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. Abstract

12 Collection of high-throughput data has become prevalent in biology. Large datasets allow
13 the use of statistical constructs such as binning and linear regression to quantify relationships
12 between variables and hypothesize underlying biological mechanisms based on it. We discuss
15 several such examples in relation to single-cell data and cellular growth. In particular, we
16 show instances where what appears to be ordinary use of these statistical methods leads
17 to incorrect conclusions such as growth being non-exponential as opposed to exponential
18 and vice versa. We propose that the data analysis and its interpretation should be done in
10 the context of a generative model, if possible. In this way, the statistical methods can be
20 validated either analytically or against synthetic data generated via the use of the model,
a1 leading to a consistent method for inferring biological mechanisms from data. On applying
22 the validated methods of data analysis to infer cellular growth on our experimental data, we
23 find the growth of length in E. coli to be non-exponential. Our analysis shows that in the

2o later stages of the cell cycle the growth rate is faster than exponential.
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» 1 Introduction

26 The last decade has seen a tremendous increase in the availability of high-quality large
7 datasets in biology, in particular in the context of single-cell level measurements. Such data
23 are complementary to “bulk” measurements made over a population of cells. They have
20 led to new biological paradigms and motivated the development of quantitative models [1-
30 7]. Nevertheless, they have also led to new challenges in data analysis, and here we will
;1 point out some of the pitfalls that exist in handling such data. In particular, we will show
;2 that the commonly used procedure of binning data in order to eliminate noise (averaging
33 conditioned on the value of one of the variables) may lead to smooth curves that hint at
34 specific functional relations between the two variables plotted that are inconsistent with
35 the true functional relations. As we shall show, this may come about due to the “hidden”
36 noise sources that affect the binning procedure and the phenomenon of “inspection bias”
37 where certain bins have biased contributions. One of our main take home messages is the
s significance of having an underlying model (or models) to guide/test/validate data analysis
39 methods. The underlying model is referred to as a generative model in the sense that
a0 it leads to similar data to that observed in the experiments. The importance of a so-
a1 called generative model has been beautifully advocated in the context of astrophysical data
2 analysis [8], yet biology brings in a plethora of exciting differences: while in physics noise from
a3 measurement instruments often dominates, in the biological examples we will dwell on here it
s is the intrinsic biological noise that can obscure the mathematical relation between variables
ss when not handled properly. In the following, we will illustrate this rather philosophical
a6 introduction on a concrete and fundamental example, albeit e pluribus unum. We will focus
a7 on the analysis of the Fscherichia coli growth curves obtained via high throughput optical
as  microscopy. Nevertheless we anticipate the conceptual points made here — and demonstrated

20 on a particular example of interest — will translate to other types of measurements, which
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so make use of microscopy but also beyond.

51 Binning corresponds to grouping data based on the value of the x-axis variable, and find-
52 ing the mean of the fluctuating y-axis variable for this group. By removing the fluctuations
53 of the y-variable, the binning process often aims to expose the “true” functional relation
sa between the two variables which can be used to infer the underlying biological mechanism.
ss [t is important to discuss the sources of fluctuations in the y-axis variable before we proceed.
ss In biology, fluctuations in the variables arise inevitably from the intrinsic variability within
sz a cell population. Cells growing in the same medium and environment have different charac-
ss  teristics (e.g., growth rate) due to the stochastic nature of biochemical reactions in the cell
so |9]. For example, the division event is controlled by stochastic reactions, whose variability
6o leads to cell dividing at a size smaller or larger than the mean. In this paper, when modeling
61 the data, we will consider the intrinsic noise as the only source of variability and assume
62 that the measurement error is much smaller than the intrinsic variation in the population.
63 One example of the use of binning is shown in Figure 1A where size at division (Lg) vs
s« size at birth (L) is plotted using experimental data obtained by Tanouchi et al. for E. coli
s growing at 25°C [10]. In Figure 1A, the functional relation between length at division and
es length at birth for E. coli is observed to be linear and close to Ly = Ly+AL (see Section 5.11.1
o7 for details). The relation obtained allows us to hypothesize a coarse-grained biological model
es known as the adder model as shown in Figure 1B in which the length at division is set by
o addition of length AL from birth [4, 11-16]. This example demonstrates the use of statistical
70 analysis on single-cell data to understand the underlying cell regulation mechanisms. Using
7 statistical methods such as binning and linear regression, other phenomenological models
72 apart from adder have also been proposed in E. coli where the division length (L4) is not
73 directly “set” by that at birth [17-19|. The phenomenological models, in turn, can be related
72 to mechanistic (molecular-level) models of cell size and cell cycle regulation [20]. Recent

75 work has shed light on the subtleties involved in interpreting the linear regression results for
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76 the Ly vs Ly plot where seemingly adder behavior in length can be obtained from a sizer
77 model (division occurring on reaching a critical size) due to the interplay of multiple sources
7s of variability [21]. This issue is similar in spirit to those we highlight here.

79 The volume growth of single bacterial cells has been typically assumed to be exponential
so |4, 14, 22-25]. Assuming ribosomes to be the limiting component in translation, growth is
a1 predicted to be exponential and growth rate depends on the active ribosome content in the
sz cell [26-28]. Under the assumption of exponential growth, the size at birth (L), the size at

ss division (Lg), and the generation time (7}) are related to each other by,

ln(i—Z) = My, (1)

sa where )\ is the growth rate. Understanding the mode of growth is important e.g., due to
g its potential effects on cell size homeostasis. Exponentially growing cells cannot employ a
gs mechanism where they control division by timing a constant duration from birth but such
sz a mechanism is possible in case of linear growth [3, 13, 29|. Linear regression performed
g8 ON ln(i—Z) vs (A)T, plot, where (\) is the mean growth rate, was used to infer the mode
so of growth in the archaecon H. salinarum [16], and in the bacteria M. smegmatis [30] and
o C. glutamicum [31], for example. If the best linear fit follows the y=x trend, the resulting
o1 functional relation might point to growth being exponential. A corollary to this is the
02 rejection of exponential growth when the slope and intercept of the best linear fit deviate from
o3 one and zero respectively [31]. Thus, binning and linear regression applied on single-cell data
oa appear to provide information about the underlying biology, in this case, the mode of cellular
os growth. We will test the validity of such inference by analyzing synthetic data generated
o6 using generative models. We find that linear regression performed on the plot ln(i—i) Vs

or (A\)Ty, surprisingly, does not provide information about the mode of growth. Nonetheless,

os  we show that other methods of statistical analysis such as binning growth rate vs age plots
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90 are adequate in addressing the problem. Using these validated methods on experimental
wo data, we find that E. coli grows non-exponentially. In later stages of the cell cycle, the

101 growth rate is higher than that in early stages.

« 2 Statistical methods like binning and linear regression
103 should be interpreted based on a model.

10a To illustrate the pitfalls associated with binning, we use data from recent experiments on F.
105 coli where the length at birth, the length at division and the generation time were obtained
s for multiple cells (see Section 5.1 and [32]). Phase-contrast microscopy was used to obtain
107 cell length at equal intervals of time. Note that we consider length as a proxy for cell size as
s the fluctuations in the width of E. coli cells are negligible in a given condition [15, 23, 33, 34].
1o To investigate if the cell growth was exponential, we plotted ln(’z—fbl) vs (A)Ty for cells growing
uo  in M9 alanine minimal medium at 28°C ((7;) = 214 min). The linear regression of these
u1 data yields a slope of 0.3 and an intercept of 0.4 as shown in Figure 2A. The binned data and
12 the best linear fit deviate significantly from the y=x line (see Table S2). Additionally, the
us  binned data follows a non-linear trend and flattens out at longer generation times. We also
us  found similar deviations in the binned data and best linear fit in glycerol medium ((T;) =
us 164 min) shown in Figure 2- figure supplement 1A, and glucose-cas medium ((7;) = 65 min)
e shown in Figure 2- figure supplement 1B. Qualitatively similar results have been recently
u7  obtained for another bacterium, C. glutamicum, in Ref. [31]. These results might point to
us  growth being non-exponential.

119 Next we will approach the same problem but with a generative model. We will first
120 show that the aforementioned non-linear dependencies are perfectly consistent with purely
121 exponential growth. For the model, we consider exponential growth where the growth rate

122 is distributed normally and independently between cell cycles with mean growth rate (\)
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123 and standard deviation C'Vy(\). CV} is thus the coefficient of variation (CV) of the growth
124 rate and is assumed to be small. To maintain a narrow distribution of cell size, cells must
15 employ regulatory mechanisms. In our model, we assume that, barring the noise due to
126 stochastic biochemical reactions, cells attempt to divide at a particular size Ly given size at
127 birth L. Keeping the model as generic as possible, we can write L, as a function of Ly, f(Ly)
128 which can be thought of as a coarse-grained model for the regulatory mechanism. Ref. [13]
120 provides a framework to capture the regulatory mechanisms by choosing f(Ly) = 2L, *L§.
1o Lo is the typical size at birth and «, which can take values between 0 and 2, reflects the
11 strength of regulation strategy. a = 0 corresponds to the timer model where division occurs
132 on average after a constant time from birth, and o = 1 is the sizer model where a cell divides
133 upon reaching a critical size. o = 1/2 can be shown to be equivalent to the adder model
134+ where division is controlled by addition of constant size from birth [13]. In addition to the
135 deterministic function (f) specifying division, the size at division is affected by noise (&)
136 in division timing. We assume it has a Gaussian distribution with mean zero and standard
137 deviation 2% and that it is independent of the growth rate. Thus, the generation time (7})

oY

138 can be mathematically written as Ty = % ln(f(f :) )+ & and is influenced by growth rate noise

130 and division timing noise. Note that replacing the time additive division timing noise with
1o a size additive division timing noise will not affect the results qualitatively (see Sections 5.2
w1 and 5.3 for details and Table S1 for variable definitions).

142 For perfectly symmetrically dividing cells whose sizes are narrowly distributed, the trend

w3 in the binned data for ln(i—‘l’f) vs (A\)Ty plot is found to be (see Section 5.4),

1 - &
y=z |1+ ) : (2)

2 o2
L+ 2—a CVZIn?(2)

e Fixing C'V\ = 0, = 0.15, we show using simulations in Figure 2C the non-linear trend in the

s binned data even though we assumed exponential growth. Similarly, on performing linear
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146 Tegression on ln(ﬁ—j) vs (A\)Ty plot, we find that the slope is not equal to one and the intercept
17 is non-zero (see Eqgs. 27 and 28). Eq. 2 shows that the trend in the binned data depends
s on the ratio of growth rate noise and division timing noise. The slope is equal to one and
10 intercept is zero only if the noise in growth rate is negligible. In experiments that is rarely
150 the case, hence, the binned data trend and the best linear fit deviate from the y=x line
151 even though growth might be exponential. Thus, we cannot rule out exponential growth in
152 the F. coli experiments despite the binned data trend being non-linear and the best-fit line
153 deviating from the y=x line.

154 Why does a non-linear relationship in the binned data for the plot ln(i—j) vs (A\)Ty arise
155 even for exponential growth? According to the model, L, is determined by a deterministic
156 strategy, f(L,) and a time/size additive division timing noise. The noise component which
157 affects Ly and subsequently the quantity ln(é—i) is thus the noise in division timing and not
18 the growth rate. The generation time (7)) plotted on the x-axis is influenced by the noise in
150 division timing as well as the noise in growth rate. Binning assumes that for a fixed value of
160 the x-axis variable, the noise from other sources affects only the y-axis variable (the binned
161 variable). Similarly for linear regression, the underlying assumption is that the independent
162 variable on x-axis is precisely known while the dependent variable on the y-axis is influenced

163 by the independent variable and from external factors other than the independent variable.

s In this case, only ()T} plotted on x-axis is influenced by growth rate noise while both (AT

165 and ln(L—fZ) are influenced by noise in division time. This does not fit the assumption for
166 binning and linear regression and hence, the best linear fit for ln(é—f) vs (A\)T}y plot might

167 deviate from the y=x line even in the case of exponential growth.

168 Another way of explaining the deviation from the linear y=x trend is by inspection bias,
160 which arises when certain data is over-represented [35]. Cells which have a longer generation
170 time than the mean will most likely have a slower growth rate. Thus, in Figure 2A and

1w Figure 2C, at larger values of (AT, or Ty, the bin averages are biased by slower growing
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Lqg

12 cells, thus making ln(L—b) or AT, to be lower than expected. This provides an explanation

173 for the flattening of the trend.

174 It follows from the previous discussion that if one bins data by ln(é—‘:) then the assumption
75 for binning is met. Both of the variables (\)T; and ln(é—j) are influenced by the noise in

we division time but (\)7y plotted on the y-axis is also influenced by the growth rate noise.
w77 Thus, the y-axis variable, (A\)Ty is determined by the x-axis variable, ln(é—‘z), and an external
178 source of noise, in this case, the growth rate noise. Thus, based on our model, we expect the
179 trend in binned data and linear regression performed on the interchanged axes to follow the
180 y=x trend for exponentially growing cells (see Section 5.4). Indeed, on interchanging the axis
w1 and plotting (A\)Ty vs ln(i—i) for synthetic data, we find that the trend in the binned data
182 follows the y=x line (Figure 2D). We also find that the best linear fit follows the y=x line
183 in the case of alanine (Figure 2B), glycerol (Figure 2- figure supplement 1A) and glucose-
184 cas (Figure 2- figure supplement 1B). A change from non-linear behavior to that of linear
15 on interchanging the axes is also observed in a related problem where growth rate (A) and

L

186 inverse generation time (=) are considered (Figure 2- figure supplement 2 and Section 5.10).

