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Abstract— All Pairs Shortest Path (APSP) is one of the
graph problems where the output size is significantly larger
than the input size. This paper examines the issues in scaling
GPU implementations for this problem beyond the memory
limits. Because the existing (in-core) methods offer a complex
trade-off between the overall computation complexity and the
available parallelism, choosing the best out-of-core version for a
given matrix is challenging. We develop three efficient out-of-core
implementations, which are based on the blocked Floyd-Warshall
algorithm, Johnson’s algorithm, and the boundary algorithm,
respectively. Next, we develop a methodology to select the best
implementation for a given graph. Experimental results show that
compared with an efficient multi-core APSP implementation, the
out-of-core version achieves speedups of 8.22 to 12.40 for graphs
with a small separator, and speedups of 2.23 to 2.79 for other
sparse graphs, and our models can select the best implementation
in most cases.

I. INTRODUCTION

As more computing power is shifting to accelerators, a large
volume of recent efforts (see representative examples [16],
[17], [22], [26], [27], [37], [25], [3]) have shown that it is
promising to exploit GPUs to accelerate graph processing.
However, together with the high peak processing power of
GPUs, comes a significant limitation, which is that the device
memory size on GPUs is only a fraction of advanced CPUs’
memory sizes. Thus, GPU processing is often viewed as a so-
lution only for small and medium sized graphs. One approach,
however, can be developing out-of-core GPU implementations.
There do exist several such efforts [30], [23], [32], though
focus on (more common) graph problems where the input
size is larger than the output size, and the out-of-core version
processes an input graph that cannot fit in memory.

All Pair Shortest Path (APSP) belongs to a different class
of graph problems, where the output distance (dense) matrix
is larger (often by orders of magnitude!) than the size of
the adjacency (sparse) matrix representing the input graph.
APSP involves finding the shortest paths between all pairs of
vertices in a weighted graph. It is an important problem with
applications in diverse areas such as traffic simulation [2],
databases [9], Internet routing [29], sensor networks [18],
and others. The time complexity of APSP algorithms can be

very high, especially when parallelism has to be exposed (for
example, the time complexity is cubical in terms of the number
of vertices with the Floyd-Warshall algorithm [10]). Thus,
the major overhead of APSP can either be the data transfers
or the computation itself, depending upon the problem size,
characteristics of the matrix, and the algorithm used.

We observe that not only it is challenging to create efficient
out-of-core versions of algorithms, but the optimal choice may
depend upon the nature of the graph itself. Previous research
works on GPU acceleration of APSP mostly proposed to adopt
the Floyd-Warshall algorithm [16], [35], [20] and demon-
strated high efficiency with small graph sizes. However, the
Floyd-Warshall algorithm’s high complexity can be detrimen-
tal to overall efficiency when large graphs are involved. On the
other hand, using another approach, Johnson’s algorithm [10],
as the basis is also challenging because we are typically only
able to run a small batch of SSSP instances in parallel due to
the GPU memory size limits, limiting parallelism.

In this work, we explore the design space of out-of-core
processing solutions to the APSP problem. We first present
three out-of-core implementations for APSP. We also introduce
several optimizations to improve their performance – specif-
ically, using dynamic parallelism for Johnson’s algorithm,
batching small data transfers in the boundary algorithm, and
exploiting asynchronous data transfers for all implementations.
Our analysis on understanding the relative performance of
these three versions leads to the following observations. For
graphs with a small separator, the boundary algorithm usually
achieves the best performance because of regular computation
patterns and resulting memory accesses. For other sparse
graphs, the maximal number of components allowed in out-
of-core boundary algorithm implementation is small. Thus,
Johnson’s algorithm achieves a better performance. However,
as the densities of the graphs increase, the workloads of John-
son’s algorithm also increase. When graphs are sufficiently
dense, the blocked Floyd-Warshall algorithm delivers the best
performance.

These observations are further coded into a methodology
to automatically select the best version for each graph. For
Johnson’s algorithm, we observe that the execution times of
different SSSP instances or different batches are similar. Thus,



execution times can be predicted by running several (randomly
selected) batches of SSSP instances. For the blocked Floyd-
Warshall algorithm and the boundary algorithm, we estimate
the execution times based on the number of vertices. We also
propose simple (low overhead) heuristics based on the density
values of the graphs. Overall, to the best of our knowledge, this
paper is the first in reporting out-of-core versions of APSP and
a methodology for choosing the best among multiple candidate
versions.

Our experiments evaluate different versions using a set of
matrices from SuiteSparse matrix collection [12] and other
graphs generated using the R-MAT [8], and lead to the follow-
ing observations. First, our out-of-core versions can achieve
significant performance improvement over an efficient multi-
core CPU implementation. For graphs with a small separator,
the speedups are from 8.22 to 12.40, whereas for other sparse
graphs, it delivers speedups in the range from 2.23 to 2.79.
Thus, we demonstrate that GPU processing can be attractive
even for large graphs. Second, compared with other efficient
implementations from the literature [31], our implementations
achieve speedups in the range 4.70-69.2 in almost all cases.
Finally, we show that our selector can always select the most
efficient implementation for our set of graphs based on our
cost models.

II. BACKGROUND

Let G = (V,E) be a weighted graph, where V is the set
of vertices and E is the set of edges. Suppose that n = |V |
is the number of vertices, m = |E| is the number of edges.
Let w[i][j] be the weight of the edge from vertex vi to vertex
vj . The goal of the all-pairs shortest paths (APSP) problem is
to compute an n×n matrix dist, where dist[i][j] denotes the
shortest distance from vertex vi to vertex vj . There are two
families of algorithms to solve the APSP problems, building
on the Floyd-Warshall algorithm and Johnson’s algorithm,
respectively [10].

