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This article presents a computational approach for determining the optimal slip velocities
on any given shape of an axisymmetric micro-swimmer suspended in a viscous fluid.
The objective is to minimize the power loss to maintain a target swimming speed, or
equivalently to maximize the efficiency of the micro-swimmer. Owing to the linearity
of the Stokes equations governing the fluid motion, we show that this PDE-constrained
optimization problem reduces to a simpler quadratic optimization problem, whose
solution is found using a high-order accurate boundary integral method. We consider
various families of shapes parameterized by the reduced volume and compute their
swimming efficiency. Among those, prolate spheroids were found to be the most efficient
micro-swimmer shapes for a given reduced volume. We propose a simple shape-based
scalar metric that can determine whether the optimal slip on a given shape makes it a
pusher, a puller or a neutral swimmer.

Key words: micro-organism dynamics, swimming/flying

1. Introduction

The squirmer model (Lighthill 1952; Blake 1971) has been widely adopted by
mathematicians and physicists over the past decades to model ciliated micro-swimmers
such as Opalina, Volvox and Paramecium (Lauga & Powers 2009). On a high level, this
continuummodel, sometimes referred toas theenvelope model, effectively tracks themotion
of the envelope formed by the tips of the densely packed cilia, located on the swimmer’s
body, while neglecting the motion below the tips. Individual and collective ciliary motions
could be mapped to travelling waves of the envelope on the surface. Assuming no radial
displacements of the surface and a time-independent tangential velocity led to the simpler
steadysquirmermodel (seePedley2016),wherein, aprescribedslipvelocityon theboundary
propels the squirmer. While the model was originally designed for spherical shapes, it has
since been adapted to more general shapes and has recently been shown to capture realistic
collective behaviour of suspensions (Kyoya et al. 2015).
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Shape is also a key parameter in the design of artificial micro-swimmers for promising
applications such as targeted drug delivery. In particular, the squirmer model is often
employed to study the propulsion of phoretic particles, which are micro- to nano-metre
sized particles that propel themselves by exploiting the asymmetry of chemical reactions
on their surfaces (Anderson 1989; Golestanian, Liverpool & Ajdari 2007). A classical
example is the Janus sphere (Howse et al. 2007), which consists of inert and catalytic
hemispheres. When submerged in a suitable chemical solution, the asymmetry between the
chemical reactions on the two hemispheres creates a concentration gradient. The gradient
creates an effective steady slip velocity on the surface via osmosis that naturally suits
the squirmer model. Besides the classical Janus spheres and bi-metallic nanorods (Paxton
et al. 2004), more sophisticated shapes have also been proposed recently, such as two
spheres (Valadares et al. 2010; Palacci et al. 2015), spherocylinder (Uspal et al. 2018),
matchsticks (Morgan et al. 2014) and microstars (Simmchen et al. 2017). Interestingly,
Uspal et al. (2018) showed that special shapes of phoretic particles exhibit novel properties
such as ‘edge following’ when placed close to chemically patterned surfaces.
Studying the efficiency of biological micro-swimmers is pivotal to understanding

natural systems and designing artificial ones for accomplishing various physical tasks. The
mechanical efficiency (Lighthill 1952) of the spherical squirmer can be directly computed
as its rate of viscous energy dissipation, or power loss, can be written in terms of the modes
of the squirming motion. Michelin & Lauga (2010) found the optimal swimming strokes
of unsteady spherical squirmers by employing a pseudo-spectral method for solving the
Stokes equations that govern the ambient fluid and a numerical optimization procedure.
Their approach, however, does not readily generalize to arbitrary shapes. On the other
hand, Leshansky et al. (2007) analytically investigated the efficiency of micro-swimmers
with prolate spheroid shapes with a time-independent ‘treadmilling’ slip velocity and
found that the optimal efficiency increases unboundedly with the aspect ratio. Vilfan
(2012) optimized the steady slip velocity and the shape at the same time, with constraints
on its volume and maximum curvature. The work considered power loss inside the
squirmer surface, which could be an order of magnitude higher than the outside power loss
(Keller & Wu 1977; Ito, Omori & Ishikawa 2019). However, it assumed that the tangential
force on the squirmer surface is linear to its local slip velocity, which is not always the
case for micro-swimmers.
In this paper, we address the following broader question: Given an axisymmetric shape

of a steady squirmer, what is the slip velocity that maximizes its swimming efficiency? The
optimization problem, being quadratic, is reduced to a linear system of equations solved by
a direct method, while forward exterior flow problems are solved using a boundary integral
method. Those combined features produce a simple and efficient solution procedure. We
introduce the optimization problem and our numerical solver in § 2, present the optimal
solution for various shape families, summarize the correlations between the shapes and
the optimal slip velocities and propose a shape-based scalar metric to predict whether the
optimized swimmer would be a pusher or a puller in § 3, followed by conclusions and a
discussion on future research directions in § 4.

