SiP-ML: High-Bandwidth Optical Network Interconnects for Machine
Learning Training

Mehrdad Khani!, Manya Ghobadi', Mohammad Alizadeh!, Ziyi Zhu?, Madeleine Glick?, Keren Bergmanz,
Amin Vahdat?, Benjamin Klenk?, Eiman Ebrahimi*

Massachusetts Institute of Technology
ABSTRACT

This paper proposes optical network interconnects as a key enabler
for building high-bandwidth ML training clusters with strong scal-
ing properties. Our design, called SiP-ML, accelerates the training
time of popular DNN models using silicon photonics links capable
of providing multiple terabits-per-second of bandwidth per GPU.
SiP-ML partitions the training job across GPUs with hybrid data
and model parallelism while ensuring the communication pattern
can be supported efficiently on the network interconnect. We de-
velop task partitioning and device placement methods that take the
degree and reconfiguration latency of optical interconnects into
account. Simulations using real DNN models show that, compared
to the state-of-the-art electrical networks, our approach improves
training time by 1.3-9.1x.

CCS CONCEPTS

» Networks — Network architectures; Network design and
planning algorithms;

KEYWORDS

Optical networks, Distributed Machine Learning, Silicon photonics,
Reconfigurable networks

ACM Reference Format:

Mehrdad Khani, Manya Ghobadi, Mohammad Alizadeh, Ziyi Zhu, Madeleine
Glick, Keren Bergman, Amin Vahdat, Benjamin Klenk, Eiman Ebrahimi.
2021. SiP-ML: High-Bandwidth Optical Network Interconnects for Machine
Learning Training. In ACM SIGCOMM 2021 Conference (SIGCOMM °21),
August 23-27, 2021, Virtual Event, USA. ACM, New York, NY, USA, 19 pages.
https://doi.org/l() .1145/3452296.3472900

1 INTRODUCTION

The ever-growing demand for more accurate machine learning (ML)
models has resulted in a steady increase in the dataset and model
sizes of deep neural networks (DNNs). Since 2012, the amount of
compute used in the largest Al training jobs has been increasing
exponentially with a 3.4-month doubling time [1], 50X faster than
the pace of Moore’s Law.

The computation requirements of large ML models has been
partly met by the rapid development of ML hardware accelerators
and specialized software stacks. Although hardware accelerators
have provided a significant amount of speed-up, today’s training

This work is licensed under a Creative Commons Attribution International 4.0 License.

SIGCOMM °21, August 23-27, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8383-7/21/08.
https://doi.org/10.1145/3452296.3472900

2Columbia University

657

3Google *NVIDIA

tasks can still take days and even weeks [2-4]. Solutions such as
NVIDIA DGX [5] enable distributed training on a small number
of GPUs (e.g., 8-16) connected with a high-speed electrical switch
with Tbps bandwidth, but large-scale ML clusters must resort to
connecting GPU servers over much slower infiniband fabrics [6,
7]. We argue that future distributed ML training workloads are
likely to require several Tbps of bandwidth per device at large
scales, creating a pressing need for entirely new ways to build
interconnects for distributed ML systems.

With Silicon Photonic (SiP) technology [8-18], it is now possi-
ble to build I/O interfaces integrated with an electronic chip with
Tbps bandwidth [8, 19]. These optical I/O chiplets can be directly
integrated into a CPU/GPU/FPGA/ASIC package [20], providing
significantly higher bandwidth density than today’s technologies.

This paper proposes an end-to-end optical solution, called SiP-
ML, for strong scaling of ML workloads by leveraging SiP chiplets.
SiP-ML exploits the predictability of ML training traffic patterns to
find a parallelization strategy that meets the limitations of the opti-
cal topology at hand. Specifically, we explore two all-optical archi-
tectures: (i) SiP-OCS, an Optical Circuit Switch (OCS) design based
on commercially available switches; and (ii) SiP-Ring, a switch-
less ring design enabled by reconfigurable Micro-ring resonators
(MRRs) [21] embedded in SiP interfaces [22, 23]. Each of these archi-
tectures inherits one of the constraints of optical circuit-switched
interconnects to an extreme. Optical Circuit Switches are too slow
to reconfigure (e.g., 10 ms [24-26]) for ML models with a few mil-
liseconds of iteration time, while the ring topology can only support
communication between nearby GPUs. We show that SiP-ML'’s par-
allelization algorithm can produce traffic patterns suited to both
these constraints by taking the degree limitation of all-optical circuit-
switched interconnects as an input parameter.

