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ABSTRACT

The variational quantum Monte Carlo (VQMC) method received
significant attention in the recent past because of its ability to over-
come the curse of dimensionality inherent in many-body quantum
systems. Close parallels exist between VQMC and the emerging
hybrid quantum-classical computational paradigm of variational
quantum algorithms. VQMC overcomes the curse of dimensionality
by performing alternating steps of Monte Carlo sampling from a
parametrized quantum state followed by gradient-based optimiza-
tion. While VQMC has been applied to solve high-dimensional
problems, it is known to be difficult to parallelize, primarily owing
to the Markov Chain Monte Carlo (MCMC) sampling step. In this
work, we explore the scalability of VQMC when autoregressive
models, with exact sampling, are used in place of MCMC. This
approach can exploit distributed-memory, shared-memory and/or
GPU parallelism in the sampling task without any bottlenecks. In
particular, we demonstrate GPU-scalability of VQMC for solving up
to ten-thousand dimensional combinatorial optimization problems.
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1 INTRODUCTION

The fact that the state space of a quantum system scales expo-
nentially with the number of its constituents leads to an inevitable
curse-of-dimensionality facing the exact simulation of generic quan-
tum many-body systems.

In practice, approximate solutions are sufficient for most pur-
poses and a number of successful variational methods based on the
Rayleigh-Ritz principle have been developed, which, given a local
Hamiltonian H, produce an estimate for the minimal eigenvalue
Amin(H) and a description of an associated eigenvector. Never-
theless, complexity-theoretic arguments suggest that the curse-of-
dimensionality is ultimately unavoidable [1] and the investigation
of scalable variational algorithms is an active field of research. A
particularly promising variational algorithm from the viewpoint of
scalability is the variational quantum Monte Carlo (VQMC) [24].

VQMC targets the ground eigenstate by performing alternating
steps of Monte Carlo sampling from a high-dimensional quantum
state followed by gradient-based optimization. By exploiting neural
networks as trial wavefunctions, Carleo and Troyer [9] showed
that VQOMC can achieve state-of-the-art results for the ground state
energies of physically interesting magnetic spin models. Unfortu-
nately, the increased flexibility afforded by neural networks comes
at the cost of rendering exact Monte Carlo sampling intractable,
which necessitates the use of a Markov Chain Monte Carlo (MCMC)
sampling strategy.

However, MCMC sampling limits the scalability of VQMC in
two ways: (1) the burn-in process is an inherently sequential task;
(2) sampling precise and uncorrelated samples become increasingly
difficult for large input dimension. Autoregressive models, in con-
trast, provide efficient and exact computations for both sampling
and density evaluation that are GPU-supported. Recently, autore-
gressive neural quantum states have been introduced [26], which
has allowed the VQMC to enjoy the advantages that autoregressive
models have previously provided in machine learning. Inspired by
the ability of autoregressive models to eliminate the reliance of
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the VOMC on the MCMC, we undertake a parallelization study
of autoregressive neural quantum states, thereby improving the
time-efficiency and scalability of VQMC.

2 BACKGROUND

In this section, we briefly explain the basics of VQMC, MCMC, and
autoregressive models, and state the high-dimensional problems
considered.

2.1 Variational Quantum Monte Carlo

We consider the problem of determining a minimal eigenpair of
a large and sparse random real-symmetric matrix H admitting an
efficient description in a sense to be made precise later. Moreover,
we assume that all off-diagonal entries of H are non-positive so that
the ground eigenvector can be chosen to be entry-wise non-negative
real vector as a consequence of the Perron-Frobenius theorem. The
sparsity assumption is summarized by the following requirement

Definition 2.1. A real-symmetric matrix H € RNV is row-s
sparse and efficiently row computable if for each row index x € [N],
the list of non-zero entries {(y, Hxy) : Hxy # 0} is computable in
time O(s).

The specific matrices we will consider are motivated by many-
body quantum Hamiltonians. The size of these matrices is a power
of 2, that is, N = 2", and they have sparsity parameter s = poly(n)
with n = O(log N). These include as a special case quadratic uncon-
strained binary optimization (QUBO) problems such as Max-Cut
[7].

Given a matrix H satisfying Definition 2.1, together with dif-
ferentiable family of trial vectors indexed by 6 € R? described
via a function ¢y : [N] — R which outputs components of the
vector relative to the standard basis ¥y (x) = (ex, ¥), we define
the VQMC learning problem as the following continuous stochastic
optimization task,

_ Weo. Hyo) _ (H¢9)(X)] )
(Yo.V9) x~mo| Yp(x) |~

where the expectation value is over the probability distribution

o (x)?
(Yo, Vo)

The population objective function (1) satisfies the variational in-
equality L(6) > Apnin(H) and can be concisely expressed as the
expectation value of a function lg(x) (called the local energy for
historical reasons),

_ = H)x)
LO)= B oG] . gl = =70

It follows from Definition 2.1 that each entry of the matrix vec-
tor product Hyy is computable in time O(s) and thus ly(x) is
also computable in time O(s) given our sparsity assumption s =
poly(O(log N)). The variance of the stochastic objective under gy
satisfies the identity.,

min L(6) , L(0):
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Figure 1: Overview of our algorithms, with illustrations of
the comparison between Markov chain Monte Carlo sam-
pling (MCMC) and autoregressive sampling (AUTO) on the
left, and the VQMC optimization procedure on the right.
MCMC sampling involves k + bs/c forward passes, where k is
the number of burn-in samples, c is the number of sampling
chains (¢ = 1 in the figure) and bs is the batch size; AUTO
only requires n forward passes to sample exactly from the
distribution of interest.

