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HIGH-ORDER CLOSE EVALUATION OF LAPLACE LAYER
POTENTIALS: A DIFFERENTIAL GEOMETRIC APPROACH*
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Abstract. This paper presents a new approach for solving the close evaluation problem in
three dimensions, commonly encountered while solving linear elliptic partial differential equations
via potential theory. The goal is to evaluate layer potentials close to the boundary over which they
are defined. The approach introduced here converts these nearly singular integrals on a patch of the
boundary to a set of nonsingular line integrals on the patch boundary using the Stokes theorem on
manifolds. A function approximation scheme based on harmonic polynomials is designed to express
the integrand in a form that is suitable for applying the Stokes theorem. As long as the data—the
boundary and the density function—is given in a high-order format, the double-layer potential and
its derivatives can be evaluated with high-order accuracy using this scheme both on and off the
boundary. In particular, we present numerical results demonstrating seventh-order convergence on
a smooth, warped torus example achieving 10-digit accuracy in evaluating double-layer potential at
targets that are arbitrarily close to the boundary.
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1. Introduction. In this paper, we describe a high-order accurate numerical
algorithm for evaluating the double-layer potential (DLP) for Laplace equation given
by

1) Pyl = [ 24 =)

anr /’[‘(r) dST?

where G(r' — r) = 1/4x|r’ — r| is Green’s function for the Laplace equation, p(r)
is a density function, M is a closed two-dimensional manifold in R3, and n,. is its
normal. Layer potentials such as the DLP satisfy the underlying partial differential
equation (PDE) by construction and are often employed in the mathematical analysis
and numerical solution of PDEs [16]. Fast and accurate numerical schemes for (1) are
fundamentally important owing to the ubiquity of the Laplace equation in sciences
and engineering. Moreover, they serve as templates for other linear elliptic PDE
solvers via potential theory.

In practical applications, one needs to evaluate (1) both on and off the surface
M. If the target r’ is located far off the surface, a smooth quadrature rule designed
for the given surface representation can be applied efficiently. However, the integrand
in (1) becomes weakly singular for on-surface targets and nearly singular for targets
located close to the surface. In both cases, specialized quadrature rules are necessary
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to achieve the desired order of accuracy. While the subject of developing high-order
rules for weakly singular integrals is a classical one, nearly singular integration is an
active area of research. For two-dimensional problems (where M is a curve on the
plane), significant progress has been made on accurate evaluation schemes for nearly
singular integrals; some recent works include [20, 7, 21, 1, 32] (also see references
therein). In contrast, a fewer number of works exists for high-order close evaluation
in the case of three-dimensional problems, owing to the complexity of handling a
stronger kernel singularity over high-order surface meshes.

Synopsis of the new approach. Consider a subdomain D C M. A surface integral
on D can be converted into a line integral on 0D using the Stokes theorem on manifolds
as long as the integrand is an exact form [23]. Clearly, this condition is not necessarily
satisfied in the case of DLP (1) for an arbitrary pu. The main idea here is that we
can construct basis functions for approximating g in D, which when multiplied by
the kernel in (1) are exact forms. Thereby, when the target ' is close to D, we
can apply this procedure to convert a nearly singular surface integral on D to a
nonsingular line integral on 9D (assuming 7’ is not close to dD). In this paper, we
construct such basis functions using harmonic polynomials and quaternion algebra.
The scheme is relatively insensitive to the underlying high-order surface discretization.
Once the density function is expressed in our basis on D (e.g., via collocation), the
layer potential evaluation is carried out in a similar fashion as a product integration
scheme, with the caveat that some smooth line integrals on 9D need to computed
numerically in addition.

Related work. Here, we restrict our discussion to closely related recent works;
a more extensive literature survey on singular and near-singular integration schemes
can be found in [11, 19, 18]. In the first class of methods, the issue of close evaluation
is overcome by exploiting the smoothness of DLP away from M. In the quadrature-
by-expansion (QBX) scheme, originally proposed in [3, 14], the DLP is approximated
at centers away from M using high-order local expansions, which are valid at points
closer to or on M. Extension of QBX to three-dimensional problems was recently
explored in [22, 29, 30]. A related algorithm is the hedgehog scheme of [18], which
in turn is an extension of the earlier work by Ying, Biros, and Zorin [34]. Similar to
QBX, hedgehog exploits the smoothness of (1) away from the boundary and evaluates
it at carefully chosen “check” points along a line passing through the target located
close to M and extrapolates the solution to the target.

Another popular class of methods are those based on singularity subtraction,
wherein, the kernel in (1) is split into a singular part and a smooth part, with the
action of the former treated analytically. While low-order variants are often used in
practice for three-dimensional problems, high-order extension was presented in [12]
for toroidal geometries. Recently, an alternative strategy, termed as harmonic density
interpolation (HDI), is presented in [19] which focuses on the density instead of the
kernel. It regularizes the kernel singularities by splitting the density into two parts:
one whose convolution with the kernel can be treated analytically and the other whose
derivatives vanish to prescribed order as the target ' approaches the source r. Lastly,
regularized kernel methods for three-dimensional close evaluation were also developed
recently in [6, 25]; high-order accuracy is achieved by introducing correction terms to
control the regularization error.

Our approach shares many of the desirable features of QBX and hedgehog schemes
including, prominently, the ease of integration with fast algorithms such as the fast
multipole method [10] since it does not modify the kernel and affects the local part
evaluation only. On the other hand, the fact that all the computational variables

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/23/22 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

)

1 - 11

Fi1G. 1. One of the key advantages of the close evaluation scheme developed in this paper is its
ease of handling arbitrary meshes. Here, we demonstrate its performance on the Stanford bunny
triangulation data [27]. We used the interactive sketch-based quadrangulation method of [24] to
create high-quality quad remeshings locally as shown on the top of the bunny. We evaluate the DLP
at targets that are located arbitrarily close to the surface as shown on top in blue color. The surface
is colored by the density function p, which was set as p(x,y,z) = e*¥ — 1 + x + sin(z? 4+ 1/2y3) +
y — 1/2y? + 1/5y% + 2. Middle and right: Given this setup, we demonstrate the performance of
the new scheme by considering one of the quads, successively refining it twofold and visualizing the
errors due to direct evaluation of DLP via the high-order smooth quadrature rule (left half) and the
new close evaluation scheme (right half). We note that, while the errors stagnate in a band close to
the surface in the case of smooth quadrature, the new scheme achieves uniform accuracy up to 10
digits. This is a self-convergence test compared with a reference solution obtained on an 8 X 8 panel
refinement of the quad. More details on this experiment are provided in section 5.

stay on the manifold M in our scheme offers further advantages such as avoiding the
need for optimizing auxiliary parameters like local expansion centers or check points,
which may be challenging in situations such as nearly self-touching geometries. Al-
though both HDI and our scheme employ harmonic polynomials for approximating
the density function, their usage is fundamentally different in both schemes. In [19],
harmonic polynomial approximations are sought which cancel the kernel singularity to
high-order as ' — 7; it is unclear if such approximations can be constructed to arbi-
trarily high-order in three-dimensions ([19] demonstrates third-order convergence). In
contrast, our scheme only requires smoothness of the density. Lastly, a key advantage
of our approach is that high-order convergence is guaranteed as long as the boundary
mesh and the density function are specified in a high-order format (an example is
shown in Figure 1).