2. Problem formulation and numerical solution

2.1. Model
Consider an axisymmetric micro-swimmer whose boundary Γ can be obtained by
rotating a curve γ about the e3, axis as shown in figure 1(a). Using the arc length
s ∈ [0, �] to parameterize the generating curve, its coordinate functions can be written as

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

96
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.969


Optimal slip velocities of micro-swimmers 910 A26-3

(a) (b) (c)

(d )

1μm

1μm

e3
e2

e1

θ

s = 0

s = �

Γ γ (s)

SiO2

Pt

FIGURE 1. (a) Schematic of the micro-swimmer geometry. The shape is assumed to be
axisymmetric, obtained by rotating the generating curve γ about the e3 axis. (b) Biological
swimmers (Lynn 2008, chapter 4, figure 4.6). (c) Scanning electron microscope (SEM) image of
a single half-coated Janus particle; inset: the dark blue shows the location of the platinum (Pt)
cap (Choudhury et al. 2017). (d) The SEM image of a phototactic swimmer, which consists of a
haematite particle extruded from a colloidal bead (Aubret & Palacci 2018).

γ (s) = (x1(s), 0, x3(s)). Here, we restrict our attention to shapes of spherical topology,
therefore, all shapes considered satisfy the conditions x1(0) = x1(�) = 0 and x1(s) >
0, ∀ s ∈ (0, �). We assume that the micro-swimmer is suspended in an unbounded viscous
fluid domain. The governing equations for the ambient fluid in the vanishing Reynolds
number limit are given by the Stokes equations

− μ∇2u + ∇p = 0, ∇ · u = 0, (2.1a,b)

where μ is the fluid viscosity, p and u are the pressure and flow field respectively. In the
absence of external forces and imposed flow fields, the far-field boundary condition simply
is

lim
x→∞

u(x) = 0. (2.2)

A tangential slip uS defined on γ propels the micro-swimmer forward with a translational
velocity U in the e3 direction. Its angular velocity as well as the translational velocities in
the e1 and e2 directions are zero by symmetry. Consequently, the boundary condition on γ
is given by

u = uSτ + Ue3, (2.3)

where τ is the unit tangent vector on γ . Note that, in order to avoid singularities, the slip
must vanish at the endpoints

uS(0) = uS(�) = 0. (2.4)

Due to the axisymmetry of Γ , the required no-net-torque condition on the freely suspended
micro-swimmer is automatically satisfied while the no-net-force condition reduces to one
scalar equation ∫

Γ

f (x) · e3 dS = 2π
∫

γ

f3(x) x1ds = 0, (2.5)

where f is the active force density on the micro-swimmer surface (negative to fluid
traction) and f3 is its e3 component.
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We quantify the performance of the micro-swimmer with slip velocity uS by its power
loss while maintaining a target swimming speed U. The power loss is defined by

P =
∫

Γ

f · u dS = 2π
∫

γ

f · (uSτ + Ue3)x1 ds. (2.6)

Note that P can be made arbitrarily small by lowering the swimming speed U. It is
therefore necessary to compare the power loss of different swimmers that have the same
swimming speed U. We note that a lower P with a fixed shape and swimming speed U
corresponds to a higher efficiency, η = CDU2/P, as defined by Lighthill (1952), where CD
is the drag coefficient of the given swimmer.

2.2. Boundary integral method for the forward problem
Before stating the optimization problem, we summarize our numerical solution procedure
for (2.1a,b)–(2.3). Again, we fix the swimming speed U, referred to from here onwards as
the ‘target swimming speed’, and assume that the tangential slip uS is given. In general,
an arbitrary pair of uS and U does not satisfy the no-net-force condition (2.5). This
condition will be treated as a constraint in our optimization problem. Therefore, the goal
is to find the active force density f given the velocity on the boundary γ as in (2.3).
We use the single-layer potential ansatz (Pozrikidis 1992), which expresses the velocity as
a convolution of an unknown density function μ with the Green’s function for the Stokes
equations G, from which the force density can be determined by convolution with the
traction kernel T

u(x) =
∫

Γ

G(x − y)μ( y) dΓ ( y), f (x) = − 1
2μ (x) + n (x)

∫
Γ

T (x − y)μ ( y) dΓ ( y) ,

(2.7a,b)

where n is the unit normal vector pointing into the fluid. We can solve for μ by taking the
limit of x → Γ in the above ansatz and substituting in (2.3). The boundary integrals in
(2.7a,b) become weakly singular on Γ , requiring specialized quadrature rules. Here, we
use the approach of Veerapaneni et al. (2009), which performs an analytic integration in
the θ−direction reducing the integrals to convolutions on the generating curve and applies
a high-order quadrature rule designed to handle the log-singularity of the resulting kernels.
More details on the numerical scheme are provided in appendix B.