Using the Rayleigh-Ritz principle it can be seen that the variance is
vanishing if ¥y approaches any eigenvector of H. In practice, the
objective function is optimized using stochastic natural gradient
descent, also called stochastic reconfiguration (SR) [28], where the
estimators for the gradient and the Fisher information matrix follow
from the following population forms,

VL(0) = ZXEEQIQ[(le(x) - L(0))Vologlyp(x)l] .
I(0)= E [Volog mg(x) ® Vglog ma(x)] . (5)

70
Typically the normalizing constant (i/y, y) of the probability dis-
tribution g is unknown, so the above expectation values are to be
approximated using MCMC sampling.

2.2 Markov Chain Monte Carlo Sampling

MCMC methods have been developed for sampling from a proba-
bility distribution gy that is difficult to directly draw i.i.d. samples
from. The canonical Metropolis-Hastings algorithm [17] and its
numerous variations, e.g., Gibbs sampling [12], Reversible Jump
MCMC [16] and Hamiltonian Monte Carlo [11, 19], achieve this by
carefully constructing a transition kernel p(xs+1|x;) for an ergodic
Markov chain whose state distribution limits to the target distribu-
tion. Using samples from this Markov chain, we can then compute
estimates for the expected values required in VQOMC framework

T
— 1
E ~ = —
E @] == IZI 9(xr) | (©)
where ¢ represents some deterministic function. Furthermore, these
estimates are guaranteed to be asymptotically unbiased by the
ergodic theorem.
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Algorithm 1 Autoregressive Sampling [13] (Batch Size 1)

Input: Randomly initialized state x° of size n
Output: Sampled state x* of size n
for i-th out of n iterations do
Compute p(x; |xi’ll_1) with a forward pass
Sample y; € {+1} with p(~|x§:_l.1_1)
Get x* by updating xl?'_l with y;
end for
Set x* = x"

2.3 Autoregressive Models

Now we discuss the modeling assumptions which enforce normal-
iztion of the differentiable trial function g : [N] — R, and thus
eliminate the need for MCMC sampling. An elegant method to im-
pose normalization is to make use of an autoregressive assumption,
which has recently been generalized to neural network quantum
states in [18, 26]. Since we are targeting a ground eigenvector,
which is known to be non-negative, we may assume without loss of
generality that 1y (x) = 4/7mg(x), thereby shifting the modeling as-
sumption into the choice of a normalized distribution 7y satisfying
the following condition,

7p(x) = l—[ i (xi|xi-1, ..., x1) . (7)
i=1

Many proposals for neural networks satisfying the autoregres-
sive assumption have been put forth. In this work we follow Ger-
main et al. [13], who proposed the masked autoencoder for distri-
bution estimation (MADE) which computes all conditionals in one
forward pass using a single network with appropriate masks. Recall
that a single hidden layer autoencoder is described by the following
composition of functions,

g1(x) = max{0, Wix + b1} (8)
g2(x) = o(Wag1(x) + b2) , )

and where the rectification and sigmoid functions are applied ele-
mentwise. MADE achieves the desired autoregressive assumption
by appropriate application of binary masks M; and My to the weight
matrices defining the autoencoder, resulting in a MADE layer of
the form

g1(x) = max{0, (M3 © W1)x + by}
g2(x) = 0 (M2 © W2)g1(x) + b2) , (10)

where © denotes elementwise multiplication.

In Figure 1, we compare the sampling procedures between MCMC
and AUTO (as described in Algorithm 1). MCMC involves k + bs/c
forward passes, where c is the number of sampling chains and bs
is the batch size. Although the number of forward passes can be
reduced by increasing the number of chains, the number of burn-in
iterations k required for convergence is undetermined and cannot
be parallelized. On the other hand, AUTO only requires n forward
passes to sample exactly from the distribution of interest.

SC ’21, November 14-19, 2021, St. Louis, MO

2.4 Quantum Hamiltonians and QUBO
Problems

In this paper, we consider a family of matrices motivated by quan-
tum physics, which are parametrized by O(poly(n)) real parameters
ai, Pi, Bij € R as follows,

H=- Z (OciXi +ﬁiZi) — Z ﬂijZiZj ) (11)
1<i<n 1<i<j<n
where X; := I®0-D @ X @ [®(n~1) and 7; .= [9(~1) @ 7 @ [®(n~1)
are 2" x 2" matrices defined in terms of the following elementary
2 X 2 matrices,

1 0 1 0 0 1
I P IR O ' [ D

It is easily verified that H meets the conditions of definition 2.1
with sparsity parameter s = n. In terms of the binary representation
of the row index x = 2" 1x; - -- 2%, and the column index y =
2" 1y, - 2%, the matrix entries of H are given by

Hyy=- Z (@i, yy Sy Oxyy + Bi(1 = 2x1))
1<i<n
=8y Y. Bii(1-2x)(1-2x)) (13)
1<i<jsn

and —x; denotes logical negation of x; € {0,1}. For simplicity
we imposed a; > 0 to ensure that the ground eigenvector can
be chosen to be a non-negative vector as a consequence of the
Perron-Frobenius theorem.

In the special case where a; = f; = 0 and f;; = %Lij where L is
the adjacency matrix of an undirected graph G = (V, E) of size |V| =
n, the ground state problem coincides with the Max-Cut problem,
and thus VQMC can be employed as a heuristic for approximate
combinatorial optimization [15, 31], which is equivalent to natural
evolution strategies [31].

3 RELATED WORK

The idea of utilizing neural network quantum states to overcome
the curse of dimensionality in high-dimensional VQMC simulations
was first introduced by Carleo and Troyer [9], who concentrated on
restricted Boltzmann machines (RBMs) applied to two-dimensional
quantum spin models. Sharir et al. [26, 27] introduced neural net-
work quantum states based on the autoregressive assumption in-
spired by PixelCNN [29] and demonstrated significant improvement
in performance compared to RBMs. The autoregressive assumption
was subsequently explored in VQMC using recurrent neural wave-
functions [18]. Autoregressive models have also been used to solve
statistical mechanics models in [30]. Since our focus is on the scala-
bility of VQMC, particularly in situations where MCMC is expected
to struggle, unlike [9, 18, 26] we consider non-geometrically local
Hamiltonians without an underlying lattice structure. This also
contrasts with the work of [25], who considered parallelization of
VOMC using MCMC sampling but assuming geometric locality. It
was recently shown [15, 31] that techniques from quantum VQMC
literature [9] can be adapted for approximately solving combinato-
rial optimization problems.