In our view, our work is most closely related to the work of Helsing and Ojala
[13], which developed a panel-based close evaluation scheme in two dimensions by
approximating the density using monomial basis and evaluating their product with
the nearly singular kernels via recurrences. This approach has been shown to offer a
rapid and accurate solution of several elliptic problems [13, 5, 32]. The quaternionic
harmonic polynomial approximation scheme of the density, introduced in this work,
can be viewed as a three-dimensional analogue of their complex monomial approx-
imation scheme. Similarly, we also employ recurrences to evaluate the product of
nearly singular kernels and polynomial basis functions. We note that the differential
geometry framework presented here is applicable both for two- and three-dimensional
problems and, thereby, is a unifying approach.

Limitations. In this work, we restrict our attention to the Laplace layer poten-
tials only. While our close evaluation scheme can be extended to other linear elliptic
PDE kernels, it is by no means trivial: the density approximation scheme needs to be
tailored for each individual kernel. We note, however, that there are alternative ap-
proaches to directly apply our scheme to other PDE problems—e.g., Stokes potentials
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can be expressed as a linear combination of Laplace potentials and their derivatives
[26]. Lastly, the method described in this paper cannot be applied directly to globally
parameterized surfaces (e.g., spherical harmonic representations). One remedy is to
maintain an auxiliary adaptive surface mesh just for the purposes of close evaluation.

The remainder of this paper is organized as follows. In section 2, we review some
preliminaries on exterior calculus and describe the three-dimensional close evaluation
problem using the language of exterior calculus. In section 3, the key ideas of the
product integration scheme are outlined, followed by a presentation of our quaternionic
approximation. Then in section 4, we present the overall implementation of our close
evaluation scheme. We demonstrate the performance of our algorithm on a variety of
examples in section 5, followed by conclusions and discussion on future directions in
section 6.

2. Mathematical preliminaries. The use of exterior calculus greatly simplifies
the presentation of our numerical algorithms even though, strictly speaking, it is not
required for their development. In this section, we review some basic concepts but refer
the reader to [2, 23] (or other standard textbooks) for a more thorough introduction
to this subject.

2.1. Exterior algebra. If V is a vector space over R, we will denote by Alt*(V)
the space of alternating k-linear maps V' x ... x V. — R. We refer to such maps as
alternating algebraic k-forms. A k-linear map w € Alt*(V) is called alternating if

(2) WV, ., Uiy, Uy, 0, V) = —W(V1, .0, U, .o, U4y, V).
Thus, an algebraic k-form on V assigns to a k-tuple (vq,...,vy) of elements of V
a real number w(v1,. .., vy), with the mapping linear in each argument, and reversing

sign when any two arguments are interchanged.

Given w € Alt*(V) and n € Alt'(V), the simple tensor product of w and 7 is
usually not an alternating algebraic (k 4 [)-form. We instead employ the exterior
product or wedge product w A1 € AltF*T!, defined by

(WA (v1y..., V1)

(3) = Z sgn(0)w(Vo(1)s -+ Vo(k) )MV (kt1)s - - > Vo(kat))s Vi €V,
oc€Shy,;

where Shy,; is the subset of (k,!) permutations of the set {1,2,...,k + [} such that
each element o € Shy,; satisfies 0(1) < 0(2) < ... <o(k)and o(k +1) < o(k+2) <
...<...<o(k+1). The exterior product is both bilinear and associative.

Throughout this paper, V' will be R, and k will be 1 or 2. In R3, the canonical
basis e;, €2, and e3 gives rise to a natural dual basis of Alt!(R?), the space of covectors.
This dual basis will often be denoted by dz, dy, and dz. These basis elements are linear
maps (not to be confused with infinitely small change in the variable). For example,
dx(v) = ey - v = v1. The wedge product is also an operation connecting the various
AltF(V) spaces. For example, the basis for Alt?(R®) can be written using wedge
products of Alt!(R3) basis elements as dx A dy,dy A dz, and dz A dx.

2.2. Exterior calculus on manifolds. At each point r of a sufficiently smooth
manifold M of dimension n, the tangent space T, M is a vector space of dimension
n (in our case, n = 2). We could think of this as a local coordinate system. If the
selection of a vector v(r) at r is made in each T,.M, we obtain a vector field.

Applying the exterior algebra construction to the tangent spaces, we obtain the
exterior forms bundle (r,n) with r € M, n € Alt*(T,. M). A differential k-form is
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a map w which associates to each r € M an element w, € Alt*(T,M). If the map
reM — we(v1(r),...,vi(r)) € R is smooth whenever the v;’s are smooth vector
fields, then we say that w is a smooth differential k-form. We denote by A*(M) the
space of all smooth differential k-forms on M. As r moves around smoothly on M,
w provides a smoothly varying algebraic k-form at each tangent space 1. M.

The exterior product of differential forms can be defined pointwise from the ex-
terior product of algebraic forms:

(4) (WAN)r = wWe Ay

If D is an oriented submanifold of M and w is a continuous k-form, then the
integral [, w is well defined.

The exterior derivative d is a linear operator that maps A¥(M) into A*+1(M)
for each k& > 0. We give a formula for the case M is a domain in R™. For given

w € AF(M) and vectors vy, ..., v, we obtain a smooth mapping M — R given by
r — wp(v1,...,v;). We then define

k+1
(5) dwy(v1,...,0E) = Z(—l)JH&,jwr(Ul, cey Dy, Vi),

j=1

where the hat is used to indicate a suppressed argument. If w € A¥(M) and n €
AY (M), then

(6) dwAn) =dwAn+ (=1)Fw A dn.

2.3. Integral equation formulation. Consider the following interior Dirichlet
problem for the Laplace equation in a three-dimensional domain D bounded by M:

(7) Au=0 in D, u=g on M.

We can employ an indirect integral equation formulation [16] for solving this problem,
wherein we set u(r’) = D[u](r’), the DLP as defined in (1). This ansatz satisfies the
Laplace equation by construction, and enforcing the boundary condition yields the
following boundary integral equation (BIE) for the unknown p:

(8) - %,u(r’) +D[p](r") = g(r') forall r € M,
where the evaluation of D on M is performed in the principal value sense. Solving
this BIE for u, one can evaluate the solution u at any target in the domain by using
(1). Similarly, other Laplace boundary value problems can be recast as BIEs using
potential theory (e.g., see [16]).

Now, let us express the DLP evaluation as integration of differential forms. On
the manifold M, we have [23, Thm. 5-6]:

(9) n1dS, =dyANdz, mnydS, =dzANdxr, n3dS,=dzxAdy.
Therefore, the DLP (1) can be written as
(10)

o) = [ ST ) as,

wm Awlr — 3

(2" — x)p(r) W —y)u(r) (2 = 2)u(r)
= ———ZdyANd ~———Zdz Ad ————=dx Ad
/M A|r’ — 7|3 yhaz+ dr|r’ — 7|3 FAdr Ar|r’ — 7|3 oA

where ' = (2/,y/,2") and r = (z,y, 2).
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3. Density approximation and exact form construction. In this section,
we systematically introduce the key ideas required to develop our numerical scheme.
We provide the necessary analytical and algebraic background employed in section 4.
We briefly review Stokes’ theorem and Poincaré’s lemma to illustrate our basic ideas
in section 3.1 and introduce a quaternionic approximation scheme in section 3.2.