To evaluate SiP-ML, we develop a detailed simulator for dis-
tributed neural network training. Our simulation results show the
following: (1) for representative Natural Language Processing and
Computer Vision DNN models, SiP-ML speeds up the total training
time by a factor of 1.3-9.1X compared to today’s electrical network
fabrics; (2) although SiP-Ring’s switchless design constrains the
physical topology to a ring, it performs similarly to SiP-OCS be-
cause of the fast reconfigurability offered by the MRRs; (3) a SiP-ML
interconnect with per-GPU bandwidth B performs as well as or
better than an ideal, full-bisection electrical switch with per-GPU
bandwidth B/2; (4) when per-GPU bandwidth is high (e.g., order of
Terabits-per-second), hybrid parallelism strategies outperform data
parallelism by up to 2X in terms of time-to-accuracy.

This work does not raise any ethical issues.


https://doi.org/10.1145/3452296.3472900
https://doi.org/10.1145/3452296.3472900
https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

—@— Transformer —jll— ResNet50 Ideal

(= e A s 1 = A FI T T T T T T T
= N 18 01f E
3 w00 ek E ]
T f 1E g 1
13 | 12 oot E
E 10 - ¢ S E
= F 1< = ]
] = I
£ I 12 i )
S 1§ o E
=T IR RRTY| B NETT| M= R <= ol vl vl A
10 100 1,000 10 100 1,000
Number of GPUs Number of GPUs
(a) Throughput (b) Time-to-Accuracy

Figure 1: Weak scaling in today’s training systems.

2 BACKGROUND AND MOTIVATION

This section describes the key concepts of designing scalable ML
training interconnects. First, we discuss various parallelization
strategies for distributed training (§2.1). Then, we describe weak
and strong scaling and identify their network bandwidth require-
ments (§2.2). Finally, we introduce Silicon Photonics as a promising
technology to build high-bandwidth ML training interconnects
(§2.3).

2.1 Parallelization Strategies

Data Parallelism (DP). A popular parallelization strategy is data
parallelism where a batch of training data is distributed across
multiple workers. Each worker has an identical copy of the DNN
model but trains on a subset of the training batch, called a local
batch, in parallel. In DP training, workers need to communicate
their model weight updates after each iteration. This step can be
performed using various techniques such as broadcasting [27], pa-
rameter servers [28], ring-allreduce [29-31], and tree-reduce [32].
Model Parallelism (MP). In this approach, the DNN model is par-
titioned across different workers [33, 34]. The batch is copied to all
MP workers, and different parts of the DNN model are computed on
different workers, resulting in faster iteration times. Model paral-
lelism is an active area of research, with various proposals for model
partitioning [35-38]. Recent work has shown significant gains can
be obtained with model parallelism; however, the degree of model
parallelism has been limited to a few tens of workers [39-42].
Hybrid Parallelism. We consider a hybrid of the above paralleliza-
tion strategies. Our proposed interconnects and task partitioning
algorithms are designed specifically to support a hybrid of DP and
MP.Further, we do not make any assumptions about a specific com-
munication pattern, such as ring-allreduce or all-to-all. Our goal is
to support a variety of communication patterns using smart task
partitioning and GPU placement algorithms (details in §3).

2.2 Weak and Strong Scaling of ML Jobs

To identify the bandwidth requirements of ML systems, we first
describe two fundamental scaling paradigms.

Approach 1: Weak Scaling. The first approach is to scale the
throughput of data processing (number of processed data sam-
ples/sec) as the number of workers increases. The principal tech-
nique for throughput scaling is to keep the local batch size per
worker fixed and grow the global batch size as more workers are

658

M. Khani et al.

added to the training job [43]. As a result, the entire system is able
to process a larger global batch while keeping the iteration time of
each worker the same. It is widely thought that training with large
batches reduces the time-to-accuracy because large batches can
produce better model updates, allowing the training to converge
with fewer total iterations [44, 45]. However, increasing the global
batch size in DNN training does not always translate to improving
the number of iterations for all models [46, 47]. As an example,
Fig. 1 compares the throughput and time-to-accuracy of two DNN
models: Transformer [48] and ResNet-50 [49]. The numbers are
obtained from Nvidia’s benchmark results [50]. As shown in Fig. 1a,
increasing the number of GPUs increases the batch size and thus
improves the throughput (images/sec) of both models. However,
the time-to-accuracy does not scale at the same rate and starts to
plateau at large scales, as shown in Fig. 1b. As we show in our eval-
uations, reducing the time-to-accuracy at 1000-GPU scale requires
significantly higher bandwidth than today’s clusters (§4).
Approach 2: Strong Scaling. Instead of reducing the number of it-
erations, a more effective scaling approach is to reduce the iteration
time as the number of workers increases. This approach is called
strong scaling [43]. In contrast to weak scaling where the system
operates on a larger global batch size as the system scales, strong
scaling parallelizes the computation for a fixed batch size either by
reducing the local batch size per worker or by partitioning the com-
putation task across workers. However, achieving strong scaling
is challenging, because reducing the iteration time leads to more
frequent model updates and, hence, requires the I/O bandwidth to
scale with the number of workers [47]. Furthermore, since each
worker must perform small granular computations, strong scaling
can be sensitive to network latency and small inefficiencies in the
compute/network software stack.