Ty
187 Thus far, we showed for a range of models where birth controls division that the binned
188 data trend for ln(L—:) as function of (A\)Ty is non-linear and dependent on the noise ratio -

180 in the case of exponential growth. On interchanging the axes the binned data trend agrees
100 with the y=x line independent of the growth rate and division time noise. However, we will
101 show next that this agreement with the y=x trend cannot be used as a “smoking gun” for
102 inferring exponential growth from the data. To investigate this further, let us consider linear
103 growth, which has also been suggested to be followed by E. coli cells [36, 37]. The underlying

104 equation for linear growth is,

Lq— Ly =\NT,, (3)
15 where )\ is the the elongation speed i.e., %. For cells growing linearly, the best linear
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we fit for the plot (\)Ty vs ln(ﬁ—j) is expected to deviate from the y=x line. Surprisingly, we

17 found that for the class of models where birth controls division by a strategy f(L;) and

Lg
Ly

s cells grow linearly, the best linear fit for (A7} vs In(74) agrees closely with the y=x trend.
1o On carrying out analytical calculations based on this model, we obtain the slope and the
200 intercept of the (\)Ty vs ln(L—:) plot to be %ln(Z) ~ 1.04 and -0.03 respectively, which is
201 very close to that for exponential growth (see Section 5.6). This is shown for simulations
202 of linear growth with cells following an adder model in Figure 3A. Given no information
203 about the underlying model, Figure 3A could be interpreted as cells undergoing exponential
204 growth contrary to the assumption of linear growth in simulations. Thus, when handling
205 experimental data, cells undergoing either exponential or linear growth might seem to agree
206 closely with the y=x trend. Deforet et al. [38] used the linear binned data trend in case
207 of (\)Ty vs ln(i—‘;) plot to infer exponential growth but as we showed in this section, the
208 linear trend does not rule out linear growth. This again reiterates our message of having a
200 generative model to guide the data analysis methods such as binning and linear regression.
210 For completeness, we also discuss the natural plot for linear growth, (A, )Ty vs lg — [, and
211 the plot obtained on interchanging the axes in Section 5.5 and Figure 3- figure supplements
212 1A, 1B. For cells growing exponentially, the best linear fit for the (\;,)Ty vs lq — I, plot is
213 expected to deviate from the y=x line. This is indeed what is observed in Figure 3- figure
214 supplement 1C where simulations of exponentially growing cells following the adder model
215 are presented (see Section 5.6 for extended discussion).

216 In all of the cases above, the problem at hand deals with distilling the biologically relevant
217 functional relation between two variables. However, the data is assumed to be subjected to
218 fluctuations of various sources, and it is important to ensure that the statistical construct we
210 are using (e.g. binning) is robust to these. How can we know a priori whether the statistical

220 method is appropriate and a "smoking gun" for the functional relation we are conjecturing?

21 The examples shown above suggest that performing statistical tests on synthetic data ob-

10
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22 tained using a generative model is a convenient and powerful approach. Note that in cases
223 such as the ones studied here where analytical calculations may be performed, one may not

224 even need to perform any numerical simulations to test the validity of the methods.

s 3 Growth rate vs age plots are consistent with the un-
220 derlying growth mode.

227 In the last section, we showed that the plots ln(i—i) vs (\)Ty and (A\)Ty vs ln(é—‘;) are not

228 decisive in identifying the mode of growth. Recent works on B. subtilis [39] and fission yeast

29 [40] have used differential methods of quantifying growth namely growth rate (= $4) vs
230 age plots and elongation speed (:%) vs age plots to probe the mode of growth within a

2 cell cycle. Here, L denotes the size of the cell after time ¢ from birth in the cell cycle and
222 age denotes the ratio of time ¢ to T, within a cell cycle (hence it ranges from 0 to 1 by
233 construction within a cell cycle). In this section, using various models of cell growth and cell
234 cycle, we test the growth rate vs age method. For cells assumed to be growing exponentially,
235 growth rate is constant throughout the cell cycle. On averaging over multiple cell cycles, the
236 trend of binned data is expected to be a horizontal line with value equal to mean growth
237 rate which is indeed what we find in the numerical simulations of the adder and the adder
238 per origin model [17], as shown in Figure 3B. In contrast, for linearly growing cells, the
230 elongation speed is expected to remain constant. We show this constancy using numerical
200 simulations of linearly growing cells following the adder model (Figure 3- figure supplement
201 3A). In accordance with this result, the growth rate is expected to decrease with cell age
202 for linear growth. This is verified in Figure 3B by again using the numerical simulations of
203 linear growth with cells following the adder model. Thus, the two growth modes (exponential
2aa and linear) could be differentiated using the growth rate vs age plot and it appears to be

25 a consistent method to obtain the mode of growth. For further details about the binning

11
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26 method used in growth rate vs age and elongation speed vs age plots, see Section 5.7.

247 Using the validated growth rate vs age plots, we obtained the growth rate trend for
28 experimental data on E. coli for the three growth conditions studied in this paper (Figures
220 4A-4C). We found an increase in growth rate in all growth conditions during the course of
250 the cell cycle. One may wonder whether such an increase may be explained by the E. coli
251 morphology alone, due to the presence of hemispherical poles. For exponentially growing cell
252 volume and considering a geometry of E. coli with spherical caps at the poles, the percentage
253 increase in the growth rate of length over a cell cycle is around 3% which is significantly
2sa  smaller than that observed in our experimental data. Considering cell size trajectories (cell
255 size, L at time, t data) where cell lengths were tracked beyond the cell division event (by
26 considering cell size in both daughter cells), we also found that the growth rate decreases close
257 to division (age & 1) and returns to a value nearly equal to that observed at the beginning
s of cell cycle (age =~ 0) as shown in Figure 4- figure supplements 1A-1C (see Section 5.7 for
250 extended discussion).

260 The above question of mode of growth within a cell cycle can also be analyzed in relation
261 to a specific event. Several studies have pointed to a change in growth rate at the onset of
22 constriction [41, 42]. This change in growth rate can be probed using growth rate vs time
263 plots where time is taken relative to the onset of constriction as shown in Figure 4- figure
264 supplement 2. These plots show a decrease in growth rates at the two extremes of the plot.
265 These decreases are due to inspection bias, where the growth rate trend is affected by the
266 biased contribution of cells with a higher than average generation time or equivalently slower
267 growth rate (see Section 5.8 for extended discussion). Inspection bias is also observed when
28 timing is considered relative to other cell events such as cell birth (see Section 5.8 and Figure
260 3- figure supplements 2C, 2D).

270 It might not always be possible to obtain growth rate trajectories as a function of time/cell

ann age. Godin et al. instead obtained the instantaneous biomass growth speed (%) as a func-

12
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22 tion of its buoyant mass (M) [22]. On applying linear regression for instantaneous mass

a3 growth speed vs mass, we expect the slope of the best linear fit obtained to provide the

1 dM
M “dt

27a  average growth rate (( )) under the assumption of exponential growth while for linear
275 growth the intercept provides the average growth speed. Using this method, biomass was
76 suggested to be growing exponentially. This method can be applied to study the length
277 growth rate within the cell cycle by plotting elongation speed as a function of length [43].
ozs We find that the binned data trend of this plot follows the expected trend for linear and ex-
279 ponential growth as shown in Figure 3- figure supplement 3B and Figure 3- figure supplement
280 3D, respectively, for a cell cycle model where division is controlled via an adder mechanism
2s1 from birth. However, the trend obtained appears to be model-dependent as shown in Figure
232 3- figure supplement 3F where the underlying cell cycle model used in the simulations is the
2s3 adder per origin model. For this model, the binned data trend is found to be non-linear
28¢ with the growth rate speeding up at large sizes, despite the synthetic data being generated
285 for perfectly exponential growth. This non-linear trend can lead to growth rate being mis-
286 interpreted as non-exponential within the cell cycle (see Section 5.9 for details). Thus, an
g7 analysis using the elongation speed vs size plot must be accompanied with an underlying
288 cell cycle model.

289 In summary, we found that the growth rate vs age plot was a consistent method to
200 determine the changes in growth rate within a cell cycle. Unlike the growth rate vs age
201 plots, the inference from the growth rate vs size plots was found to be model-dependent.

202 Using the growth rate vs age plots, we show that the length growth of E. coli can be faster

203 than exponential (super-exponential).
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« 4 Discussion

205 Statistical methods such as binning and linear regression are useful for interpreting data and
206 generating hypotheses for biological models. However, we show in this paper that predicting
207 the relationships between experimentally measured quantities based on these methods might
208 lead to misinterpretations. Constructing a generic model and verifying the statistical analysis
200 on the synthetic data generated by this model provides a more rigorous way to mitigate these

300 risks.

Lg
s L

301 In the paper, we provide examples in which In(74) vs (A\)7T; and (\)T} vs ln(L—‘Z) plots
sz fail as a method to infer the mode of growth. The binned data trend for ln(i—i) vs (A\)Ty
303 plot was found to be dependent upon the noise parameters in the class of models where
soa  birth controlled division (Equation 2). We also show that (A7, vs ln(é—‘Z) plot could not
ss differentiate between exponential and linear modes of growth (Figures 2D, 3A). Thus, we
a6 conclude that the best linear fit for the above plots might not be a suitable method to infer
307 the mode of growth but they are just one of the many correlations which the correct cell
308 cycle model should be able to predict.

300 We found growth rate vs age and elongation speed vs age plots to be consistent methods
si0 to probe growth within a cell cycle. The method was validated using simulations of various
s cell cycle models (such as the adder, and adder per origin model, where in the latter, control
a1z over division is coupled to DNA replication) and the binned growth rate trend agreed closely
a1z with the underlying mode of growth for the wide range of models considered (Figure 3B). In
s1a the case of growth rate vs time plots, it was important to take into consideration the effects
a5 of inspection bias. We used cell cycle models to show the time regimes where inspection bias
a6 could be observed (Figure 3- figure supplement 2). In the regime with negligible inspection

a1z bias, we could reconcile the growth rate trend obtained using growth rate vs age (Figures 4A-

s1is 4C) and growth rate vs time plots (Figure 4- figure supplement 2). The authors in Ref. [31]

14


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

310 circumvent inspection bias in the elongation speed vs time from birth plots by focusing their
320 analysis on the time period from cell birth to the generation time of the fastest dividing cell.
;21 The authors of Ref. [44], while investigating the division behavior in the cells undergoing
32 nutrient shift within their cell cycle, use both models and experimental data from steady-
323 state conditions to identify inspection bias. These serve as good examples of using models
324 to aid data analysis.

325 Statistics obtained from linear regression such as in Figure 1A help narrow down the
36 landscape of cell cycle models, but many have potential pitfalls lurking which might lead to
327 misinterpretations (Figure 2C, Figure 3A). There are additional issues beyond those concern-
»2s ing linear regression and binning discussed here. For example, Ref. [45] discusses Simpson’s
320 paradox [46] where distinct cellular sub-populations might lead to erroneous interpretation
a0 of cell cycle mechanisms. Examples of such distinct sub-populations are found in asymmet-
s rically dividing bacteria such as M. smegmatis |30, 47].

332 Single cell size in E. coli has been reported to grow exponentially [4, 14, 22-25], linearly
3 [36], bilinearly [48] or trilinearly [41]. These are inconsistent with our observations in Figures
s3a 4A-4C where we find that growth can be super-exponential. The non-monotonic behavior in
135 the fastest-growth condition is reminiscent of the results reported in Ref. [39] for B. subtilis.
ass The authors of Ref. [39] attribute the increase in growth rate to a multitude of cell cycle
337 processes such as initiation of DNA replication, divisome assembly, septum formation. In
138 the two slower growth conditions (Figures 4A-4B), we find that the growth rate increase
330 starts before the time when the septal cell wall synthesis starts i.e., the constriction event.
sa0  However, in the fastest growth condition (Figure 4C), the timing of growth rate increase
s seems to coincide with the onset of constriction which is in agreement with previous findings
a2 |41, 42].

343 It is important to distinguish between length growth and biomass growth. Ref. [49]

;a4 measures biomass and cell volume and finds the mass-density variations within the cell-cycle
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sss  to be small. In this paper, since we observe the length growth to be non-exponential (Figure
us 4), it remains to be seen whether biomass growth also follows a similar non-exponential
a7 behavior or if it is exponential as previously suggested (22, 49].