3.1. Stokes’ theorem and Poincaré’s lemma. We will be relying on the
Stokes theorem to evaluate (10) when 7’ is close to M. Using exterior calculus, one
can summarize the Stokes theorem on a patch D in an elegant way [23].

THEOREM 3.1 (Stokes’ theorem). If D is a compact oriented 2-manifold, for any
smooth 1-form w defined on D, the following holds:

(11) /de:/aDw.

Remark 3.2. The advantage of using Stokes’ theorem to reduce a surface inte-
gral of 2-form dw on D to a line integral of 1-form w is essentially twofold. One is
that we have localized the work involved in evaluating layer potential on part of the
integration surface. The other comes from the benefit of dimensionality reduction.
Essentially, this eliminates singularity that populates the two-dimensional manifold
to only boundaries of its panel discretization, which has a measure zero. This further
helps in accurate evaluation of layer potentials when targets are extremely close to or
on the surface.

The key idea is to use Stokes theorem to evaluate the DLP when a target =’ is
close to D. But Stokes’ theorem does not help with finding a suitable w such that

(r'—7)-ny _ (@ —z)pu(r) W —y)u(r)
(12) dr|r’ —r|3 (r) Sy = drc|r’ —r|3 dy A dz + 4|’ — 7|3 dz ndv
(2" = 2)u(r) N
prE dx A dy ~ dw.

To address the challenges in systematically finding w, we introduce one additional
tool in differential geometry, Poincaré’s lemma [23, Thm. 4-11]: for every differential
form on an open star-shaped subset D of R™, suppose da = 0 for a € A*(D); then
locally « is exact; i.e., there is some w € A*~!(D) such that dw = . The proof of
the lemma considers a k—form,

(13) o= Z gih,,,,ikdxil A Adxte

1< <ip

and shows that (k — 1)-form w defined by

k 1
(14) w= Z Z(—l)(l_l) (/ g (t:v)dt) Tz A AdxiA- - Ada
0

i1 < <ig =1

satisfies dw = a given da = 0.

Based on this result, we can accomplish the 2-to-1 form conversion as written in
(12). This construction process can be viewed as finding the vector potential whose
curl is a given vector field.

A simplified version of the Poincaré’s lemma relevant to our setting can be sum-
marized as follows.
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LEMMA 3.3 (2-to-1 form conversion). Consider a compact oriented two-
dimensional manifold D in R3. Let

(15) a=g1(r)dy ANdz + g2(r)dz A dx + gs(r)dz A dy

be a differential 2-form on D. If da =0 (i.e., V - (g1, 92,93) = 0), then « is an exact
form on D; i.e., there exists some 1-form w such that dw = «. In particular, there is
an explicit construction:

» w= ( /O ' (tzga(tr) — tyga(ir) dt) dz + ( /O " (tzga(tr) — tzor (7)) dt) dy
16

+ (/01 (tygi(tr) — txgs(tr)) dt) dz.

Proof. See Appendix A ]

Consequently, it is possible to convert a surface integral into a line integral as
long as the vector g is divergence-free. For example, if p is a scalar in (12), it is clear
that the above lemma applies since

r—r 1
Vie—— =V.V—— = (', r),
=P Er A
where d(r/,r) is the Dirac ¢ function. Therefore V - ﬁ =0 forr # 7. In

the general case, our goal is to find a high-order approximation scheme for p which
makes the vector (r’ —r)u(r)/|r’ —r|? divergence-free. Clearly, standard polynomial
approximation schemes (e.g., tensor-product monic polynomials) will not yield the
desired result. In the next subsection, we present an approximation scheme based on
harmonic polynomials and quaternionic representations that accomplishes this task.

The key insight that motivates our approach is summarized in Lemma 3.4, but
first let us review some preliminaries on quaternions. Let %, 7, and k be the standard
quaternion units; that is, they satisfy the identities

(17) * =32 =k’ =ijk=—1, ij=k=—ji, jk=1i=—kj, ki=j=—ik.

A quaternionic function g is comprised of a scalar part gg and a vector part g =
(91,92, 93) and written as

g(r) = go(r) + g1(r)i + g2(7)J + g3(r)k.

Alternatively, one can write the quaternion in the pair form as g = (go,g). For any
given vector g, we can define a quaternion g as above, and if not specified, gy = 0 is
assumed by default. Using (17), we can easily verify the product of two quaternions
g and h, denoted in the pair form, to be

f=gh=(g90ho —g-h, goh+hog+g xh)=_fo,f),

where the scalar entry fy = gohg — g - h is not necessarily 0 and the vector entry
goh + hog + g x h is f. With these preliminaries, we can now state and prove the
following lemma that motivates our density approximation scheme.

LEMMA 3.4. Let g = Vi and f = V¢, where ¢ and ¢ are some harmonic func-
tions. Then each component of the quaternionic 2-form gn,f dS, is exact, where g,
n,, and f are quaternions corresponding to g, n,., and f.
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Proof. Using the identities (17), after some algebra, we obtain

gnef=(=(@xn.) f,—(g-n:)f+(gxn:)xf).

The scalar part of gn, f dS, then becomes
—(gxng)-fdS.=—(f xg) n,dS,.

Invoking the fact that both g and f are gradients of harmonic functions, we get

V- (fxg)=g-(VxVep)—f (VxVy)=0,

thereby confirming that the scalar part is an exact form (using Lemma 3.3). Similarly,
the first component of its vector part is given by

(ni(g-f)—a(f n.)—fi(g-n.)) dS. = ((g- f)er — g f — f19) - nr dSy.

Therefore, this term is also exact since

V'((g'f)el—glf—flg):%(g'f)—Vgl'f—91A¢—Vf1'9—f1A¢:0-
O

The following corollary applies this lemma to help verify the divergence-free con-
dition in Lemma 3.3 to convert the double-layer integral into a 1-form integral.

COROLLARY 3.5. Let a be a quaternionic differential 2-form on D given by

(r' —r)n,

(18) a=ag+ait+ayj+azk= EEE

f(r)dSs,

where ', v, n,., and f are quaternions corresponding to v', v, n,., and f. If the vector
f(r) is the gradient of a harmonic function, then da; =0, i =0,1,2,3.

Proof. This result directly follows from Lemma 3.4 by setting g(r) =V and

1
[r/=r]
noting that |’ —r| = |r' —r|. |

3.2. Approximation scheme using harmonic polynomials and quater-
nionic representation. Our goal is to express the density u in terms of some basis
functions that allow us to apply Corollary 3.5 to convert the DLP (10) to a 1-form
using Lemma 3.3. From Corollary 3.5, it is clear that the elements of such a basis
set essentially must be in quaternionic form and their vector components must be
gradients of some harmonic functions (notice that in Corollary 3.5 we need to expand
the quaternionic form (T;fjgr;T (r) dS, before projecting the surface elements). To
construct such a basis set, we turn to harmonic polynomials, which are homogeneous
polynomials that satisfy the Laplace equation (we refer the reader to [8] for a review
on this topic).