Larochelle and Murray [23] proposed neural autoregressive dis-
tribution estimator (NADE) as feed-forward architectures. MADE [13]
improves the efficiency of models with minor additional cost for
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simple masking operations. For probabilistic generative models,
unnormalized models such as RBM rely on approximate sampling
procedures like MCMC, whose convergence time remains undeter-
mined, which often results in the generation of highly correlated
samples and deterioration in performance. Such sampling approx-
imations can be avoided by using autoregressive models [5] that
estimate the joint distribution by decomposing it into a product of
conditionals by the probability chain rule, making both the density
estimation and generation process tractable. Kingma et al. [21] used
autoregressive models as a form of normalizing flow [22].

4 ALGORITHM PARALLELIZATION

Unlike standard Monte Carlo methods, MCMC cannot be paral-
lelized easily. The fundamental limitation is easily seen: to generate
a sample x;41 from a Markov chain, we need to sample the tran-
sition kernel p(-|x;), which requires knowledge of the immediate
past state x;. This sequential nature of the sampling immediately
precludes any direct attempt at parallelizing the sampling process.
We could attempt to initialize multiple independent sampling
chains; indeed, this is one of the standard approaches often im-
plemented in Bayesian inference frameworks. But when sampling
a high-dimensional distribution using random walk Metropolis-
Hastings, it typically takes a very long time for the random walk
to explore the parameter space. This significantly slows down the
convergence of the estimates (6) to the true expectation value;
furthermore, it is very difficult to determine a priori how many
samples will be required for this convergence within a specified tol-
erance. In practice, MCMC first discards a pre-determined number
of samples in each of the independent chains to avoid the transient
Markov transitions (a.k.a. burn-in) and down-samples the remain-
der by selecting samples at regular intervals to reduce correlations
(ak.a. thinning). Any expectations are then computed based on this
smaller set of selected samples. Improper choice of these param-
eters can severely degrade the quality of the generated estimates.
Furthermore, they also reduce the parallel efficiency; suppose k
samples are discarded as burn-in and every j-th samples are se-
lected during thinning. Then constructing n samples on each of L
independent computing units will lead to a parallel efficiency of

k+(nL-1)j+1 _ nj

k+(n-1)j+1 Krmon 1 LD =arbl (9

for some a and b depending on k, j and n. Note that this calculation
is solely focused on the sampling task, and therefore does not take
into account any communications that might be necessary between
the computing units for obtaining the final result. Even then, as the
number of burn-in samples k is increased, the slope b decays from
1 towards 0 (b = 1 is indicative of optimal scaling).

On the other hand, an autoregressive model (AUTO) can generate
exact samples from the target distribution. Although the implemen-
tation of AUTO has a sequential nature that scales linearly with
the input dimension, it can generate independent samples from
the target distribution by transforming i.i.d. samples from a simple
distribution (e.g. Gaussian). This step is easily parallelized: as long
as we have identical copies of the autoregressive model in a num-
ber of computing units (e.g. GPUs), we can construct independent
samples in parallel. Communication between the computing units
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is necessary only when we need to update the parameters of the
neural network, e.g. during a stochastic gradient descent update.

Our model consists of fully connected weight matrices; therefore
as we scale up the problem size, the bottleneck for our algorithm is
the memory usage. For example, assuming a GPU can only store
models with up to 10M parameters, we can set the size of the
hidden layer to 500 at maximum when solving a problem with 10K
input dimensions. This limitation can be addressed along with two
complementary but independent avenues:

(1) Model Parallelization: Distribute the model parameters
across computing units, so that each unit needs to store and
update a small part of the model.

(2) Sampling Parallelization: Use identical copies of the model
across the computing units to generate only a few samples
per unit, and combine the independent samples from all
these units to construct an accurate expectation estimate.

The communication pattern between the computing units in model
parallelization is intimately linked with the choice of the autore-
gressive neural network while the sampling parallelization is model
agnostic.

In this work, we restrict our attention to only parallelizing the
sampling step. Consider a quantum Hamiltonian of size N = 2" and
an autoregressive model with two hidden layers of size h. Given a
total number of L computing units/GPUs and a mini-batch size of
mbs samples to be drawn on each GPU, we end up with an effective
batch size of bs = L X mbs. Locally, each process first generates
mbs samples, then computes the physical measurements with the
samples, and finally uses backpropagation to get the gradient of
the model parameters. These local gradient vectors have length
d = 2hn + h + n, which are averaged over the GPUs using a parallel
reduction. Each GPU then updates its own model parameters locally.

The computation complexity can be estimated as follows: during
the local sampling process on each GPU, the algorithm involves n
forward passes for sampling, and a fixed number of forward passes
for physical quantity measurements. The dominant cost of each
forward pass is multiplication by h X n and n X h matrices, both
O(hn); this leads to a total computational cost of O(hn? x mbs) flops
per GPU. Computing the average gradient over GPUs using parallel
reduction costs further O(hn) flops, and involves communication
of O(hn) floating point numbers. Clearly, the parallel efficiency is
given by

O(hn? x bs) B O(hn® x L x mbs) (15)

O(hn? x mbs) + O(hn) ~ O(hn® x mbs) + O(hn)

Since the constants in the O(hn® x L x mbs) and the O(hn® x mbs)
are the same, this ratio is approximately L when n or mbs are large.

