is equivalent
to

01(x) — ga(a) + gs(x) = Sh(1 — ), (3.42)

which also gives ¢ —gj+g4 = —1h. We require the functions g; to match the required
volume fractions and derivatives on the two sides, as in Figure 7. Specifically,
11—z 3—x
gl(xa) =h B a7 gQ(ma) 293($a) =h 4 a7

(the second value is arbitrarily fixed to be the average of ¢1(z,) and g4(z,) = h)
with

(3.43)

1
91 (xa) = _§h7 95(7a) = g3(2a)
on the left, and

1+
4 b

3—$b
4 )

g1(zp) =0,  g2(w) = h g3(xp) = h (3.44)

with
/ / 1 / 1
g1(xp) =0, go(an) = iha g3(wp) = _Zh

on the right. It remains to interpolate these values to obtain functions which obey
(3.42), 9; < git1, and (3.26). To do this we fix ¢ € C®(R; [0,1]) with ¢(t) = 1 for ¢t <
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0, p(t) = 0 for t > 1, and set g;(x) := g:(x)p((x —24)/0) + g7 () (1 — p((x —24) /1)),
with gi (2) == (1 -2)/2, g3(x) := gh(x) = h(3—x)/4, g] =0, g5(z) := h(1+x)/4,
95(x) :== h(3 — x)/4. The stated conditions follow.

We next verify the boundary conditions on the vertical sides. The definition

(3.33) implies 1 = —2ag}, 2 = —2a(g] — ¢4), 713 = —2a(g) — g5 + g4) and
1
71(%a) = 73(Ta) = ah, 71(7p) =0, Yo(2) = Zah, Y3(wp) = ah  (3.45)

(indeed, one can check that (3.25) leads in general to yy_1 = ah).
The function y — u(z,,y) is continuous, coincides with u*(z,,y) for y = h and
y = —h, and by (3.27) obeys

Dou(zary) = plaa) (L + @) fih) for gi(za) < y < h,

Ou(wary) = plwa) (1 — ) [, or [yl < g1(za),
and, setting f(_1y := ((f1))1, —(f(1))2),
Oou(zq,y) = plaa)(1 + a)f({l) for g1(z4) < —y < h.
Inserting the value of ~i(x,) and ¢1(z,) given above, we see that this satisfies
the assumptions of Lemma 3.3. Therefore v obeys the boundary data on the left
boundary. One can indeed check p(z,) = rp(z,), where rj, was defined in (3.21).

We now turn to the boundary on the right. For y € [0, h] we define v(y) :=
u(zp,y). By (3.27) and (3.44), this function obeys

plap)(1+ a) fiy(zs),  for 0 <y < ga(zs),
V(y) = § pla) (1= a) fig (@), for ga(an) <y < gs(a),
plap)(1+a)fig)(xp),  for gs(zs) <y < h.

By (345), f(l)(xb) = fo, f(g) (Ib) = fh/2 and f(g) (l‘b) = fn (we use here the notation
of (3.17)). Therefore

(1+a)fé)(xb)~fh/2:(1+a)sino‘7h, for 0 < y < ga(xp),
=9 (1 —a)f@(x) - fua =0, for ga(xy) <y < gs(xs)

1+ a)fé;’)(:cb) fupp=—(1+a)sin %, for gs(zp) <y < h.

fny2 V' (y)
p(xp)

By (3.44) the first and the last segment have the same length, therefore

fh/2 -0(0) = fh/2 ~v(h).

By (3.17), the same holds for u*(zs,-). Since we already checked that v(h) =
u*(xp, h), we obtain f, /o - v(0) = fy, /2 - u*(2p,0). By construction v3(0) = 0, which
corresponds to fg- - v(0) = f5- - u*(zp,0). As the two vectors are linearly indepen-
dent, we conclude that v(0) = u*(zp,0). Therefore v satisfies the assumptions of
Lemma 3.3 with yo = h/2, and u obeys the stated boundary data.

Finally, we estimate the surface energy. The interfaces have length bounded by
¢f, and by (3.23) the jump across the interface (including the boundary of the box)
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is bounded by ca. Further, by (3.27) 820.u = 0, |0102u| < ah/¢?, and from (3.28)
one obtains [9101u| < cah/f? (the leading-order term is the one arising from g7).
We conclude that
h2
|D?u|((xq, ) X (=h,h)) < cal + coy (3.46)
Hence,
14 h L
|D?u|((zq, ) x [~1,1]) < cory + co < cops
where in the final step we used h < £ once again. The second assertion follows from
the same argument, swapping x, and z, in the definition of the functions g; in
(3.43) and the following equations. O

We are now ready to state and prove the main result in this subsection.

Lemma 3.5. There is C > 0 such that for any o € (0, %] and e € (0, ] there exists
Ue € Sex (the class defined in Theorem 2.1), such that

E.[u.] < Ca®Pe*/5,

Proof. Since the proof is long, we present it in a sequence of steps. The general
structure of the construction is illustrated in Figure 5.