A. The Floyd-Warshall Algorithm
This algorithm initializes the matrix dist with the input

weights for the edges (which will be ∞ when there are no
edges between the two vertices). The algorithm has an outer
loop with the number of iterations equal to the number of
vertices in the graph. During the kth iteration of this outer
loop, we check each pair of vertices vi and vj . If there is
a shorter path between them via the intermediate vertex vk,
then the algorithm updates dist[i][j]. It has been shown that
the algorithm gets the final shortest distances between each
pair of vertices after n iterations [10].

To improve the performance of the Floyd-Warshall algo-
rithm, existing works [20] applied tiling techniques to get
a blocked version. Initially, the matrix dist is partitioned
into num_b × num_b blocks. Each block is a sub-matrix
with size b × b, where b = n/num_b. The algorithm takes
num_b iterations to compute the results of all blocks. During
the kth iteration, it follows three major steps. Let A(i, j)
denote the (i, j) block of the matrix dist. In the first step,
it computes APSP on a diagonal block, i.e. A(k, k) using the
original Floyd-Warshall algorithm because its computation is
independent of any other block. In the second step, it updates
blocks A(k, i) and A(i, k), where i 6= k. The computation of
these blocks depends on the diagonal block A(k, k), and they

are updated by applying MinPlus Multiply [21] with A(k, k).
In the final step, it updates the remaining blocks A(i, j), where
i 6= k and j 6= k.

B. Johnson’s algorithm and SSSP implementations

In a very different approach, Johnson’s algorithm [10]
solves APSP by running the single-source shortest path (SSSP)
over each source node in the graph. In the classic Johnson’s
algorithm, Dijkstra’s algorithm for each source node [10] is
executed. The key idea is to maintain a priority queue of the
vertices, prioritized by their shortest distances discovered so
far. For each iteration, the method extracts the top vertex on
the queue, which is also the vertex with the shortest distance
from the source vertex. Then, it relaxes all edges leaving from
this vertex – the relax operation on an edge (u, v) updates the
distance value of v if it has a shorter distance from the vertex
u. When the implementation is done using Fibonacci heaps
or relaxed heaps, the time complexity of Dijkstra’s algorithm
is O(nlogn + m), which is the lowest known complexity for
SSSP.

Dijkstra’s algorithm’s only exposed parallelism is in the
form of concurrent processing of the edges at the single vertex
at the top of the queue. On the other hand, in Bellman-
Ford algorithm, during each iteration, we check each edge
(u, v), and perform relax operations. This is repeated until the
distances converge. In the worst case, this operation repeats
n − 1 times. Obviously, the relax operations among different
vertices are independent and easy to parallelize. However, the
sequential time complexity is O(nm), which is much higher
than that of Dijkstra’s algorithm.

The delta-stepping algorithm [24] is a generalization of both
Dijkstra’s algorithm and the Bellman-Ford algorithm. It allows
more parallelism than Dijkstra’s while providing better work
efficiency than the Bellman-Ford algorithm by using a coarse-
grained priority queue. The vertices whose distances lie at
a specific range are grouped in the same bucket. The range
in each bucket is called delta. Delta-stepping then processes
vertices from the bucket with smallest distances in parallel.
When this bucket becomes empty, the next bucket is processed,
and so on.

In this work, we adopt Near-Far optimization [11] for SSSP
implementation, which is a simplification of the delta-stepping
algorithm that is considered efficient on GPUs. The work
queue here is divided into two queues: Near_Queue and
Far_Queue. Initially, Near_Queue contains only the source
vertex and Far_Queue is empty. During each iteration, the
method traverses edges from the vertices in the Near_Queue.
For an edge (u, v), where u is a vertex from Near_Queue,
it not only performs the relax operation but also assigns
vertex v into the two queues – specifically, it appends v to
Near_Queue if the updated distance is smaller than i∆,
otherwise, it assigns it to the Far_Queue. Then, it begins the
next iteration of processing the Near_Queue. Once it runs out
of vertices in the Near_Queue, we swap Near_Queue and
Far_Queue, and continue the next iteration with an updated
range ((i + 1)∆).

III. OUT-OF-CORE APPROACHES FOR APSP

This section shows a series of out-of-core methods to solve
the APSP problem. We note that several research efforts [16],



[20] have proposed efficient implementations of the Floyd-
Warshall algorithm on GPUs because of a large degree of
exposed parallelism and memory efficiency. However, the
time complexity of the Floyd-Warshall algorithm is as high
as O(n3), clearly adding high overheads as the graph sizes
increase. This is an important consideration as we develop our
efficient out-of-core methods. On the other hand, Johnson’s
algorithm is work efficient, and it can also expose sufficient
parallelism as different SSSP instances are independent. How-
ever, the GPU memory sizes limit the number of parallel SSSP
instances.

A. Out-of-core Floyd-Warshall Algorithm

Algorithm 1 Out-of-Core Version of the Blocked Floyd-
Warshall Algorithm

Input: A(i, j) - weight matrix of block (i, j)
nd-the number of blocks in each dimension.
Output: A(i, j) - shortest distance matrix of block (i, j)

1: for k = 0; k < nd; k ++ do
2: . Stage 1
3: A(k,k) = Blocked Floyd-Warshall(A(k,k))
4: Transfer results of A(k,k) back to CPU
5: . Stage 2
6: for i = 0; i < nd; i++ do
7: A(k,i) = min(A(k,i), A(k,k) + A(k,i))
8: Transfer results of A(k,i) back to CPU
9: end for

10: for i = 0; i < nd; i++ do
11: A(i,k) = min(A(i,k), A(i,k) + A(k,k))
12: Transfer results of A(i,k) back to CPU
13: end for
14: . Stage 3
15: for i = 0; i < nd; i++ do
16: for j = 0; j < nd; j ++ do
17: A(i,j) = min(A(i,j),A(i,k)+A(k,j))
18: Transfer results of A(i,j) back to CPU
19: end for
20: end for
21: end for

A straightforward implementation of APSP is to adapt the
blocked version of the Floyd-Warshall algorithm to the out-
of-core case. Algorithm 1 briefly shows the procedure of this
implementation. In this case, the matrix is partitioned into nd×
nd blocks, so that each block is as large as possible while it
can still fit into GPU’s memory. Then, for each iteration, we
apply the same three stages to update the values of blocks.
For diagonal blocks that are updated during the first stage,
we apply the blocked version of the Floyd-Warshall algorithm
recursively. For the remaining blocks, we implement matrix
multiplication (MinPlus Multiplication) with tiling techniques
to utilize shared memory efficiently [14]. We transfer the data
back to the CPU after updating each block – the amount of
data transferred is nd × n2 because we transfer all blocks
during each iteration.