5 EXPERIMENTAL RESULTS

This section contains an extensive evaluation of our approach. We
first compare AUTO sampling and MCMC sampling in Section 5.2,
where the advantage of AUTO in terms of computational efficiency
becomes clear for problems of higher dimensions. The convergence
performance is shown in Section 5.3. Our algorithm is competitive
against the state-of-the-art SDP solvers for small/medium scale Max-
Cut problems. In Section 5.4, we demonstrate the scalability of our
technology by solving large-scale problems up to 10K dimensions.
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Table 1: Training time (measured in seconds) comparison on TIM for 300 training iterations with one GPU. Our MCMC set-
tings are introduced in Section 5.1. The running time of MADE&AUTO scales roughly linearly with respect to the number of
dimensions, due to the sequential nature of its sampling procedure, but significantly outperforms RBM&MCMC in practice.

# of Dimensions

Model Optimizer Sampler
20 50 100 200 500
RBM ADAM MCMC 135.64 154.25 189.91 249.40 456.68
MADE ADAM AUTO 2.85 5.74 10.63 20.45 49.62
Training Curves for TIM Loss
MCMC o
20 Dimensions 50 Dimensions © 100 Dimensions 200 Dimensions 500 Dimensions
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Figure 2: Training curves for TIM, where the red curves refer to the training loss/energy, and the blue curves refer to the
standard deviation of the stochastic objective, which should be zero when the wave function converges to the exact ground-
state. By fixing the learning rate and the total number of training iterations, it becomes more difficult for RBM&MCMC to
converge as the problem size grows, due to the inaccurate estimation of the population energy by the low-quality MCMC
samples. The training of MADE&AUTO is stable across all problems.

We achieved near-optimal weak scaling, and the convergence of
our model improves as we increase the effective training batch size.

5.1 Experimental Setup

In this paper, we evaluate VQMC using two non-geometrically
local Hamiltonians: the Max-Cut and the transverse field Ising
model (TIM) model. In the case of Max-Cut, the adjacency matrix
was chosen by forming the n X n matrix (B + BT /2 with Bij ~
Bernoulli(0.5) sampled once and fixed, followed by rounding and
setting diagonal entries to zero. The second example is a disordered
quantum system referred to as transverse field Ising model model,
whose Hamiltonian is of the form (13) with f;, f;; ~ U(-1,1) and
a; ~ U(0, 1) sampled once and fixed.

For Max-Cut, we compare our approach against VOMC with
MCMC sampling [15, 31], as well as the semidefinite programming
(SDP) relaxation approximation algorithms including Goemans-
Williamson Algorithm [14] and the Burer-Monteiro reformulation
with the Riemannian Trust-Region method [2]. As an additional
baseline, each model is also trained using the SR method. We bench-
mark the running time and converged energy of our model on TIM
in our scalability experiments.

Model architecture

Network architecture is chosen to be MADE and is compared
against RBM, proposed by Carleo and Troyer [9], taking the one-
dimensional state as input and outputs the logarithmic probability
amplitude.

The structure of MADE is as follows

[bsn] [bsh]

Input — MaskedFC1 —— ReLU

[bs,h] [bsn] . . [bsin]
— MaskedFC2 —— Sigmoid —— Output,

and the structure of RBM is

[bs,n] [bs,h] [bs]
Input —— FC, , — Lncoshsum — Outputl

[bs,n] [bs] [bs]

—— FCp,1 — Add Outputl — Output.
Here bs is the batch size and n is the number of dimensions. FC,
is a fully connected layer with input size a and output size b; and
MaskedFC is the masked version of FC, to remove the connections
in the computational path of MADE. Lncoshsum refers to a series
of linear and non-linear operations involving: 1) taking natural
logarithm for each entry of the input tensor; 2) taking hyperbolic
cosine for each entry of the input tensor; 3) summation over the last
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dimension of the input tensor. The size of the tensor being passed
to the next operator is indicated above the right arrows.

For large-scale problems with high dimensional input size n,
we need to choose a proper latent size h to balance between the
memory usage and the capacity of the model. In our experiments,
we set h = 5(log n)? as the hidden layer size for MADE and h = n
as the number of hidden units for RBM.

Training

All models are trained for 300 iterations. In our single-GPU
experiments, at each iteration, the model is updated with a batch
of 1024 training samples. For evaluation, we draw a batch of 1024
testing samples from trained model, and report their mean energy.
Two base optimizers are considered: stochastic gradient descent
(SGD) with learning rate 0.1 or ADAM with learning rate 0.01,
where the latter is our default optimizer. In addition, we provide
additional results on models trained using the SR [28] method
for performance comparison. The SR optimization was performed
using a regularization parameter A = 0.001 and a learning rate 0.1.
No learning rate scheduler is applied. For scalability experiments,
each GPU is distributed with a constant mini-batch size mbs, and
the effective batch size is mbs X L, where L is the total number of
GPUs available.

Our MCMC sampler is the random walk Metropolis—-Hastings
algorithm, running with two chains. We expect that it takes more
effort for MCMC to converge for large-scale problems. Therefore,
for each chain, we set heuristically the burn-in iterations k to scale
linearly with respect to the input dimension n, i.e., k = 3n + 100.

Throughout the experiments, the timing benchmarks are per-
formed on NVIDIA Tesla V100 GPUs, with 32GB of memory for
each.

5.2 MCMC vs. AUTO: Runtime

Despite the sequential nature of both MCMC and AUTO sampling,
in practice, AUTO sampling can be operated with GPU in a straight-
forward fashion and exhibit superior running time efficiency. Our
results on the running time comparison is shown in Table 1.