Bandwidth Requirements of Weak and Strong Scaling. Today,
the technique most commonly used to scale a distributed training
job is weak scaling using the DP strategy. This approach is popular
because as more workers are added to the job: (i) the computation
time of each worker remains constant (since the local batch is
constant); and (ii) the size of data transfers at each iteration remains
constant (because it depends on the DNN model).! In contrast, in
strong scaling approaches, the bandwidth requirement increases
(often super linearly) as the system is scaled, since (i) strong scaling
leads to reduced computation time per worker and shorter training
iterations, and (ii) the amount of data exchanged at each iteration
stays the same or even grows with scale.? In today’s systems, the
degree of MP is limited to 8 or 16 workers within one DGX box [51]
with Tbps communication bandwidth per GPU [42, 52-54].

2.3 Silicon Photonics for ML Training

A straightforward approach to meet the high-bandwidth require-
ment of large-scale training workloads is to augment the bandwidth
of existing electrical switches. However, recent trends in SERDES/-
packet switching technology suggest that we will hit a wall in

! The amount of data transferred in DP in each iteration depends on the all-reduce
algorithm. With a ring-reduce implementation, each worker exchanges 2xM, where M
is the DNN model size. Note that as the number of workers increase, the bandwidth
per worker remains constant but the total required bandwidth grows.

2The amount of data transferred in MP in each iteration depends on the model parti-
tioning strategy but often increases significantly with scale, particularly when a kernel
is split on anything other than the batch dimension.



SiP-ML: Optical Network Interconnects for Machine Learning

g a S s . All-optical topologies
R ... 2 OB B[
5 Uasd e/ === 3
S U o o e R
g{
2 - Server el
3 f /Node®,
%' GPU = GPU = GPU = GPU SiP ..... S
11X 1 I X 11 ports | TeraPHY
GPU — GPU — GPU — GPU GPU

e —— |
(a) Today’s ML clusters

(b) SiP-ML cluster

Figure 2: Comparing today’s ML cluster with SiP-ML.

capacity with standard electrical packet switching [55-58]. For in-
stance, realizing an electrical packet switch with 100 ports each
with 10 Tbps is extremely challenging. This is because the traffic
manager ASIC in the switch needs to process packets at 1000 Tbps
speed, but today’s ASICs can only process packets at 12.8 Tbps
speed. To get to 1000 Tbps switching, we need to build a “Clos”
of switching ASICs inside each electrical switch [59]. This is a
challenging undertaking.

At the same time, substantial progress is being made with Sil-
icon Photonics chiplets to bring optical interconnects very close
(essentially on die) to the ASICs. Recent advances in SiP fabrication
processes have created an opportunity to build chiplets with optical
I/O ports that can transmit data at far higher rates than electrical
conductors [9-17, 60-62]. With SiP interfaces, however, it is possi-
ble to build I/O interfaces integrated with electronics at 10 Tbps/mm
bandwidth (BW) density [14, 19, 20, 60, 63, 64]. Such integration
enables building next-generation computer architectures that are
fundamentally impossible with today’s technologies.

In this paper, we propose all-optical interconnects as an attrac-
tive solution to build the next generation of ML systems. We argue
that ML workloads present a unique opportunity to build special-
ized circuit-based interconnects. While conventional datacenter
workloads have unpredictable behavior, with short flows dominat-
ing the traffic, ML workloads are predictable, periodic, and consist
of mostly large transfers. Importantly, the parallelization algorithm
determines the circuit schedules, and the entire training repeats the
same communication pattern at every iteration. This unique char-
acteristic simplifies the control-plane logic with which datacenter
optical designs have grappled for years.

3 SIP-ML DESIGN

In this section, we introduce degree and reconfiguration latency as
fundamental factors affecting all optical circuit-based interconnects
(§3.1). We then discuss our parallelization algorithm, explaining
how it takes these factors into account to produce a suitable paral-
lelization strategy for a given topology (§3.2). Finally, we discuss
SiP-ML'’s control plane and wavelength allocation (§3.3).