B. Out-of-Core Johnson’s Algorithm
A naive out-of-core implementation of Johnson’s algorithm
involves running an SSSP kernel for each source vertex. Here,
we propose a batch implementation to make efficient use of
parallelism on GPUs. The overall procedure is shown in Algo-
rithm 2. It first determines the maximal number of concurrent

runs of SSSP on GPUs based on the GPU’s memory limits.
We denote it as bat. Let L be the GPU memory size, the
memory required for storing the graph be S, and further, each
SSSP instance requires c × m storage for the work queues,
where c is a constant, m is the number of edges. Then

bat = (L− S)/(c×m).

Assume that the number of batches is nb, where nb = n/bat,
then the procedure of the batch implementation is composed
of nb iterations. During each iteration, we run bat SSSPs in a
single kernel. We denote the kernel function as MSSP since it
essentially computes the shortest paths from multiple sources.
We assign each SSSP instance to one thread block so that we
are able to synchronize threads within one thread block, using
__syncthreads() primitive provided by CUDA.

Algorithm 2 Out-of-Core Implementation of Johnson’s Algo-
rithm

1: __global__ void MSSP( ){
2: for source_id = block_id ; source_id
3: < bat; source_id += num_blocks do
4: Near_Far_TB(source_id)
5: end for
6: }
7: nb = n/bat
8: for i = 0; i < nb; i++ do
9: MSSP<<<>>>( )

10: Transfer results back to CPU.
11: end for

However, with the above method, when the number of edges
gets larger, bat would decrease. Now, if bat is smaller than
the maximal number of active thread blocks on GPUs, the
parallelism provided by GPUs is under-utilized. To utilize the
parallelism of GPUs effectively, we proposed to utilize the
Dynamic Parallelism feature to launch child kernels to process
vertices that have a large out-degree. Dynamic Parallelism is
an extension of the CUDA programming model to enable a
CUDA kernel to create and synchronize with new kernels [14].
As launching child kernels causes additional overheads, we
only launch kernels for vertices with a large out-degree. When
we traverse graphs inside the MSSP kernel, we first launch
a child kernel to find all vertices with large out-degrees and
push the edge lists of these vertices together to a single queue.
Because the sizes of these edge lists are different, we partition
edge lists into equal sizes. Then, we launch another child
kernel to traverse these edge lists, with each partition assigned
to one thread block.

C. Out-of-Core Boundary Algorithm
Djidjev et al. [13] proposed a boundary algorithm to solve

APSP problems for multi-node clusters. The algorithm is
composed of four major steps. During the first step, the graph
G is partitioned into k components, i.e, C1, C2 . . .Ck. For any
edge (u, v), if vertex u and v belong to different components,
then both u and v are both boundary nodes. The goal of
partitioning is to make each component roughly the same size,
and the number of boundary nodes as small as possible.

Now, in describing the remaining three steps, disti(u, v)
denotes the current appropriate value of the shortest distance
between vertex u and vertex v computed in step i, for i =



2, 3, 4. In the second step, the APSP problem is solved on
each component independently to get dist2. In the third step,
the boundary graph BG is extracted. The nodes of BG are
boundary nodes and the edges are edges between each pair of
boundary nodes. This includes virtual edges computed in the
step 2, i.e. if we found that dist2(u, v) is not infinity after step
2 (implying that there exists a path from u to v), then, we add
a virtual edge (u, v). In the final step, we compute the shortest
distances where at least one node is a non-boundary node using
the dist2 and dist3 as follows. We define Bi = Ci∩BG. For
non-boundary nodes vi and vj , which are from components
Ci and Cj , respectively, we obtain dist4 using the following
formula:

dist4(vi, vj) = min(dist2(vi, bi)+dist3(bi, bj)+dist2(bj , vj))
(1)

where bi ∈ Bi, bj ∈ Bj .

Algorithm 3 Out-Of-Core Implementation of the Boundary
Algorithm

Input: A(i, j) - distance matrix of block (i, j),
k-the number of blocks in each dimension,
bound-the distance matrix of the boundary graph
Output: A(i, j) - shortest distance matrix of block (i, j)

1: for i = 0; i < k; i++ do
2: blocked Floyd-Warshall(A(i, i)))
3: end for
4: Update values in bound
5: blocked Floyd-Warshall(bound))
6: for i = 0; i < k; i++ do
7: C2B[i] = ExtractRow(A(i, i)
8: end for
9: for i = 0; i < k; i++ do

10: B2C[i] = ExtractCol(A(i, i)
11: end for
12: . Compute dist4
13: for i = 0; i < k; i++ do
14: for j = 0; j < k; j ++ do
15: Extract bound(i, j)
16: tmp_1 = C2B[i]× bound(i, j)
17: A(i, j) = tmp_1×B2C[j]
18: Transfer A(i, j) back to CPU side.
19: end for
20: end for

