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Demand for undergraduate research experiences typically out-
strips the available laboratory positions, which could have been
exacerbated during the remote work conditions imposed by the
SARS-CoV-2/COVID-19 pandemic. This report presents a collection of
examples of how undergraduates have been engaged in research
under pandemic work restrictions. Examples include a range of
projects related to fluid dynamics, cancer biology, nanomedicine,
circadian clocks, metabolic disease, catalysis, and environmental
remediation. Adaptations were made that included partnerships
between remote and in-person research students and students
taking on more data analysis and literature surveys, as well as data
mining, computational, and informatics projects. In many cases,
these projects engaged students who otherwise would have worked
in traditional bench research, as some previously had. Several
examples of beneficial experiences are reported, such as the
additional time spent studying the literature, which gave students
a heightened sense of project ownership, and more opportunities to
integrate feedback into writing and research. Additionally, the more
intentional and regular communication necessitated by remote work
proved beneficial for all team members. Finally, online seminars and
conferences have made participation possible for many more
students, especially those at predominantly undergraduate institu-
tions. Participants aim to adopt these beneficial practices in our
research groups even after pandemic restrictions end.
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Undergraduate research: the transition to pandemic conditions
Participating in undergraduate research provides many benefits to students, including

increased science knowledge, confidence, and persistence in science (1–3). These benefits are
especially important for students from groups traditionally underrepresented in science,
technology, engineering, and math (STEM) (4, 5). However, the positive effects of undergraduate
research can be dampened by a mismatch between the desires both on the part of students to
participate in research and faculty to provide such opportunities on the one hand and the lack of
available capacity in faculty research laboratories to meet student demand on the other hand.

These challenges were expected to be exacerbated by the SARS-CoV-2 pandemic, which in
many areas resulted in campuses being closed or at least the density of personnel in research
laboratories being dramatically reduced to prevent virus spread. In spring 2020, student
dormitories across the United States were evacuated, and only essential workers continued to
work in person, with all others transitioning to remote work. By mid-summer, in some areas
workers began to repopulate research laboratories, but usually at mandated reduced densities. At
some institutions, undergraduates were not allowed to return to laboratory research. This
situation presented substantial challenges to integrating undergraduates into research
laboratories, both because of the density limits and because of the general need for closer
supervision and more hands-on training of undergraduate researchers.

Several recent publications highlight creative solutions to teaching laboratories, including
course-based undergraduate research experiences (CUREs), during pandemic-related remote
teaching (6, 7). Solutions implemented in project labs and CUREs included pivoting to data and
statistical analysis, modeling and simulations, experimental design and troubleshooting, and
literature searching (8–14). Although there is no virtual substitute for learning hands-on
laboratory skills, research skills and practices can be taught without access to ‘‘wet’’ laboratories.
In some ways, undergraduate research with its typical focus on individual student projects and
more individualized student-mentor and student cohort interactions posed more of a challenge
during the COVID responses (15); for example, whereas many students were completing required
courses and thus had to be provided with alternative experiences, undergraduate research can
often be considered optional. The individual or small group organization of undergraduate
research projects also poses challenges with scaling to increase participation. These challenges
are generally true of undergraduate research, which has led to the adoption of CUREs to address
this need (16, 17). The pandemic has created additional challenges as faculty were often
overwhelmed putting their courses online or with their own children involved in at-home
schooling.

Some types of research are more easily adapted to remote work, including some types of
disciplinary-based education research and computational or informatics research. Others have
converted wet research laboratory experiences to virtual experiences by having students carry out
data analysis and literature searching, at first because of lockdowns, and subsequently to maintain
low in-person density while engaging undergraduates in authentic research (18).

In general, there is an unmet demand for undergraduate research opportunities in STEM fields.
Moreover, various programs may require some research experience or may be structured to
encourage research strongly. For example, Northeastern University (Boston, USA) students
engage in cooperative (co-op) learning experiences as early as spring of their second year, and
many of these students pursue research opportunities to help prepare them for co-op.
Additionally, chemistry majors at Northeastern University are required to complete at least one
semester of undergraduate research. Over the spring and summer of 2020, many formal and
informal discussions were held across colleges and universities, facilitated by professional
societies and funding agencies, to prepare faculty for the fall semester, including discussion of
engaging undergraduate students in research (15, 19, 20). This perspective provides examples of
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how research groups continued to engage undergraduates in research despite lockdowns and
reduced laboratory density. We discuss overcoming challenges of engaging students in research,
as well as benefits that have resulted from the current restrictions.