2.3. Optimization problem and its reformulation
The goal is to find a slip profile uS∗(s) that minimizes the power loss P while maintaining
the target swimming speed U of a given axisymmetric micro-swimmer. Let J be the
objective function, here equated to P defined in (2.6), and F be the net force functional

J(uS) := 2π
∫

γ

f (uS) · (uSτ + Ue3) x1ds, F(uS) := 2π
∫

γ

f (uS) · e3 x1ds. (2.8a,b)

They are slip velocity functionals as their values are completely determined by uS. The
optimization problem can now be stated as follows:

uS∗ = argmin
uS∈U

J(uS) subject to F(uS) = 0, (2.9)
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with U being the space of the all possible slip velocities satisfying (2.4). Notice that the
no-net-force condition (2.5) is added as a constraint here.
By (2.3) and linearity of the Stokes equation (2.1a,b), the forward solution u and the net

force F are affine in uS (u is linear in uS if F = 0). Consequently, J(uS) is a quadratic
functional and (2.9) is inherently a quadratic optimization problem. To make it more
explicit, consider a discretized version of the slip optimization problem where uS is sought
in the form

uS(x) =
m∑

k=1

Uξk uSk(s), (2.10)

for some set of m basis functions uSk satisfying (2.4). We adopt a B-spline formulation for
these basis functions (see appendix A for more details). Let (u0, p0, f 0) and (uk, pk, f k)
(with 1 ≤ k ≤ m) denote the solutions of the forward problem (2.1a,b) with u = e3 and
u = uSkτ being their boundary conditions on γ , respectively.
The net force F(uS) is then given by F(uS) = 2πUF(ξ), where

F(ξ) :=
∫

γ

(
f 0 +

m∑
k=1

ξk f k

)
· e3 x1 ds = F0 + F Tξ . (2.11)

Here, ξ = (ξ1, . . . , ξm)T, F = (F1, . . . ,Fm)T and Fk = ∫
γ
f k · e3 x1 ds for k = 0, 1, . . . ,m.

Similarly, we have J(uS) = 2πU2J (ξ), where

J (ξ) :=
∫

γ

(
f 0 +

m∑
k=1

ξk f k

)
·
⎛
⎝e3 +

m∑
j=1

ξjuSj τ

⎞
⎠ x1ds = ξTAξ + 2ξTF + F0. (2.12)

The elements of the m × m matrix A are given by Akj = ∫
γ
f k · uSj τ x1ds. We have used

the fact that
∫

γ
f 0 · uSkτ x1ds = ∫

γ
f k · e3 x1ds for the linear term by the reciprocal theorem

(Happel & Brenner 1973). We note that A is symmetric, also by the reciprocal theorem.
Physically speaking, ξTAξ represents the scaled power loss of the swimmer being held still
with its slip velocity parametrized by ξ , implying that A is positive–definite; ξ TF is the
scaled power loss of the active force along the swimming direction; F0 is the scaled power
loss of towing a rigid body with the same shape as the micro-swimmer at unit speed.
Now, the discretized optimization problem becomes

min
ξ∈Rm

J (ξ) subject to F(ξ) = 0. (2.13)

Introducing the Lagrangian L(ξ , λ) := J (ξ) − 2λF(ξ), the slip optimization problem is
reduced to solving the first-order stationarity equations for L given by

[
A −F

−F T 0

] [
ξ

λ

]
=

[−F
F0

]
. (2.14)

Note that forming the matrix requires (m + 1) solves of the forward problem (2.1a,b) with
appropriate boundary conditions. Since the micro-swimmer is assumed to be rigid, the
single-layer potential operator as well as the traction operator, required for forming A and
F , are both fixed for a given shape. Therefore, we only need to form them once.
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FIGURE 2. Optimal slip velocity compared to Leshansky et al. (2007, figure 4). The aspect ratio
of the prolate spheroid is (1 + 2.52)1/2. Our numerical optimization is depicted in black solid
curve, while dash curves represent analytical solutions at different truncation levels L = 4 (red)
and L = 10 (blue).