Based on the description above, we implemented an out-
of-core version of the boundary algorithm as shown in Al-
gorithm 3. In the first step, we adopted a k-way partitioning
method from the METIS library [19] to partition the input
graphs. We use A to denote the input graph and the corre-
sponding distance matrix and bound to denote the matrix for
the boundary graph. The structure of matrix A is shown in
Figure 1(a). In the following, A(i, j) denotes a sub-matrix
of A, where values are distances from component Ci to Cj .
Similarly, bound(i, j) denotes sub-matrix of bound, where
the values are the distances from boundary nodes of Ci to
boundary nodes of Cj . For step 2, we perform the blocked
version of the Floyd-Warshall algorithm on each diagonal
block A(i, i). Then, we update the values in matrix bound,
i.e. which is to add virtual edges to the boundary graph and
apply the blocked version of the Floyd-Warshall algorithm
on it to get dist3. Before we compute dist4, we need to

Fig. 1: Out-of-Core Version of the Boundary Algorithm. (a)
Shows the Data Structure (the Graphs are Partitioned into
Four Components and Each Component Resides in a Diagonal
Block). Within Each Block, It Starts with Boundary Nodes,
which is Shown in Red Color. (b) Shows the Successive Matrix
Multiplications for Computation of Non-Diagonal Block A(i,j)

extract certain matrices as shown in lines 6-11. Here, sub-
matrix C2B[i] denotes distances from all nodes of Ci to
boundary nodes within the diagonal blocks, which is also the
right-bottom red matrix in Figure 1 (b). Similarly, sub-matrix
B2C[i] denotes the shortest distances from boundary nodes
of Ci to any vertex within the diagonal blocks, which is the
left-upper red matrix in Figure 1 (b). According to Equation 1,
A(i, j) = C2B[i] × bound[i][j] × B2C[i]. We perform these
two successive multiplications as shown in lines 16-17 and
transfer the results back after we process each block.

Here, we use the blocked version of the Floyd-Warshall
algorithm described in the previous section to compute dist2
and dist3. This choice is made because first, in our setup,
the component sizes are small, specifically, the component
size is usually set as around

√
n, which is several hundreds,

and second, for graphs with a small separator, the number of
boundary nodes is also small, around

√
kn. For these small

graphs, the time complexity is less important and the blocked
version of the Floyd-Warshall algorithm is more suitable than
Johnson’s algorithm.

As shown in Algorithm 3, the data transfers from the GPU
to the CPU are within a nested loop as shown in line 18. In
total, there are k2 data transfers. The value of k is around
several hundreds in our experiments. Further, the component
sizes are typically small. As a result, it leads to a large number
of small data transfers, causing high overheads (which turn out
to be between 69.96% to 83.90% of the total execution time in
our experiments). To minimize the overhead of data transfers,
we first calculate the maximal buffer size allowed and allocate
a buffer with that size. Here, we assume that total memory size
is L, and the memory allocated for diagonal blocks is Sdia,
the memory allocated for the boundary matrix is Sbound. Then,
the remaining data size is

Srem = L− Sdia − Sbound.

Suppose the maximal number of vertices in each component
is Nmax, the data sizes of each distance value is W . Then, we
accumulate Nrow iterations to finish one data transfer, where

Nrow =
Srem

Nmax × n×W
.



Next, we transfer the results of Nrow iterations back to the
CPU until it gets filled. We further improve the performance
by overlapping the computations with the data transfers. We
create two streams and two buffers on the device. When we
finish the computations for one buffer using the first stream
and store the results on GPUs, we can start transferring the
data from the first buffer to the CPU’s pinned memory and
start computations of the next buffer using the second stream.
We use the streams and buffers alternatively to complete the
overall procedure.

IV. PERFORMANCE CHARACTERISTICS AND ALGORITHM
SELECTION

This section focuses on characterizing different algorithms
and developing a methodology to select the best approach for
a given matrix.

A. Summary of Different Implementations
We summarize the key differences between the three al-

gorithms in Table I. The complexity of data movement for
both Johnson’s algorithm and the boundary algorithm is O(n2),
while the data movement complexity of the Floyd-Warshall
algorithm is O(nd×n2) since it needs nd passes. It should be
recalled that n is the number of vertices and nd is the number
of blocks a matrix is partitioned into along each dimension.

As for computation complexity, the blocked version of the
Floyd-Warshall algorithm incurs a complexity of (n3). Thus,
it is only suitable for graphs with a large density. For sparse
graphs, the computation complexity of Johnson’s algorithm
keeps as low as O(mnlog(n))1. The computation complexity
of the boundary algorithm is more complex – it is O(n2) if
the input graph has a small separator but is close to O(n3)
otherwise. Thus, for sparse graphs with a small separator,
the boundary algorithm delivers a better performance since
its data accesses and computation patterns are more regular
(dense matrix multiplication), while for other sparse graphs,
Johnson’s algorithm outperforms the boundary algorithm.

B. Detailed Cost Models
The execution cost of out-of-core implementations is a

combination of data transfer costs and computational costs.
In this section, we first model data transfer costs and then
introduce the cost models of computations.

1) Modeling Cost of Data Transfers: Many previous works
[1], [4], [7] proposed cost models of data transfers. Based on
these works, we establish data transfers models in our case as
follows.

For the Floyd-Warshall algorithm, assuming that the number
of vertices in each block is b, the number of blocks in each
dimension is nd, each distance value occupies W bytes, and
the throughput of the data transfer is TH bytes per second,
then the cost of data transfer Ttr would be:

Ttr =
nd ×W × (b2 + 2b2 + n2

db
2)

TH
.

Since n = nd × b,

Ttr =
nd ×W × (3b2 + n2)

TH
.

1It assumes that the complexity of our Near-Far implementation is close to
the complexity of Dijkstra’s algorithm.

For the Johnson’s algorithm, assuming that the batch size is
bat, the number of batches is nb.

Ttr =
nb ×W × bat× n

TH
.

Since n = nb × bat,

Ttr =
W × n2

TH
.

For the boundary algorithm, the major overhead of transfers
are from the step 4. As shown in the previous section, in each
data transfer, we accumulate Nrow iterations. The size for each
data transfer would be Srem, and there are k

Nrow
such transfers.