While there are 2p + 1 independent harmonic polynomials of degree p, we will
chose p of them for our construction. The only requirement is that their gradients
must be linearly independent. We use, for example, the following set of harmonic
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polynomials for up to degree 7:

Py ={z}, Po={2® - 2% y* - 2%}, Ps={2® - 3027, y> — 3y2?, zyz},
Pa ={x4 — 62227 + 21, yt — 6y2z2 + 24, 32%yz — y23, 3wy — acz3},
={2° —10232* + Sazt, — 109322 + byz?, oty — 622y2? + y2?,
zyt — 6zy?2? + x2, —15m2y 2+ 52223 4 5y°%2 —25},
Pe ={2® — 15222 + 15222* — 26, 48 — 15y*2% + 159%2% — 25,
2oy — 1023y2% + bxyzt, zy® — 10xy>22 + by,
5xtyz — 1022y32 + 902, Saytz — 1023y%2 + 252},
Pr={a" — 7225 + 352321 — 212522, o7 — Ty28 + 35932* — 219527,
2%y — 152t y2? + 1522yz* — 2%, xy® — 152y%2% + 152y°2? — 22
325y? — 32522 — 3023222 + 10232 + 152y%2* — 3225,
3z2y5 — 3y°2% — 3022322 + 152%yzt + 1013 2% — 3y2°,
(32°y — 102%y® + 329°)2}.

6

Then, we assign the gradients of each of these harmonic polynomials, expressed
in quaternionic form, as the elements of the required basis set. Denoting this set by
{1 fERYE=1,... p, we can easily derive them from (19) as

Py = {00 =k}, VP, ={f® =ui—zk, f@ =yj— 2k},
(20) VPs = {f&b = (332 — z2) i—2azk, [ = (y2 — 22) 7 —2yzk,
FO3) = gz + w2j + xyk},

and so on. Therefore, in total, there are p(p+1)/2 quaternionic functions in this basis
set. Moreover, the set VP, is composed of homogeneous, quaternionic polynomials
of degree (p — 1). Thereby, a pth-order convergent scheme is obtained when the set
{VPr, k=1,...,p} is used for approximating smooth quaternionic functions.

Now, consider a triangular patch D C M, as illustrated in Figure 2(b). On this
patch, we use the basis functions {f*(r)} to approximate the density function as

p k
(21) u(r)+0i+0j+0kzzz:f(kl kb,

k=11=1
where the unknown coefficients ¢(*:)) are also quaternions, that is,

C(k,l) _ C(()k,l) +e (k 1) . (k1) . (k, l)k

i4+cy J+cy

Therefore, there are 4 - p(pT'H) unknowns that need to be determined. They can

be obtained, for instance, by applying a standard collocation scheme. For a p-
node composite tensor-product Gauss—-Legendre quadrature in Figure 2(c), there are
(p* + p) /2 quadrature nodes on the preimage of each triangular patch D, denoted
as {r(®D|1 < k <1 < p}. Enforcing (21) at these quadrature nodes will generate
the required 4 - 22 H) number of equations. Empirically, we found that the resulting
square linear systems are invertible in general.

Remark 3.6. In our implementation, we perform a change of coordinates in each
patch so that r('Y) becomes the origin (as illustrated in Figure 2(c)). In this case,
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(a) (b)
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R D(”ﬁ.”o)

F1G. 2. Schematic of our proposed product integration scheme for Laplace DLP. (a) is part of a
parametrized “cruller” surface. (b) is one of the triangular subpanel, denoted by D(ng7n¢), from the

rectangular panel in (a). (c) is the transformed triangular patch ﬁ(n97n¢). (d) shows the quadrature

nodes (red) on integration contour a[)(na,%), the boundary of the transformed triangular patch.

D = 4(r1D) is known, and there are only (p? 4 p)/2 — 1 quaternionic unknowns
(and corresponding equations).

We are now ready to substitute the density approximated as in (21) into the DLP
(10). However, the double-layer kernel needs to be written in quaternionic form to
take advantage of Corollary 3.4. The following lemma summarizes the result.

LEMMA 3.7. Letr andn, be the source location and the normal on D, respectively,
in quaternionic form:

(22) r=0+at+yj+zk, n, =0+ nii+naj + nzk.

If the density is approzimated as in (21), then the scalar part of

(23) _/ ' —r)n, (zp:zk:f(kz (kl)> s
axlr =P P "

is a pth-order convergent scheme to the DLP defined on D.

Proof. The proof follows from the following two observations: (i) owing to (21),
only the scalar part of 37_ 377 | fFDe®:D) remains and (ii) the scalar part of quater-
nion product rn, is given by —r - n,.. 0
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s

SLELELSE L

CEEEEE R

Fic. 3. (a): Two examples of the function pairs (z, ) constructed using the procedure outlined
in section 5.1. In each case, the z—component is plotted with color scaled by the density p. (b):
The density approzimation scheme (21) is applied to each of these function pairs, and the maz
of the relative L error is plotted here. The domain in (x,y) is subdivided in the manner shown
here: hp = 1/6,1/10, 1/20, 1/30. The four skeletons on the corners illustrate refinements of the
triangular grids at four corresponding quadrants. (c): Convergence plot of approzimation error
using p = 2,...,7. Dashed lines of corresponding colors are plots of expected error. For p > T, the
generalized higher-order approxzimation scheme in (24) was employed.

Finally, to construct basis functions up to an arbitrary order beyond p = 7, we
can exploit the fact that restricting harmonic polynomials to a unit sphere yields the
standard spherical harmonics [8]. Similar to (19), we can chose p of the 2p + 1 solid
spherical harmonics of degree p. For example, let (p, 8, ¢) be the coordinates of a
point in spherical coordinates; then, we can set

(24) Pp = {p? cos(k¢) Py (cosh), k=1,...,p},

where PF(cosf) = (—1)F sin® 9%}; (P,(cos®)) are the associated Legendre poly-
nomials. When these functions are expressed in terms of the Cartesian coordinates,
x = psinfcosp,y = psinfsing, and z = pcosl, we get a set of homogeneous har-
monic polynomials of degree p. For example, consider the case of p = 8, k = 2; we
get the following after using basic trigonometric identities:

(25)
315
p® cos(2¢) PZ(cos 0) = EpS cos(2¢) sin® 0 (143 cos® § — 143 cos® 0 + 33 cos® 6 — 1)
315
=16 (2® — y?) (1432° — 1432* (2® + y* + 2%) + 3327 (2% + y° + 2%)?

_ (x2+y2+22)3).

The convergence results of the approximation using this basis up to order 10 are shown
in Figure 3.

4. Numerical scheme. We now have all the tools necessary to build a high-
order accurate close evaluation scheme. Here, we will restrict our discussion to toroidal
geometries parameterized by an infinitely differentiable, doubly periodic function
r(0,9) = (z(0,6),y(0,9),2(0,9)), where (0,¢) € [0,27)?, with the understanding
that the scheme can be generalized to other topologies and problem settings (since
it inherently works at the level of local patches). Such a surface can be covered by
the images of the disjoint union of uniform rectangular patches in parameter space
as shown in Figure 2(a). When target 7’ is far from M, we simply use the standard
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Nystrom discretization for evaluation of (1) based on a composite tensor-product
Gauss-Legendre quadrature (e.g., see [4]).

For a given quadrature patch D, let L(D) = ,/fD dS, be the characteristic

length [18, sect. 3.1] measuring the dimension of a typical patch D. We define the
close field cutoff to be |’ — ¢(D)| < AL(D), where ¢(D) is the centroid of patch D, A
is a set parameter via heuristic screening, and target v’ could be off-surface or from
neighboring patches (see [9, sect. 4.1] for details).