3. Results

We tested the convergence of our numerical solvers rigorously; the boundary
discretization for all the numerical examples presented here is chosen so that at least
6-digit solution accuracy is attained (determined via self-convergence tests). The optimal
slip velocity for a particular prolate spheroid tested against the (truncated) analytical
solution given by Leshansky et al. (2007) is shown in figure 2. Our numerical solution
is indistinguishable against the analytical solution at their finer truncation level L = 10.
Additional validation results can be found in appendix B.
Here, we focus on analysis of the optimal solutions for various micro-swimmer shape

families. Let V be the volume enclosed by the swimmer. We normalize lengths by the
radius of a sphere of equivalent volume i.e. by R = (3V/4π)1/3, and velocities by the
swimming speed U. A simple calculation shows that, for a micro-swimmer submerged
in water of size R = 5 μm and the speed of one body length per second, the Reynolds
number (Re) ≈ 5 × 10−5; thereby, confirming the validity of the Stokes equation (2.1a,b).
We will use the dimensionless reduced volume, defined by ν = 6

√
πV/A3/2 where A is

the surface area of the given shape, to characterize each shape family. The largest possible
value of ν, attained by spheres, is ν = 1, while for example ν decreases monotonically for
spheroids as the aspect ratio is increased.
We first consider six different micro-swimmer shapes and plot their optimal slip profiles

obtained by solving (2.14) in figure 3. In each case, we also show the flow fields in
both the body and laboratory frames. The optimal slip velocities plotted against the arc
length, measured from north pole to south pole, are shown in the insets. In the case of a
sphere (figure 3a), we recover the standard result that the optimal profile is a sine curve
(Michelin & Lauga 2010). The optimal slip velocity of the prolate swimmer, shown in
figure 3(b), ‘flattens’ the sine curve in the middle while that of the oblate swimmer, shown
in figure 3(c), ‘pinches’ the sine curve. Additionally, the peak value of the optimal slip
velocity is low for the prolate swimmer, and high for the oblate swimmer, compared to the
spherical swimmer.
Next, we consider three shapes corresponding to different shape families. In figure 3(d),

we consider the ‘wavy’ configuration obtained by adding high-order axisymmetric modes
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FIGURE 3. Flow fields and the optimal slip velocity for a few swimmers with typical
shapes: (a) sphere, (b) prolate spheroid, (c) oblate spheroid, (d) wavy, (e) spherocylinder,
( f ) stomatocyte. Insets show the optimal slip velocities as functions of arc length along the
generating curve. The optimization is performed using 21 control points on the generating curve
to represent the slip velocity. The colour map holds for both the slip velocity and the flow fields.

to the spherical shape. The optimal slip velocity follows the general trend for that of
figure 3(a), while lower slip velocities are observed at the troughs, qualitatively consistent
to those obtained in Vilfan (2012). The spherocylinder (figure 3e) resembles closely the
prolate spheroid of figure 3(b) with the same aspect ratio, its optimal slip velocity being
nearly the same (albeit with a slightly narrower plateau and higher peak slip velocity).
Finally, we investigate the optimal slip velocity of the stomatocyte shape (figure 3f ), which
is the only non-convex shape among those considered here. Similar to that of the oblate
swimmer, the general slip velocity is like a pinched sine wave. However, one distinguishing
feature is that slip velocity is nearly zero over part of its surface, namely the cup-like region
in its posterior.
The optimal slip velocity strongly depends on the local geometry of the micro-swimmer.

Generally speaking, the optimal slip velocity is high if the material point is far away
from the axis of symmetry. This could be seen most clearly in the cases of spheroids,
see figure 3(a–c). Specifically, the peak value of the optimal slip velocity is the highest
for the oblate spheroid and lowest for the prolate spheroid among the three. Intuitively,
an object that has a larger radius would endure a higher fluid drag compare to one with
a smaller radius when moving in the same speed. Thus extra effort, in the form of a slip
velocity, would need to be put in to balance the drag. Additionally, the slip velocity is high
when the orientation of the generating curve aligns with the swimming direction (axis of
symmetry), and low otherwise. This is understandable as the slip velocity is constructed
to be tangential to the generating curve, and a slip velocity perpendicular to the swimming
direction generates little swimming velocity at the cost of additional power loss. This could
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be seen most clearly in the wavy shape of figure 3(d). Specifically, comparing the two
points A and B marked in the panel, although point B has a larger radius than point A, the
slip velocity of point B is lower because the orientation of the generating curve is almost
perpendicular to the swimming direction.
Additionally, we note that the optimal slip velocity is proportional to the target

swimming speed U due to linearity of the Stokes equations. As a consequence, while the
results only showcase micro-swimmers propelling themselves in the positive e3 direction,
the optimal solution uS∗ for swimming in the opposite direction is merely a change of sign.
Micro-swimmers can be loosely classified as pushers that repel fluid from the body