Thus, total transfer cost is:

Ttr =
k

Nrow
× Srem

TH
.

2) Cost Models for Computations: The Blocked Version of
the Floyd-Warshall Algorithm: Because the computation and
memory access patterns for different graphs are same under the
Floyd-Warshall algorithm, the costs per operations are similar.
Thus, we assume that the cost of computations is linear to the
number of floating-point operations (and memory accesses).
According to Algorithm 1, the number of computations and
memory transactions are both O(n3). For a randomly generated
graph with n0 vertices, we can observe the computation time
(and denote it by T0). Then, for any given graph with n
vertices, we estimate the cost of computation to be:

Tcomp = T0 × (
n

n0
)
3

.
Johnson’s Algorithm: For Johnson’s algorithm, we observe
that the execution times of different batches are similar.
To demonstrate this, we compute the standard deviations of
execution times of each batch for several graphs, and found
that it ranges between 1.67% and 13.4% of the mean execution
time. Thus, to estimate the execution time of a graph, we
randomly choose k batches 2 to run and obtain the execution
time as T . Assuming that the number of batches is nb, the
cost of computation would be

Tcomp =
nb

k
× T.

The Boundary Algorithm: For the boundary algorithm, we
establish two expressions depending on whether or note the
graph has a small separator size. Intuitively, the separator size
denotes the number of boundary nodes after partitioning. As
the number of boundary nodes depends on the number of
components (k), we consider the case when the value of k
is
√
n, which is when the costs are minimized. For an “ideal

graph”, which is also called a planar graph, the total number
of boundary node will be

√
kn. If the number of boundary

nodes for a graph is close to this value, we claim that the
graph has a small separator.

Now, if a graph has a small separator, when the number of
components, k is

√
n, the number of memory operations and

the floating-point operations are minimized, and specifically
both are O(n

9
4 ). Readers can refer to previous work [13]

for details of the derivation of this complexity. For our

2In our experiments we set k to be 5 as that achieved sufficient accuracy.



TABLE I: Comparisons of Different Implementations. Here, n Denotes the Number of Vertices, m Denotes the Number of
Edges, nd Denotes the Number of Blocks in Each Dimension in the Blocked Version of Floyd-Warshall Algorithm.

Algorithm Floyd-Warshall Johnson’s Boundary
Computation Complexity O(n3) O(mnlog(n))) O(n2) − O(n3)
Data access and control flow patterns Regular Irregular Regular
Data movement complexity O(nd × n2) O(n2) O(n2)
Target Graphs Dense Graphs Sparse Scale-free Graphs Graphs with a Small Separator

work, we have empirically shown that the cost per memory
operation and floating-point operation stays similar for these
graphs. In this case, the cost of computations would be linear
to the number of memory operations and the floating-point
operations. Specifically, we first run the boundary algorithm
for a graph with a small separator. Suppose that the number of
vertices and the computation time are n0 and T0, respectively,
then, for a graph with n vertices, the cost of computations is:

Tcomp = T0(
n

n0
)

9
4
.

However, if a graph does not have a small separator,
the number of boundary nodes cannot be estimated and the
number of operations will simply not be O(n

9
4 ). Suppose that

the average number of boundary nodes in each partition is B.
Then, the number of operations during the second, third, and
fourth steps are: n3/k2, (kB)3, and nkB2+n2B, respectively.
In this way, we get the total number of operations (Nop) as:

Nop =
n3

k2
+ (kB)3 + nkB2 + n2B.

Further, for graphs with a large separator, we observed that
the time per operation is no longer similar for different graphs.
Instead, this cost (cunit) increases when graphs become more
irregular. We concluded that cunit depends on the total number
of boundary nodes, which is denoted as NB in this work. In
the ideal planar graph, NB =

√
kn = n

3
4 . Thus, we classify

NB into different ranges like [n
3
4 , 2×n

3
4 ), [2×n

3
4 , 4×n

3
4 ]

and so on. We assume that cunit is the same for graphs within a
range. For each range, we first calculate cunit of graphs of the
range using a set of training graphs. Then, for a given graph,
we get the value of cunit based on its range and calculate the
computation cost as:

Tcomp = Nop × cunit.

C. Filtering Based on Density
According to our discussions in Section III, a key perfor-

mance indicator for different implementations is the density
of the graph. While it may not alone suffice as a method to
choose the optimal implementation, it can be used to filter
out inefficient implementations in most cases. This approach
can at least help us reduce the overheads associated with
detailed performance modeling. In this work, we define density
as density = m

n2 , where m is the number of edges and n
is the number of vertices. Now, based on our experimental
observations, we use the following rules. First, when the
density of a graph exceeds 1%, we choose between Johnson’s
algorithm and the blocked version of the Floyd-Warshall
algorithm, as the boundary algorithm is likely to have a large
number of boundary nodes and thus will be inefficient. Second,

TABLE II: Specifications of Nvidia Tesla V100 and Nvidia
Tesla K80

GPUs Tesla K80 Tesla V100
Architecture Kepler Volta
#SM 13 80
maximal launch 26 160
FP32 CUDA Cores/GPU 2496 5120
Memory Interface 384-bit GDDR5 4096-bit HBM2
Max Registers / Thread 255 255
Shared Memory Size / SM (KB) 112KB Configurable up to 96 KB
Memory Size 12 GB 16 GB

when the density is smaller than 0.01%, we choose between
Johnson’s algorithm and the boundary algorithm, as the cost of
the Floyd-Warshall algorithm is too high in such cases. Third,
in other cases, i.e, when the density is between 0.01% and
1%, we always select Johnson’s algorithm.