348 In conclusion, the paper draws the attention of the readers to the careful use of statistical
a0 methods such as linear regression and binning. Although shown in relation to cell growth,
350 this approach to data analysis seems ubiquitous. The general framework of carrying out data
351 analysis is presented in Figure 5. It proposes the construction of a generative model based on
352 the experimental data collected. Of course, we do not always know whether the model used
353 is an adequate description of the system. What is the fate of the methodology described here
354 in such cases? First, we should be reminded of Box’s famous quote “all models are wrong,
355 some are useful”. The goal of a model is not to provide as accurate a description of a system
356 as possible, but rather to capture the essence of the phenomena we are interested in and
357 stimulate further ideas and understanding. In our context, the goal of the model is to provide
358 a rigorous framework in which data analysis tools can be critically tested. If verified within
150 the model, it is by no means proof of the success of the model and the method itself, and
w0 further comparisons with the data may falsify it leading to the usual (and productive) cycle
se1 of model rejection and improvement via comparison with experiments. However, if the best
32 model we have at hand shows that the data analysis method is non-informative, as we have
33 shown here on several methods used to identify the mode of growth, then clearly we should
364 revise the analysis as it provides us with a non-consistent framework, where our modeling is
35 at odds with our data analysis. Furthermore, testing the methods on a simplified model is
366 still advantageous compared with the option of using the methods without any validation.
367 'To mitigate the risk of using irrelevant models, in some cases it may be desirable to test the
ses  analysis methods on as broad a class of models as possible as we have done in the paper, for
360 example by our use of a general value of a to describe the size-control strategy within our

370 models. Thus, guided by the model, the data analysis methods can be ultimately applied to
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sn  experimental data and underlying functional relationships can be inferred. Reiterating the
sz message of the authors in Ref. [8], the data analysis using this framework aims to justify
373 the methods being used, thus, reducing arbitrariness and promoting consensus among the

s7a scientists working in the field.

+ o  Methods

6 5.1 Experimental methods

;77 Strain engineering: STK13 strain (AftsN::frt-Ypet-FtsN, AdnaN::frt-mCherry-dnaN) is
ss  derivative of E. coli K12 BW27783 (CGSC+#: 12119) constructed by A-Red engineering [50]
we and by P1 transduction [51|. For chromosomal replacement of ftsN with fluorescence deriva-
;30 tive, we used primers carrying 40nt tails with identical sequence to the ftsN chromosomal
31 locus and a plasmid carrying a copy of ypet preceded by a kanamycin resistance cassette
2 flanked by frt sites (frt-kan®-frt-Ypet-linker) as PCR template (a kind gift from R. Reyes-
;3 Lamothe McGill University, Canada; [52]). The resulting PCR product was transformed by
s34 electroporation into a strain carrying the A\-Red-expressing plasmid pKD46. Colonies were
s selected by kanamycin resistance, verified by fluorescence microscopy and by PCR using
;s primers annealing to regions flanking ftsN gene. After removal of kanamycin resistance by
7 expressing the Flp recombinase from plasmid pCP20 [53], we transferred the mCherry-dnaN
s gene fusion (BN1682 strain; a kind gift from Nynke Dekker from TUDelft, The Nether-
;0 lands, [54]) into the strain by P1 transduction. To minimize the effect of the insertion on
a0 the expression levels of the gene we removed the kanamycin cassette using Flp recombinase
301 expressing plasmid pCP20.

302 Cells growth, preparation, and culturing E. coli in mother machine microflu-
303 idic devices: All cells were grown and imaged in M9 minimal medium (Teknova) supple-

3¢ mented with 2 mM magnesium sulfate (Sigma) and corresponding carbon sources at 28°C.
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sos  Three different carbon sources were used: 0.5% glucose supplemented by 0.2% casamino
306 acids (Cas) (Sigma), 0.3% glycerol (Fisher) and 0.3% alanine (Fisher) supplemented with 1x
307 trace elements (Teknova).

308 For microscopy, we used mother machine microfluidic devices made of PDMS (poly-
300 dimethylsiloxane). These were fabricated following to previously described procedure [55].
a0 To grow and image cells in microfluidic device, we pipetted 2-3 ul of resuspended concen-
s trated overnight culture of ODggp ~ 0.1 into main flow channel of the device and let cells to
a2 populate the dead-end channels. Once these channels were sufficiently populated (about 1
a3 hr), tubing was connected to the device, and the flow of fresh M9 medium with BSA (0.75
s pg/ml) was started. The flow was maintained at 5 pl/min during the entire experiment by
a5 an NE-1000 Syringe Pump (New Era Pump Systems, NY). To ensure steady-state growth,
a6 the cells were left to grow in channels for at least 14 hr before imaging started.

a07 Microscopy: A Nikon Ti-E inverted epifluorescence microscope (Nikon Instruments,
ws Japan) with a 100X (NA = 1.45) oil immersion phase contrast objective (Nikon Instru-
a0 ments, Japan), was used for imaging the bacteria. Images were captured on an iXon DU897
a0 EMCCD camera (Andor Technology, Ireland) and recorded using NIS-Elements software
s (Nikon Instruments, Japan). Fluorophores were excited by a 200W Hg lamp through an
a2 ND8 neutral density filter. A Chroma 41004 filtercube was used for capturing mCherry im-
a3 ages, and a Chroma 41001 (Chroma Technology Corp., VT) for Ypet images. A motorized
as stage and a perfect focus system were utilized throughout time-lapse imaging. Images in all
as  growth conditions were obtained at 4 min frame rate.

a16 Image analysis: Image analysis was carried out using Matlab (MathWorks, MA) scripts
a7 based on Matlab Image Analysis Toolbox, Optimization Toolbox, and Diplmage Toolbox
ais (https://www.diplib.org/). Cell lengths were determined based on segmented phase contrast
a0 images. Dissociation of Ypet-FtsN label from cell middle was used to determine the exact

a20 timing of cell divisions.
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a21 Further experimental details can also be found in Ref. [32].

22 D.2 Model

423 Consider a model of cell cycle characterized by two events: cell birth and division. In our
22 model, we assume that, barring the noise, cells tend to divide at a particular size vy given
a5 size at birth vy, via some regulatory mechanism. Hence, we can write vy as a function of
a2 Uy, f(vp). Ref. [13] provides a framework to capture the regulatory mechanisms by choosing
2 f(vy) = 20, “v§. wp is the typical size at birth and « captures the strength of regulation
a8 strategy. a = 0 corresponds to the timer model where division occurs after a constant time
20 from birth, and @ = 1 is the sizer where a cell divides on reaching a critical size. & = 1/2 can
430 be shown to be equivalent to an adder where division is controlled by addition of constant
an1 size from birth [13]. From here on, we would be using the length of the cell (Ly, Ly, etc.) as
32 a proxy for size (vy, vg4, etc.). All of the variable definitions are summarized in Table S1. We

La

s also define [, = 2 and I; = (L:)‘ Using this, we can write the division strategy f(ly) to be 4

(Lv)
s = f(l,) = 2 ;7. The total division size obtained will be a combination of f(l,) and noise in
a3 the division timing, the source of which could be the stochasticity in biochemical reactions
a3 controlling division.
a37 We will assume that division is perfectly symmetric i.e., size at birth in the (n + 1)
s generation ([;'t!) is half of size at division in the n'" generation (I7). Using the size additive
a0 division timing noise (((0, 0p4)) and f(l,) specified above, we obtain,

(4)

Iny1 = (1 —a)r, +1n <1+ M) ’

2(1 + xp)

a0 where x, = In(l}}). Size at birth (L) is narrowly distributed, hence I, ~ 1 and we can write
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s x = In(ly) = In(1 4 6) where § is a small number. We obtain < 1 and,

a2 The size additive noise, (5(0, 0pq) is assumed to be small and has a normal distribution with
a3 mean 0 and standard deviation o,y. Note that oy is a dimensionless quantity. Since (s(0, 0pq)
aas is assumed to be small and x, < 1, we can Taylor expand the last term of Equation 4 to
a5 first order,

Tp~ (1 —a)z, + M. (6)

a6 Equation 6 shows a recursive relation for cell size and it is agnostic of the mode of growth.
a7 We will show later for exponential growth that replacing the size additive noise with time

as additive noise does not change the structure of Equation 6.

w 5.3 Exponential growth

a0 Next, we will try to obtain the generation time (7y) in the case of exponentially growing

a1 cells. For exponential growth, the time at division 7y is given by,

1 L
Ty = Xm(L—Z)' (7)

s> For simplicity, we will assume a constant growth rate (A) within the cell-cycle. Growth rate
w3 is fixed at the start of the cell-cycle and is given by A = (A) + (A)£(0,CV,), where (\) is
ssa the mean growth rate and £(0,CV)) is assumed to be small with a normal distribution that
sss has mean 0 and standard deviation C'V). CV) denotes the coefficient of variation (CV) of
ass  the growth rate. This captures the variability in growth rate within cells arising from the

as7 stochastic nature of biochemical reactions occurring within the cell.
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sz 5.3.1 Size additive noise

w0 Here we will calculate the generation time using the division strategy f(l;) and a size additive
a0 division timing noise ((5(0,0p4)) as described previously. On substituting Ly = (f(ly) +

w1 (s)(Lp) into Equation 7 we obtain,

1 20,7 + (4(0, opa)

L=y e, o ",

); (8)

sz where the size additive noise (((0,044)) is Gaussian with mean 0 and standard deviation
463  Op(-

264 The noise ((0, 0pq) is assumed to be small, and we obtain to first order,

1
Ty~ - (ln(2) —az, +

: (s(0, o3a) ) .

2(1 + x,)t
a5 Since z, < 0, on Taylor expanding W to first order,

Ty ~ % <ln(2) — o, + M(l +(1— a)xn)> . (10)

a6 Assuming noise in growth rate to be small and expanding to first order, we obtain,

T, ~ L (ln(2) — az, —In(2)§(0,CVy) +

¢s(0, ova)
o —> ) (11)

2

w7 Hquation 11 gives the generation time for the class of models where birth controls division

s6s under the assumption that growth is exponential.

wo 5.3.2 Time additive noise

a0 Next, we ensure that the recursive relation for size at birth and the expression for the

ann generation time given by Equations 6 and 11, respectively, are robust to the nature of noise
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a2 assumed. In this section, the generation time is obtained using the division strategy f(1,) as

a3 described previously along with a time additive division timing noise (%) In such a case,

aza Ty is obtained to be,

¢(0,0,)
(AN

¢(0,0m)

a5 The time additive noise, SV is assumed to be small and has a normal distribution with

Ty = ~(n(2) — az,) +

> =

(12)

w76 mean ( and standard deviation % Note that o, is a dimensionless quantity.

a7 Assuming noise in growth rate to be small, we find T, to first order to be,

T, ~ % (In(2) — azy, — (€0, CV3) + (0, 00)) (13)

ars Equation 13 is same as Equation 11, if the time additive noise term, (0, 0,), in Equation

s 12 is replaced by (s(0,044)/2. Using Equation 13, the variance in Ty (0?) is,

1 202
2 2 2 n
a0 For exponential growth, we also find,
Lq
ln(L—) = Tpi1 — Tp +10(2) = \T}. (15)
b

as1 On substituting Equation 12 into Equation 15 we obtain to first order,

Tast ~ (1= @), +C(0,0,). (16)

s On replacing the time additive noise term, ((0,0,), in Equation 16 with ((0, 04q)/2, we
as3 recover the recursive relation for size at birth obtained in the case of size additive noise
a2 shown in Equation 6. Hence, the model is insensitive to noise being size additive or time

a5 additive with a simple mapping for going from one noise type to another in the small noise
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ag  limit.
a87 At steady state, x has a normal distribution with mean 0 and variance o2 whose value is

a8 given by,
2
2 On
=" 17

a0 We note that some of the derivations above have also been presented in Ref. [16], but are

a0 provided here for completeness.

« 5.4 Predicting the results of statistical constructs applied on ln(L—‘Z)
w: vs (AT and (A\)T; vs In(74)

203 5.4.1 Obtaining the best linear fit

a0a  Next, we calculate the equation for the best linear fit for the choice of ln(i—‘Z) as y-axis and

a5 (A)Ty as x-axis and vice versa. For simplicity, in this section, we will consider time additive
a6 division timing noise. However, the results obtained here will hold for size additive noise as

a7 well because the model is robust to the type of noise added as shown in the previous section.