along the axis of symmetry, pullers that draw fluid to the body along the axis of symmetry
or neutral swimmers that do not repel or draw fluid along the axis of symmetry (Lauga
& Powers 2009). At first sight, the flow fields for all optimal swimmers studied here
seem to be neutral swimmers. A closer look into the stresslet tensor S, however, reveals a
more interesting story. For an axisymmetric swimmer whose swimming direction is e3, the
stresslet tensor could be simplified to S = S(e3e3 − I/3), where I is the identity matrix.
The sign of S characterizes whether the swimmer is a pusher (S < 0) or a puller (S > 0).
It is easy to prove by contradiction that the optimal ‘front–back symmetric’ swimmers

cannot be pushers nor pullers: flipping the direction of the slip velocity would make a
pusher into a puller of the same shape with an equal (minimal) power loss, contradicting
the unique solution guaranteed by the quadratic nature of the problem. However, the
contradiction does not apply for ‘front–back asymmetric’ swimmers as flipping the
swimming direction would essentially change the shape of the swimmer. In fact, the
optimal ‘front–back asymmetric’ swimmers are not always neutral. For example, the
stomatocyte shown in figure 3( f ) is a puller where the stagnation point in the laboratory
frame’s flow field is in front of the micro-swimmer.
Conventionally, pusher and puller particles have been associated with ‘tail-actuated’

swimmers (e.g. spermatozoa) and ‘head-actuated’ swimmers (e.g. Chlamydomonas
reinhardtii) respectively (Saintillan & Shelley 2015). It is, however, not immediately clear
whether a micro-swimmer should be a pusher (tail actuated) or a puller (head actuated)
to optimize its efficiency when given an arbitrary shape. Here, capitalizing on our earlier
observation on the dependence of local geometry and optimal slip velocity, we propose
a shape-based scalar metric A that can be used to predict whether the optimal swimmer
for a given shape is a pusher or puller without the need of optimization. Simply speaking,
A quantifies the relative ‘nominal actuation’ of the ‘head’ part and the ‘tail’ part of the
swimmer based solely on the swimmer shape

A = log

(∫
γh

τ · e3 x21 ds/
∫

γh
x1 ds∫

γt
τ · e3 x21 ds/

∫
γt
x1 ds

)
, (3.1)

where the generating curve γ is divided into two curves γ = γh ∪ γt; γh represents the
generating curve of the head part and γt represents the generating curve of the tail part.
The numerator and denominator inside the logarithm function are the surface averages
of the nominal actuation for the head and tail parts, respectively. The nominal actuation
is stronger if the generating curve aligns with the swimming direction better (larger
τ · e3), or if the material point is farther away from the axis of symmetry (larger x1).
For front–back symmetric shapes, we naturally divide γ in the middle thus A ≡ 0; for
front–back asymmetric shapes, we divide γ at the arc length where x1 is the largest along
the generating curve s∗ = argmaxs∈γ x1(s), or the average s

∗ if argmax returns more than
one s∗. Positive A corresponds to a shape whose head part actuates stronger than its tail
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FIGURE 4. The value of A provides a simple prediction of the swimmer type. Swimmers with
A < 0 are predicted to be pushers (S < 0), and swimmers with A > 0 are predicted to be pullers
(S > 0). Swimmers in the first and third quadrants are correctly predicted. Shape families are
shown in figure 6 and the generating curves are given in appendix C.

part, which indicates that the micro-swimmer is likely to be a puller; similarly negative A
indicates that the micro-swimmer is likely to be a pusher.
The predictions based on A for various families of asymmetric shapes are shown in

figure 4. Specifically, most of the shapes are correctly predicted as they lie in the first and
the third quadrants; the ones that are misclassified, on the other hand, have close to zero
A and S, which means the head and tail are similarly actuated and the optimal swimmers
are close to neutral.
Next, we study the optimal active force density f corresponding to the same shapes. Its

normal and tangential components are plotted in figure 5. We note that by the no-net-force
condition (2.5), the power loss reduces to P = 2π