V. EVALUATION AND PERFORMANCE STUDY

We evaluate our implementations with the following goals:
1) to demonstrate that out-of-core GPU implementations are an
attractive approach for working with large graphs, by compar-
ing these implementations against a state-of-the-art multi-core
CPU implementation, 2) to show that our implementations can
continue to scale even when the output does not fit into CPU
memory, 3) to understand trade-offs between algorithms and
how their relative performance matches what our performance
model can predict, and 4) to evaluate benefits from optimiza-
tions implemented. We also compare the performance of our
implementations with the results reported from several other
implementations in a recent publication [31] (where a different
but faster multi-core machine was used). It should be noted
that there is no other GPU implementation of APSP that can
work with graph sizes we are handling.

A. Experimental Environment
We conducted our experiments on an Nvidia Tesla V100

and an Nvidia Tesla K80. The specifications of these two
GPUs are shown in Table II. For most experiments, only
the results from Nvidia Tesla V100 are reported due to
space limitations. However, Figure 7 and Table V show the
generality of the work by using the results of an Nvidia Tesla
K80. The GPUs are attached to an Intel(R) Xeon(R) CPU
E5-2680 (2013 Ivy Bridge) running at 2.4 GHz. The CPU
contains 14 physical cores and provides hyper-threading with
2 threads for each core. The size of the host memory is
128GB in our experiments. The host operating system for our
experiments is CentOS Linux release 7.4.1708 (Core). Our
GPU implementations are based on CUDA 10.1 toolkit and
NVCC V10.1.168 is used to compile our programs.

B. Input Graphs
We select 29 graphs from the SuiteSparse Matrix Collec-

tion [12] for detailed study and analysis. Our experiments



TABLE III: Features of Input Graphs where the Output Fits into CPU Memory

matrix name small separator? n (K) m (K)
√
kn #boundary nodes density (%)

pkustk14 No 152 14,988 7,695 136,798 0.0649
SiO2 No 155 11,439 7,824 155,319 0.0474
bmwcra_1 No 149 10,793 7,575 117,156 0.0488
gearbox No 154 9,234 7,764 88,741 0.0391
oilphan No 74 3,671 4,475 42,686 0.0675
net4-1 No 88 2,530 5,124 57,315 0.0324
fe_tooth No 78 905 4,673 37,186 0.0148
onera_dual No 86 505 5,003 31,067 0.0069
usroads-48 Yes 126 324 6,694 8,790 0.0020
usroads Yes 129 331 6,813 8,758 0.0020
luxembourg_osm Yes 115 239 6,229 2,543 0.0018
wy2010 Yes 86 428 5,031 12,665 0.0058
nm2010 Yes 169 831 8,321 20,498 0.0029
me2010 Yes 70 335 4,281 10,668 0.0069
md2010 Yes 145 700 7,440 17,057 0.0033
id2010 Yes 150 728 7,616 19,040 0.0032
nd2010 Yes 134 626 6,995 18,262 0.0035
nj2010 Yes 170 830 8,357 20,188 0.0029
wv2010 Yes 135 663 7,051 17,734 0.0036

TABLE IV: Features of Input Graphs where Output does not
Fit into the CPU’s Memory

matrix n (K) m (K) density (%)
af_shell1 505 18,094 0.0071
cage13 445 7,479 0.0038
kim2 457 11,330 0.0054
Lin 256 2,022 0.0031
pwtk 218 11,852 0.0250
Stanford 282 2,312 0.0029
stomach 213 3,022 0.0066
troll 213 12,199 0.0268
boyd2 466 1,780 0.0008
CO 221 7,887 0.0161

use int as the data type for distance value, which allowed
the use of atomicMin operations for the out-of-core version
of Johnson’s algorithm. We verified that the output distance
matrices of any of these graphs cannot fit into NVIDIA Tesla
V100 GPU’s device memory. The first 19 graphs’ output fits in
the CPU main memory, while the last 10 graphs’ output does
not. Table III shows the main features of the graphs where the
output can fit into CPU memory. The number of vertices of
these graphs is in the range 69,518 - 1695,88. Here, we classify
graphs into two kinds based on the number of boundary nodes
after partitioning graphs using a k-way partitioning method
from the METIS library [19]. We show the number of the
boundary nodes in the table – as this value depends on the
number of components (k), we obtain this value with k to be√
n , where n is the number of vertices. If the actual number

of boundary nodes is close to the value of
√
kn, it is a graph

with a small separator. In this work, we classify 11 graphs
as graphs with a small separator, as shown in the table. We
also show the densities of these graphs in the last column. As
expected, graphs with a small separator are much sparser than
other sparse graphs. TableIV shows the features of 10 large
graphs where the output can not fit into CPU memory. Finally,
some of our experiments use synthetic matrices generated by
the R-MAT generator [8]

C. Comparison with Multi-Core CPU Implementations

We first compare the performance of our out-of-core GPU
implementations with multi-core implementations. In our ex-
periments, the data transfer times between GPU and CPU
are included. The baseline we execute and perform most
comparisons with is what we refer to as the BGL-Plus im-
plementation. This implementation uses OpenMP to parallelize
among different SSSP instances, which are themselves using
Dijkstra’s algorithm implementation from the popular Boost
Graph Library (BGL) [33]. Figure 2 compares the execution
times of BGL-plus with our out-of-core GPU implementation
for graphs with a small separator. In this case, our out-of-core
implementation chooses the boundary algorithm. As shown in
the figure, our out-of-core implementation achieves speedups
in the range 8.22-12.40x. Figure 3 shows the comparison
results for other sparse graphs we had listed earlier in Table III.
In this experiment, our out-of-core implementation is the one
based on Johnson’s algorithm. We note that the speedups are
in the range of 2.23-2.79x, which again shows that out-of-
core GPU implementations are effective. These speedups are
relatively lower because with the Johnson’s method, as the
number of edges increases, the batch size gets smaller (with
output limitations). This, in turn, implies that there is less work
to be parallelized within the GPU.