3.1 Degree and Reconfiguration Latency

Fig. 2 illustrates the differences between today’s ML training clus-
ters and SiP-ML. The state-of-the-art clusters have two bandwidth

659

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

counter clock-wise ring
clock-wise ring

Py N
| II( | IhJI qu

TeraPHY TeraPHY TeraPHY  TeraPHY
GPU GPU GPU GPU

TeraPHY
GPU

Node4

TeraPHY
GPU GPU

Node; Noden.1 Noden
(a) SiP-OCS topology

TeraPHY  TeraPHY

GPU b

eee

Node: Node: Noden.1 Noden

(b) SiP-Ring topology

Figure 3: Two topologies we consider for SiP-ML.

domains: (i) a Gbps bandwidth domain that interconnects thou-
sands of servers using conventional network fabrics and off-the-
shelf NICs; (ii) an all-to-all Tbps bandwidth domain that tightly
connects a handful of GPUs inside a server or a DGX. In contrast, a
SiP-ML cluster consists of disaggregated GPUs, each equipped with
Tbps SiP interfaces, interconnected by an all-optical network. An
example of a SiP interface is the TeraPHY optical I/O technology de-
veloped by Ayar Labs [64], capable of carrying 2 Tbps bandwidth (80
wavelengths each carrying 25 Gbps [65]). A GPU can be equipped
with several of these interfaces. To put the choice of topology into
perspective, we first introduce two fundamental factors affecting
all optical circuit-switched interconnects.

Degree. Unlike packet-switched networks, optical interconnects
are circuit-based. Hence, at any point in time, each node has a
limited number of active circuits, thereby limiting the number of
nodes it can communicate with directly. We refer to this as the
node degree. A topology with degree D means each node can
simultaneously maintain, at most, D circuits. Depending on the
traffic pattern, these circuits can be established with one to D
other nodes. Topologies with higher degree are suited for traffic
patterns with high fan-out, but they also tend to have a larger
cabling footprint.

Reconfiguration Latency. The reconfiguration latency puts a
lower bound on how long the circuits should be kept to achieve a
high duty cycle [66]. For a topology with reconfiguration latency r,
the circuit hold time should be longer than, for instance, 10xr to
achieve a 90% duty cycle.

There are various optical topologies that realize SiP-ML’s vision.
At one end of the spectrum are switch-based interconnects, such
as MEMS-based Optical Circuit Switch interconnects [24, 25, 55,
67, 68] and Rotor-based interconnects [66, 69]. On the other end lie
switch-free topologies such as ring [26, 70, 71], circulant graphs [72],
torus [73, 74], hypercube [75] and dragonfly interconnects [76-78].

In this paper, we consider two topologies at opposite ends of the
spectrum, as shown in Fig. 3. SiP-OCS is the first natural topology
choice because OCSs are commercially available today [79]. How-
ever, their reconfiguration latency is ~10 ms, making them suitable
for circuits that last through the entire training. Fig. 3a illustrates
our SiP-OCS topology. SiP-OCS consists of Q optical switches, each
with N ports (the same as the number of GPUs), where each GPU
is connected to every OCS in a flat topology. Hence, in SiP-OCS,
the degree D is equal to the number of switches (Q).

As an alternate, extreme design point, we also investigate the
possibility of removing the switching elements entirely and evalu-
ate the performance of a minimalistic, switch-free topology called
SiP-Ring. In contrast to SiP-OCS, SiP-Ring reconfigures wavelengths



SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

within each port to achieve logically rich topologies. Reconfigura-
tion is done using Micro-ring resonators (MRRs) [21] embedded
in SiP ports [22, 23]. MRRs act as spectral filters to select and for-
ward wavelengths, and they enable the reuse of wavelengths across
non-overlapping segments of the ring (Fig. 13a in the appendix
illustrates an example). Our experiments show MRRs can switch
between different wavelengths within 25us (§4.4). We discuss the
SiP-Ring design in more detail in Appendix A.1.

3.2 Degree-Aware Parallelization Strategy

A DNN can be viewed as a directed acyclic graph (DAG) of oper-
ations (ops). To parallelize a DNN training job, we need to decide
which GPU is responsible for running each op (or a part of each op).
As a simple example, to train a model with global batch size b using
DP on N GPUs, we break each op into N parallel sub-ops, each
operating on a local batch of size b/N (this is referred to as splitting
on the sample dimension [38]), and we map one sub-op to each
GPU. In general, MP follows similar steps: first partition each op
into parallel ops, then place the sub-ops. However, the partitioning
and placement decisions are not as straightforward as in DP.