Step 1: Outline. We shall treat separately the part on the left and the part
on the right, and for this preliminary discussion let us focus on the set on the
right, Q, := [0,1] x [-1,1]. One difficulty, which is common to many branching
constructions for problems where the singular perturbation fully controls a higher-
order derivative (here, the Hessian of ), is that branching of the microstructure
cannot go down to scale zero, but has instead to stop a certain point, which we
denote here with {x =1 — §} for some 6 € (0,1) chosen below (indeed, branching
down to scale 0 would contradict the trace theorem). This condition corresponds
to the assumption h < A in Lemma 3.4. The length scale of the microstructure
in (1l —¢,-) will also be § (see (3.49)—(3.51) below for details). We then introduce
a boundary layer in which the test function w will be the interpolation between
the boundary condition v* and the branching construction u. In Steps 2 and 3 we
present the branching construction in the central part [-1 46,1 — ] x [—1, 1] and
estimate its energy using Lemma 3.4. Step 4 provides the energy estimate for the
interpolant in the boundary layer )5, thus concluding the construction of the test
function.

Step 2: Test function away from the boundary. In [-1+4§,1— ] x [—1,1] we
shall implement the technique of global domain branching.

At x = 0 assume that we have oscillations of period hg € (0,1] (the value of hg
will be chosen below). The function u we intend to construct will be such that «(0, -)
is a discretization of u*(0, -) on scale hg, in the sense of Lemma 3.3. We remark that
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the discretization treats the 1+ « and the 1 — a phase slightly differently, therefore
the final construction is not going to be symmetric on the two sides. This can be
solved using the first assertion in Lemma 3.4 for the “refining” on the right-hand
side, and the second one for the “coarsening” on the left-hand side.

Precisely, we fix p = 21%, for some b > 0 to be chosen later, and let

; h
l; == CO,UH_1> hi = 27,?7 12> 0,
where ¢g = ¢o(b) is chosen such that > ;= l; = 1. For any k € N and j € Z we also
define
k—1
Tp 1= Zli’ and yi j == jhi.
i=0

We are now in position to apply the first assertion in Lemma 3.4 in every box
[k, Tht1] X [Yk,j» Yk j+1], which has size I, X hy (provided that kg < Alj), and thus
to define the test function

u(x,y) = Uk‘,j(xvy)v (z,y) € [Tr, Try1] X [yk,jvyk.,jJrl]

for k=1,...1 and j = —2*"Ing, ...,2F"Ing — 1. At the same time we use the second
assertion in Lemma 3.4 in every box [—Zg+1, —Tk] X [Yk,j, Yk,j+1]), which also has size
i X hg; one easily checks that the resulting function is continuous on all interfaces.

Note that, by construction, for fixed k, Du has 2*n oscillations in the vertical
direction with period hj. At each branching step k the number of such boxes dou-
bles. Furthermore, since b # 0, at every step the ratio of Iy to hy changes, and the
branching process continues as long as hy < Alg, where A € (0, 1] is the constant
from Lemma 3.4. This condition implicitly defines the number of branching steps
1.

Step 3: Energy estimate away from the boundary. At this point, for fixed
I > 2 (to be chosen later), let us estimate the energy of I steps of the branching
construction,

I Tit1 1
Bl 0,2101] x 1,1 £ 3 U [1dist2(Du,K)dydx+5\D2u|([:vi,mi+1] « [~1,1])

1 274
ah; ad; 974 o i
<CZ[ZW4+ } <CZ{ hy———— sh—o(m) . (3.47)
Choosing 4 such that 1642 > 1 and 2u < 1, which means

1
0<b< 3 (3.48)
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each term in the sum belongs to a converging geometric series, and, since the esti-
mates on the other side are identical,

E] = E[u, [—1’1+1,x1+1] X [—]., 1]] < C (QQhé + ZO() .
0
The value of b will be fixed for the rest of the proof, for example one can take
b =1/6. At this point we set ho := min{1, 2Acou} ( )1/5. This way

Er < coﬂhél + c% < Cab/5c4/5,
0
We define
I := the largest integer such that h; < Ay (3.49)

which implies that

1
hr <N and Aply = N4 < hrp = §h1, hence Iy ~ hy and (QM)I ~ hyg.

(3.50)
We remark that hg < %cou ensures [ > 2.
Step 4: Boundary layer near the x = 1 boundary. Fix
§:=1—ar =l (3.51)

where ¢’ depends only on g, and recall that Qs := [1 — 20,1] x [—1,1]. Let ¢s €
C*°(]0,1];[0,1]) with w5 = 1 for z < 1 —2§ and @5 = 0 for x > 1 — 0 = 41,
los| < 2/8, |¢Y| < ¢/62. Define the interpolation function as

w = ups +u* (1 — @s).
This way
Dw = (Du — Du*)ps + (u — u*) @ Dps + Du*.

First, note that (3.50) and (3.51) imply I; ~ h; ~ &. By construction, u(1 —d,y) —
u*(1 —d,y) is hr-periodic (in the sense of (3.4)), with u(1 —4,0) —u*(1—4,0) = 0.
With (3.23),

lu —u*| < cad®  in Qs.
Since w is an interpolant between u and u*, uniformly in Q5 we have
|w —u*| < cad (3.52)
and
|Dw — Du*| < ca, (3.53)
Finally, we observe that

dist(Du*, K) < ca in Q. (3.54)
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Combining the estimates (3.52), (3.53) and (3.54), we get the following estimate for
the elastic energy in the boundary layer:

/ dist?(Dw, K) dz dy < Ca?s.
Qs

Using (3.51), u = 27'7%, (3.50), hg ~ (¢/)"/® and (3.48), we have
14+b .