For both weakly singular and nearly singular integrals, our numerical scheme
essentially remains the same. Therefore, from here on, we do not distinguish whether
the target is on or off the surface. A high-level schematic description of the scheme
is given in Figure 2(b—d). In a patch D, where the DLP is singular, we reduce the
2-form integration to 1-form integration on dD. The steps involved in this conversion
are described next.

4.1. Close evaluation scheme for Laplace DLPs. The computation pro-
ceeds in two stages. In the first stage, which is target-independent, the density function
is expressed in terms of the quaternionic basis functions {VP}. In the second stage,
which is target-dependent, a sequence of steps are outlined that accomplish 2-form to
1-form conversion of the DLP.

Stage 1: Precomputation. Given the spatial discretization parameters, ny and
ng, we cover M with ng-by-n, rectangular patches, with a composite p-by-p Gauss—
Legendre quadrature on each patch as shown in Figure 2(a). On a standard patch,
we further divide it into two triangular patches as shown in Figure 2(a). For each
triangular patch D, we first identify the set of all close targets. A coordinate transform
is applied on each such target 7’ and the sources in D such that (') becomes
the origin (Figure 2(c)). Points after transformation are denoted as #' and GO
1<I<k<np.

Enforcing (21) in the transformed coordinate system at the rest of the quadrature
nodes, we obtain the following system of vector equations:

P
(26) ZZA[f(k’l)](’f(i’j))C(k’l) — U(i’j), 1<j<i,1<i<p,
k=2 1=1

where the operator A[] acting on a quaternionic function f, the unknown coefficient
vector C, and the right-hand side vector U are given by

(27)
0 —-fi —f2 —fs e * (D) — (D)
_[f 0 —fs fo k1) _ | &1 (i3) _ 0
Alf] = o fs 0 “n C = ;and U = 0
fs —f2 fi 0 cs 0
Assembling the vector equations (26) for all (7, j) yields a square linear system of size
4- (w — 1) for which we simply apply a direct solver. Therefore, this stage incurs

a computational cost of O(p®) per triangular patch D.

Stage 2: 2-to-1 form conversion and contour integration. Once the quaternionic
coefficients ¢! for approximating the density are found in Stage 1, the next step is
to substitute them in (23) and proceed with converting this 2-form to quaternionic
differential 1-form w®* using Lemma 3.3. After the coordinate transformation, we
can rewrite (23) as (we omit ~ on )
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D

p k
1 1
08 (kD) ) kD) / (A1), (D)
) ;;;(‘W/f)a I

' —r)n,
where aFl) = _(|1"’—r)|3 D as,.

The quaternionic components of a*) can be simplified to the following after carrying
out the product of quaternions on the right-hand side:

1
(29) 047(;k7l) = mqng) A (79 dSr, k= 2, oD, 1< l < k,

where ¢ = 0, 1, 2,3 corresponds is the index of the quaternion and each of the vectors

ql(-k’l) are kth degree polynomials in r, which can be derived using the quaternion

product as
(30)
qgk,l)

(r',7)
" r) = = (0 =) FO0) ) er + @ =) OO ) 4 ) ().
('.r) == (' =) 0 ert (0 —p) S+ B ) (0 ),
() == (" =) £50 @) ) es + (2 = 2) FEO ) + (0 ) (0 = ).

The advantage of our density approximation scheme is now apparent: from (29),
(k1)

it is clear that «; "’ is an exact form by construction, and we can apply Lemma 3.3

to convert it into a 1-form wgk’l) as follows:

Utzg D (0 tr) — tyg 0 (vt
w(k,l) _ (/ d; 2 ( ) Y4q; 3 ( )dt de
0

E [tr — /|3
1gqle ' tr) —tz (k,0) 7' tr
o R LELEE
0 [tr — 7|
1 tyqiﬁ’l)(r’,tr) - txqz(g’l)(r’,tr)d J
+ it — 13 t|dz.
0

Notice that the numerators of each of the integrands in the 1-form above are polyno-
mials of degree (k + 1) in the variable ¢t. Defining My (v',r) = fol ﬁdt and using
(k1)

i

(30), we can separate out the terms that depend on t and rewrite w
(32)
wl(k’l) = (v(kl’l)(r)MkH + wgﬁ’l)(r’,r)Mk) dz + (vgg’l)(r)MkH + wgg’l)(r', r)Mk) dy

i

as

+ (ui(g,l)(r)MkH L uE (e, r)Mk> dz,

where, for brevity, we omitted (v, 7) dependency on M. Here, vfk-’l)(r) are (k+1)th

J
degree polynomials in 7, and w%’”(r’ ,7) are kth degree polynomials in r and linear

in 7’. The explicit expressions for these can be easily derived from (30) and (31); for
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example, in the case of i = 0, we have

i () = (17 + 2%) f50 () — ay 550 () — 2z 550 (),
wii (' r) = = 'y + 2'2) {50 () + 2y S0 () + 2 2 550 (),
ves) (r) = —ay f{50 () + (22 + 22) S350 () =y £ (),

)
33
O ) = ) — (o 12) B ) — (),
)-
(

oD (r) = —wz fFD (r) — yz £ () + (22 + 92) 155D (),
wi (@ vy = ZafF0 () + 2y 0 () — (@t yly) 10 ().
(k,1)

Also see Appendix C, where we derive explicit formulas for all the quantities w; ",
Z(]; D and wl(ljl) in the case of a second-order scheme.

Therefore the kernel singularity in the DLP is now encoded into the moments
{Mj}. For each source r and target ', we evaluate these moments analytically via
recurrences given in Appendix B. Now, we can express the complete 1-form w as a
linear combination of each individual 1-forms with coefficients C(*Y) and the constant

term corresponding to k =1 as

p k
(34) w=p(r@ i) + 375 akdold,

k=21=1

where Q51 = [wék’l),wgk’l),wék’l),wgk’l)]. Then, we evaluate boundary path integral

/. op W using a high-order smooth quadrature rule (Gauss-Legendre). However, note
that the 1-forms (32) are still singular if ' approaches r (as can be inferred from
the base conditions (45)). But since the sources now reside on 9D, this situation can
be avoided altogether by simply choosing a larger patch on a smoothly parametrized
manifold M.

The computational complexity of this stage is primarily dictated by the evaluation
of the moments {M}}. For each target, evaluating the recurrences for these moments
takes O(p) time for each of the O(p) sources on dD, bringing the total per target cost
to O(p?). Therefore, the computational cost of both stages of the close evaluation per
patch D is O(p6 + nmrgpz), where n44rg is the number of targets that are considered
to be close to D.