Two other candidates for comparison include a recent im-
plementation of the Floyd-Warshall algorithm [31] and the
implementation from the Galois Graph library [28] (which
uses the parallel delta-stepping variant of Dijkstra’s algorithm).
We denote them as SuperFW and Galois implementations,
respectively. Since we either did not have the codes or could
not execute these, we simply examine the reported execution
times for the same graphs in the 2020 publication [31]. Their
experiments are performed in a shared memory system that
contains 32 cores as a dual-socket 16-core Intel E5-2698
v3 “Haswell” processors. Since each core can support two
hyperthreads, they use 64 threads in total. This is overall
a more powerful system than the one where our multi-core
executions took place. The comparison results are shown in
Figure 4. As can be seen from the table, our out-of-core
implementation is more efficient with speedups are in the



Fig. 2: Comparing the Performance of our Out-of-Core Implementation of the Boundary Algorithm with BGL-Plus Multi-Core
Implementation for Graphs with a Small Separator

Fig. 3: Comparing Performance of our Out-of-Core Johnson’s
GPU Implementation with BGL-Plus Multi-Core Implemen-
tation for Other Sparse Graphs

Fig. 4: Execution Times of Our Out-of-Core Implementation,
BGL-Plus, SuperFW Implementation, and Galois Implemen-
tation (some of the results as reported by Sao et al.[31])

range 4.70-69.21 over SuperFW and 79.93-152.62 over Galois
for all graphs except net4-1.

D. Performance on Large Matrices

In this subsection, we demonstrate that our implementation
is still efficient when the graphs are large and their output
cannot fit into the CPU’s main memory. To achieve this,
we first showed the execution times of the larger graphs
previously summarized in Table IV. Figure 5 summarizes these
results. While none of the other implementations previously
considered could process these graphs, our implementation
could.

The performance of our implementations is impacted by
a large number of factors, including the distribution of in-
degree of vertices. Thus, to better understand the performance
implications of working with very large graphs, we performed
experiments with graphs generated using the R-MAT genera-
tor [8]. The distribution of in-degrees does not change as the

Fig. 5: Execution Times of Out-of-Core Implementation on
Large Matrices (from Table IV)
TABLE V: Computational Efficiency as Graph Sizes are
Scaled (Synthetic Graphs from the R-MAT)

n m (n*m)/s execution time on V100 (s) execution time on K80 (s)
20000 128000 1.03E+10 0.249444 2.13395
40000 256000 8.67E+09 1.18131 8.15059
80000 512000 7.33E+09 5.58834 34.3958
160000 1024000 6.40E+09 25.6043 146.029
320000 2048000 6.14E+09 106.821 605.126
20000 256000 1.04E+10 0.493702 3.86824
40000 512000 7.77E+09 2.63682 17.6307
80000 1024000 6.84E+09 11.9776 69.4629
160000 2048000 5.05E+09 64.9454 301.055
320000 4096000 3.10E+09 423.322 1506.42
20000 512000 1.08E+10 0.944806 6.50237
40000 1024000 5.37E+09 7.62732 29.4108
80000 2048000 3.85E+09 42.5313 132.674
160000 4096000 3.26E+09 201.193 633.463
320000 8192000 2.09E+09 1255.77 3459.07

graph size is varied. The graphs, as summarized in Table V,
range from those where the output fits into GPU memory (up
to 40,000 nodes) and where the output does not even fit into
CPU memory (320,000 nodes). The execution times of these
matrices on both Nvidia V100 and Nvidia K80 are also shown
in the table. For these graphs, the optimal implementation
is always Johnson’s algorithm. As shown in section III, the
computational workload of Johnson’s algorithm is O(n×m).
Thus, we use n × m/s (s is the time in seconds) to denote
the computational efficiency of our implementation. As can be
seen from the table, the values of n×m/s are relatively stable
when we increase the number of edges for these graphs. This
shows that data movement costs do not dominate the overall
performance as sizes are increased.

E. Comparison between Different Implementations and the
Effectiveness of Our Selector

To examine the relative performance of different implemen-
tations and the effectiveness of our performance prediction
methodology, we experimented with all graphs from SuiteS-



Fig. 6: Estimated and Actual Execution Times of the Boundary Algorithm and Johnson’s Algorithm for Graphs with a Small
Separator on Nvidia V100

Fig. 7: Estimated and Actual Execution Times of the Boundary Algorithm and Johnson’s Algorithm for Graphs with a Small
Separator on Nvidia K80

Fig. 8: Benefits from Optimizations in Out-of-Core Boundary Algorithm



TABLE VI: Selection between Johnson’s Algorithm and the
Blocked Version of the Floyd-Warshall (FW) Algorithm (all
times in seconds)

setups n m FW estimated FW Johnson’s estimated Johnson’s
setup1 80,000 51,200,000 7,245.81 9,521.67 4,224.15 4,889.07
setup1 80,000 102,400,000 7,280.00 9,521.67 21,646.46 24,186
setup1 80,000 204,800,000 7,510.16 9,521.67 46,318.53 57,112.9
setup2 80,000 51,200,000 7,301.32 9,521.67 2,624.38 3,480.62
setup2 80,000 102,400,000 7,842.77 9,521.67 16,702.08 19,930.9
setup2 80,000 204,800,000 8,104.72 9,521.67 64,683.64 72,239.9
setup3 80,000 51,200,000 7,364.78 9,521.67 4,836.88 6,677.07
setup3 80,000 102,400,000 7,519.44 9,521.67 24,363.89 29,567.8
setup3 80,000 204,800,000 7,316.42 9,521.67 64,624.34 84,808.8

parse matrix collection, in which the number of vertices is in
the range [80, 000, 100, 000]. We first verified the effectiveness
of the filtering method for graphs whose densities are between
between 0.01% and 1%. For other graphs, we select the
optimal implementation based on the cost models.