408 First, we calculate the correlation coefficient (pe,y) for ln(L—;l) and time of division Ty,

In(L2) — (In(Z W) (T, — (T}
pezp:« (72) =« ((:;2»( ( >)>7 a8)

a0 where oy is the standard deviation in ln(L—Zl). Using Equations 15 and 16 we obtain,

Ly

In(Z2
n(Lb

)~ In(2) — ax, + ¢(0,0,). (19)
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Substituting Equations 13 and 19 into the numerator of Equation 18,

((n(7) = (20T = ()

(—ax, —In(2)£(0,CVy) 4+ €(0,0,))
(A)

= ((—azn 4+ ((0,04,)) ). (20)

soo  As the terms (0, 0,), £(0,CV,) and x,, are independent of each other, (£(0, CV))((0,0,)) =
so1 0, (£(0,CV)\)z,) = 0 and (x,((0,0,)) = 0. Equation 20 simplifies to,

Ly Lq 2 2 2
((hl(L—b) - <1H(L—b)>)(Td —(Ta))) = (a"o, + Un)m- (21)

sz The variance of ln(L—Z) obtained using Equation 19 is,

202
2 2 2 2 n
= = ) 22
of =a‘o;+ o, 5o (22)
s3 Inserting Equations 14, 21 and 22 into Equation 18, we get,
ey = — . 23
Peap 14 (175)122(2)0\&2 (23)
sos The slope of a linear regression line is given by,
m=pL, (24)
o

sos Wwhere 0,, 0, and p are the standard deviation of the x-variable, the standard deviation of

sos the y-variable and the correlation coefficient of the (x,y) pair, respectively. The intercept is,

¢ = (y) — mla). (25)
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507 On the x-axis, we plot (\)T; and the y-axis is chosen as ln(L—‘Z). The slope for this choice

sos  (my) can be calculated by,
o)

N/ 26
my Pexp oy <)\> ( )
s00  On substituting the values we get,
1 1)
my = :
tl 14 (17%)122(2)0%2
510 Only for C'V), < og,, we would expect a slope close to 1.
511 The intercept (cy) for the ln(i—j) vs (A\)Ty plot is given by,
~ (In(% NTy) =1n(2) | 1 ! 2
cu = (In(E) = ma(NTa) =0 2) | 1= — e | (28)
1+ —
si2. However, if we choose the x-axis as ln(ﬁ—g) and the y-axis is chosen as (\)T}, we obtain the

513 slope my,

oA
my = pexp%- (29)

s14 - On substituting the values we obtain my; = 1 independent of the noise parameters and find

515 that the intercept is zero.

si6 5.4.2 Non-linearity in binned data

si7  In the Main text, for the plot ln(ﬁ—‘Z) vs (A\)T}, we find the binned data to be non-linear (see

5

ey
=]

Figure 2C of the Main text). In this section, we explain the non-linearity observed using the
s10 model developed in the previous sections.

520 Binning data based on the x-axis means taking an average of the y-variable conditioned
s21 on the value of the x-variable. Mathematically, this amounts to calculating Ely | x| i.e.,

522 the conditional expectation of the y-variable given that x is fixed. In our case, we need to
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523 calculate ]E[ln(L—d) | (A\)Ty). ln(L—d) = AT, by definition of exponential growth, hence,

Lq

E[ln(— I,

) [ INTa] = BTy | (\)Ta]. (30)

s2a Since Ty is fixed, this is equivalent to calculating E[A | T,]. Using Equation 13,

EX | Ta] =

f f f )\p € C) 5(Ty — (h(lg) _ a% _ 1n<(2)£ L) dz d¢ d(
S o a

(A

oy (A

p(z, &, C) is the joint probability distribution of 2 and noise parameters £ and (. Since, they
are independent of each other, the joint distribution is product of the individual distributions
fi(z), f2(€) and f3(C), the distributions being Gaussian with mean 0 and standard deviation
0., CVy and o,, respectively. o,, o, are related by Equation 17. Since z, &, and ( are
narrowly distributed around zero, the contribution from large positive or negative values is
extremely small. This ensures that T} is also close to its mean and non-negative despite the

limits of the integral being —oo to co. Using A = (A) + (A\)£(0, C'V,) in Equation 31,

E[X | T4]
o (1 S oo I o £f1 (£)f3<<) STy — (B2 — o — MO 4 L) da dg dg)
S22 o I @) F2(€) f5(Q) 6(Tu — (55 — oy — B85 + 7)) du d€ dC
(32)
55 On evaluating the integrals, we obtain,
| 25
EN| Ty =\ [ 1+ _ n2) . 33
N e T (%)

2—a CVZIn?(2) 2—a CV2ZIn?(2)
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s2 ' T'hus, the trend of binned data is found to be,

Ld 1 In(2
TN =W (1~ | . (34)
b T+57 CVZIn2(2) L+ T—a OV2ZIn2(2)

E[ln(—

57 In the regime C'V, < o, , the last two terms on the RHS of Equation 34 vanish and the
s2s  binned data follows the trend y=x.
520 For the (\)T} vs ln(L—d) plot, we need to calculate E[(\)T} | ln(L—d)] Using Equations 13

s30 and 19, we obtain,

Lq

(NTa = In(7-) = In(2)(0, CVA). (35)

b

In (%) is independent of £(0,CV)). Using this, we can write E[(A\)T} | ln(L—d)] as,

Ly
Lb)]

SEANT) £(€) filin(2) 6 (T2~ (n(E) ~ In(2)6)) d(NTy) de
f4(1n(]£_i)) .

E[(A)Ta | In

(36)

ssa1. Note that the integral over (\)Ty goes from —oo to oo although (\)7,; cannot be negative.
sz As before, this is not an issue because we assume (\)7} to be tightly regulated around In(2)
s33 and the contribution to the integral from —oo to 0 is negligible. f4(ln(L—d)) denotes the
s3  probability distribution for ln(é—j), the distribution being Gaussian with mean In(2), and
535 standard deviation o; which is calculated in Equation 22. Putting the Gaussian form of

s3  f2(€) into the integral and simplifying we get,

Ly Ly

B[N Ty | In(79)] = (7).

(37)

ss7 The trend of binned data to first order in noise and = is E[(\)T} | ln(i—:)] =1In (L—d) This is

s  shown in Figure 2D of the Main text where the binned data follows the y=x line.
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s 5.5 Linear growth

ss0 In this section, we will focus on finding the equation of the best linear fit for relevant plots

sa1  in the case of linear growth. The time at division for linear growth is given by,

Ly— Ly

Ty v

(38)

sa2 Note that A has units of [length/time| and is defined as the elongation speed. This is
sa3  different from the exponential growth rate which has units [1/time|. Here, we will work with

saa  the normalized length at birth (I,) and division (1),

(39)

sss Consider the normalized elongation speed to be A = (Aiin) + (Nin)&in (0, CV 1in), where
sas  (Aiin) 1s the mean normalized elongation speed for a lineage of cells and &4, (0, C'Vy i) is
ss7 normally distributed with mean 0 and standard deviation C'V), j;,. Thus, the CV of elongation
sas speed is CV) ;. The regulation strategy which the cell undertakes is equivalent to that in
sa9  previous sections and is given by g(l,) = 2+ 2(1 — a)(l, — 1). Note that we can obtain g(I,)
ss0 by Taylor expanding f(l,) around [, = 1. Using the regulation strategy g(l,) and adding a

ss1 size additive noise (4(0, 0pg) which is independent of [, we find,

T, — 2+2(1 —a)(ly = 1) + (0,000) — Iy
4 (Niin) (1 + &in (0, OV 1in))

(40)

ss2 Note that we chose size additive division timing noise ((s(0,0p4)) for convenience in this
553 section. However, it can be shown as done previously that the model is robust to the noise

ss¢ in division timing being size additive or time additive. Assuming that the noise terms
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sss E1in (0, CViin) and (4(0, 0pq) are small, we obtain to first order,

T, ~ (1—2a)(l,—1)+1 +<§5(0>, ova) — &in (0, CV,\,zm)‘ (41)
lin

sss Lhe terms [, (5(0,054) and &;,,(0, CV) 1) are independent of each other. The standard

ss7  deviation of Ty (o) can be calculated to be,

o (1 —2a)%c} + 02, + OV,\Q,zm
L <)\lin>2 .

(42)

sss Assuming perfectly symmetric division and using I’} = g(I}') + (5(0, 0pq), we find the recursive

sso  relation for [j to be,
=1 =20 =1 = (1 = 2a)l) + 2a + (0, o). (43)

sso Note that Equation 43 is the same as Equation 6 under the approximation z,, = ) — 1. At
ser  steady state, the standard deviation of [, is denoted by o, and using Equation 43 its value

se2 1S obtained to be,

2 O-gd (44)
o= 4a(2 —a)

ses  Similarly, the standard deviation of /-1, or equivalently A, Ty, denoted by oy 4y, is calculated

se4 1O be,
9 da+1

Oltin = m%d-

(45)

ses For linear growth, a natural plot is l4-ly vs (A\jn)Ty (reminiscent of the ln(ﬁ—‘;) vs (A\)Ty plot
ses for exponential growth). To calculate the slope of the best linear fit, we have to calculate

sz the correlation coefficient py;, given by,

(g =1y = (la = 1p)) (M) Ta — {((Piin) Ta)))

<)\zm>01,lm0t
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ses  Again using the independence of terms [, (s(0, 0pq) and &, (0, CV) i) from each other, we

seo  get,

Diim = (1 — 204)20'2 + O'gd _ Ollin <47)
o <)\zm>01,1m0t <)\lin>(7t '

so  The slope of best linear fit for the plot Iy — I, vs (An)Ty is given by,

Ol,lin . 1

mtl;l pl <)\lin>0't 1 N CV)\z,lin4a(2_a) ( )
O‘bid(404+1)
s The intercept ¢y i, is found to be,
1
Citin = (la = o) — M pin{(Miin) Ta) = 1 — CV2,. da(2—a) (49)
L+ Ugd(4o¢+1)

572 On flipping the axis, the slope (my:,) for the plot (A, )Ty vs lg — I, is obtained to be,

)\ in) O
Mg lin = le< : > L = 1. (5())
Ollin
s73 The intercept ¢, is found to be,
Crtin = ((Nin)Ta) — Muzgin({la — lp) = 0. (51)

s7a The best linear fit for the (A;,)Ty vs Iy — [, plot follows the trend y=x.

575 Simulations of the adder model for linearly growing cells were carried out. The deviation
s76  of the best linear fit for the Iy — l, vs (N )Ty plot from the y=x line is shown in Figure 3-
sz figure supplement 1A, while in Figure 3- figure supplement 1B, the best linear fit for the plot

518 (Aiin)Ta Vs lg — [ is shown to agree with the y=x line.
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s 5.6 Differentiating linear from exponential growth

ss0 In this section, we explore the equation for the best linear fit of (A, )Ty vs Iy — [, plot in
ss1  the case of exponential growth and (\)7} vs ln(i—:) plot for linear growth. Intuitively, we
sz expect the best linear fit in both cases to deviate from the y=x line. In this section, we will
ss3 calculate the best linear fit explicitly. Surprisingly, we will find that, in the case of linear
ssa  growth, the best linear fit for the (AT} vs ln(ﬁ—‘j) plot follows the y=x line closely.

585 Let us begin with exponential growth with growth rate, A = (\) + (A\)&(0,CV,) as
sss defined previously. Again, £(0,CV)) has a normal distribution with mean 0 and standard
se7  deviation C'V), it being the CV of the growth rate. The time at division is given by Equation
ln(2)> . In(2)

) R T For exponential growth, we will plot

sss 7. The average growth rate (\) = ( T

ss0  (Njin)Ta vs lg—lp. As previously defined, ()\j;,,) is the mean normalized elongation speed and

20 (Nin) = (1) ~ ﬁ (\iin) is related to (A) by,

()

(Nin) = )

(52)

so1 g — [, can be calculated by using the regulation strategy f(l,) introduced in Section 5.2 and
so2 a normally distributed size additive noise (45(0, 0p4). Note that we have chosen the noise in
so3 division timing to be size additive. However, the model is robust to the choice of type of

soa  noise as we showed in Section 5.3. Using Equations 5 and 6 we obtain,
=17 ~ 1+ (1—2a)x, + ((0,00). (53)

sos Using Equation 11, (A;,)Ty is obtained to be,

ax (s(0, 0pa)

(Niin) Ty =1 — O £(0,CVy) + 2In(2)

(54)

sos L0 calculate the expression for my, j;,,, the slope of the best linear fit for (\;,,)Ty vs l4—1; plot,
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so7 we first calculate py;, given by Equation 46. The expression for oy, (standard deviation of

sos lg — lp) and o, (standard deviation of T}) are found to be,

‘712,lm =(1- 20‘)2‘7926 + O-l%dv (55)
599
1 ao o
2 T \2 2 bd 2

= CV, : 56
T D) ( ) T G ) (56)
s00 0, is related to o, via Equation 17. In Section 5.3, we also showed that o, = . Using

so1 these, we can write,

2
o= b (57)
T 4e(2 - )

o2 Now using the expressions for o, 05, and the fact that x, £(0,CV)) and (s(0,044) are

s03 independent of each other, we get,

(2a—l)aoy Ty
+
In(2) 21n(2)
lin — 58
p <)\lm>0l,lzn0t ( )
o0a For the plot (Njn)Ty vs lg — I, the slope my; j;,, is given by,
(2a-Dac? | o,
T Ain In(2 REING)
Mutlin = Plin AaTh = = 2 <3 (59)
Ollin O1tin

e0s Inserting Equation 55 into Equation 59 and substituting o2 given by Equation 57, we obtain,

1 3o
Mitlin = 1 Y 4o+ 1 (60)
s The intercept ¢ 1, is found to be,
1 3
Crtin = ((Niin) Ta) — Mupgin{la — lp) =1 — NOETESS (61)
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o7 For the adder model (a = %), we get the value of slope m, 1t = 215(2) ~ (0.7213 and intercept

608 Clinit — 1 — ﬁ@) ~ 0.279. This is different from the best linear fit obtained for same

600 regulatory mechanism controlling division in linearly growing cells where we found that the
s10 best linear fit follows the y=x line. Intuitively, we expect the best linear fit of (\;,)Ty vs
sun  lg—I, plot to deviate from y=x line in the case of exponential growth. We showed analytically
ez that for a class of models where birth controls division, it is indeed the case. This is also
s13 shown using simulations of the adder model in Figure 3- figure supplement 1C.