4.2. A generalization to evaluate the single-layer and the gradient of
double-layer Laplace potentials. In several applications, one needs to evaluate
high-order derivatives of layer potentials either as a postprocessing step or, in some
cases, as part of representing the solution itself. Lemma 3.4 simplifies this task for us
since we can exploit the fact that the kernels themselves are harmonic functions. For
example, assuming the density is approximated as in (21), it is easy to show that the
scalar part of the integral
(35)

(30352 ) (Zif e M) -

k=11=1

is an approximation to VD(u)(7). The requirements da = 0 for converting the direc-
tional derivatives of the DLP to 1-form w are satisfied based on the interchangeability
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of partial derivatives and exterior derivatives. However, constructing the 1-forms in
k
this case also requires us to evaluate integrals of the form Ly (r',r) = fol ‘triiwlsdt;
recurrences to evaluate these are provided in Appendix B.
Lastly, we consider the single-layer potential (SLP), given by S[u](r’) =
fM ‘7.,71_7_”1(7") dSy. Since the SLP does not have a 2-form structure like the DLP

as in (12), we instead write it as

(36) S = [

using quaternion algebra. Now, we can treat it the same way as a DLP but with a
modified density function. That is, we construct the approximation

(37) ﬁrm,u(r) ~ Z Z f(kxl)(r) C(k7l)7

k=11=1

substitute in (36), and follow the close evaluation scheme as in section 4.1. While it
appears like this approach requires us to perform the approximation (37) indepen-
dently for each target since the term (r’ —r) is separable, we can just form it once
per patch with minor bookkeeping.

5. Numerical results and discussion. In this section, we present numerical
results from a series of tests to validate the accuracy of our close evaluation scheme
using a MATLAB implementation. We consider three different geometries of toroidal
and spherical topologies. First, we conduct a convergence test of the quaternionic
approximation algorithm presented in section 3.2. We then test the performance of our
DLP close evaluation, first via self-convergence on three different geometries, followed
by a boundary value problem solve, whose exact solution is known analytically.

5.1. Convergence properties of the quaternionic approximation. Con-
sider a local patch D and a smooth function u defined on it. We can express the
coordinate functions of D and p in terms of the tensor-product monic polynomials:

’ ’
(38) L [.’E, yvz]T = [xvyv Z al?,lxkyl]Tv ,u(r) ~ Z ag’,l’xk yl )
1<k+i<m 1<k'41'<m

where a,ﬁ ; and af:,J, are the Taylor coefficients of the z—component and p, respectively,
in terms of x and y.

In this test, we provide empirical evidence that the quaternionic approximation
scheme employed in (21) is pth-order convergent. To do so, we proceed as follows. In
the domain (z,y) € [-0.5,0.5]%, we generate a sequence of the function pairs (z, 1)
by setting a,ﬁ = QZ',V = 1 and the rest to zero for each admissible pair of indices
(i.e., such that 1 < k+1 <mand 1 <k +1 < m). Two such pairs are plotted in
Figure 3(a). Then, on each of these pairs, we construct the density approximation
in quaternionic form (21) wvia collocation by solving (26). We report the relative L™
error between y(r) and Y 7 _, Zle FED () D measured on a 250 x 250 target grid
for four different hp, leg size of right triangular patches, in Figure 3(b). We observe
that 9-digit accuracy is reached as we reduce hp. Moreover, from Figure 3(c), we
can see that the expected order of convergence is attained asymptotically. Though
high degree quaternionic approximation involves solving an ill-conditioned system for
unknown quaternionic coefficients, a backward stable linear solver in practice can
produce solutions with very small residuals.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 07/23/22 to 141.211.4.224 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

A1396 HAI ZHU AND SHRAVAN VEERAPANENI

5.2. Laplace DLP evaluation test. Here, we consider the double-layer solu-
tion ansatz (1) for the exterior Laplace equation. We begin with a cruller surface from
[4] which is parametrized by an infinitely differentiable, double 27-periodic function
r(6,6) : [0,27)% — R3, followed by a cushion surface from [19], which has a global
parametrization in spherical coordinate r(6, ¢) : [-7/2,7/2] x [0,27) — R®. Lastly,
to demonstrate the applicability of our approach to arbitrary parameterizations, we
consider an input mesh without any analytic description of the geometry.

Example 1: “Cruller” geometry. This example demonstrates the handling of
complex geometries parameterized by doubly 27-periodic functions. We consider a
smooth, warped torus surface M in Cartesian coordinates given by
(39)

r=7(0,9) = ((a+ f(0,9)cos (0)) cos (¢), (a+ f(0,¢)cos(0))sin(¢), f(0,9)sin(F)),

where f(0,¢) = b+ w.cos(w,¢ + wy,0), a = 1, and b = 1/2. We test the close
evaluation scheme using mean curvature H as density:

(40) u(6,6) = H(6,6) = 5 (EN — 2FM + GL) / (BG ~ F?)

where the fundamental forms are given by £ = r4 -1y, F' = r4 - 19, G = 79 - 79,
L=7r4p -1, M =714 -1, N =1 -n, and the normal n = (r4 X rg) /|7y x rg|.

We discretize M uniformly with ng-by-ne rectangular patches and conduct a self-
convergence study with reference values computed using the close evaluation scheme
with ng = 108, n4 = 144. The results are shown in Table 1 and Figure 4. The errors
are measured at targets located on the ¢ = /2 plane (as shown in Figure 4(a)). We
note that the expected order of convergence is observed asymptotically.

Example 2: “Clushion” geometry. In this example, we consider the cushion surface
M from [19] defined by

(41) M =r(0,9) = (f (0,¢)cos (0) cos (¢), f(0,9)sin(0)cos (), f(0,¢)sin(e)),

where f(6,¢) = (4/5+ 1/2(cos (20) — 1) (cos (4¢) — 1))1/2. The density p is set to
the mean curvature (40). As in [19], we discretize M using a set of nonoverlapping
patches and tensor-product grids in each patch (Figure 5, left). The DLP is evaluated
on two planes, intersecting the surface at ¢ = 37/16 and ¢ = 277/16, as shown in

TABLE 1
Laplace DLP close evaluation scheme using mean curvature as prescribed density in the exterior
of a smooth, warped torus surface parametrized by (6, ) € [0,27)2, with we = 0.065, wm = 3, and
wp, = 5. A cross-section on the Y Z-plane (¢ = w/2) is chosen to study the convergence. We report
both the mazimum relative error and the observed convergence rate (p) across the same slice as the
number of panels are increased.

p=3 4 5
ng X ng max F,.q p max F,.e p max F,.e P
12x 16 3.70e-02 1.25e-02 6.30e-03
36x 48 6.72e-04 3.65 8.27e-05 4.57 6.05e-06 6.32
60x 80 4.92e-05 5.12 3.32e-06 6.30 3.36e-07 5.66
84x 112 1.79e-05 3.00 9.67e-07 3.67 4.59e-08 5.91
6 7

max Erel ﬁ max E’r‘el lﬁ

3.68e-03 1.32e-03

1.56e-06 7.07 2.51e-07 7.80

3.40e-08 7.50 1.35e-09 10.2

3.61e-09 6.66 9.37e-11 7.94
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F1G. 4. Laplace DLP close evaluation scheme on a smooth, warped torus surface, using mean
curvature as prescribed density. (a): Surface M, with we. = 0.065, wn, = 3, and wy, = 5, showing
panel divisions (red lines) intersecting Y Z-plane and Nystrom modes (green). The color indicates
the magnitude of mean curvature. (b): Cross-section view of the logy relative error in the exterior
of M in the YZ-plane (¢ = w/2) with 84 x 112 patches. (c): Rate of convergence of the relative
errors across the same shown slice with respect to the number of panels along the torodial direction
forp=2,...,7. (d): The log,y absolute errors for on-surface targets along the surface-tangential
direction. The configuration of the source patch (Nystrom nodes in black) and its near neighbors on
the warped torus surface is illustrated in (a) (blue lines). The Nystrom discretization of the source