I
oz2(5~oz2,u1~a2 l<1> ] Nazhol#NOéz(E) 5b Sag (E>4/5.
2 le} o

It remains to estimate the surface energy near the boundary. Note that
D*w = (u — u*)®D?*p 4 2(Du — Du*)@Dys + wsD*u + (1 — ps)D*u*.
Using (3.52), we have

1
5/ |D?¢| |u — u*| dz dy < cedZad < cae.
(1-26,1—6)x (—1,1) 4

Similarly, by (3.23), we have

1
5/ |Du — Du™| |Dys| dx dy< ceda— < cae.
(1-26,1—6)x (—1,1) d

Next, using (3.24), with A ~ [ ~ § and the explicit form of u*, we have
g|D?ul((1 — 26,1 — 6) x (—1,1)) < cea and 5/ |D?u*| dx dy < ceda.

Qs
Altogether, recalling 6 <1 and € < a

| D?w|(Qs) < cae< ca® e/,

The same holds on Qs := [—1,—1 + 26] x [—1,1], using @¢s(z) = @s(—z) €
C>([-1,0];[0,1]) instead of s, which leads to the same estimates.

To summarize, for all € € (0, «] we have constructed a continuous function u
which satisfies u = u* at x = 1 and = —1, and such that

E.[u; Q] < Cab/5e4/5, (3.55)

3.3. The upper bound in Theorem 2.3

Lemma 3.6. There exists C > 0 such that for any o € (0, 3] and € € (0,q] there
18 Ue € Sex N 52

oescales @8 defined in Theorem 2.3, such that we have

E.[u.] < Ca®/*e3/4,

Proof. The main idea is to modify the test function @, described in the proof
of Lemma 3.1, in order to meet the required boundary conditions. We fix h €
(0, %], chosen below. The geometry x and the rotation 6 will be unchanged, and
the periodicity condition (3.3) still holds. Recall that the triangle T has vertices
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Fig. 8. Sketch of the construction used in the proof of Lemma 3.6. The two triangles Tp and T1
are shown, the blue dashed lines are the directions of interpolation in the definition of wy,. The
gray area is Rg.

in (—1,0), (1,h), and (1,—h), and the triangle T} has vertices in (—1,0), (1, h),
and (—1,2h). Due to the periodic nature of this test configuration, it suffices to
construct the test function in Ty and T} only. We refer to Figure 8 for a sketch and
start with the construction in Tj:

(i) Let up be the piecewise affine function, constructed in Lemma 3.1. By (3.10), in

Ty this function satisfies |Duy, — A| < cah?.

(ii) Next we define the nonlinear interpolated construction wy. Set wp, = u* for

x = —1 and x = 1, and in each triangle define the affine interpolation between
the tip and the base. Precisely, in Ty, which is the set where |y| < h(1 + z)/2,
we use the boundary values

1- 1
u*(~1,0) = ael and  w(1,y) = + « Cf)s(ay) .
a a \sin(ay)

Define (in Tp)

1—=x 14z 2
= (-1 A, y——o

_l-zl-a 1+Jc1+a(cos(2ay/(x+1))>.

2 a T2 T4 \sinay/(z+1)

We compute

Bown = (1 + ) (;Z:éiii{;ﬁ’&?) (3.56)
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and
5w — 1= a L+ a (cos(2ay/(x+ 1))\ y(l+a) (—sin(2ay/(z+1))
= 700 T 200 \sin(2ay/(z + 1)) x+1 cos(2ay/(x+1)) )~
(3.57)
Since |y| < h(z + 1), we have
_ 11— 14+« 2ay 272\ Y
orwp, = 55 €1 + %% (e1 + e +O(a*h?)) — (1 —|—oz)x+ 1(62 + O(ah))
=e1 + O(ah)
and
Owyp, = (1 + a)ea + O(ah).
Therefore

|Dwp, — Al + |Dwy, — Dup| < cah pointwise in Tj. (3.58)

(iii) Fix 6 € (0,1/2] (we shall take § = h at the end), and let ¢5 € C°((—1,1);[0,1])
with o5 =1 on (=1 + 8,1 —46), |¢5| <2/8 and |¢¥| < ¢/§2. We define

v(z,y) = ps(@)un(z, y) + (1 = ps(x))wn(z,y).