614 In Section 5.4.1, we found the best linear fit for (\)7, vs ln(i—‘:) plot to follow the y=x
s15 line for exponentially growing cells where division is regulated by birth event via regulation
e16 strategy f(l,). Next, we calculate the equation for the best linear fit of (AT} vs ln(’z—‘Z)
617 plot given growth is linear. The model for division control will be same as that in Section
eis 5.5 1.e., the regulation strategy for division is given by g(l) = 2 + 2(1 — a)(l, — 1) which
e19 is also equivalent to f(l,). The linearly growing cells grow with elongation speed A, =
620 (Nin) (1 +&in (0, CVy 1in)). As discussed before, &, (0, CV) i) has a normal distribution with
sz mean 0 and standard deviation C'V) 4, it being the CV of the elongation speed. Using

622 Equations 5 and 6, we get,

L s(0,
(2 Zn2) = agn 4 00 (62)
Ly 2
623 Using Equations 5 and 52, we obtain from Equation 41,
(MNTy =1In(2) + (1 — 2a) In(2)x + In(2)5(0, 0pa) — In(2)&1n (0, CV gin). (63)

e2a  Since x, & (0, CVi 1) and (5(0, 0pq) are uncorrelated, the standard deviation of ln(L—‘Z) and

625 1y denoted by o; and o; respectively are calculated to be,

o2
o} = oo’ 4 (64)
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o2 = 1112(2)
SEREOVE

(1 —2a)%02 +of, + C’Vﬁlm). (65)

s26  We calculate the correlation coefficient for the pair (ln(i—:), (\)Ty). Since the correlation
27 coefficient is unaffected by multiplying one of the variables with a positive constant, we can
e2s calculate the correlation coefficient for the pair (ln(i—"j), Ty) Or pegp as given by Equation 18.

s20 Using the independence of terms z, &, (0, CV) i) and (5(0, opa),

In(2)(02(20 — Da + T)

exp — 66
p P </\>0l0t ( )
e30 For the plot (A\)Ty vs ln(i—:), the slope my; of the best linear fit is given by,
oi(A)  In(2 05204—1@%-i
= peny 1{A) _ In(2)(oy( : Jo+34) (67)
o 0;
sa1  Inserting Equation 64 into Equation 67 and using Equation 57, we get,
3
ez Similarly the intercept (¢;;) for the plot (AT, vs ln(L—z) is found to be,
Ly 3
ar = (NTy) — mlt(ln(L—b)) =In(2)(1 - 3 In(2)) ~ —0.0275. (69)

633 This is very close to y=x trend obtained for the same regulatory mechanism controlling

e3« division in exponentially growing cells (Figure 3A).

es .7 Growth rate vs age and elongation speed vs age plots.

) Vs

s3s In the previous sections, we found that binning and linear regression on the plot ln(LZ

Ly

es7 (A\)Ty, and the plot obtained by interchanging the axes, were inadequate to identify the mode
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s3s of growth. In this section, we try to validate the growth rate vs age plot as a method to
30 elucidate the mode of growth.

640 In addition to cell size at birth and division and the generation time, cell size trajectories
o1 (cell size, L vs time from birth, ¢) were obtained for multiple cell cycles. In our case, the cell

ea2  size trajectories were collected either via simulations (in Figure 3B) or from experiments (for

t

ea3 Figures 4A-4C) at intervals of 4 min. For each trajectory, growth rate at time ¢ or age T

1 L(t+AH)—L(t

e44 18 calculated as 70) = ) where At is the time between consecutive measurements. To

L(t+At)—L(t)

eas Obtain elongation speed vs age plots, the formula before needs to be replaced with o

sss The growth rate is interpolated to contain 200 points at equal intervals of time for each cell
saz trajectory. The growth rate trends appear to be robust with regards to a different number of
sss interpolated points (from 100 to 500 points). To obtain the growth rate trend as a function
sao Of cell age, we use the method previously applied in Ref. [39]. In this method, growth rate is
ss0  binned based on age for each individual trajectory (50 bins) and the average growth rate is
ss1 obtained in each of the bins. The binned data trend for growth rate vs age is then found by
es2 taking the average of the growth rate in each bin over all trajectories. Binning the growth
es3 rate for each trajectory ensures that each trajectory has an equal contribution to the final
esa  growth rate trend so as to avoid inspection bias. This step is especially important when data
ess collected at equal intervals of time is analyzed. In such a case, cells with larger generation
ese times have a greater number of measurements than cells with smaller generation times.
es7 Obtaining the growth rate trend without binning growth rate for each trajectory would have
ess biased the binned data trend for the growth rate vs age plot to a smaller value because
e Of over-representation by slower-growing cells (or equivalently cells with longer generation
o time). This bias towards lower growth rate values in the growth rate vs age plots is an
s61 instance of inspection bias.

662 In Figures 4A-4C, we find the growth rate obtained from FE. coli experiments to change

s3  within the cell cycle. In the two slower growth media (Figures 4A, 4B), the growth rate is
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eea found to increase with cell age while for the fastest growth media (Figure 4C) the growth
ees rate follows a non-monotonic behaviour similar to that observed in Ref. [39] for B. subtilis.
s Abrupt changes in growth rate are reported at constriction in Refs. [41, 42|. We find that the
s7 growth rate changes start before constriction in the two slower growth conditions considered.
s One possibility is that this increase is due to preseptal cell wall synthesis [56]. Preseptal cell
sso wall synthesis does not require activity of PBP3 (Ftsl) but instead relies on bifunctional
er0  glycosyltransferases PBP1A and PBP1B that link to FtsZ via ZipA. One hypothesis that
enn can be tested in future works is that at the onset of constriction, activity from PBP1A
e and PBP1B starts to gradually shift to the PBP3/FtsW complex and therefore no abrupt
ez change in growth rate is observed. In the fastest growth condition (glucose-cas medium), we
era find that the increase in growth rate approximately coincides with onset of constriction, in
ers agreement with the previous findings [41, 42].

676 In Figures 4A-4C, the growth rate trends are not obtained for age close to one. This

L(Ta+At)—L(Ty

N ) and this requires knowing

ez 18 because growth rate at age = 1 is given by L(le)
s the cell lengths beyond the division event (L(T; + At)). To estimate growth rates at age
7o close to one, we approximate L(Ty + At) to be the sum of cell sizes of the two daughter
sso cells. In order to minimize inspection bias, we considered only those cell size trajectories
es1 which had L(t) data for 12 min after division (corresponding to an age of approximately
2 1.1). However, the growth rate trends in all three growth media were robust with regards to
es3 a different time for which L(t) was considered (4 min to 20 min after division). We use the
ssa binning procedure discussed before in this section. To validate this method, we applied it
ess on synthetic data obtained from the simulations of exponentially growing cells following the
ss6 adder and the adder per origin model. Cells were assumed to divide in a perfectly symmetric
sz manner and both of the daughter cells were assumed to grow with the same growth rate,
sss independent of the growth rate in the mother cell. The growth rate trends for the two

eso  models considered (adder and adder per origin) are expected to be constant even for cell age
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s0 > 1. We found that the growth rate trends were indeed approximately constant as shown in
s1  Figure 4- figure supplement 1D. We also considered linear growth with division controlled via
s02 an adder model. The daughter cells were assumed to grow with the same elongation speed,
s03 independent of the elongation speed in the mother cell. In this case, we expect the elongation
eoa speed trend to be constant for cell age > 1. This is indeed what we observed as shown in the
eos inset of Figure 4- figure supplement 1D. We used this method on E. coli experimental data
0o and found that the growth rate trends obtained for the three growth conditions (Figure 4-
eor figure supplements 1A-1C) were consistent with that shown in Figures 4A-4C in the relevant
sos age ranges. For cell age close to one, we found that the growth rate decreased to a value
s00 close to the growth rate near cell birth (age ~ 0) for all three growth conditions considered.
700 In summary, we find that the growth rate vs age plots are a consistent method to probe

71 the mode of cell growth within a cell cycle.

2 5.8 Growth rate vs time from specific event plots are affected by

703 inspection bias

704 To probe the growth rate trend in relation to a specific cell cycle event, for example cell birth,
705 growth rate vs time from birth plots are obtained for simulations of exponentially growing
706 cells following the adder model. In the growth rate vs time from birth plot, the rate is found
707 to stay constant and then decrease at longer times (Figure 3- figure supplement 2C) even
708 though cells are exponentially growing. Because of inspection bias (or survivor bias), at later
700 times, only the cells with larger generation times (or slower growth rates) “survive”. The
710 average generation time of the cells averaged upon in each bin of Figure 3- figure supplement
71 2C is shown in Figure 3- figure supplement 2D. The decrease in growth rate in Figure 3-
712 figure supplement 2C occurs around the same time when an increase in generation time is

713 observed in Figure 3- figure supplement 2D. Thus, the trend in growth rate is biased towards
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714 lower values at longer times. The problem might be circumvented by restricting the time on
715 the x-axis to the smallest generation time of all the cell cycles considered [31].

716 To check for growth rate changes at constriction, we used plots of growth rate vs time
77 from constriction (¢t —7,,). Growth rate trends obtained from E. coli experimental data show
718 a decrease at the edges of the plots (Figure 4- figure supplements 2A, 2C, and 2E). These
710 deviate from the trends obtained using the growth rate vs age plots (Figures 4A-4C). To
720 investigate this discrepancy, we use a model which takes into account the constriction and
71 the division event. Currently it is unknown how constriction is related to division. For the
722 purpose of methods validation, we use a model where cells grow exponentially, constriction
723 occurs after a constant size addition from birth, and division occurs after a constant size
724 addition from constriction. Note that other models where constriction occurs after a constant
725 size addition from birth while division occurs after a constant time from constriction, as well
726 as a mixed timer-adder model proposed in Ref. [42], lead to similar results. We expect the
72z growth rate trend to be constant for exponentially growing cells. However, we find using
728 numerical simulations that it decreases at the plot edges both before and after the constriction
720 event (Figure 3- figure supplement 2A). This decrease can be attributed to inspection bias.
730 The average growth rate in time bins at the extremes are biased by cells with smaller growth
71 rates. This is shown in Figure 3- figure supplement 2B where the average generation time
732 for the cells contributing in each of the bins of Figure 3- figure supplement 2A is plotted.
733 The time at which the growth rate decreases on both sides of the constriction event is close
73 to the time at which the average generation time increases. For example, in alanine medium,
735 the generation time for each of the bins is plotted in Figure 4- figure supplement 2B. The
736 average generation time for the cells contributing to each of the bins is almost constant for
737 the timings between -80 min to 20 min. Thus, for this time range the changes in growth rate
738 are not because of inspection bias but are a real biological effect. The behavior of growth

730 rate within this time range in Figure 4- figure supplement 2A is in agreement with the trend
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720 in growth rate vs age plot of Figure 4A. On accounting for inspection bias, the growth rate
71 Vs age plots agree with the growth rate vs time from constriction plots in other growth media
722 as well (Figure 4- figure supplement 2C, Figure 4- figure supplement 2E). Thus, growth rate
743 VS time plots are also a consistent method to probe growth rate modulation in the time range

742 when avoiding the regimes prone to inspection bias.

#s 5.9 Results of elongation speed vs size plots are model-dependent.

76 Cells assumed to undergo exponential growth have elongation speed proportional to their
a7 size. In the case of exponential growth, the binned data trend of the plot elongation speed vs
s size is expected to be linear with the slope of the best linear fit providing the value of growth
70 rate and intercept being zero. In this section, we use the simulations to test if binning and
750 linear regression on the elongation speed vs size plots are suitable methods to differentiate
71 exponential growth from linear growth [43].

752 To test the method, we generate cell size trajectories using simulations of the adder model

753 with a size additive division timing noise and assuming exponential growth. Elongation speed

L(t+At)—L(1)

~ where At is the time between

7 at size L(t) is calculated for each trajectory as
75 consecutive measurements (= 4 min in our case). Each trajectory is binned into 10 equally
76 sized bins based on their cell sizes and the average elongation speed is obtained for each bin.
757 The final trend of elongation speed as a function of size is then obtained by binning (based
78 on size) the pooled average elongation speed data of all the cell cycles.

750 We find that the binned data trend is linear with the slope of the best linear fit close to the
70 average growth rate considered in the simulations (Figure 3- figure supplement 3D). This is
761 in agreement with our expectations for exponential growth. In order to check if this method
2 could differentiate between exponential growth and linear growth, we used simulations of

763 the adder model undergoing linear growth to generate cell size trajectories for multiple cell

764 cycles. For linear growth, elongation speed is expected to be constant, independent of its
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765 cell size. The binned data trend for the elongation speed vs size plot is also obtained to be
766 constant for the simulations of linearly growing cells (Figure 3- figure supplement 3B). The
767 intercept of the best linear fit obtained is close to the average elongation speed considered in
768 the simulations. The binned data trend for linear and exponential growth are clearly different
70 as shown in Figure 3- figure supplement 3B and Figure 3- figure supplement 3D, respectively,
770 and this result holds for a broad class of models where the division event is controlled by
771 birth and the growth rate (for exponential growth)/elongation speed (for linear growth) is
772 distributed normally and independently between cell-cycles.