patch at four corresponding quadrants are shown here.
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Fi1Gc. 5. Laplace DLP close evaluation on a cushion-shaped geometry. Left: Illustration of the
surface discretization with nonoverlapping patches. The magnitude of mean curvature is indicated
by the color. The solution is evaluated on the shown slices. Middle: Cross-section view on the plane
¢ = 31/16 of the log, relative error in the exterior of the cushion. The inset plots the relative error
corresponding to p = 7 as a function of the number of patches. Magz relative error is 4.1314 x 10—12
with a total number of 6144 (32 x 32 X 6) patches. Current surface discretization is shown by the
ticks (“1”) along the surface. Right: The log, relative error in the exterior of the cushion on the
plane ¢ = 277 /16 with a total number of 6144 patches. Maz relative error is 1.4157 x 10710,
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Figure 5. The relative errors are plotted as the number of patches are increased for
the case of p = 7. While the experimental setup is slightly different from that in [19],
our goal is to showcase that several more digits of accuracy can be obtained using
higher-order close evaluation schemes. For example, from Figure 5, we observe that
around 10 digits of accuracy (or better) can be achieved at targets that are arbitrarily
close to the surface on both the planes.

Ezxample 3: “Bunny” geometry. Finally, we showcase that, when a smooth surface
is given without (6, ¢) parametrization, a local correction could still be implemented
to a higher-order based on a local set of control points and a high-order polynomial
interpolation. The bunny geometry is taken from a standard mesh library. We use an
interactive high-quality quad remeshing tool developed in [24] to return a collection of
patches and nodes within. We then construct a 6th-order polynomial approximation
to each patch and generate Gauss—Legendre quadrature nodes for naive evaluation and
boundaries of each patch for applying our close evaluation scheme. We use a randomly
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chosen density function u(z,y, z) = €®¥ —1+x+sin(z*+1/2y%) +y—1/2y> +1/5y5+ 2
on the bunny surface. The results on one patch are shown in Figure 1 to demonstrate
the performance.

5.3. Laplace BVP test. For this numerical experiment, we solve Laplace in-
terior BVP inside two cruller (39) domains, one with higher curvature compared to
the other, as shown in Figures 6 and 7. The boundary data is generated from a
superposition of randomly distributed point sources located exterior to the domain;
i.e., we evaluate the function g(r) = Zjvzsl G(r —r;)hj, where r € M, the sources
r; are located in the exterior, and the source strengths h; are set to some random
values. Starting from this boundary data, the BIE (8) can be solved for unknown
density function p. We use the quadrature scheme and BIE solver developed in [4] for
this purpose. The resulting density p for both geometries is plotted in Figure 6, left,
and Figure 7, left. The numerical solution of the BVP is evaluated on the ¢ = 7/8
plane using our close evaluation scheme with p = 7. It is then compared against
the exact solution Uexact(7') = Z;\gl G(r' —rj)h;, where v’ € D. We can make the
following observations from Figures 6 and 7: (i) the accuracy is uniform throughout
the interior (that is, no degradation at targets close to the boundary); (ii) similar to

02 5 5
6 6
01
a7 El
0 -8 -8
o1 -9 -9
10 -10
0.2
11 11

12
13

13

F1a. 6. Solution of Laplace BVP in the interior of a torus, using an indirect DLP formulation
(8). Left: Density function plotted as a function of torodial and poloidal directions. The inset at the
upper right corner shows the geometry whose surface color indicates the Dirichlet data due to a few
randomly placed sources (black dots) in the exterior. The solution is evaluated on the shown slice.
Here the shape parameters in (39) were set to we = 0.065, wpy = 3, and wy, = 5. Middle: Cross-
section view of the logyo relative error on the plane ¢ = 7/8. Maz relative error is 7.1761 x 1075
with 12 X 16 panels. Right: The log,y relative error on the same shown slice with 36 X 48 panels.

Maz relative error is 3.7405 x 109,
-4 -4
0.2 5 5
0.1 ’ ®
-7 -7
0 -8 -8
01 -9 -9
-10 -10
0.2 a1 11

13

&

13
Fic. 7. Same setup as in Figure 6 but with shape parameters we = 0.1, wp, = 3, and wy, =5

(higher curvature). The maz relative error is 1.6098 x 10~% with 12 X 16 panels (middle), and with
36 x 48 panels, it is 1.6667 x 1078 (right).
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the exterior problem case, order of convergence is consistent with the basis function
space used; and (iii) level of accuracy achieved is consistent with the complexity of
the geometry.

6. Conclusions. In summary, we presented a high-order technique for evalu-
ating nearly singular integrals for Laplace layer potentials in three dimensions and
demonstrated its efficacy on a range of test problems. This scheme has modest re-
quirements: it can work on any user-supplied surface mesh directly to solve the close
evaluation problem up to the level of accuracy commensurate with that of the given
data. Moreover, to some extent, this scheme is dimension-agnostic. It is intriguing to
note that if we carry out the same steps for two-dimensional DLPs, we will recover the
scheme of Helsing and Ojala [13] (see [35, sect. 8.1] for further details). There, nearly
singular integrals were computed using a quadrature scheme that employs piecewise
complex monomial approximation on panels, Cauchy’s theorem, and recurrence rela-
tions. In our case, we can use harmonic polynomials in two dimensions—which are
closely related to complex monomials—for density approximation, and the DLP can
be transformed from a 1-form line integral to a O-form antiderivative evaluation (i.e.,
using (13) and (14)).

We plan to extend our work on several fronts. Our immediate next step is to inte-
grate the close evaluation routine with an open-source fast multipole method package
(e.g., [9]) and test its performance on large-scale examples. Another natural direc-
tion is to consider various other elliptic PDE kernels including Helmholtz, Stokes, and
Navier kernels. As indicated earlier, such a task is nontrivial since the density approxi-
mation likely needs to be modified and new recurrences for 1-forms need to be derived.
Lastly, accurate three-dimensional close evaluation schemes open up possibilities to
investigate physical phenomena that are otherwise hard to simulate including chain
formation and chaotic behavior in vesicle electrohydrodynamics [28, 31], flows through
complex geometries [17, 32], and self-assembly of active particles [33, 15]. We plan to
generalize these previous works to large-scale three-dimensional flows with arbitrary
particle shapes.

Appendix A. Proof of Lemma 3.3.

Proof. Denoting P( ) = fo (tzga(tr) — tygs(tr))dt, Q(r) = fol(ta:gg(tr)—
tzgi(tr))dt, and R(r f( (tygy (tr) — txgs(tr)) dt, the exterior derivative of (16),
w= P(r)dz+ Q(r )dy+R( )dz, is

OR  0Q P OR 9Q opP
(42) dw_<8y 8z>d/\d+<az a)d/\d +(8x 8y>d A dy.

The first term, %—1; — %—g, can be expanded as

a% (/01 (tygi(tr) — txga(tr)) dt) - % </01 (tzgs(tr) —tzgi(tr)) dt>

1
= / (tgi(tr) + t2ygr 4 (tr) — t22gs , (tr)) dt
0
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1
- / (tzgs . (tr) — tgi (tr) — t*zg1 . (tr)) dt
0
1
= / (2tg1 (t7) + t2yg1 o (t7) + 2201 - (t7) — 22 (g2, (t7) + gs.- (7)) dt
0
1
= / (2tgi(tr) + Pygry(tr) + 2g1 . (tr) + gy o (tr)) di (since V-g=0)
0

:/O %(t291(tr))dt — gi(r).