The running time of RBM&MCMC scales with the total num-
ber of iterations in each chain, which includes a fixed number of
burn-in iterations that cannot be parallelized. In our setting, we
set the number of chains to be 2, and burn-in iterations k that
grows linearly with respect to the input dimension n. In principle,
the running time of MCMC can be reduced further by increasing
the number of chains or choosing a smaller k. However, a more
severe problem of MCMC lies in the fact that the distribution of
the samples generated by MCMC only converges to the distribu-
tion of interest asymptotically. As the input dimension increases, it
becomes more difficult for the random walk Metropolis-Hastings
algorithm to converge, which can potentially affect the quality of
generated samples if k is not properly chosen. The running time
of MADE&AUTO is dominated by the sampling time that scales
linearly with respect to the input dimension n, which significantly
outperforms its RBM&MCMC counterpart. More importantly, for
AUTO, we know exactly the computational complexity needed to
get correct samples from the distribution of interest, as opposed
to MCMC that requires undetermined number of iterations to con-
verge.
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The corresponding training curves are shown in Figure 2, where
the red curves refer to the training loss/energy, and the blue curves
refer to the standard deviation of the stochastic objective, which
approaches zero as the wave function converges to the exact ground-
state, as discussed in Eq. 4. RBM&MCMC converges reasonably
well on small-scale problems, but has more difficulty to converge
as the problem scales up. On the other hand, our model converges
rapidly and stably to low energy across problems of different scales.
This observation motivates us to attempt to solve problems of even
higher dimensions.

5.3 MCMC vs. AUTO: Convergence Study

The convergence result of our model on the Max-Cut problems is
shown in Table 2, where we compare MADE&AUTO against the
state-of-the-art SDP relaxation approximation algorithms devel-
oped in the past decades, as well as VQMC with RBM&MCMC.

Random Cut algorithm is a simple randomized 0.5-approximation
algorithm that randomly assigns each node to a partition. Goemans
and Williamson [14] improved the performance ratio from 0.5 to
at least 0.87856, by making use of the semidefinite programming
(SDP) relaxation of the original integer quadratic program. Burer
and Monteiro [8] reformulated the SDP for Max-Cut into a non-
convex problem, with the benefit of having a lower dimension and
no conic constraint. The implementation of Goemans-Williamson
Algorithm used the CVXPY [3, 10] package and the Burer-Monteiro
reformulation with the Riemannian Trust-Region method [2] used
Manopt toolbox [6], which essentially implements the optimization
algorithm proposed by [20].

For evaluation, we constructed a problem instance for each
Hamiltonian size n € {20, 50, 100, 200,500} by randomly gener-
ating parameters defined in Eq. 11. For each problem instance, each
algorithm was executed 5 times using 5 random seeds. In Table 2,
we report the averaged result over problem instances of different
sizes.

In general, MADE&AUTO slightly outperforms RBM&MCMC on
small-scale problems, and the latter fails to converge for problems
of input dimension 500, due to our constraint on the number of
training iterations.

The natural gradient descent [4, 28] proved essential for con-
verging to a good local optimum. We apply the SR to both VQMC
methods and observe similar improvements: optimizers equipped
with SR are consistently improved over all architectures. On the
other hand, the performance of our algorithm with SR is competi-
tive against the state-of-the-art SDP solvers on Max-Cut problems.

5.4 AUTO: Multi-GPU Scalability

By distributing the sampling task across multiple GPUs, our method
can extend to large-scale problems (with input dimensions up to
10K) by reducing the mini-batch size mbs distributed to each GPU.
The effective batch size depends on both mbs and the number of
GPUs L available for training.

In Figure 3, we plot the normalized execution times for the 1K, 5K
and 10K dimensional TIM problems as we vary the number of GPUs
and the GPU distribution across nodes. We choose the minibatch
sizes assigned to each GPU depending on the dimensionality of the
problem so that the GPU memory is saturated. Note that for both
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Table 2: Optimized objective (maximize cut number for Max-Cut, minimize ground state energy for TIM) values for different
problem sizes and different optimizers, averaged over 5 runs with different random seeds. The first three rows in the Max-Cut
section consist of results from running classical algorithms and serve as benchmarks. For the rest of the rows in the table,
the batch size is fixed to be 1024. We note that MADE&AUTO achieves satisfactory performance in the sense that it’s directly
comparable with the SDP solvers on Max-Cut. On the other hand, RBM&MCMC takes longer to converge as the problem size
grows, whereas the convergence of MADE&AUTO remains stable.

# of Dimensions

Problem  Model Sampler Optimizer
20 50 100 200 500
Classical: Random 27.2+22 150.4 + 5.8 610.4 + 11.6 2495.8 + 42.8 15696.0 + 16.8
Classical: Goemans-Williamson 414+ 2.0 194.2 + 2.3 741.0 £ 11.1 2881.6 + 14.4 17242.4 + 37.3
Classical: Burer-Monteiro 43.0 + 0.0 200.0 = 0.0 754.0 + 3.0 2928.0 + 3.7 17416.0 + 23.13
SGD 414+ 15 192.0 + 3.3 733.8 + 13.0 2825.6 £ 5.5 15945.6 + 44.2
Max-Cut RBM MCMC ADAM 40.6 £ 1.6 190.2+ 2.7 719.8 £ 6.6 2777.6 £ 14.2 16576.0 + 30.9
SGD+SR 43.0 £ 0.0 198.8 £ 1.5 758.0 = 1.1 2898.0 + 22.0 15956.8 + 29.9
SGD 42.6 £+ 04 192.0 + 2.4 742.2 £5.9 2846.0 + 4.8 16880.0 + 73.6
MADE AUTO ADAM 42.4 £ 0.8 193.8 £ 3.1 733.8 £ 9.1 2847.8 £ 12.1 17006.6 + 23.0
SGD+SR 43.0 £ 0.0 200.0 £ 1.5 758.4 £ 6.5 2909.2 £ 3.1 17176.6 + 30.5
SGD -80.22 £ 2.79  -270.65 £ 9.64 -762.11 £ 28.58  -1981.17 + 72.19 -976.25 + 119.43
MCMC RBM ADAM -80.38 + 2.42  -265.47 + 8.21 -756.33 £ 16.73  -2216.45 + 31.95 -924.53 + 121.10
TIM SGD+SR -80.70 £ 2.10 -282.02 + 8.37 -764.74 £ 14.67  -2234.23 + 36.72 -1046.40 + 334.50
SGD -80.30 +£ 0.01 -281.18 + 5.51 -767.88 + 13.45 -1872.16 + 41.89 -6773.97 + 233.19
MADE AUTO ADAM -80.48 + 0.18  -277.11 + 4.48 -771.11 £ 17.06  -2181.31 + 33.39 -7597.37 £ 171.25
SGD+SR -81.25 £ 0.07 -277.23 £9.96 -812.33 +£ 1255 -2252.12 + 84.00 -8673.27 + 304.45
Single Node 2 GPUs/Node 4 GPUs/Node
1.005
o 1.000
€ 0.985 1.000
= 0.995
s 0.9951
S 0.980 0.990
3 0.9901
o 0.985
5 0975 0-9831 0.980
(9} B
% 0,970 0.9801 ‘I'I »»»»»» 1K Dimension 0.975 J
0. 14 2K Dimension
g } 0.975 ~ —«— 5K Dimension 0.970 i
0.965 | 0.9704 . —— 10K Dimension 0.965] /
1 2 3 4 2 4 6 8 1 2 3 4 5 6