73 Next, we consider the adder per origin cell cycle model for exponentially growing cells
774 [17]. In this model space, the cell initiates DNA replication by adding a constant size per
775 origin from the previous initiation size. The division occurs on average after a constant time
776 from initiation. For exponentially growing cells, the binned data trend is still expected to be
777 linear as before. Instead, we find using simulations that the trend is non-linear and it might
778 be misinterpreted as non-exponential growth (Figure 3- figure supplement 3F).

779 Thus, the results of binning and linear regression for the plot elongation speed vs size is

780 model-dependent.

= 5.10 Interchanging axes in growth rate vs inverse generation time

782 plot might lead to different interpretations.

783 So far, our discussion was focused on the question of mode of single-cell growth. A related
7sa  problem regards the relation between growth rate (A) and the inverse generation time (Tid)
7ss  On a population level, the two are clearly proportional to each other. However, single-cell
786 studies based on binning showed an intriguing non-linear dependence between the two, with
7e7 the two variables becoming uncorrelated in the faster-growth media. [25, 57]. Within the

788 same medium, the binned data curve for the plot A vs 7%1 flattened out for faster dividing
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780 cells. The trend in the binned data was different from the trend of y= In(2)x line as observed
790 for the population means. A priori one might speculate that the flattening in faster dividing
71 cells could be because the faster dividing cells might have less time to adapt their division

792 rate to transient fluctuations in the environment. Kennard et al. [57] insightfully also plotted

L

7; Vs A and found a collapse of the binned data for all growth conditions onto the y = In(2)x

793

704 line. These results are reminiscent of what we previously showed for the relation of ln(L—‘Z)

705 and (\)Ty.

796 In the following, we will elucidate why this occurs in this case using an underlying model
707 and predicting the trend based on it. We use simulations of the adder model undergoing
798 exponential growth. The parameters for size added in a cell cycle and mean growth rates
790 are extracted from the experimental data. CV of growth rate is assumed lower in faster-
soo growth media as observed by Kennard et al. Using this model, we could obtain the same
so1 pattern of flattening at faster-growth conditions that is observed in the experiments (Figure
so2  2- figure supplement 2A). The population mean for A and Tid follows the expected y=In(2)x
so3 equation (shown as black dashed line) as was the case in experiments. Intuitively, such a
soa departure from the expected y=In(2)x line for the single cell data can again be explained by
sos determining the effect of noise on variables plotted on both axes. As previously stated Ty is
sos affected by both growth rate noise and noise in division timing while growth rate fluctuates
sor independently of other sources of noise. This does not agree with the assumption for binning
gos as noise in division timing affects the x-axis variable rather than the y-axis variable. In such
soo & case, the trend in the binned data might not follow the expected y=In(2)x line. However,
s10  on interchanging the axes, we would expect the assumptions of binning to be met and the

s trend to follow the yz@x line (Figure 2- figure supplement 2B).

41


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

sz .11 Data and simulations
sz 5.11.1 Experimental data

s1a Experimental data obtained by Tanouchi et al. [10] was used to plot Lg vs L, shown in
sis Figure 1A. E. coli cells were grown at 25°C in a mother machine device and the length at
s1i6  birth and division were collected for multiple cell cycles. Ly vs Ly plot was obtained using
s17  these cells and linear regression performed on it provided a best linear fit.

818 Data from recent mother machine experiments on FE. coli was used to make all other
s10  plots. Details are provided in Section 5.1 and Ref. [32]. The experiments were conducted at
s20 28°C in three different growth conditions - alanine, glycerol and glucose-cas (also see Section
s21 b.1). Cell size trajectories were collected for multiple cell cycles and all of the data collected

s22  were considered while making the plots in the paper.

23 5.11.2 Simulations

s22 MATLAB R2021a was used for simulations. Simulations of the adder model for exponentially
s2s  growing cells were carried out over a single lineage of 2500 generations (Figures 2C, 2D,
s26 Figure 3- figure supplement 1C). The mean length added between birth and division was
g2z set to 1.73 um in line with the experimental results for alanine medium. Growth rate was

s2s variable and sampled from a normal distribution at the start of each cell cycle. The mean

s20 growth rate was set to %, where (T;) = 212 min and coefficient of variation (CV) = CV),

g0 — 0.15. The noise in division timing was assumed to be time additive with mean 0 and

s31  standard deviation %, where 0, = 0.15. The binning data trends and the best linear fits

832 obtained using these simulations could be compared with the analytical results obtained in
g3 Sections 5.4.2 and 5.6.

834 For simulations of linear growth (Figures 3A-3B, Figure 3- figure supplements 1A, 1B, 3A,

s3s 3B, Figure 4- figure supplement 1D), the mean growth rate was set to <Lzl;d §b> , with the values
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3 of (Ly — Lp) and (Ty) used as mentioned previously. The noise in division timing was size
s37 additive with standard deviation = 0.15(L,;). Noise was also considered to be size additive
s3s with the same standard deviation for the simulations of exponentially growing cells shown
s30 in Figure 3B, Figure 3- figure supplements 2C, 3C, 3D, and Figure 4- figure supplement 1D.
840 For Figure 3B, Figure 3- figure supplements 3E, 3F, Figure 4- figure supplement 1D,
sa1  simulations were carried out over a lineage of 2500 generations for exponentially growing cells
g2 following the adder per origin model. In the simulations, the time increment is 0.01 min.
ga3  The initial condition for the simulations is that cells are born and initiate DNA replication
sas  at time t=0 but the results are independent of initial conditions. The number of origins is
gas  also tracked throughout the simulations beginning with an initial value of 2. Cells divide
sss  into two daughter cells in a perfectly symmetrical manner (no noise in division ratio), and
gaz one of the daughter cells is discarded for the next cell cycle. In simulations, the growth rate
sas  was fixed within a cell cycle but varied between different cell cycles. On division, the growth
sso rate for that cell cycle was drawn from a normal distribution with mean (\) and coefficient of
sso variation (C'V)) whose values were fixed using the experimental data from alanine medium.

gs1 The total length at which the next initiation happens is determined by,

L = L+ OAy, o

g2 where A;; is the length added per origin and O is the number of origins. To determine

tot,next
L

¥ , A;; was drawn on reaching initiation length from a normal distribution. The mean

853
ssa and CV of A;; was obtained from experiments done in alanine medium. In the adder per
sss origin model, division happens after a C+D time from initiation. The division length (L)

sse 1S obtained to be,

Lg = LieN¢*D), (71)
g7 In the simulations, once the initiation length was reached, the corresponding division oc-
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gss  curred a time C+D after initiation. C+D timings for each initiation event were again drawn
gso from a normal distribution with the same mean and CV as that of the experiments in alanine
geo medium.

861 For Figure 3- figure supplement 2A, cells were assumed to grow exponentially in the

ss2 simulations. The constriction length (L,,) was set to be,

L, = Ly + Ay,. (72)

g3 The length added (A,,) was assumed to have a normal distribution with the mean length
sse added between birth and constriction set to 1.18 pum and the CV = 0.23, in line with the

ses experimental results for alanine medium. The length at division was set as,

L;= L, + A (7?’)

s The length added (A,q4) was also assumed to have a normal distribution with the mean
sez  length added set to 0.53 um and the CV = 0.26, again in line with the experimental results
ges for alanine medium.

860 For Figure 3B, Figure 3- figure supplements 2A-2D, 3A-3F, Figure 4- figure supplement
g0 1D, the cell sizes are recorded within the cell cycle at equal intervals of 4 min, similar to
ern that in the E. coli experiments of Ref. [32].

872 For simulations shown in Figure 4- figure supplement 1D, the cell size trajectories are
s73  obtained at intervals of 4 min beyond the current cell-cycle. The size after the division event
gra 18 said to be the sum of the sizes of the daughter cells. It is also further assumed that
s the daughter cells are equal in size (perfectly symmetric division) and they both grow with
s7s  the same growth rate (for exponential growth) or elongation speed (for linear growth). The
sz growth rates/elongation speeds for the daughter cells are sampled from a normal distribution

srs - with a mean and CV as discussed before. The cell size trajectories are recorded for 80 min
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sro after the division event in the current cell cycle.

880 In Figure 2- figure supplement 2, simulations of the adder model for exponentially growing
sa1  cells were carried out until a population of 5000 cells was reached. The parameters for size
sz added in a cell cycle and mean growth rates were extracted from the experimental data [57].
sz The value of o, used in all growth conditions was 0.17 while C'V), decreased in faster growth
ssa conditions (0.2 in the three slowest growth conditions, 0.12 and 0.07 in the second fastest

sss and fastest growth conditions respectively).

= 0 Acknowledgements

sz The authors thank Ethan Levien, Jie Lin for useful discussions, Jane Kondev, Xili Liu, and
sss  Marco Cosentino Lagomarsino for their useful feedback on the manuscript, Da Yang and
ss0  oScott Retterer for help in microfluidic chip making, and Rodrigo Reyes-Lamothe for a kind
g0 gift of strain. Authors acknowledge technical assistance and material support from the Center
g1 for Environmental Biotechnology at the University of Tennessee. A part of this research was
g2 conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge
so3 National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences,
goa U.S. Department of Energy. This work has been supported by the US-Israel BSF research
sos grant 2017004 (JM), the National Institutes of Health award under RO1GM127413 (JM),
sos NSEF CAREER 1752024 (AA), NIH grant 103346 (PK) and NSF award 1806818 (PK).

« 7 Conflict of interest

ss ' The authors declare that they have no conflicts of interest with the contents of this article.

45


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

= References

oo 1. Osella, M., Tans, S.J., and Lagomarsino, M.C. (2017). Step by Step, Cell by Cell:

901 Quantification of the Bacterial Cell Cycle. Trends in Microbiology 25, 250-256.

o2 2. Facchetti, G., Chang, F., and Howard, M. (2017). Controlling cell size through sizer

903 mechanisms. Current Opinion in Systems Biology 5, 86-92.

oa 3. Ho, P.Y., Lin, J., and Amir, A. (2018). Modeling cell size regulation: From single-cell-
905 level statistics to molecular mechanisms and population-level effects. Annual Review of

906 Biophysics 47, 251-271.

o7 4. Soifer, I., Robert, L., and Amir, A. (2016). Single-cell analysis of growth in budding yeast

908 and bacteria reveals a common size regulation strategy. Current Biology 26, 356-361.

oo 5. Jun, S., Si, F., Pugatch, R., and Scott, M. (2018). Fundamental principles in bacterial
010 physiology—history, recent progress, and the future with focus on cell size control: a

011 review. Reports on Progress in Physics §1, 056601.

o1 6. Amir, A. and Balaban, N.Q. (2018). Learning from noise: how observing stochasticity

013 may aid microbiology. Trends in Microbiology 26, 376-385.

oia 7. Kohram, M., Vashistha, H., Leibler, S., Xue, B., and Salman, H. (2021). Bacterial
015 growth control mechanisms inferred from multivariate statistical analysis of single-cell

016 measurements. Current Biology 1, 955-964.

sz 8. Hogg, D.W., Bovy, J., and Lang, D. (2010). Data analysis recipes: Fitting a model to

018 data. arXiv preprint arXiv:1008.4686 .

o0 9. Kiviet, D.J., Nghe, P., Walker, N., Boulineau, S., Sunderlikova, V., and Tans, S.J. (2014).

920 Stochasticity of metabolism and growth at the single-cell level. Nature 514, 376-379.

46


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

o21 10. Tanouchi, Y., Pai, A., Park, H., Huang, S., Buchler, N.E., and You, L. (2017). Long-term

022 growth data of FEscherichia coli at a single-cell level. Scientific Data 4, 1-5.

o3 11. Harris, L.K. and Theriot, J.A. (2016). Relative rates of surface and volume synthesis set
024 bacterial cell size. Cell 165, 1479-1492.

o 12. Si, F., Le Treut, G., Sauls, J.T., Vadia, S., Levin, P.A., and Jun, S. (2019). Mechanistic

026 origin of cell-size control and homeostasis in bacteria. Current Biology 29, 1760-1770.
o7 13. Amir, A. (2014). Cell size regulation in bacteria. Physical Review Letters 112, 208102.

o8 14. Campos, M., Surovtsev, [.V., Kato, S., Paintdakhi, A., Beltran, B., Ebmeier, S.E., and
920 Jacobs-Wagner, C. (2014). A constant size extension drives bacterial cell size homeosta-

930 sis. Cell 159, 1433-1446.

o1 15. Taheri-Araghi, S., Bradde, S., Sauls, J.T., Hill, N.S., Levin, P.A., Paulsson, J., Vergas-
032 sola, M., and Jun, S. (2015). Cell-size control and homeostasis in bacteria. Current

933 Biology 25, 385-391.

o3« 16. Eun, Y.J., Ho, P.Y., Kim, M., LaRussa, S., Robert, L., Renner, L.D., Schmid, A.,
035 Garner, E., and Amir, A. (2018). Archaeal cells share common size control with bacteria

036 despite noisier growth and division. Nature Microbiology 3, 148-154.

ozv 17. Ho, P.Y. and Amir, A. (2015). Simultaneous regulation of cell size and chromosome

038 replication in bacteria. Frontiers in Microbiology 6, 662.