Treating the other two terms, %—f — %—I; and % — %—P, similarly, we get the result
Y
dw = g1dy N dz + g2dz N dx + gsdx A dy. O

Appendix B. Recurrence relations for evaluating moments. Here, we
present recurrence relations for evaluating moments of high-order monic polynomials
with respect to certain kernels that arise in 1-form construction. Together with My
that is required in (32), we need Lj and Ny, defined below, for evaluating other
Laplace layer potentials:

1 tk 1 tk
Lp(r',r) = ——dt, My(r',r)= —dt
(13) ') = || s M) = [
tk

1
Ni(r',r) = —dt.
k(’l",’!’) /O |t’l"—’l"/|

Using integration by parts and after some algebra, we can arrive at the following
recurrences for evaluating the above moments:

Ly =2rL Lk A M,
k= ez Hk=1 7 gz Hk=2 + [r[2 k=2
1

_r'r k—1 1 th—1
(44) My, = [r]2 M1 + ]2 Ni—o — [7]2 Ter—v/] o
— 1
_ 2k—1r'r k=17 1 P e
N = E|r? Ni—1— A l‘,n||2 Ni_2+ 72 ‘k | 0

The base conditions for these recurrences can also easily be derived as
(45)

No = - (log (Jrllr — ']+ [rf? = (- 7)) —log (||l — (" 7))

B
1 , , (r'-7r) Ny
Nl* |1,,|2 (|r—’r|—|r ‘)+ |’I"|2 5
. 7| <wﬁ—wﬂw+vﬂr)
TR — e \ el =T )

1 —r' 4 P2
M, = < T ),

@ )P = =

Lo = 1 ‘T|2|1‘|2—7’"T’_1(|7"—’!‘/-T‘)3+‘T|27”-'f’_1(7‘/-7")3
(‘,,.l|2|1a|2_(,,.l.r)2)2 |r — /| 3 fjr—7/3 lr| 3 |3 )’
1 /1 1 11 (r'-r)
= (1 1 Lo.
= (s )+
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Appendix C. Second-order approximation scheme for Laplace DLP.
Here, we provide further details on the steps outlined in section 4.1 by considering
the simpler p = 2 case and give explicit formulas for all the intermediate operators

and functions.

Stage 1: Precomputation. Recall that the first step is the change of coordinates
wherein (1)) becomes the origin and the rest of the quadrature nodes are transformed
accordingly. In the case of p = 2, there are eight unknowns, four elements each of
the vectors C(>1) and C(>2) (defined in (27)). We can explicitly write the two vector

equations obtained by applying (26) as

A[fCD)FENYCED Al (FED) 022 = gD,

(40) AFEDFED)CED 4 A[fEN)FEN)CE2 — y ),

From (27), we can expand the matrix operators as

(47)
0 —x 0 =z 0 0
x 0 z O 0 0
A[fED)(r) = and  A[f®?)(r) =
0 -z 0 —x Yy —z
-z 0 x 0 —z =y

A direct computation shows the determinant of the interpolation matrix is |f'(2’1) X

#E2|1£ 0.

Stage 2: 2-to-1 form conversion and contour integration. The 1-form w for linear
case can be carried out relatively easily. We only have two quaternionic 2-forms (we

omit ~ in 7):

(48)
aé2’1) = (ylfy)zdy Adzy + —E=2z=@ =)z g0 A gy 4 (Zl,:i{)‘? dz A dy,

GEGE GEGE |

G 3 G

aém) = (yi_y)wdy Ady + EZ2zm@—n)z g,y gy —W )z g0 dy,

GEGE GRE GECE

AV - lem)sk e

vl /=l GEOl

(49)
Oé6272) — (ylfy)z“r(z Z)ydy A dz +

[r—r[3 \r’—r|3 [P’ —r[3

a(12,2) _ (ZI—Z)Z_(y,I—y)ydy/\dZ—i— (‘i/:ﬂsde/\dzT—f— ‘af ngdl‘/\dy,

v —r[®

Geg o] s
(2,2) _ z' —x)z (v —y)z+ (2" —2)y (' —2)z—
Qg = Wdy/\dZ—F Wdz/\dx—!— [r— 7’|3
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dy Adz + =W =924, A dy + —E =R ma)e

a§2,1) - —(m/*x)mﬂz,*z)zdy Adz + y —T gy A dg + EZ22m@ 0z g A dy,

“dz Ndx + z79”)?46133/\(@,

aéQ’Q) = Wﬁl)”dy Adz + Wyt E =2z 5, A gy G2 )z gy dy,

WY 4z A dy,

dx N dy,
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where the superscript of a denotes which basis the differential 2-form corresponds to
and the subscript corresponds to the index of its quaternion pair form. Corresponding
1-forms are then given by

w(()271) = ((zy® +222°)M3 — (y/zy + 2'zz + 2'2%) My) dx
+((y2® — 2®y) Mz + (y'a? — y'2%) Ma) dy
+ ((—22%2 — y?2) M3 + (2'2? + 2’2z + y'y2)) dz,

w?’l) = (—ayzMsz — (Faxy — y'xz — 2'yz) Ms) dzx
+ (222 4 2%) M5 + (2'2? — 22'wz — 2'2%)Ma) dy
(50) + (—yz2Ms + (—y/2* + 2'zy + 2'yz) Ms) dz,
wég’l) = ((2%2 —y?2 = 25)Ms + (—2'wz + y'yz + 2/2*) M) dw

+ (2zyzMs — 2y'xzMs) dy

+ (2% —ay? + 22%) My + (¢/2% + y'zy — 2'22)) dz,
Wi = (—aPyMs + (2'zy + cyz — y'2%)My) do

+ (2% 4+ 222) M3 — (2'2% + 22'22 — 2'2%) M) dy

+(—wyzMs + ('oy +y'zz — a'yz) My) dz,

w(()2’2) = ((@2? —2y®) M5 + (2'y? — 2'2?) M) da
+ ((—2%y — 2y2°) M3 + (¢/zy + 2'yz + y' 22 ) M) dy
+ (222 4 2y22) M5 + (—2'y* — 2'wz — y'yz)) dz,
w§2’2) = (—2xyzMs + 22'yzMs) dx
+ (2 —y?2 4+ 2%) M3 + (—2'zz + y'yz — 2/2%)Ms) dy
+ ((2%y + v — y2® ) Ms + (—a'zy — y'y* + 2'yz) Ma) dz,
= ((—y?z = 2*)M;3 — (2'y* — 2y'yz — 2/2%) My) dx
+ (xyzMs + (Zxy — y'zz — 2'yz)Ms) dy
+ (222 M3 + (—y'zy + 2'y? — 2'22)) dz,
w§2’2) = ((—y® —y2®)Ms + (y'y? + 22'yz — y'2?) M) dz
+ (:vaMg — (Yxy+ 2xz — $/Z2)M2) dy
+ (xyzMs + (—2'zy + y'xz — 2'yz) Ms) dz.

51
(51) wéz,z)

Now we have expression for the complete 1-form w,

(52) w=p (r(1,1)> wél’l) + 0O 4 22022

where QD = [wék’l),w%k’l),wék’”,wék’l)]. Lastly, the contour integral faf)w is evalu-
ated on each transformed patch.
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