Our parallelization algorithm takes the following as input: (i)
a DNN computation graph, G;, = (V,E), where V is the set of
operations (nodes) and E is the set of data dependencies (edges)
between the operations; (ii) the global batch size denoted by b;
(iii) a parameter k denoting the number of GPUs to partition the
model using MP; (iv) a parameter [ denoting the number of GPUs to
partition the data using DP; and (v) the physical degree constraint
of the optical network topology, denoted by D. Our algorithm finds
a hybrid MP-DP strategy with k-way model parallelism and [-way
data parallelism for N = k x [ GPUs, such that the training iteration
time is minimized while satisfying the degree constraint (i.e., each
GPU communicates with no more than 9 other GPUs). We assume
all GPUs are identical.

The core of the algorithm determines an MP placement of the

DNN computation on k GPUs. Specifically, we begin by splitting the
GPUs into I groups, with k GPUs per group, and we divide the global
batch equally between the groups (i.e., each group is responsible
for a local batch of training data of size b/l). Then, we compute an
MP placement across k devices. We replicate the same placement
in each group to produce the final hybrid MP-DP strategy. Fig. 4
illustrates the key steps in our parallelization algorithm across 8
GPUs, with k = 4-way MP, | = 2-way DP, and degree constraint
D=3. We use this as a running example in the remainder of this
section.
(i) Partitioning. DNN training involves sequential stages of com-
putation, as dictated by the data dependencies in the computation
graph. For example, the graph in Fig. 4(a) has 4 sequential ops,
shown as rectangles of different colors. The size of each rectangle
represents the computation time of the op. The key to minimizing
training time is to balance the computation load across devices
at every stage of computation to maximize parallelism. Note that
balancing per-stage computation is not the same as balancing the
total load on each device. Sequentially-dependent ops cannot run
in parallel, hence placing them on the same device has no impact
on run-time compared to placing them on different devices, even
though it increases the total load on the device.

660

M. Khani et al.

To minimize per-op run-time, it is desirable to split ops into
smaller pieces of computation. There are many ways to split an
op; for example, a 2D convolution can be split across height, width,
and channel dimensions [38]. However, in splitting ops, we must
take care not to compromise GPU utilization. GPUs (and other ML
accelerators) internally distribute an op over a massive number of
cores. If we split an op too finely, it will not have enough compute
intensity to utilize the cores effectively, and, therefore, we will
achieve no reduction in run-time from splitting. As a result, we
choose a minimum quantum of computation time, 7, and split ops
to sub-ops of a size near 7. We also cap the maximum number of
partitions for each op at k (the MP degree), as there is no point in
splitting beyond the maximum number of available parallel workers.
The result is a balanced computation graph whose vertices are the
sub-ops, as shown in Fig. 4(b) for our running example.

The right choice of the split dimension depends on the type of

the op and can impact the communication pattern between the
sub-ops. For example, in the case of a 2D convolution on an image
with multiple output channels, if we divide the op across the height
and width dimensions of the input, none of the sub-ops needs to
know the entire input image. However, if we split the op across the
output channel dimension, every sub-op needs a copy of the input
image, leading to a broadcast communication pattern with high
overhead. We select the most efficient dimension for each op. Since
we always split ops uniformly, sub-ops tend to communicate the
same amount of data with their descendants (the edges between the
sub-ops at each stage in Fig. 4(b) carry roughly the same amount
of traffic).
(ii) Placement. Next, we assign a GPU device to each op in the
balanced graph. Our placement aims to minimize the total run-
time while respecting the communication degree constraint
required by the optical interconnect. Each GPU has two types of
communications: (i) it must communicate with some of the GPUs in
its MP group (depending on the op placement); (ii) given the hybrid
DP-MP strategy, there are I MP groups that need to synchronize
their parameters through DP. Hence, each GPU must communicate
with its counterparts in the other I MP groups to perform an all-
reduce operation to synchronize the model parameters across the
DP partitions. We use the ring-allreduce [29, 30] algorithm for
this step. This requires a ring communication pattern between
corresponding GPUs in the MP groups, which requires each GPU
to send data to one GPU in another group. Therefore a GPU can
communicate with, at most, A = O - 1 other GPUs within its own
MP group to meet the overall degree constraint.

We now present a heuristic algorithm for placing ops within
an MP group to minimize run-time with a constraint A on the
degree of communication. While this problem can be written as
an Integer Linear Problem (ILP), it is prohibitive to solve this ILP
given the scale of the balanced computation graph (e.g., over 20K
sub-ops for the Transformer DNN model). Algorithm 1 provides
the pseudocode.