∫
γ
f · (uSτ )x1 ds, implying that only the

tangential component contributes to the power loss. The change in tangential forces as a
function of arc length loosely resembles that of the optimal slip velocity, mediated by the
local curvature of the generating curve. Qualitatively, a low local curvature suppresses the
traction relative to the slip velocity, and a high local curvature amplifies it. Slip velocities
scaled by their local curvatures are shown in black dotted curves for a reference.
In figure 6, we plot the minimal power loss as a function of the reduced volume

for various shape families. The power loss is scaled by the minimal power loss of a
spherical swimmer with the same volume Jo = 12πμRU2 with R = (3V/4π)1/3. The
minimal power loss for prolate spheroids monotonically decreases as the shape gets more
slender; in contrast, it is well known that the shape with the minimal fluid drag is one with
approximately 2 : 1 aspect ratio (Pironneau 1973). By slender body theory, the power loss
of a prolate spheroid scales as ∼ μα2/3U2, where α is the aspect ratio (see Leshansky et al.
2007). On the other hand, the minimal power loss for oblate spheroids grows rapidly as
the reduced volume is increased. Shapes of the spherocylinder family behave similarly to
the prolate spheroids, and converge to the spherical case when the length of the cylinder
reduces to 0, as expected. It is, however, worth pointing out that spherocylinder costs
more power loss than prolate spheroids with the same reduced volume; this relates to
the fact that the peak slip velocity for spherocylinder is higher than that of the prolate
spheroids (figure 3b,e). The stomatocyte family is constructed by ‘pulling’ the rim of the
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FIGURE 5. Active force density on the swimmer surface as a function of arc length along the
generating curve. Normal and tangential components of the force densities are depicted by blue
and orange curves. Scaled optimal slip velocities 2uS∗κR/U are shown in dotted curves, where
κ is the local curvature of the generating curve. Insets are the shapes of the corresponding
swimmers.
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FIGURE 6. Scaled minimal power loss of different shape families, plotted against the reduced
volume ν. Example shapes are colour coded by the optimal slip velocity. The dotted line shows
the approximation of power loss given by the slender body theory P ∼ μα2/3U2 (Leshansky
et al. 2007).

shape, effectively making the shape ‘taller’ and curls deeper and deeper inside. We find
that ‘taller’ shapes require lower power loss for this shape family, which is qualitatively
consistent with the spheroid family. Finally, we note that the power loss of the snowman
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family (two spheres attaching with each other) is quite robust to the relative sizes of the
two spheres. The power loss is only approximately 25% higher than that of a single sphere
in the limit case where the two spheres are of the same size.
A few other examples that take more generic shapes are also shown in figure 6. The

optimal slip velocities are coloured on their surfaces while their power loss is shown in
the form of scatter points. The generating curves of these shapes are formed by spherical
harmonics. We note that the optimal performance of shapes that appear similar can be
very different. For example, the difference in power loss between examples 6 and 8 is
approximately 150% of the spherical swimmer, or 60% of example 6. This result is a
strong indicator that the slip velocity of the artificial swimmer, as well as its shape, must
be carefully designed to achieve good performance.
We note that the minimal power loss for all the shape families considered here are

bounded from below by the curve for prolate spheroids. However, since the current work
does not optimize shape, whether the prolate spheroids are universally optimal remains to
be tested.

4. Conclusions

In this work, we provided a solution procedure for the PDE-constrained optimization
problem of finding the optimal slip profile on an axisymmetric micro-swimmer that
minimizes the power loss required to maintain a target swimming speed. While it can be
extended to other objective functions, we exploited the quadratic nature of the power loss
functional in the control parameters to simplify and streamline the solution procedure.
In the general case, an adjoint formulation and iterative optimization algorithms can
be employed. Regardless of the formulation, however, the use of the boundary integral
method to solve the Stokes equations greatly reduces the computational cost due to
dimensionality reduction. Solving any of the examples presented in this work, for
example, required only a few seconds on a standard laptop. Extending our procedure to
fully three-dimensional (non-axisymmetric) shapes is straightforward; the key technical
challenge is incorporating a high-order boundary integral solver, for which open-source
codes are now available (e.g. see Gimbutas & Veerapaneni 2013).
Based on our numerical results, we came up with a heuristic metric that can classify the

optimal swimming pattern for a given shape. It measures relative actuation of the ‘head’
and the ‘tail’ of the swimmer and predicts whether the optimal swimmer is head actuated
(puller) or tail actuated (pusher). This metric could inform the early design of optimal slip
for a given shape without the need for carrying out numerical optimization.
The optimization procedure developed in this work can directly be employed in the

design pipeline of autophoretic particles. For example, in the case of diffusiophoresis, the
computed optimal slip profile for a given shape can be used to formulate the chemical
coating pattern of the phoretic particles. We acknowledge that the cost function for such
optimization may need to be modified accordingly to reflect the chemical nature of the
problem (Sabass & Seifert 2012). Another natural extension of this work is to relax the
steady slip assumption and consider time-periodic squirming motion as done in Michelin
& Lauga (2010). This would be particularly useful for studying the ciliary locomotion
of micro-organisms with arbitrary shapes. Furthermore, building on the recent work of
Bonnet, Liu & Veerapaneni (2020), we are developing solvers for the shape optimization
problem of finding the most efficient micro-swimmer shapes under specified area, volume
or other physical constraints.