Clearly, this function is continuous and obeys the boundary condition (2.8). We
compute

Dv = psDuy, + (1 — ps) Dwy, + @5 (up — wp)Re;. (3.59)
Introduce
Rs:=[1-61] x [-1,1JU[-1,-1+ 4] x [-1,1].
We first observe that v = uy, in Ty \ Rs and therefore by (i)
dist(Dv, K) < |Dv — A| < cah? pointwise in Ty \ Rs. (3.60)

It remains to estimate the elastic energy in Rs. From (3.58) and the fact that
wyp, = up, = u* on the vertices of Ty we obtain

|wp, — up| < cah(h + §) pointwise in Ty N Rs. (3.61)
Therefore
Do — A| <gs|Dur, — Al + (1 — 95) [ Dun — A] + [} Jun, —
ah? (3.62)
<cah + 5

At this point we set § = h and obtain

/ dist*(Dv, K) dx dy < ca’h*. (3.63)
ToNRs

Having completed the construction of our test function v in T, we turn now to the
region T}. Since the construction of v in 73 is analogous to what we did in Tp, we
shall be relatively brief:
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(i) Recall that in 77 the test function up in Lemma 3.1 satisfies |Duj, — QunB| <

cah?.
(ii) Since T} is the set where |y — h| < h(1 —z)/2, we have the following boundary
values:
) _ 1+a [cos(ah) . 11— [cos(ay)
u*(1,h) = s (sin(ah)) and u*(—1,y) = o (Sin(ozy) for y € [0,2h].

Define (in 77)

1 1-— —2 h 1
wh(x7y) = +xu*(1,h)_|_ l’u* _I’M
2 rx—1
—2y+h(x
_1+x1+a (cos(ah) +1—x1—o¢ cos a%
2 a sin(ah) 2 @ sin a—2y+f(1$+1)
The inequality
1—-2)h
ly — h| < % in Ty
implies
—2y+h(z+1) 2
— 1 =|h+ ——(y—h)| <2h. 3.64
i + 2 y-n< (3.61)

Using (3.64), direct computation yields
Owyp, = e1 + O(ah)
and
Oowp, = (1 — a)es + O(ah).

Comparing with the corresponding value of the gradient of uj, we conclude
that

|Dwp, — QunB|+|Dwy, — Duy| < cah pointwise in T . (3.65)

The remaining energy estimate in 7} is exactly the same as in Ty, hence (using
the same interpolation ¢s)

/ dist?(Dv, K) dy dz < cah* (3.66)
TiNRs

for 6 = h.

Having completed the construction in T and T, we extend it using periodicity to
all of Q (just as we did in the proof of Lemma 3.1). We verify that wy, coincides
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with u* on the top and bottom boundaries of the triangles, and in particular that
it is continuous. Using (3.63), (3.66) and (3.60), we have

1
/ dist?(Dv, K) dy dx < —- / dist?(Dv, K) dy da
Q (TOUTl)ﬁR,s

! dist?*(Dv, K) dy dx < % (C1a®h* + Cra?h*) < Ca®h®. (3.67)

+ —
h Jeryur\Rs

We now estimate the surface energy [, |D?v| dz dy. In Q \ Rs we have v = uy, and
we may proceed as in Lemma 3.1. In Ty N R, we have

D?*v = (up — wp)D?*ps + 2(Duy, — Dwy,)Dips + s D*up + (1 — 05)D*wy,.  (3.68)

Since [Dys| < € and |D?p;| < &, using (3.58) and (3.61), for § = h the first two

terms in (3.68) are estimated as

|(un, — wp)D*@s + 2(Duy, — Dwy,)Dyps| < %ah(h +9)+ %ah < Ca.

Next, differentiating the explicit expressions for Dwy, given by (3.57) and (3.56), it
is straightforward to see that for some C' > 0 we have | D?wp|(z,y) < Ca/(1+z) for
all (z,y) € To N Rs, and by explicit integration |D?wy,|(Ty N Rs) < Cadh. Finally,
D?uy;, = 0 in Ty since it is an affine function. Altogether, we have

|D?v|(Ty N Rs) < Cadh.
Using analogous reasoning, we have
|D%v|(Ty N Rs) < Cadh

as well. Let us now estimate the jump of Dv across the interface between Ty N R
and Th N Rs. Using (3.59), as well as (3.61), (3.58) and (3.65), we have

|Dv — Duy| < ¢opah both in Ty N Rs and in Th N Ry.
Hence, using (3.14), we have
|Dv|r, — Dvlr,| < |Dup|m, — Dup|1y| + 2c0ah < cqa.

The above estimates, summed over ~ % triangles using periodicity, yield
/ |D?v|dx dy < Ca,
QNRs
and therefore, using Lemma 3.1 once again,
C
5/ |D?v|dw dy < % (3.69)
Q

Combining the elastic energy contribution (3.67) and the surface energy contribu-
tion (3.69), we have

E.v)<C (a2h3 + %) . (3.70)
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Before choosing the value of h, we verify that v has one scale in the sense of
Definition 2.2. Since v = uy, in Q\ Ry, which covers a fraction 1 — h of the interfaces,
by Lemma 3.1 (see (3.13)) we have

/\D2v|dxdy2/
Q Q\Ry,

provided that hgé.

Next, arguing as in the proof of Lemma 3.1, we define b’ := h/4 and y € H :=
(=h+hh'/2,h — W — hh'/2) and a square S" := (1 — R/, 1) X (y,y + h') C Tp. We
shall now use the fact that for any & € R2*2:

dist(¢,50(2)A) < a = dist(¢, K) = dist(£,SO(2)A).
Indeed, since dist(SO(2)A4,SO(2)B) = |A — B| = 2«, we have
dist(£,SO(2) B) > dist(SO(2) A, SO(2) B) — dist(&,SO(2)A) > a.
In our case, using (3.62) in S’ C Tj there is ¢3 > 0 such that
dist(Dv,SO(2)A) < |Dv — A| < caath.