Number of GPUs Number of Nodes Number of Nodes

Figure 3: Sampling times for the TIM problem in 1K, 2K, 5K and 10K dimensions with mini-batch sizes mbs = 512, 128, 16 and
4 samples per GPU, respectively. The minibatch sizes were chosen to saturate GPU memory per problem dimension. All times
are normalized by the execution time of the largest GPU configuration (6 X 4) for each dimension. Note that the normalized

executions times are all close to 1, indicative of near-optimal weak scaling.

intra-node and inter-node distributed sampling schemes, the execu-
tion times remain nearly constant as long as the number of samples
per GPU is kept fixed. This is indicative of near-optimal weak scal-
ing: consider a problem so large that we are able to generate only
a few samples using a single GPU due to memory constraints. In
this scenario, by using a large number of GPUs to generate inde-
pendent sets of samples, we should be able to drive the stochastic
optimization problem to convergence.

The effective batch size increases as we scale up the number of
GPUs. This improves the convergence performance of our method.

We benchmark the result in Figure 4, where we train our models
across different numbers of GPUs, on TIM problems of different
sizes. The improvement saturates for smaller problems as the effec-
tive batch size increases but remains significant for larger problems.
This implies that our model requires a larger batch size to achieve
optimal performance for problems of a larger scale. Intuitively,
batch size quantifies the exploration capability in the state space:
the algorithm has a better chance to discover the ground state if it
is allowed to explore more.
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Table 3: Ablation study on the latent size. We train the models with ADAM on Max-Cut problems. n is the graph size. Optimal
performance is obtained under a proper choice of latent size h; MADE falls off if we push GPU to its computational limits.

Latent size h

Model n Cut table Time table
(logn)?  3(logn)? 5(logn)? n n 5n n? ‘ (logn)? 3(logn)? n 5n n?
50 191. 192.8 193.8 - 195. 194.6 195. 7.22 7.19 7.24 7.42 7.41
MADE 100 735.8 737.2 733.8 - 734.2 731.2 726.2 13.43 13.49 13.48 13.90 13.96
200 2832.8 2846.4 2847.8 - 2848.6 2821.4 2779. 26.49 25.78 26.07 26.85 57.19
500 169054 17039.6 17006.6 - 16973.8 16872.8 16311.4 64.81 66.48 67.79 105.97 1426.92
50 193. 194.8 - 190.2 192. 192.2 191.4 151.07 151.49 150.72  150.71 152.68
RBM 100 721. 734.2 - 719.8 730.2 711. 705.2 181.11 180.30 180.47 182.15 183.62
200 2786.2 2810.8 - 2777.6 2779.6 2765.6 27474 242.95 241.05 243.24 24391 246.05
500 16568.8 16530. - 16576.0 16652.6  16577.2 16543. 427.23 429.07 432.39 428.17 510.02

Table 4: Ablation study on the MCMC sampling scheme. We train the RBM with ADAM on Max-Cut problems. n is the graph
size; {n, 10n} and {x2, x5, x10} are from Scheme 1 and Scheme 2, respectively.

Sampling scheme

Model n Cut table Time table
n 3n+100 10n x2 x5 x10 n 10n x2 x5 x10
50 190.8 190.2 193.8 191.6 192.6 192.8 110.44 197.02 199.64 500.02 1004.96
MCMC 100 700.2 719.8 733. 706.8 720. 729.8 124.01 296.83 201.52 507.65 1011.51
200 2674.8 2777.6 2795.4 2670.4 2720.6 2736.8 143.76 492.31 20691 514.80 1023.43
500 16205. 16576.0 16626.6 16022.2 16066.6 16156.6 | 212.86 1103.18 207.43 508.43 1021.21

The raw data of our experiments in this section is provided in
the appendix.

6 CASE STUDIES

In this section, we conduct experiments on several aspects of our set-
tings in more detail, to support our conclusions that MADE+AUTO
significantly outperforms RBM+MCMC in terms of the convergence
rates for large-scale problems. Throughout this section, we train
our models for Max-Cut problems with ADAM optimizer on a sin-
gle GPU. All results are averaged over 5 runs with different random
seeds.

6.1 Ablation Study: Latent Size

We conduct ablation studies on the choice of latent size for our
models. Latent size refers to the number of hidden units for RBM
and the hidden layer size for MADE.

In Table 3, we train both MADE and RBM on Max-Cut prob-
lems with graph sizes n € {50, 100, 200, 500} under different choices
of latent size h € {(logn)?,3(logn)? n,5n,n?}. We also cite the
numbers from Table 2 for direct comparison, where we adopt
h = 5(logn)?, n for MADE and RBM, respectively. We measure
the training time of each model for 300 iterations in seconds and
present the numbers on the right side of the table. The results are
averaged over 5 runs with different random seeds.