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

96
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.969


910 A26-12 H. Guo, H. Zhu, R. Liu, M. Bonnet and S. Veerapaneni

Acknowledgements

The authors gratefully acknowledge support from NSF under grants DMS-1719834
and DMS-1454010. The authors appreciate the constructive suggestions provided by the
anonymous referees, which helped them to improve the paper.

Declaration of interests

The authors report no conflict of interest.

Appendix A. Parameter space

We parametrize the slip velocity using a piecewise B-spline approximation. The slip
velocity uS(t) is determined by (M + 1) control points, uS(ti) = ϕi for i = 0, . . . ,M, and
is interpolated by B-spline basis functions between the control points. Here, t ∈ [0,π] is a
reparameterization of the arc length s. In theory, we only need to assign control points for ti
between 0 and π to generate an admissible slip velocity by symmetry. In practice, however,
we assign control points in the full period ti ∈ [0, 2π] and impose periodic boundary
conditions to determine the spline coefficients, as detailed below.
Let M = 2N + 2, where N is the number of free control points between 0 and π. Let

all control points be equally spaced, we have ti = 2πi/M, i = 0, . . . ,M. To make sure the
slip velocity is axisymmetric, we assign ghost control points ϕi = −ϕM−i for N + 1 < i <
2N + 2 and enforce zero conditions at the poles ϕi = 0, for i = 0,N + 1, 2N + 2.
The general B-spline formulation of order 5 is given by

uS(t) :=
M−1∑
k=−5

ξkBk(t), t ∈ [0, 2π], (A 1)

where Bk(t) = B∗
k,5((M/2π)t) is a modified kth B-spline basis function, and B∗

k,p is the
standard kth B-spline basis function of degree p, given by recurrence

B∗
k,0(t) =

{
1, k ≤ t < k + 1
0, otherwise

(A 2)

B∗
k,p(t) = t − k

p
B∗
k,p−1(t) + p + k + 1 − t

p
B∗
k+1,p−1(t). (A 3)

In order to obtain the (M + 5) B-spline coefficients ξk from the (M + 1) control points
ϕi, we need four more equations to close the system. Specifically, we use the periodic
boundary conditions of the derivatives

dnuS

dtn
(0) = dnuS

dtn
(2π), n = 1, 2, 3, 4. (A 4)

This system of equations uniquely determines the B-spline coefficient ξk from the control
points ϕi. The slip velocity uS(t) along the generating curve could then be found by
substituting ξk into (A 1).
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Appendix B. Numerical validation

The Green’s function G and the traction kernel T used in the ansatz (2.7a,b) are defined
by

G (x − y) = 1
8π

(
1
|r|I + r ⊗ r

|r|3
)

, r = x − y, (B 1)

n (x)T (x − y) = − 3
4π

r ⊗ r
|r|5 r · n (x) . (B 2)

Due to the rotational symmetry of Γ , we can transform the layer potentials (2.7a,b) into
convolutions on the generating curve γ by integrating analytically in the θ -direction. The
integral kernels take the following form (Veerapaneni et al. 2009):

Gγ (x, y) = 1
8π

∫ 2π

0

⎡
⎢⎢⎣
cos θ

|r| + ( y1 cos θ − x1) ( y1 − x1 cos θ)

|r|3
( y1 cos θ − x1) ( y3 − x3)

|r|3
( y1 − x1 cos v) ( y3 − x3)

|r|3
1
|r| + ( y3 − x3)2

|r|3

⎤
⎥⎥⎦ dθ,

n (x) Tγ (x, y) = − 3
4π

∫ 2π

0

⎡
⎢⎢⎣

( y1 cos θ − x1) ( y1 − x1 cos θ)

|r|5
( y1 cos θ − x1) ( y3 − x3)

|r|5
( y1 − x1 cos θ) ( y3 − x3)

|r|5
( y3 − x3)2

|r|5

⎤
⎥⎥⎦

(n1 ( y1 cos θ − x1) + n3 ( y3 − x3)) dθ.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 3)

The velocity and traction can therefore be transformed as u(x) = ∫
γ
Gγ (x, y)μ( y)y1 ds,

f (x) = −(μ(x)/2) + n(x)
∫

γ
Tγ (x, y)μ( y)y1 ds. The analytic solution of the integrals

(B 3) can be found in Veerapaneni et al. (2009) and Pozrikidis (1992, p. 40).
To validate our boundary integral method, we construct a boundary value problem and

test the algorithm against the exact solution. As is standard practice, we consider the flow
field generated by a set of axisymmetric Stokeslets and the corresponding traction

uexa(x) =
N∑

k=1

Gγ (x, yk)τ kyk,1, f exa(γ ) = n (γ )