The key strategy in our algorithm is to map GPU devices into a
metric space and transform the degree constraint into a distance
constraint in that space. We select an arbitrary ordering of GPU
devices and place ops to maintain a maximum communication
distance of A; i.e., devices i and j are allowed to communicate only if
(i—j) mod k < A.This constraint leads to a sparse diagonal traffic



SiP-ML: Optical Network Interconnects for Machine Learning

Co
on C1$Do
A—> B —>C—>D Bo
AIZ c22D1
G

(a) Compute graph (b) Balanced compute graph

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

GPU7 C2 D1
GPU3 G D: GPUs Cit Do
GPUs | A1 ColCs
GPU, Ci | Do o vy
GPU; | A; Co C3 GPUs C2 D1
GPU2 C11 Do
GPUo | Ao & Bo GPU1 [As ColCs
GPUo |AoiBo
Time

Time
(c) MP placement (d) Final DP-MP placement

Figure 4: An example of SiP-ML’s parallelization strategy with k = 4,/ =2, D=3, and A = 2.

Algorithm 1
Task Placement with a Communication Degree Constraint

1: Input: Balanced compute graph g_in, computation quantum 7, degree
constraint A, local_batchsize b/, mp_degree k

2: Output: A task graph g_out with placed ops

3: for opin g_in.topological_sort( ) do

4 for sub_op in par_ops_map[op] do

5 far_id«farthest sub_op’s predecessor device id

6: near_ide«nearest sub_op’s predecessor device id

7 range_lo«near_id

8 range_hi—far_id + A

9 sub_op.device«get_earliest_avail(avail_times,
range_lo, range_hi, sub_op.mem_size)

10: cand_start«latest end time of predecessors

11: startemax(cand_start, avail_time[sub_op.devicel)
12: end«start + sub_op.duration

13: avail_time[sub_op.device]«end

14: end for

15: end for

16: g_out « add_network_ops(g_out)

matrix with zeros outside a A distance from the main diagonal,
satisfying the communication degree constraint.

The algorithm begins with a topological sort of the balanced
computation graph (shown in Fig. 4(b) for our example), such that
each sub-op appears in the sorted list after its dependencies. It
places the sub-ops in this sorted order, guaranteeing that when a
sub-op is placed, all of its dependencies have already been placed.
For each sub-op, the algorithm first computes a set of placement
candidates. These are the devices where the sub-op can be placed
without violating the distance constraint mentioned above. We
compute the intersection of these ranges for all parents of x to
determine its placement candidates. Then, we select the earliest
available device among these candidates to place x, and we schedule
the op on that device as soon as its dependencies have completed. If
there is a tie at this step, we select the GPU with the smallest index
so that we can minimize the distance between communicating
GPUs.3 Notice that since we place the sub-ops in order of their
dependencies, keeping track of when each op can be scheduled on
each device is straightforward. If the intersection of the feasible
ranges for all parents of the sub-op x is empty, i.e., the maximum
distance between the parents is longer than A — 1, we relocate the
parent nodes into a smaller device range so that the placement
of x becomes feasible. For this purpose, we place x on the GPU

3This property helps enable wavelength reuse in the ring topology (§A.1).

661

that meets a maximal set of range constraints. We then reallocate
the remaining parents that violate the constraint into the nearest
device that meets the distance constraint with x. As this may create
distance violations between parents and grandparents of x, we
continue this backward process until all previously placed ops meet
the distance constraint with their parents. We then restart a forward
pass from the first located op and verify the distance constraints
between the placed ops and their children. If any violations have
occurred due to reallocation, we relocate the child op. This forward-
backward procedure is repeated until all ops are placed. We leave
the convergence proof to future work.

Fig. 4(c) shows the MP placement for our running example, with
A = 2. Notice two properties of this placement: (i) each GPU com-
municates with, at most, A = 2 other GPUs, as required, and (ii)
the sub-ops of each op are balanced well across the 4 GPUs. In fact,
the only op that is not perfectly balanced is C, but the 4 sub-ops
of this op cannot be placed on all 4 GPUs without violating the
communication degree constraint, because whichever GPU op B
resides on would then need to communicate with the other 3 GPUs.
Putting it all together. Fig. 4(d) shows the final hybrid MP-DP
placement for our example. As mentioned earlier, it is created simply
by replicating the MP placement in the [ = 2 GPU groups. As for
the communication pattern, each GPU communicates with, at most,
A = 2 other GPUs in its MP group and one more GPU for the
ring topology required for the DP all-reduce step. For example, in
Fig. 4(d), GPU 1 must communicate with GPUs 2 and 3 for MP and
GPU 5 for DP. Our parallelization algorithm takes the degree of
MP and DP (k and I) as input, but it is trivial to optimize over these
parameters to find the combination that minimizes training time
for a given number of GPUs, as discussed in Appendix 4.2.