2c

1 4
|D?up| da dy > (h — 2) (I-h)da = fa(l —2h)(1—h) > 5

)

If coh < 1 then this is smaller than «, and therefore

/m#wummmmwz/mwwumw@.

’

This implies that v has no microstructure in S’, so that H C Gi_’hl. The rest of the

proof is identical to the arguments in Lemma 3.1, and yields v € Séi)escale.

Finally, we set h := min{%,cg 1}211/; This choice satisfies all the conditions
imposed above, and using (3.70) it gives the desired upper bound
E.[v] < Ca’/*e3/4, |

4. The lower bounds
4.1. The lower bound parts of Theorems 2.1 and 2.2
We start with a simplified version of the proof, which shows the origin of the £*/°
scaling without resolving how the prefactor depends on « in the limit o — 0.
Lemma 4.1. For any a € (0,31] there is Co > 0 such that for any € € (0,q], and
any u € WH2(Q;R?) satisfying the boundary conditions

u(£l,y) = u*(£1,y) (4.1)
one has

E.[u] > Che/®.

Proof. The strategy is similar to the one of Ref. 5. Let u € W1?(Q;R?) which

obeys (4.1) and let E := E.[u]. If E > 1 the proof is concluded, hence we can
assume F < 1 in the following.
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Fix ¢ € (0, %], to be chosen later. We choose a strip S := (=1, 1) x (yo, yo+£) C 2
(see Figure 9) such that

/ [dist®(Du, K) 4 €| D?ul] dx dy < (F, (4.2)

s

where as usual [ |D?u|dzdy is interpreted as [D?u|(S) if u is not in W21(S;R?).
Within this strip we choose a square @ := (g, o + £) X (yo0,y0 + £) such that

zo € (—3,1) and

/ [dist?(Du, K) + e|D?u|] dzdy < (*E. (4.3)
Q

By the BV version of Poincaré’s inequality there is an F e R2%2 with

=

Q

Fig. 9. Choice of the strip S and the square @ in the proofs of Lemmas 4.1 and 4.3.

| Du— F||11(q) < cl|D?u|(Q) < cl*’E/e. (4.4)
Let F, be the matrix in K that’s closest to F. Then
|F' — F,| < |F — Du(z)| + dist(Du(z), K).

This inequality is true since F, is chosen such that the line segment from F to F,
is the shortest path from F to K, so it is shorter than the path that goes from F to
Du(z) then to the point of K closest to that. Integrating the latter inequality over
Q, together with (4.3) and (4.4), we have

HD’LL — F*”LI(Q) < HDU — FHLI(Q) + ||F — F*”LI(Q) < clPe'E + cl?EY2?.
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Using Poincaré’s inequality once again, there is b € R? such that

u— F, (x) —-b
)

For y € (yo,yo + £) we set

4
<C <£E + £3E1/2) : (4.5)
LY(Q) ¢

sin(ay)

fy = (COS(ay)) and  e(y) = / dist®(Du, K) dz.
(-1.1)

By 01u* = f, the fundamental theorem of calculus and (4.1), for almost all such y
we have

1
/ (fy = Orulz,y)) de = (v —u)(L,y) - (" —u)(=1,y) = 0. (4.6)

-1

Let 6 € L*>°((—1,1)) and 0 € L*°((—1,1); {1 — o, 1 + a}) be such that
dist(Du(z,y), K) = |Du — Q¢ Fy| for almost all z € (—1,1), (4.7)

cosf —sin6
sinf cos@
so that (4.7) and Holder’s inequality imply

where as usual Qy := ( ) and F, := e;®e1+oeaR®es. We set eg := Qgeq,

1 1 1
/1 |O1u — eg| dx < / |Du — QoF,|dx = / dist(Du, K) dz < v/2e?(y). (4.8)
~1 1

We write, using (4.6),

1 1 1
/ fy'(fy_eﬁ)dx:/ fy'(fy_alu(xay))dm"_/ fy'(alu(mvy)_eﬁ)dx
—1 -1 -1

1

1
g/_l fy - (fy —alu(w,y))dx—i—/1dist(Du(x7y),K) dx

<V2e'2(y).
Since |f,| = |eg| = 1, we have |f, — ep|® = 2f, - (f, — €p). Therefore
1 1
[t -l an=z2 [ £, (4~ oy do < 2/520).
1 —1

Finally, with a triangular inequality and using again (4.8) and Hoélder’s inequality,

1 1 1
/ |Ohu — O1u*| dx §/ |81u—69|dm—|—/ les — fy| dz
1 1 1

<V2e 2 (y) + 2v2eV 4 (y).

This implies

u(z,y) — u*(z,y)| <ce'?(y) + ce'/*(y).
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Integrating over @ and using (4.2), this leads to

Yo+t
/ u(@,y) — u*(z,y)| de dy <cl : [e!2(y) + e!/*(y)] dy 49)

<cl(LEY? + (EY*) < c?EYA

since E < 1. Recalling (4.5) and using the triangle inequality we obtain that there
is F\. € K such that

() -sse
Q Yy

With Lemma 4.2 below, we get

IE

drdy < C[(*EY* + —— + 3EY?).