In our experiments, the estimated overheads of data transfers
are also included. To get the throughput of data transfers on
GPUs, we use nvprof to measure the execution time of a test
program, which transfers 1M integers from the device to the
host. Based on our experiments, the data transfer throughput
on Nvidia K80 and Nvidia V100 are 7.23GB/s and 11.75 GB/s,
respectively.
Selection between Johnson’s Algorithm and the Boundary
Algorithm: For the graphs where the densities are smaller than
0.01%, we consider Johnson’s algorithm and the boundary
algorithm as the Floyd-Warshall algorithm is not competitive.
For this experiment, we randomly select 5 batches to run and
estimate the overall computation time of Johnson’s algorithm.
For the boundary algorithm, we use different cost models for
different kinds of graphs as mentioned in Section IV.

For graphs with a small separator, we show results on Nvidia
V100 and Nvidia K80 in Figure 6 and Figure 7, respectively.
As can be seen from the figures, our cost model can quite
accurately predict the real execution times and is always able
to choose the correct implementation different graphs.
Selection between Johnson’s Algorithm and the Blocked Ver-
sion of the Floyd-Warshall Algorithm: As also stated in
Section IV-C, when graph density is greater than 1%, the
two competitive algorithms are Johnson’s algorithm and the
blocked version of the Floyd-Warshall (FW) algorithm. Un-
fortunately, these density levels are uncommon in real graphs.
Thus, we carried out an evaluation using synthetic scale-free
graphs, which are generated using the R-MAT generator. To
estimate the execution times of the blocked version of the
Floyd-Warshall algorithm, we first get the execution time of
a graph with 70000 vertices. In this experiment, we fix the
number of vertices to be 80000 and double the number of
edges each time. As indicated in Table VI, the execution
times of the blocked version of the Floyd-Warshall algorithm
depend on the number of vertices, while the execution times of
Johnson’s algorithm increase with the number of edges when
the number of vertices is fixed. More importantly, our selector
can always select the optimal implementation.

F. Effectiveness of Optimizations
For the boundary algorithm implementation, we performed

experiments for graphs with a small separator because the
boundary algorithm is more efficient for this kind of graphs.
We set the number of components to be

√
n/4 since we

found it achieves the best performance in most cases. The
comparison results are shown in Figure 8. We observe that
it achieves speedups of 1.988-5.706 with batching because it
improves the data transfer efficiency. At the same time, over-
lapping data transfers with computations achieves performance
improvement in the range of 12.7%-29.1%.

VI. RELATED WORK

In this section, we first briefly introduce research efforts
on out-of-core implementation for graph algorithms. Then, we
introduce existing work on GPU acceleration of APSP. Finally,
we discuss major research works on SSSP optimizations on
GPU.

Most research efforts on out-of-core implementation are
based on the assumption that the input graph is too large to
fit in GPU device memory. Typically, the input graph is first
partitioned into smaller chunks, then explicitly loaded to the
GPU memory in each iteration of the graph processing. The
major challenge of this approach is that the overhead of data
transfer is typically much larger than the computation costs.
To reduce the data transfer overhead, Sengupta et al. [32]
proposed to detect and skip inactive partitions. Han et al. [15]
further improve the approach, with an adoption of X-Stream
style graph processing and a couple of renaming techniques
to reduce the cost of explicit GPU memory management.
Recently, Sabet et al. [30] proposed efficient GPU-accelerated
subgraph generation techniques to further reduce the data
transfer overhead. Besides, they adopt asynchronous execution
to reduce the needs for subgraph generations and reloading.

In the area of GPU acceleration of APSP, the initial work
by Harish and Narayanan [16] proposed implementations of
both the Dijkstra and Floyd-Warshall algorithms and compared
them to parallel CPU implementations. They reported that
execution times are long for both approaches. Based on earlier
work by Gayathri et al. [35] on the blocked Floyd-Warshall
algorithm, a GPU implementation of blocked Floyd-Warshall
algorithm was presented [20] that exploited shared memory.
All of this work only considered small graphs and cannot
handle graphs of the sizes we have considered.

Many GPU implementations of APSP are based on the
Bellman-Ford algorithm [5], [6], [16], [34]. An important issue
with these efforts is that processing of vertices in arbitrary
order leads to redundant work. An ideal implementation should
provide high degree of parallelism like the Bellman-Ford’s
and the work efficiently like Dijkstra’s algorithms. Meyer et
al. [24] proposed delta-stepping algorithm to explore the space
between these two endpoints. However, since the overhead
of organization in the delta-stepping algorithm is expensive,
many efforts [36], [11], [37], [3] utilized the Near-Far algo-
rithm, which simplifies the delta-stepping algorithm.

VII. CONCLUSIONS

All Pair Shortest Path (APSP) is a classical graph problem
that offers many challenges in developing an out-of-core
version. On one hand, the size of the output can be orders
of magnitude larger than the size of the input. At the same
time, existing algorithms involve complex trade-offs and the
execution can be compute-bound or I/O-bound depending
upon the graph involved. This paper has thoroughly explored
the design space for such out-of-core versions. We start with
three algorithms developed in the past for other contexts,



and created novel out-of-core implementations, carrying out
several optimizations in the process. Next, we focused on the
problem of choosing the best approach for a given graph,
and developed a combination of simple heuristics (based on
density) and detailed cost models. Our evaluation shows that
for graphs with a small separator, the boundary algorithm
usually achieves the best performance because of regular
memory accesses and computation pattern. For other sparse
graphs, the maximal number of components allowed in the
boundary algorithm is small and thus Johnson’s algorithm
achieves better performance. However, as density of the graphs
increase, the workload of Johnson’s algorithm increases, and
when graphs are sufficiently dense, the blocked version of the
Floyd-Warshall algorithm delivers the best performance. Our
evaluation also shows that our out-of-core implementations
outperform an efficient implementation of multi-core imple-
mentation, i.e, it achieves speedups ranging from 8.22 to 12.40
for graphs with a small separator, and speedups ranging from
2.23 to 2.79 for other sparse graphs. We also show significant
performance improvements from our optimizations.
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