30 18. Micali, G., Grilli, J., Osella, M., and Lagomarsino, M.C. (2018). Concurrent processes

940 set E. coli cell division. Science Advances 4, eaau3324.

sar 19. Witz, G., van Nimwegen, E., and Julou, T. (2019). Initiation of chromosome repli-
042 cation controls both division and replication cycles in F. coli through a double-adder

043 mechanism. eLife 8, e48063.

47


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

aaa 20. Barber, F., Ho, P.Y., Murray, A.W., and Amir, A. (2017). Details matter: noise and
045 model structure set the relationship between cell size and cell cycle timing. Frontiers in

946 Cell and Developmental Biology 5, 92.

sz 21. Facchetti, G., Knapp, B., Chang, F., and Howard, M. (2019). Reassessment of the basis
048 of cell size control based on analysis of cell-to-cell variability. Biophysical Journal 117,

949 1728-1738.

oso 22. Godin, M., Delgado, F.F., Son, S., Grover, W.H., Bryan, A.K., Tzur, A., Jorgensen,
051 P., Payer, K., Grossman, A.D., Kirschner, M.W., et al. (2010). Using buoyant mass to

052 measure the growth of single cells. Nature Methods 7, 387-390.

os3 23. Wang, P., Robert, L., Pelletier, J., Dang, W.L., Taddei, F., Wright, A., and Jun, S.
054 (2010). Robust growth of Escherichia coli. Current Biology 20, 1099-1103.

oss  24. Cermak, N., Olcum, S., Delgado, F.F., Wasserman, S.C., Payer, K.R., Murakami, M.A.,
956 Knudsen, S.M., Kimmerling, R.J., Stevens, M.M., Kikuchi, Y., et al. (2016). High-
057 throughput measurement of single-cell growth rates using serial microfluidic mass sensor

058 arrays. Nature Biotechnology 34, 1052-1059.

oso  25. Iyer-Biswas, S., Wright, C.S., Henry, J.T., Lo, K., Burov, S., Lin, Y., Crooks, G.E.,
960 Crosson, S., Dinner, A.R., and Scherer, N.F. (2014). Scaling laws governing stochastic
961 growth and division of single bacterial cells. Proceedings of the National Academy of

962 Sciences 111, 15912-15917.

s3 26. Scott, M., Gunderson, C.W., Mateescu, E.M., Zhang, Z., and Hwa, T. (2010). Inter-
964 dependence of cell growth and gene expression: origins and consequences. Science 330,

965 1099-1102.

o6 27. Lin, J. and Amir, A. (2018). Homeostasis of protein and mRNA concentrations in

967 growing cells. Nature Communications 9, 1-11.

48


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

ws 28. Metzl-Raz, E., Kafri, M., Yaakov, G., Soifer, I., Gurvich, Y., and Barkai, N. (2017). Prin-
969 ciples of cellular resource allocation revealed by condition-dependent proteome profiling.

o70 cLife 6, ¢28034.

orn 29. Kafri, M., Metzl-Raz, E., Jonas, F., and Barkai, N. (2016). Rethinking cell growth
o72 models. FEMS Yeast Research 16.

o3 30. Logsdon, M.M., Ho, P.Y., Papavinasasundaram, K., Richardson, K., Cokol, M., Sassetti,
o74 C.M., Amir, A., and Aldridge, B.B. (2017). A parallel adder coordinates mycobacterial
o75 cell-cycle progression and cell-size homeostasis in the context of asymmetric growth and

076 organization. Current Biology 27, 3367-3374.

o7 31. Messelink, J., Meyer, F., Bramkamp, M., and Broedersz, C. (2020). Single-cell growth
o78 inference of Corynebacterium glutamicum reveals asymptotically linear growth. bioRxiv,

979 10.1101/2020.05.25.115055 .

o0 32. Tiruvadi Krishnan, S., Méannik, J., Kar, P., Lin, J., Amir, A., and Méannik, J. (2021).
081 Replication-related control over cell division in Escherichia coli is growth-rate dependent.

082 bioRxiv, 10.1101/2021.02.18.431686 .

3 33. Furchtgott, L., Wingreen, N.S., and Huang, K.C. (2011). Mechanisms for maintaining

084 cell shape in rod-shaped Gram-negative bacteria. Molecular Microbiology 81, 340-353.

ogs  34. Adiciptaningrum, A., Osella, M., Moolman, M.C., Lagomarsino, M.C., and Tans, S.J.
086 (2015). Stochasticity and homeostasis in the E. coli replication and division cycle.

087 Scientific Reports 5, 1-8.

s 3b. Stein, W.E. and Dattero, R. (1985). Sampling bias and the inspection paradox. Mathe-

989 matics Magazine 58, 96-99.

49


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

90 36. Mitchison, J. (2005). Single cell studies of the cell cycle and some models. Theoretical

901 Biology and Medical Modelling 2, 4.

o2 37. Abner, K., Aaviksaar, T., Adamberg, K., and Vilu, R. (2014). Single-cell model of

993 prokaryotic cell cycle. Journal of Theoretical Biology 341, 78-87.

ooa  38. Deforet, M., Van Ditmarsch, D., and Xavier, J.B. (2015). Cell-size homeostasis and the

995 incremental rule in a bacterial pathogen. Biophysical Journal 109, 521-528.

w6 39. Nordholt, N., van Heerden, J.H., and Bruggeman, F.J. (2020). Biphasic cell-size and

997 growth-rate homeostasis by single Bacillus subtilis cells. Current Biology 30, 2238-2247.

o8 40. Knapp, B.D., Odermatt, P., Rojas, E.R., Cheng, W., He, X., Huang, K.C., and Chang, F.
999 (2019). Decoupling of rates of protein synthesis from cell expansion leads to supergrowth.

1000 Cell Systems 9, 434-445.

wor 41. Reshes, G., Vanounou, S., Fishov, 1., and Feingold, M. (2008). Cell shape dynamics in

1002 Escherichia coli. Biophysical Journal 94, 251-264.

1003 42. Banerjee, S., Lo, K., Daddysman, M.K., Selewa, A., Kuntz, T., Dinner, A.R., and
1004 Scherer, N.F. (2017). Biphasic growth dynamics control cell division in Caulobacter

1005 crescentus. Nature Microbiology 2, 1-6.

wos  43. Cadart, C., Venkova, L., Recho, P., Lagomarsino, M.C., and Piel, M. (2019). The physics

1007 of cell-size regulation across timescales. Nature Physics 15, 993-1004.

w0 44. Panlilio, M., Grilli, J., Tallarico, G., Tuliani, I., Sclavi, B., Cicuta, P., and Lagomarsino,

1009 M.C. (2021). Threshold accumulation of a constitutive protein explains E. coli cell-
1010 division behavior in nutrient upshifts. Proceedings of the National Academy of Sciences
1011 .Z 18

20


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

w12 45. Willis, L. and Huang, K.C. (2017). Sizing up the bacterial cell cycle. Nature Reviews
1013 Microbiology 15, 606-620.

w1 46. Simpson, E.H. (1951). The interpretation of interaction in contingency tables. Journal

1015 of the Royal Statistical Society: Series B (Methodological) 13, 238-241.

1016 47. Aldridge, B.B., Fernandez-Suarez, M., Heller, D., Ambravaneswaran, V., Irimia, D.,
1017 Toner, M., and Fortune, S.M. (2012). Asymmetry and aging of mycobacterial cells lead

1018 to variable growth and antibiotic susceptibility. Science 335, 100-104.

w10 48. Kubitschek, H. (1981). Bilinear cell growth of Escherichia coli. Journal of Bacteriology
1020 148, 730-733.

02 49. Oldewurtel, E.R., Kitahara, Y., Cordier, B., Ozbaykal, G., and van Teeffelen, S. (2019).
1022 Bacteria control cell volume by coupling cell-surface expansion to dry-mass growth.

1023 bioRxiv, https://doi.org/10.1101 /769786 .

w2a 50. Datsenko, K.A. and Wanner, B.L. (2000). One-step inactivation of chromosomal genes
1025 in Escherichia coli K-12 using PCR products. Proceedings of the National Academy of
1026 Sciences 97, 6640-6645.

w2z 51. Thomason, L.C., Costantino, N., and Court, D.L. (2007). E. coli genome manipulation

1028 by P1 transduction. Current Protocols in Molecular Biology 79, 1-17.

w20 52. Reyes-Lamothe, R., Sherratt, D.J., and Leake, M.C. (2010). Stoichiometry and archi-

1030 tecture of active DNA replication machinery in Escherichia coli. Science 328, 498-501.

w3 53. Cherepanov, P.P. and Wackernagel, W. (1995). Gene disruption in Escherichia coli: TcR
1032 and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance

1033 determinant. Gene 158, 9-14.

o1


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

103« H4. Moolman, M.C., Krishnan, S.T., Kerssemakers, J.W., Van Den Berg, A., Tulinski, P.,
1035 Depken, M., Reyes-Lamothe, R., Sherratt, D.J., and Dekker, N.H. (2014). Slow unload-
1036 ing leads to DNA-bound / 2-sliding clamp accumulation in live Escherichia coli cells.

1037 Nature Communications 5, 5820.

wss  HH. Yang, D.; Jennings, A.D., Borrego, E., Retterer, S.T., and Méannik, J. (2018). Analysis
1030 of factors limiting bacterial growth in PDMS mother machine devices. Frontiers in

1040 Microbiology 9, 871.

a1 56. Pazos, M., Peters, K., Casanova, M., Palacios, P., VanNieuwenhze, M., Breukink, E.,
1042 Vicente, M., and Vollmer, W. (2018). Z-ring membrane anchors associate with cell wall

1043 synthases to initiate bacterial cell division. Nature Communications 9, 1-12.

10as H7. Kennard, A.S., Osella, M., Javer, A., Grilli, J., Nghe, P., Tans, S.J., Cicuta, P., and
1045 Lagomarsino, M.C. (2016). Individuality and universality in the growth-division laws of

1046 single E. coli cells. Physical Review E 95, 012408.

o2


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A B

10 /[ )
~ rd AL, adder
£ 8 —> -
_I'O 6,

* Raw data
4 L ° Bi:sne? data| | L L
b puniiee d
2 4 6 8 Ty
Ly (km)

1047

wss  Figure 1: Utility of binning and linear regression: A. Length at division (L4) vs length
w4 at birth (L) is plotted using data obtained by Tanouchi et al. [10]. Raw data is shown as
wso  blue dots. We find the trend in binned data (red) to be linear with the underlying best
ws1 linear fit (yellow) following the equation, Ly = 1.09L, + 2.24pm. This is close to the adder
1052 behavior with an underlying equation given by Ly = Ly + AL, where AL is the mean size
ws3  added between birth and division (shown as black dashed line). B. A schematic of the adder
wsa mechanism is shown where the cell grows over its generation time (7}) and divides after
wss  addition of length AL from birth. This ensures cell size homeostasis in single cells.
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wss  Figure 2: Plots that could potentially lead to misinterpreting exponential growth:
wso A, B. Data is obtained from experiments in M9 alanine medium ((7,) = 214 min, N = 816
weo  cells). A. ln(é—‘Z) vs (A\)T} plot is shown. The blue dots are the raw data, the red correspond
w061 to the binned data trend, the yellow line is the best linear fit obtained by performing linear
1062 Tegression on the raw data and the black dashed line is the y=x line. A priori, non-linear
w63 trend in binned data might point to growth being non-exponential. B. (A7, vs ln(ﬁ—‘;’)
106 Plot is shown for the same experiments. C, D. Simulations of exponentially growing cells
wes following the adder model are carried out for N = 2500 cells. The parameters used are
wes provided in Section 5.11.2. C. ln(’i—i) vs (A\)Ty plot is shown. The trend in binned data
1067 shown in red is non-linear. The black dashed line is the expected trend obtained from theory
wes (Equation 2). For parameters used in the simulations here, the black dashed line follows
o0 I(F2) = 1.26(A\) Ty — 0.38((\)T4)*. D. (\)T;; vs In(74) plot is shown with binned data in red
wro  closely following the expected trend of y=x line (black dashed line). In all of these plots, the
w2 binned data is shown only for those bins with more than 15 data points in them.
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wra  Figure 3: Differentiating linear growth from exponential growth: A. (\)T} vs ln(L—‘Z)
175 plot is shown for simulations of linearly growing cells following the adder model for N =
w76 2500 cell cycles. The binned data closely follows the y=x trend which could be incorrectly
w77 interpreted as cells undergoing exponential growth. B. The binned data trend for growth
w7e  rate vs age plot is shown in red for simulations of N= 2500 cell cycles of exponentially
wro  growing cells following the adder model. We observe the trend to be nearly constant as
w80 expected for exponential growth. Since the growth rate is fixed at the beginning of each cell
1081 cycle in the above simulations, we do not show error bars for each bin within the cell cycle.
1082 Also shown in black is the growth rate vs age plot for simulations of N= 2500 cell cycles of
1083 linearly growing cells following the adder model. As expected for linear growth, the binned
1084 growth rate decreases with age. The binned growth rate trend is also found to be nearly
1085 constant for the simulations of exponentially growing cells following the adder per origin
wss  model (shown in magenta). Thus, the plot growth rate vs age provides a consistent method
1087 to identify the mode of growth. Parameters used in the above simulations of exponential
108s and linear growth are derived from the experimental data in alanine medium. Details are

180 provided in the Section 5.11.2.