4
cal® < PEY* + fiE + BEY?,
€
or
E > ¢, min{¢*, %, 1} = co min{¢?, %}
Setting £ := ial/ 5 yields the desired lower bound

E > ¢/, O

=

Lemma 4.2. There is ¢ > 0 such that for any F € K, £ € (0,1], 29 € [
Yo € R, b€ R?, a € (0,1], we have

F()—b fy1+ax
Yy

Proof. Let q:= (zg, 20 + £) x (yo,yo + £), and define v : ¢ — R? by
1 —i—ozx

§a%}7

dx dy > cal®. (4.10)

\/(930 ,0+£) X (yo,y0+4)

We compute
Du(e,y) = F - fy @ 1 — (1 + az)f @ e,

and observe that, since |Fes| = 1+ sa for some s € {£1} and |f,| =1,

1
|Dv| > |Feq — (1+am)fyl| >|(1+sa)—(1+ax)|=als—x| > 1%

since z € (zo, o + ¢) C [—3, 3]. In particular, |[Dv| 11y > Faf?. Further,

Oz Dv(z,y) = —afyL ®ey and OyDv(z,y) = —afyL ®er +a(l+ax)f, ®es

imply |D?v| < 4a pointwise, and therefore ||D?v||1(4) < 4af?. By the Gagliardo
interpolation inequality

1/2 1 2 _
1D L1y < elloll 5, 1Dl 15, + et vl (o),
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which holds for any square g of side ¢ with a universal constant, we deduce
D121 4

V]2 (q) > ¢min {“'D““LW’ D201 ()
q

} > cmin{al®, al?} = cal®,
which is the assertion. O

We now give the general proof of the lower bound.

Lemma 4.3. There are ¢; > 0 and C > 0 such that for any o € (0,3], any
e € (0,a], and any u € WH2(Q; R?) satisfying the boundary conditions
lu—u|(£1,y) <6 (4.11)
for some § < cla3/5€2/5 one has
E.[u] > Cab/°*/5,

The proof starts as the simplified one above. We present a self-contained proof,
replicating a couple of initial steps; in particular, the choice of .S and @ is identical.

Proof. Let u € WH2(Q;R?) with |u —u*|(£1,y) < 4§, and let E := E.[u]. If E > 1
(this includes in particular the case that D?u is not a bounded measure) there is
nothing to prove, so we can assume F < 1 in the following.

Step 1. We choose a good strip and a good section.
Fix £ € (0, %], to be chosen later. We choose a strip S := (—1,1) X (yo,y0 +£) C Q
(see Figure 9) such that

/[dist2(Du, K) + ¢|D%u|) dx dy < (E, (4.12)
5
and within this strip a square @ := (zo, o +£) X (Yo, Yo +£) such that (xg,zq+¢) C
(—3,2) and
/ (dist®(Du, K) + £| D?ul] da dy < (2. (4.13)
Q
By Poincaré’s inequality there is an F' € R**? with || Du— F||11(q) < cf|D?u|(Q) <
cl3E /e, and by the first term in (4.13) there is F, € K with |[Du — F.|[11g) <
clPe E + cl?E'/?. We choose ., € (g, xo + £) such that
/ |Du(zs,y) — Fyldy < cl?e ™ E + clE'/?, (4.14)
1

where I := (yo,yo + £).

Step 2. We use (4.12) to obtain control on 01 (u — u*).
We recall that

b (5.3) = f = (cos(am) |

sin(ay)
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By the fundamental theorem of calculus, for almost all y € I we have

/ Ovula,y) — fy) dz = (u—u*)(Ly) — (u - u™)(~1,7).

-1

At this point the proof differs from the previous one. To obtain the appropriate
scaling in « it is important to separate the longitudinal component of Du, on which
we have better control, from the tangential one.

We take the component along f,, and recall the boundary condition (4.11) to
obtain

1
—26 < / fy - (Orulz,y) — fy) de < 26. (4.15)
-1
We observe that, by the structure of K,
|Ohu| < rnisnl(|a| + |01u — al) <1+ dist(Du, K). (4.16)
aec

For a fixed y € I we define g : (—1,1) = R by g(z) := f, - d1u(z,y) — 1, and then
set g1 := max{0, g}, g— := max{0, —g}. From (4.15) we obtain

< [ go= [ e [ g @
(-1,1) (-1,1) (-1,1)

which we rewrite as

/ g—(x)dx <24 —|—/ g+(x) dz.
(_171)

(=1,1)

Therefore
[ W= [ g@ds [ g@d<wiz] g
(—1,1) (—1,1) (-1,1) (—1,1)
(4.17)
From (4.16) and |f,| = 1 we have
g(x) < |0ru| =1 < dist(Du(z, y), K),

which implies g4 (z) < dist(Du(z,y), K), so that (4.17) becomes

/ lgl(x) dz < 26 + 2/ dist(Du, K)(z,y) dz.
(—-1,1) (—-1,1)