Several observations can be made. First, optimal performance
is obtained under a reasonable choice of k, between 3(log n)? and
n; models with a latent size that is either too large or too small do
not perform well. Second, the time complexity usually does not

scale with the model size when running on GPU. However, MADE
falls off if we push GPU to its computational limits, e.g., AUTO
sampling bs = 1024 samples from MADE with O(n®) parameters.
This is in practice not a serious concern for MADE with latent size
h = O((log n)?) as it will always face its memory bottlenecks first
by storing the batch of high dimensional inputs as the problem size
increases. Third, we re-did the experiments on RBM with n hidden
units and obtain slightly different results in Table 2, due to different
choices of random seeds and machines that the model is trained on.

6.2 Ablation Study: MCMC Sampling Scheme

We conduct ablation studies on the choice of MCMC sampling
schemes. In particular, we consider:

o Scheme 1: the sampler discard the first {n, 10n} samples in
the chain and keep the next bs samples.

e Scheme 2: the sampler takes every {2, 5, 10}th sample in the
chain until bs samples are collected in total.

In Table 4, we train RBM on Max-Cut problems with graph sizes
n € {50,100, 200, 500} under different choices of MCMC sampling
schemes {n, 10n, x2, x5, x10}. We also cite the numbers from Table 2
for direct comparison, where we discard the first k=3n+100 samples
in the MCMC chain. We measure the training time of each model
for 300 iterations in seconds and present the numbers on the right
side of the table. The results are averaged over 5 runs with different
random seeds.

Several observations can be made. First, schemes 10n or x10 with
longer MCMC chains result in better performance, at the cost of
longer running time. Second, when running with GPU, the time
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Table 5: Time elapsed to reach the target performance, measured in seconds. We train the RBM with ADAM on Max-Cut
problems. At every iteration, after the training updates, we sample another batch of samples for evaluation; the algorithm
terminates if the evaluation score surpasses the target score. Evaluation time is not taken into account.

# of Dimensions (Targeted cut number)

Method
20(41)  50(190)
MADE+AUTO  3.14 3.61
RBM+MCMC 126.84 154.09

100(730)  200(2800)  500(16800)
20.08 3.25 6.27
247.91 612.76 1096.08

Converged Energy over Number of GPUs
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Figure 4: Normalized converged energy for TIM problems
of different sizes. Each GPU is distributed a batch size of 4;
the total effective batch size equals 4 times the total number
of GPUs used. The energy is normalized for each problem
size (the values from each curve are divided by the one with
the largest magnitude among them). The converged energy
improves as the total number of GPUs (effective batch size)
increases. The improvement saturates for smaller problems,
which also implies that a larger batch size is required for
larger problems.

complexity only scales with the length of the MCMC chain, but not
the O(n?) model size.

6.3 Comparison of Hitting Time

In addition to showing the running time with a fixed number of
iterations in Table 1, we demonstrate that MADE+AUTO also sig-
nificantly out-performs RBM+MCMC in the sense that the former
reach a target performance faster.

In Table 5, we train MADE and RBM on Max-Cut problems
with graph sizes n € {50, 100, 200, 500} with target performance
{41, 190, 730, 2800, 16800} that are heuristically chosen based on the
results in Table 2. The performance is measured in seconds and

the results are averaged over 5 runs with different random seeds.
RBM+MCMC requires a significantly longer time to converge to a
target performance for large-scale problems.

7 CONCLUSIONS

In this work, motivated by recent developments in VQMC made
possible by autoregressive sampling, we implemented a distributed
variant of VQMC and applied it to solving large-scale quantum
systems for which standard random-walk Markov chain Monte
Carlo sampling fails to converge. The main advantage of AUTO
compared to MCMC lies in its ability to sample exactly from the
distribution of interest, unlike MCMC for which the quality of the
generated samples is plagued by unknown convergence time, which
becomes a severe problem as the dimension of the problem increases.
Empirically, we demonstrated that AUTO significantly outperforms
MCMC in terms of the convergence rates for large-scale problems.
Training of AUTO is also more stable than that of MCMC, finding
converged solutions that are competitive against the state-of-the-art
baselines for Max-Cut. The above findings motivated us to explore
large-scale problems up to 10K dimensions. For that purpose, we
built large models and chose a batch size to exhaust the memory
usage of each GPU to be distributed. The optimality of our results
is only limited by the computational resources available at hand:
while the convergence performance quickly saturates for small-
scale problems, it continues to improve for larger-scale problems
as we scale up the number of GPUs.
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SCALABILITY EXPERIMENTS

We distribute the sampling task across multiple GPUs, our method
can extend to large-scale problems with input dimensions up to
10K dimensions, by reducing the mini-batch size mbs distributed
to each GPU. The effective batch size depends on both mbs and the
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number of GPUs L available for training. Here, we provide the raw
data for our distributed computing experiments in Section 5.4.

In Table 6, we show the converged energy and running time
for TIM problems of different dimensions. Each GPU is distributed
with a batch size of 4; the total batch size equals to 4 times the total
number of GPUs used. A number of different GPU configurations
were used; L1 X Ly indicates L1 nodes with Ly GPUs per node were
utilized. The converged energy improves as the batch size (total
number of GPUs) increases.