95


https://doi.org/10.1101/2021.07.27.453901
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.27.453901; this version posted July 27, 2021. The copyright holder for this preprint (which
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

A . B C
alanine glycerol glucose-cas
%103 %103 %1072
e : 518 L g I
m g: s ﬁﬁ*&* | :% {»{ﬁ'#{' 11 2 f#
T 35 I & [450 i 5! ' 8| p&
= # o ;ﬁ‘}#ﬁ}g : al 4 *‘H{. &'H # : : #{'
E FRggev T o oot % -
= 3+ # Py o , % : #ﬁ*
il & |, § N
0 0.5 1 0 0.5 1 0 0.5 1
1001 Age Age Age

1002 Figure 4: Growth rate vs age obtained from experiments: Growth rate vs age plots
1003 are shown for E. coli experimental data. The red dots correspond to the binned data trends
1004 Showing the variation in growth rate. The medium in which the experiments were conducted
0o are A. Alanine ((7;) = 214 min) B. Glycerol ((T;) = 164 min) C. Glucose-cas ((T;) = 65
1006 Min). The error bars show the standard deviation of the growth rate in each bin scaled by
1097 \/Lﬁ, where N is the number of cells in that bin. The dashed vertical lines mark the age at
wes initiation of DNA replication (left line) and the start of septum formation (right line). In
100 case of glucose-cas, the initiation age is not marked as it occurs in the mother cell.
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o2 Figure 5: A flowchart of the general framework proposed in the paper to carry out data
10a  analysis.
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ws 8 Supplementary Figures and Tables

Table S1: Variable definitions.

Variables Description

Ly Length of the cell at birth and also a proxy for size at birth

Ly Length of the cell at division and also a proxy for size at
division

Iy %, where (L) is mean size at birth

la %, where (L) is mean size at birth

f(ly) Mathematical function which captures the regulation strategy

determining division given size at birth. f(l,) = 21,

T, Generation time

o Standard deviation of generation time

T, O T x, = In(l}"). Since Iy =~ 1, x, = [}' — 1

O Standard deviation of x,,

fi(zy) Gaussian describing the distribution of z,.  fi(z,) =

2
1 a2
exp (—52%
\/2mo2 P < 202 )

(\) Mean growth rate
CV, Coefficient of variation of growth rate
£(0,CVy) Normally distributed growth rate noise. Growth rate is de-

fined as A = (A) + (A)&(0,CV))

f2(&) Gaussian describing the distribution of random variable

1

£(0,CVy). f2(§) = oncvz P <—%)

Normally distributed time additive division timing noise with

mean 0 and standard deviation 27773
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f3(¢) Gaussian describing the distribution of random variable
C(0,00). f5(Q) = = exp (—52)

(5(0, opa) Normally distributed size additive division timing noise with
mean 0 and standard deviation opq

o] Standard deviation of ln(i—j)

fa <1n(i—‘§)> Gaussian describing the distribution of 1n(§—‘§). fa <1n(§—‘3)>
= A= ex <_.(1“(5212:21“<2>)2)

Pexp Correlation coefficient of the pair (ln(%:), (NTy)

M Slope of the best linear fit for ln(’z—i) vs (A\)Ty plot

cu Intercept of the best linear fit for ln(i—‘j) vs (A\)Ty plot

my Slope of the best linear fit for (A\)7y vs ln(ﬁ—fb‘) plot

Cu Intercept of the best linear fit for (A\)Ty vs ln(’z—z) plot

(Nin) Mean normalized elongation speed

CVatin Coeflicient of variation of normalized elongation speed

flin (07 CV/\,lin)

Normally distributed normalized elongation speed noise. Nor-

(Nin) -+

malized elongation speed is defined as My, =

<>\lin>€lin (07 CV)\,lin)

Ol lin Standard deviation of {5 — [,

Dlin Correlation coefficient of the pair (Ig — lp, (Aiin)T4)

Mot 1in Slope of the best linear fit for l; — I, vs (\;n) Ty plot
Ctilin Intercept of the best linear fit for Iy — I, vs (\n) Ty plot
Mt lin Slope of the best linear fit for (\;,)Ty vs Iz — I, plot

Cit lin Intercept of the best linear fit for (\;,)Ty vs lg — I, plot
L, Cell size at the start of DNA replication (initiation)

o8
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Liobnert Total cell size of the daughter cells at the start of DNA repli-
cation

JAVS Size added per origin between initiations

O Number of origins just after initiation

C+D Time between initiation and division

T, Timing of start of septum formation/onset of constriction

L, Cell size at time T,,

Table S2: The slope and the intercept of the best linear fit along with their 95% confidence

intervals (CI) obtained on performing linear regression on experimental data. The data is
collected for cells growing in M9 alanine, glycerol and glucose-cas media [32].

. ln(i—:) vs (A)Tq4 plot (A)Tq vs ln(’z—‘:) plot
Media No. of | T4
cells (min) | Slope (with | Intercept Slope (with | Intercept
05% CI) | (with 95% | 95% CI) | (with 95%
CI) CI)
Alanine | 816 214 0.34 (0.31, | 0.44 (0.42, | 1.06 (0.98, | -0.01 (-0.07,
0.36) 0.46) 1.14) 0.04)
Glycerol | 648 164 0.34 (0.32, | 0.43 (041, | 1.26 (1.16, | -0.13 (-0.20,
0.37) 0.44) 1.35) 20.07)
Glucose- | 737 65 0.31 (0.28, | 0.42 (0.40, | 0.91 (0.83, | 0.09 (0.03,
cas 0.34) 0.44) 1.00) 0.15)
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oy Figure 2- figure supplement 1: Experimental data: ln(é—:) vs (A\)Ty (left) and (A\)Ty vs
1108 ln(i—z) plot (right) is shown for, A. Cells growing in glycerol medium ((7,;) = 164 min, N =
1m0 648 cells). B. Cells growing in glucose-cas medium ((7,;) = 65 min, N = 737 cells). Binned
mwo  data (red), and the best linear fit (yellow) obtained by performing linear regression on the
un raw data deviate from the y=x line (black dashed line) in the case of ln(’i—i) vs (A\)Ty plots in
1z both media. However, both binned data and the best linear fit are in close agreement with
1z the y=x line (black dashed line) on interchanging the axes. In all of these plots, the binned

s data is shown only for those bins with more than 15 data points in them.
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Figure 2- figure supplement 2: Binned data trend in growth rate ()\) and inverse
generation time (%i) plots: A-B. Simulations of the adder model for exponentially
growing cells were carried out at multiple growth rates for N = 2500 cells. The size added
between birth and division and the mean growth rates were extracted from Kennard et al.,
[57]. The CV of growth rates was greater for cells growing in slower-growth media. See
Section 5.11.2 for the parameter values. For these simulations, we show A. \ vs 7%1 plot. B.

Tid vs A plot. The smaller circles show the trend in binned data within a growth medium.
Different colors correspond to different growth media. Population means are shown as larger
markers. The population means agree with the expected y=In(2)x line (black dashed line)
in Figure 2- figure supplement 2A but the trend within a single growth medium is non-linear
and deviates from the y=In(2)x line. However, in Figure 2- figure supplement 2B, population
means across growth conditions and the trend in binned data within a single growth medium

follow the expected y:ﬁx line (black dashed line).
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us2 Figure 3- figure supplement 1: Predicting statistics based on a model of linear
uss growth: A-B. Simulations of linearly growing cells following the adder model are car-
usa ried out for N = 2500 cell cycles. A. l; — I, vs (Nin)Ty plot is shown. The raw data is
uss  shown as blue dots. The binned data (in red) and the best linear fit (in yellow) deviate from
use the y=x line (black dashed line). Such a deviation can be predicted based on a model as
uz  discussed in detail in Section 5.5. B. (Au)Ty vs lg — I, plot is shown. The binned data (in
uss red) and the best linear fit (in yellow) agree with the y=x line (in black). C. Simulations
3 of exponentially growing cells following the adder model are carried out for N = 2500 cell
uso  cycles. (Nin)Ty vs lg — Iy plot is shown. The binned data (in red) and the best linear fit (in
ua  yellow) deviate from the y=x line (in black) as expected for exponential growth. Parameters
uaa used in the simulations above are provided in Section 5.11.2.
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ues  Figure 3- figure supplement 2: Inspection bias in the growth rate vs time plots
146 Obtained from simulations: A. The binned growth rate trend as a function of time
uer  from the onset of constriction (t-7;,) is shown in red. Time t-7,, = 0 corresponds to onset of
148 constriction. The plot is shown for simulations of exponentially growing cells carried out over
a9 N = 2500 cell cycles. Constriction length is determined by a constant length addition from
uso  birth and division occurs after a constant length addition from constriction. B. The average
usi  generation time for the cells present in each bin of Figure 3- figure supplement 2A is shown.
us2  C. For simulations of exponentially growing cells following the adder model (N=2500), the
us3  binned growth rate (in red) vs time from birth plot is shown. D. The average generation
uss  time for the cells present in each bin of Figure 3- figure supplement 2C is shown. The vertical
1uss  dashed lines show the time range in which the generation times are approximately constant
use and hence, the effects of inspection bias are negligible. Within that time range, the growth
usg rate trend is found to be constant, consistent with the assumption of exponential growth.
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Figure 3- figure supplement 3: Differential methods of quantifying growth: A-B.
Simulations of linearly growing cells following the adder model are carried out for N = 2500
cell cycles. Cell size (L) data is recorded as a function of time within the cell cycle. A.
The red dots show the binned data for elongation speed as a function of age. The trend
is almost constant in agreement with the linear growth assumption. B. Elongation speed
is also constant with cell size as expected for linear growth with the intercept value being
the average elongation speed. C-D. Simulations of exponentially growing cells following the
adder model are carried out for N = 2500 cell cycles. C. Elongation speed trend (in red)
increases with age in agreement with the exponential growth assumption. D. Elongation
speed trend (in red) increases linearly with size with a slope equal to the average growth
rate. E-F. Simulations of exponentially growing cells following the adder per origin model
are carried out for N = 2500 cell cycles. E. Again, the elongation speed trend (in red)
increases with age in agreement with the exponential growth assumption. F. Elongation
speed trend (in red) deviates from the expected linear trend (black dashed line). This could
be misinterpreted as non-exponential growth. Thus, we find that the binned data trend for
the plot elongation speed vs size is model-dependent.
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Figure 4- figure supplement 1: Growth rate vs age curves extended beyond the
division event: A,B,C. The binned growth rate trend is shown in red as a function of
age for E. coli experimental data. The trends are obtained using the cell size trajectories
extending beyond the division event (age>1). The plots are shown for A. Alanine medium
(N = 720 cells) B. Glycerol medium (N = 594 cells). C. Glucose-cas medium (N = 664
cells). The error bars in all three plots represent the standard deviation of the growth rate
in each bin scaled by LN, where N is the number of cells in that bin. The growth rate trend
appears to be periodic in each of the growth media i.e., A at age ~ 1 is close to A\ at age ~
0. These trends agree with that of Figure 4 in the appropriate age ranges. D. Simulations
are carried out for N= 2500 cell cycles. The cell size trajectories are collected beyond the
division event (age>1). The binned data trend for growth rate vs age plot is shown in red
for exponentially growing cells following the adder model. We observe the trend to be nearly
constant as expected for exponential growth. The binned growth rate trend is also found to
be nearly constant for the simulations of exponential growing cells following the adder per
origin model (shown in magenta). (Inset) Shown in red is the elongation speed vs age plot
for simulations of N= 2500 cell cycles of linearly growing cells following the adder model.
As expected for linear growth, the binned elongation speed trend remains approximately
constant with age. The growth rate trends for the models with exponential growth agree
with that of Figure 3B. The elongation speed trend (inset) also agrees with the trend in
Figure 3- figure supplement 3A.
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Figure 4- figure supplement 2: Inspection bias in the growth rate vs time from
constriction plots obtained from experiments: A,C,E. The binned growth rate trend
is shown in red as a function of time from the onset of constriction (t-7,). Time t-7,, = 0
corresponds to the onset of constriction for all cells considered. The plots are shown for A.
Alanine medium. C. Glycerol medium. E. Glucose-cas medium. The error bars in all three
plots represent the standard deviation of the growth rate in each bin scaled by \%N, where N
is the number of cells in that bin. B,D,F. The average generation time for the cells present
in each bin of B. Alanine medium (Figure 4- figure supplement 2A) D. Glycerol medium
(Figure 4- figure supplement 2C) F. Glucose-cas medium (Figure 4- figure supplement 2E)
are shown. The vertical dashed lines represent the time range within which the average
generation time remains approximately constant. The growth rate trends within this time
range are consistent with that in Figure 4 for the respective growth condition as there is
negligible inspection bias.
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