Integrating over y € I leads to
J V- @) = £l dwdy = [ 11, -0ru(o.p) = 1] dady
<280+ 2 / dist(Du, K) d dy (4.18)
S

<260+ 3(E'Y/?,

where in the last step we used Hélder’s inequality, £2(S) = 2/, and (4.12).
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We now estimate the other component of d;u — f,, using the same trick as in
Lemma 3.3 of Ref. 6. Let a : S — S! be a measurable function with [0ju — a| <
dist(Du, K). Using |a — f,|*> =2 —2a- f, = 2f, - (f, — a) we obtain

[la-spdvdy=2 [ £, (5, - aydody
S S
§2/ [fy - (fy — O1u) + dist(Du, K)] dx dy
S

<460 + 9CEY?,

which leads, using Holder, v/a + b < v/a 4+ v/b, (4.12) and then E < 1, to

/ |O1u — fyldzdy S/ [dist(Du, K) + |a — f,|] dzdy
5 s

<3620 + 3V2UEY + V2UEY? < 36120 + 6¢EV/1,

(4.19)

Step 3. We obtain a lower bound on 01(u — u*) from (4.14).
We fix a test function ¢ € C°(I;[0,1]) such that

30 [0y and [piw) + 09 W)+ E W)l <o Prallyel  (@20)

(this is similar to what done in Lemma 3.6 of Ref. 6). We recall that du*(x,y) =
(14 ax)f, . Further, from f, = af, we obtain |f, — f,,| < af for all y € I and
therefore

1
02 (@0,9) — (1 az) 5] = (1+ az)lfy = fuo] < (1+a)al < Za

for all y € I, since we chose £ < 1/16. Let F, € K be the matrix entering (4.14).
The vector (1+ ax*)ny(-) has length 1+ ax,; the vector F,es has length either 1+ «
or 1 —a. From z, € (—2,3) we obtain |F.es — 8ou* (., y0)| > $a, so that there is

b e S with

éa <b-(Freg — Oau*(zs,y)) forallyel.
With (4.14) and (4.20)
1 1
150t < [ oy <b- [ (Frea - dau* (@ v)btn)dy
16 |8 .

<b- /82(u — ) (24, )0 (y)dy + cl?e T E + clEV2.
I
We compute
be [ Bau—u) g bw)dy == b+ [ (=) )0 )y
I I

< —b- / 01 (u — u*)(w, y)¢' () da dy
(—1,z.)xI
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where in the second step we used the boundary condition |u—u*|(—1,y) <4, (4.20)
and |b = 1. We write b = —g1(y) fy —92(y) f, with g1(y) == —b-fy, g2(y) := —b-f;.

Inserting this in the previous expression gives
1
Ea@ Sc(é + e R+ EEl/Q)
L e oul ) ) ddy
—1,x,)X

4 / @) 01 (u — u)(z, Y (y) de dy.
(—1,xs) XTI

We distinguish three cases, depending on which of the three terms is larger. In case
I

)

al < b+ cl?eE + ¢/EY2, (4.21)
In case I,
al<c /( o 0 O =) )0 ) dr (4.22)
and in case ITI,
ol <c /( o B Ot ) ) dedy (4.23)

(one term drops since f?j- - 01u* = 0). The three cases shall be brought together in
Step 4.
In case II, recalling (4.20) and |g| < 1,

C
al < Z/ [fy - Or(u — ) (z, y)| dz dy; (4.24)
(=1,1)x1

and with (4.18) we obtain

al < b+ cEV/2. (4.25)

Consider now case III. This case is more complex, and is the one leading indeed
to the optimal scaling. We proceed as in Lemma 3.6 of Ref. 6. For every G € K
there is 0 € {£1} such that (1+0a)Ge; = —(Gez)* . For every (x,%) € S we choose
G € K such that |Du — G| = dist(Du, K), and observe that

(ou)t = ((Du — @ea)t 4 (Gea)™ = (Du — G)ez)t — (14 0a)Gey
(Du — Q)ex)t + (1 + 0a)((Du — G)ey) — cadiu — dyu,

all evaluated at (x,y). Taking the component perpendicular to f, leads to

IfE - (@ru+ (D2u)h)] <2|Du— G|+ alf) - 91yl
<2dist(Du, K) + a|01u — fy.
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Therefore (4.23) leads to

af <c / W) [ - Oyu(z, ) (y) dw dy
(—l,z.)xI
<—e / 020) - Dau(w, ) () d dy
(—l,z.)xI
+ c||¢'||Lc>o / [2dist(Du, K) + o|01u — fy|] dx dy.
(—1,xs)xI

We subdivide case III further, depending on which of the two terms is larger. In
case (III4), the second is the largest, and recalling (4.20), (4.12) and (4.19), we
obtain

al < ||y || e /[2dist(Du,K) + alOu — fyl|]dedy < %[ﬂEl/Z + adY20 + ol B4,
5

(4.26)
In case (IIlp) instead, using f, - Oou* = 0, integrating by parts and recalling f; =
afy,

1
= / Oaul(x,y) + fyg2(y)V' (y) da dy
(—La.)xI
= /(_1 : 1(52“ — Oou”)(z,y) - fyg2(y)V' (y) dx dy
:/(_1 ) I(u - u*)(x7y) ’ (fy92(y)¢/(y))/d$ dy (4.27)
:/(1 : I(U—U*)(%y)'fy(gz(y)w’(y))/dxdy
+ / (u—u")(z,y) - f;'a92(y)¢/(y) dz dy.
(—La.)xI
With |g2] <1, |g4] < 1, and (4.20), this reduces to
al 35% /S |(u—u*)(z,y) - fy]dady
+ %/SKU_U*)(%?J) - fy | dy.