3.3 Circuit Scheduling

Given that our SiP-OCS topology reconfigures its circuits only
once at the beginning of the training job, its control plane logic is
simple. In this case, the main task is to compute the total traffic
matrix resulting from the parallelization algorithm and then assign
circuits to each pair of GPUs that must communicate, such that
the maximum transfer time is minimized. We determine the circuit
assignment with a simple ILP run once for each training job (details
in §A.2).

The control plane for the SiP-Ring topology is more challeng-
ing, as circuits can be reconfigured during training. Hence, our
controller needs to estimate the traffic and reschedule the circuits
periodically. Therefore, every GPU’s host needs to read its GPU
transfer buffer counters through PCle and communicate them to a



SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

central controller. Using NVIDIA’s nvml API, we poll the NVLink
counters on a Tesla V100 GPU at a 300-microsecond granularity.
However, this API is designed for management purposes and is
not optimized for latency. We believe obtaining the counters at a
sub-100-microsecond scale should be feasible with further engineer-
ing. Our experiments confirm that the observed traffic matrix over
the past 100us is a good estimate of the communication demands
over the next 100 us. Using the traffic matrix, we can solve an ILP
(see §A.1) for optimal wavelength scheduling on the ring topol-
ogy. However, solving an ILP is too slow for short-timescale circuit
scheduling. Therefore, we propose a fast, approximate wavelength
scheduling algorithm that solves a minimum-cost flow routing
problem to schedule wavelengths. Appendix A.1 describes this al-
gorithm in detail. Note that while we currently propose to measure
the traffic matrix for dynamic circuit establishment, exploiting the
predictability of training workloads is a natural step which we leave
for future work.

Supporting Multiple Jobs. We anticipate a SiP-ML cluster will
typically be used to run multiple jobs at the same time. Each job will
run on a subset of GPUs, dedicated to that job. Supporting multiple
jobs with SiP-OCS requires no changes to our design, except that
we allocate a subset of available GPUs when a job arrives and
correspondingly set the total number of GPUs in our placement
algorithm. When a job completes, we release its GPUs and optical
circuits. SiP-Ring follows a similar logic, but we ideally prefer to
allocate each job to a contiguous block of neighboring GPUs on
the ring. Fragmentation of the ring space, as jobs arrive and depart,
could make this difficult to achieve at all times. One solution is to
use a standard OCS to assign GPU interfaces to arbitrary locations
on the ring.

Scalability Considerations. While our current version of SiP-
OCS assumes each OCS has enough ports to connect to every GPU
in a flat topology, a more realistic setting is to use hierarchical
Clos [80] or flat designs such as BCube [81] to scale SiP-OCS. Our
SiP-Ring topology can be scaled using Theia [72] and SlimFly [82]
to build hierarchical rings. Another way to scale SiP-Ring is to
consider 2D rings, where we have K horizontal rings, with N GPUs
on each ring. We then connect every K GPUs from K different
horizontal rings on a single vertical ring. Hence, there will be K + N
rings in total, connecting NK GPUs. Each GPU has direct access
to one vertical and one horizontal ring and must divide its SiP
interfaces between the two. Depending on the vertical bandwidth
requirement of the interconnect, this ratio can be adjusted.

4 EVALUATION

In this section, we quantify the performance of SiP-ML by compar-
ing it to other network interconnects. Our results show:

(i) For three representative DNN models (Transformer, ResNet,
and Megatron), SiP-ML speeds up training time by a factor of 1.3—-
9.1 compared to hierarchical electrical network fabrics represen-
tative of today’s ML clusters. This is because SiP-ML eliminates
bandwidth bottlenecks and enables hybrid DP/MP parallelization
strategies that cannot be supported efficiently by today’s fabrics.

(ii) Although SiP-Ring’s switchless design constrains connectiv-
ity, it performs similarly to SiP-OCS. SiP-Ring’s limited connectivity
is compensated by its ability to rapidly reschedule wavelengths

662

M. Khani et al.

using MRRs and our parallelization algorithm’s ability to adapt its
strategy to the topology (e.g., ensuring most communication occurs
between nearby nodes on the ring).

(iii) A SiP-ML interconnect with per-GPU bandwidth B performs
as well as or better than an ideal, full-bisection electrical switch
with per-GPU bandwidth B/2. For instance, given 1024 GPUs and
B = 8 Tbps, SiP-ML’s dynamic topology provides at least 4 Tbps
of bandwidth, on average, between each pair of GPUs that need to
communicate.