N∑
k=1

Tγ (γ, yk)τ k(k)yk,1, (B 4a,b)

where { yk} and {τ k} are the location and strength of the kth Stokeslet. We randomly choose
5 Stokeslets whose locations and strengths are given in figure 7(a) by the black arrows and
substitute them into (B 4a,b) as our reference case.
To obtain the numerical solution, we first evaluate the reference flow field on the

generating curve uexa(γ ), then treat uexa(γ ) as the boundary condition to obtain the density
vector μ. The generating curve γ is discretized into non-overlapping panels γ = ∑Np

p=1 Λp.
Then, on each panel, we place the nodes of a 10-point Gaussian quadrature. The integral
operator can then be approximated by the standard Nyström matrix at these collocation
points. The logarithmic singularity is resolved with Alpert quadrature using node locations
off the Gauss–Legendre grid (Hao et al. 2014), as illustrated in figure 8(a,b). Integrals of
Gγ (x, y) and Tγ (x, y) at the desired target, the endpoints of the two panels in figure 8(b),
are approximated using correction nodes. Note that two end panels need to be further
split adaptively corresponding to north and south poles, until the first and last Gaussian
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FIGURE 7. (a) The absolute error between the exact solution and the numerical solution with
a total of 400 Gaussian quadrature points; colour code represents log10(|uexa − unum|). (b) The
L∞-norm of the error in the flow field shown as a function of the number of quadrature points.
(c) The L∞-norm of the traction error shown as a function of the number of quadrature points.

(a)

(b)

FIGURE 8. (a) Example of a panel with 10-point Gaussian nodes, and its neighbour panels.
The red asterisk is the target. (b) Three panels in (a) are combined into one big panel. The big
panel is further divided into two panels by the desired target. Blue grid is a 16th-order Alpert
quadrature rule. And black grid is an 8-point smooth quadrature rule.

nodes have adjacent neighbours. We subsequently use the density vector μ to evaluate
the numerical solution unum(x) outside the micro-swimmer’s surface. The traction on the
generating curve is evaluated from the same density vector μ using the traction kernel
f num(γ ) = −(μ(γ )/2) + n(γ )

∫
γ
Tγ (γ, y)μ( y)y1 ds.

The absolute error of the numerical solution unum for this example is shown in
figure 7(a). As can be observed from figure 7(b,c), our forward solver achieves 10-digit
accuracy in the flow field and 6-digit accuracy for traction with 400 quadrature points
on the generating curve. For all the test cases presented in § 3, 600 Gauss–Legendre
quadrature points were used.
As a further validation of our numerical scheme, we computed the fluid drag of a family

of prolate and oblate spheroids. The shape that yields the minimal fluid drag is a prolate
spheroid with a roughly 2 : 1 aspect ratio (figure 9), consistent with the optimal shape
obtained previously in Pironneau (1973).

Appendix C. Generating curves of the shapes used in the paper

Here, for reproducibility purposes, we list equations of all the generating curves used
in this paper. In all cases below, i = √−1, t ∈ [0,π] is the polar angle, the equations are
defined on the complex plane and the axis of symmetry is the imaginary axis.

(i) Spheroids: z = α−1/3 sin(t) + iα2/3 cos(t), α is the aspect ratio.
(ii) Wavy shapes: z = (1 + 0.15 cos(kt) exp(i(π/2 − t))), k ∈ {3, 4, 5, 6} is the order of

the perturbation.
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FIGURE 9. Fluid drag of towing a prolate spheroid with unit speed. All spheroids are of the
same volume as the unit sphere. The red cross denotes the fluid drag of the optimal profile that
minimizes the fluid drag given by Pironneau (1973).

(iii) Stomatocyte: z = (1.5 + cos t)(sin(λπ sin t) + i cos(λπ sin t)) − 0.5i, λ ∈ [0.4,
0.95] controls the vertical ‘stretchiness’ of the shape.

(iv) Harmonics: z = ρ(t) sin t − iρ(t) cos t, where ρ(t) = 1 + rYm
n (t, 0), where Ym

n (θ, ϕ)

is the spherical harmonic of degree n and order m, evaluated at the colatitude θ and
longitude ϕ.

(v) Spherocylinder shapes were generated by simply attaching semi-spherical caps to
a cylinder with the same radius and subsequently smoothing using B-splines up to
order 5.

(vi) Snowman shapes were generated by two spheres of different radii glued together
with the centroid distance set to 90% of the sum of the radii, followed by smoothing.
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