In each term we use Poincaré’s inequality in the x direction and the boundary data
to get

1)
ol §cz + E%/ |fy - O1(u* —u)(z,y)| dedy
s

ca .
+ 1o eyl de dy
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With (4.18) and (4.19),

at <% 1 Sis0 402 4 %[51/24 +eEYY

2
¢ 5€ . (4.28)
< CZ +cad'/? + czEl/2 + caEY*4.

Step 4. Conclusion.

At this point we have shown the existence of a universal constant ¢, > 0 such that
for any choice of £ € (0, 4] one of the following holds. In case I, from (4.21) we
have

al < c.d+c e E + c*ﬁEl/Q.
In case II, from (4.25) we have
al < c o+ C*E1/2.
In case III4, from (4.26) we have
al < c,adt? + c,aBY4 4 e, EY2.
In case II1g, from (4.28) we have
al < c*% + c*aél/z + c*%EU2 + c*aE1/4.

It remains to choose /. We assume that

1
c*5§ga€2 and  ¢,02 < 24, (4.29)

Wl =

so that all §-dependent terms in the above equations can be absorbed in the left-
hand side. We remark that the first condition is the most stringent one for small c.
Then the four cases above can be summarized in the estimate

E> cmin{%,a27a2€27a2€4,€4} = cmin{%mﬂﬂ‘l}

where we eliminated irrelevant terms using o < 1 and ¢ < 1. We finally set ¢ :=
%(6/&)1/5, and obtain E > ca8/54/5. If the constant ¢1 in the statement is chosen
appropriately (depending only on ¢,) then the assumption § < c103/%¢2/5 implies
(4.29). D

4.2. The lower bound in Theorem 2.3

Lemma 4.4. For any m > 1 there exists ¢, > 0 such that for any a € (0, 1],
€€ (0,a], and u € Sex N Sm) we have

onescale

E.[u] > ema®/te®/4,

Proof. Let u € Sex N S™  asin the statement, h € (0, 1] be as in the definition

onescale

of 5™ and E := E_.[u]. For yo € (—1,1 — h) we consider the square Q"(y,) :=

onescale’
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(1 —h,1) X (y0,y0 + h) as in Definition 2.2. We consider the set GT’}L of the y €
(=1,1 — h) such that u has no microstructure in Q"(yo), defined in (2.21). Using
Fubini’s theorem we estimate

/ / dist?(Du, K) dx dy dyo < h dist?(Du, K) dz dy
Gt JQh(yo) (1=h,1)x (~1,1)
< hE.

Since by assumption EI(GT’h) > L we can choose yq € G (fixed for the rest of
the proof) such that

/ dist?(Du(z,y), K) dz dy < mhE,
Q

where for brevity we write Q := Q"(yo). By the definition of GT’h there is J €
{4, B} such that

/ dist?(Du, SO(2).J) dx dy < m/ dist?(Du, K) dz dy.
Q Q
We are now in position to apply the geometric rigidity estimate in Th. 3.1 of Ref. 16

to the function u o J=! on the set JQ and conclude that there exists R € SO(2)
such that

/ |Du — RJ|? da dy < c/ dist?(Du, SO(2)J) dz dy < chE
Q Q

with a constant ¢ = ¢(m) (from now on all constants may depend implicitly on m).
By Poincaré’s inequality and the trace theorem, there exists b € R? such that, with
F:=RJeK,

fule=r () -

But since u(1,y) = 142 £, we have
/h 1+ o (cos(a(t+ yo)) b F 1
0 a \sin(a(t +yo)) t+ 1o

On the other hand,
= (et e o) = (et )

h
zc/ Q?tidt = Ca’h®.
0

2
dH' (z,y) < ch/ |Du — F|? dx dy < ch®E.
Q

2
dt < ch’E.

2
dt

h
min min min
beR? FeR2x2 yeR [,

(4.30)

(The inequality (4.30) can be proved by passing to complex notation. Since

elotty) — eioteioy and |¢*¥| = 1, the result for general y is easily reduced to

the case y = 0. One is then left to estimate how well ot can be estimated in

«
14+« €
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L?(0,h) by an affine function. The answer is driven by the quadratic term in its
Taylor expansion.) Altogether, we have

Ca’h® < h?’E

which is the same as E > Ca?h3. On the other hand, the condition (2.22) implies
E > 2. Combining these two lower bounds, we get the desired bound

ae
E> cmi 20,13 QEY o B/Ae3/4
7c’rlr/1;r(1)max{a (h")?, h’} ca”’ e
where the latter infimum is attained at h' = (¢/a)/4. O
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