Benefits of the online environment
One positive aspect of the COVID-19 pandemic has been increased interaction and integration

of undergraduates at predominantly undergraduate institutions (PUIs) with scientists at research-
intensive institutions. Many new opportunities have emerged, from watching large, somewhat
impersonal online webinars with prominent researchers (21), to participating actively in cross-
institutional virtual research group meetings, to even attending international conferences online.

Although useful for all students, virtual meetings are of particular benefit at PUIs to expose
students to research careers because these undergraduates do not have the opportunity to
observe graduate students and postdoctoral researchers carrying out full-time, intensive research.
This open access to high-quality research is expected to help remove barriers to the participation
of diverse groups in science, especially at institutions with many historically underrepresented
minorities and first-generation college students who may be less knowledgeable about scientific
career paths. After the normalization of virtual meetings during the pandemic, we anticipate
continuing benefits to undergraduates by connecting them to other scientists who can serve as
examples. Future goals of one faculty member (LSW) include having students interact with
authors of papers in a research group journal club or class session, engaging in informational
interviewing with graduate students and postdoctoral scholars, and collaborating with
undergraduates at other institutions.

At research universities, undergraduates often carry out research under the direct supervision
of graduate students or other senior members of the group. One benefit of online group
meetings is the ease of including more members of the research team in project meetings,
regardless of location, so that all members of the team can engage in discussions and benefit
from the expertise of the group members. The Northeastern University Department of Chemistry
and Chemical Biology has long had an Industry PhD program in which students work toward a
PhD while maintaining their full-time employment elsewhere. Thus, many group meetings and
seminars already included online broadcasting; this has now become better institutionalized,
making these meetings more accessible to others, including students off campus on co-op.

Research projects
A number of adaptations of research projects and activities were introduced to continue to

engage undergraduates in research. In some cases, laboratory density allowed occasional or
rotating in-person work, and in others only remote work was possible. Several examples are
briefly highlighted here; detailed descriptions of projects can be found in the Supplemental
Material.

In several examples, in-person and remote students collaborated through online notebooks
and file sharing sites to organize data and facilitate communication. Students in the CaNCURE co-
op program (22) were able to publish manuscripts from their time in lockdown (23, 24). Data
analysis, modeling and simulations (25), and data mining projects (26–29) were pursued with a
range of applications. Students also gained more experience in reading the literature (30) and
wrote review articles. Bioinformatics and genome mining (31–33), homology modeling, modeling
protein-protein interactions (34–38), molecular dynamics simulations, and electrostatics
calculations (39–41) were carried out by undergraduates working remotely. These projects were
carried out in many cases by students with little or no formal training in computational methods,
and yet in many cases, students were able to make substantial progress in only one semester.
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Conclusions
This work highlights the challenges that the SARS-CoV-2/COVID-19 pandemic imposed on

undergraduate research and how researchers were able to adapt projects to engage students for
remote work. Although there are numerous challenges associated with conducting research
during the pandemic, there are benefits as well. These projects in some cases moved research in
new directions. The opportunity to meet regularly away from the laboratory gave the chance to
have all students involved in data interpretation, close reading of literature, and aspects of
manuscript writing in small teams. In other cases, more in-depth discussions among research
teams led to deeper learning, greater student ownership of projects, and a more dynamic
research environment. Several researchers noted that remote research allowed closer interactions
between undergraduates and PIs than might normally be the case. These arrangements also
helped students to develop a research mindset before entering a wet laboratory. It will be
valuable to incorporate these practices more deliberately in the future. Thus, there are numerous
benefits to undergraduate students, faculty, and research groups to engaging undergraduates in
research in this new environment.

SUPPLEMENTAL MATERIAL
Supplemental research project descriptions are available at: https://doi.org/10.35459/tbp.2021.000199.s1.
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