In Table 7, we show the running time (seconds) for TIM problems
of different dimensions. Different from the experiments in Table 6,
each GPU is distributed with the maximum number of batch size
that can be accommodated on its memory. We note that for each
dimension, the run times remain constant even as we increase
the number of GPUs, increasing the effective batch size. This is
indicative of near-optimal weak scaling.
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Table 6: Converged energy and running time for TIM problems of different dimensions. Each GPU is distributed with a batch
size of 4; the total batch size equals to 4 times the total number of GPUs used. Paralleling experiments are done across different
GPU configurations, where L; X Ly refers to a total L; number of nodes with L, GPUs in each node, and the a total number of

GPUs is L = L1 X Ly . The converged energy improves as the batch size (total number of GPUs) increases.
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# of Dimensions

#GPUs  Metric
20 50 100 200 500 1000 2000 5000 10000
1x1 Energy -69.64 -225.53 -656.91 -1511.22 -3862.86 -9642.54 -21962.55 -56337.84 -89733.83
Time (s) 2.85 5.74 10.63 20.45 49.62 98.01 204.18 514.14 1067.56
1% 2 Energy -70.59 -260.91 -626.55 -1788.10 -4666.89 -12056.95 -24274.07 -73938.23 -142214.93
Time (s) 3.06 6.00 10.81 20.36 49.47 97.29 200.32 512.39 1065.71
1x4 Energy -82.79 -257.26 -702.94 -177835 -5587.58 -13797.55 -29219.47 -79650.12 -165364.75
Time (s) 3.14 6.13 10.90 20.95 49.33 98.22 202.02 507.40 1066.03
2% 9 Energy -82.79 -257.26 -702.94 -1778.35 -5418.66 -13286.22 -28886.57 -74508.23 -159416.64
Time (s) 3.29 6.16 10.81 20.63 49.59 98.01 204.90 512.80 1068.00
9% 4 Energy -81.49 -261.31 -766.29 -1984.61 -5886.93 -14826.83 -31665.81 -94311.98 -190800.37
Time (s)  5.26 7.91 11.10 20.68 49.95 100.95 206.12 515.03 1085.33
4% 2 Energy -81.49 -261.31 -766.29 -1929.95 -5834.87 -14464.15 -33929.40 -93814.81 -200729.03
Time (s) 3.55 6.22 10.92 20.60 49.86 97.98 202.73 513.87 1075.07
4x4 Energy -81.70 -261.91 -776.00 -1892.16 -6348.56 -15636.99 -44506.68 -111165.27 -229567.37
Time (s) 3.25 6.14 13.44 21.15 49.43 98.11 203.58 514.16 1068.51
8% 2 Energy -81.70 -261.89 -776.00 -1892.15 -5975.69 -15928.98 -46415.26 -120381.78 -224738.12
Time (s) 3.30 6.18 10.88 20.77 49.97 98.29 203.80 520.13 1072.32
6 x4 Energy -80.99 -276.52 -769.72 -1950.40 -6672.37 -17105.77 -38496.40 -127652.29 -261517.21
Time (s) 3.22 6.22 11.14 21.12 50.43 101.30 206.36 521.97 1067.83

Table 7: Running time (seconds) for TIM problems of different dimensions. Each GPU is distributed with the maximum number
of batchsize that can be accommodated on its memory. A number of differnt GPU configurations were used; L; X Ly indicates
L; nodes with L, GPUs per node were utilized. We note that for each dimension, the run times remain constant even as we

increase the number of GPUs, increasing the effective batch size. This is indicative of near-optimal weak scaling.

# of Dimensions

# GPUs 20 50 100 200 500 1000 2000 5000 10000
# of Samples per GPU
219 217 915 13 11 29 97 o4 22
1x1 7734 7334 62.70 62.67 110.37 159.51 263.05 558.93 1058.85
1x2 7630 73.74 62.88 62.24 110.93 160.24 263.14 562.30 1060.62
1x4 76.57 73.86 63.11 62.47 110.82 160.64 260.21 556.15 1054.41
2x2 76.24 73.82 63.02 62.56 111.20 160.94 265.71 575.51 1068.28
2X4 77.56 7529 64.50 64.65 113.94 161.15 265.01 575.77 1075.45
4x2 76.32 73.86 63.03 62.35 111.31 164.54 266.81 566.73 1070.02
4x4 76.61 76.15 65.15 6491 112.19 160.87 265.47 562.93 1071.24
8 X2 77.01 75.13 64.59 65.27 112.46 163.78 269.40 572.13 1077.35
6 x4 79.83 7539 65.08 65.61 111.97 16530 268.52 576.37 1073.62




Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

We implemented the VQMC algorithm discussed in the paper
as an open source Python library. Our implementation supports
parallel VQMC training across GPU nodes with various optimiz-
ers, samplers, and model architectures on different Hamiltonian
types. In addition, for direct comparison, we provide codes to run
the classical SOTA algorithms for Max-Cut, including Goemans-
Williamson from CVX python toolbox and Burer-Monteiro from
Manopt matlab toolbox. We provide .yml script to recover the ana-
conda environment we used to run our codes, and .sh scripts to
reproduce both the experiments comparing MADE+AUTO with
RBM+MCMC under the single-GPU setting, and the experiments
running MADE+AUTO under multi-GPU setting. All experiments
are done on the GPU nodes from Flatiron Institute Iron Cluster (Pub-
lic:Instructions Iron Cluster - Simons Foundation), with 4 Nvidia
Telsa V100 32 GB NVLinked GPUs and 40 CPUs per node.

Author-Created or Modified Artifacts:

Persistent ID: https://doi.org/10.5281/zenodo.4840621
Artifact name:

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: Linux rusty2 5.4.83.1.fi #1 SMP Fri
Dec 11 15:06:24 EST 2020 x86_64 x86_64 x86_64 GNU/Linux

Operating systems and versions: CentOS Linux 7 (Core), rhel
fedora

Compilers and versions: : gcc (GCC) 4.8.5 20150623 (Red Hat
4.8.5-39)

Libraries and versions: backpack-for-pytorch==1.2.0 cvx-
graphalgs==0.1.2 cvxpy==1.1.11 matplotlib==3.4.1 networkx==2.5
numpy==1.20.1 opencv-python==4.5.1.48 pillow==8.1.2
pyyaml==5.4.1 tensorboardx==2.1 torch==1.8.0 torchvision==0.9
yacs==0.1.8

Key algorithms: Autoregressive sampling, MCMC, VMC

Input datasets and versions: There are no author-created data
artifacts.
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