(iv) When per-GPU bandwidth is high (e.g., order of terabits-per-
second), hybrid parallelism strategies outperform data parallelism
by up to 2X in terms of time-to-accuracy.

4.1 Methodology & Setup

To evaluate SiP-ML, we implement a detailed simulator, called
RosTtaM, to model several baseline network architectures connect-
ing up to thousands of GPUs. Our simulator is ~10K lines of code
in C++ and is available online at https://github.com/MLNetwork/
rostam.git. We discuss the details of our simulator in §4.2. In our
evaluations, we set the quantum of computation for balancing the
computation graphs, 7, to 10 us (§3.2).

Comparisons. We consider the following network architectures:

e Elect-Flat: an ideal electrical switch that scales to any number
of GPUs, N, for any per-GPU bandwidth of B; i.e., each GPU can
simultaneously communicate with N — 1 other GPUs with a total
bandwidth of B in both send and receive directions. This baseline
has zero reconfiguration delay. For any pair of (B, N), no network
can communicate faster than this baseline. In practice, it can be
approximated with full-bisection bandwidth topologies such as fat-
tree for relatively small values of B (e.g., 100-400 Gbps), or with a
small N (e.g., tens of nodes) with large B. Note that no electrical
network would be able to perform better than this flat electrical
baseline, as it provides full-bisection bandwidth.

o Elect-Cluster: a hierarchical electric network fabric represen-
tative of today’s ML clusters interconnecting GPUs. Each server
hosts eight GPUs, connected with an internal high-speed electrical
switch providing per-GPU bandwidth of B, typically in the order
of terabits-per-second. The servers are connected with a slower
electrical fabric providing 400 Gbps bandwidth per server (unless
otherwise stated). In practice, servers can be thought of as DGX [5]
boxes with an internal NVSwitch [83] interconnect, communicating
over a standard datacenter network fabric (e.g., fat-tree).

o SiP-Ring: a ring-based interconnect for SiP-ML, as described in
§3.1. Each GPU has W distinct wavelengths that it can dynamically
allocate to communicate with its 16 closest neighbors on the ring
(in both directions). We assume each wavelength carries 25 Gbps of
bandwidth, providing a maximum bandwidth of B = W x25Gbps for
each GPU. Unlike SiP-OCS, this topology is rapidly reconfigurable,
with a reconfiguration latency of 25 s (§4.4). We estimate the traffic
every 100 ps as described in §3.3 unless stated otherwise.

e SiP-OCS: an optical circuit switch interconnect for SiP-ML, as
described in §3.1 with Q OCS switches, each with N ports (the
same as the number of the GPUs). Each GPU has Q optical links
(each with a bandwidth of B/Q), one to each OCS. Each GPU can
communicate with, at most, D=0 other GPUs at the same time. To
study the impact of D, we vary the number of OCS switches in the


https://github.com/MLNetwork/rostam.git
https://github.com/MLNetwork/rostam.git

SiP-ML: Optical Network Interconnects for Machine Learning

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

—@— Elect-Cluster 200 Gbps —li— Elect-Cluster 400 Gbps —A— Elect-Flat (DP) —&— Elect-Flat —#— SiP-OCS —&— SiP-Ring
10 V.\‘ T T T T T ] [ '\.‘ T T T T T ] B '\.‘ T T T T T T ]
7 o . e T Ne—e—0— 1 [ ]
£ = | 10 ‘.\'—H‘H i § ]
Na3 S 10" | - — B = 1
s 7| . 1t - 1 \”\.\.\H
é 6l A . B o - - ] 104 = Na E
: || < | | RN |
@ S5 2 > I ~ ]
E i 1 1 N )
[—1
4 - 10° | - \;
| | | | | | | E_| | | | | | | 103 | | | | | | |
27 98 99 9l0 oIl 512 13 27 98 99 9l0 gll 512 913 o7 98 99 9l0 oll 512 913
BW per GPU (Gbps) BW per GPU (Gbps) BW per GPU (Gbps)
(a) ResNet50 (b) Transformer (c) Megatron

Figure 5: Impact of bandwidth B on the total training time (Time-to-Accuracy) for N=1024 GPUs. DP is not feasible for Megatron

because of its huge memory footprint.

interconnect, using a default value of 16. Since OCS reconfiguration
delay is too long compared to the typical training iteration time of
our DNN models (< 20ms), we compute the best one-shot circuit
schedule for each workload, as described in §3.3. To evaluate the
potential benefits of optical switches with fast reconfiguration [55,
71], we also evaluate the impact of lowering the reconfiguration
latency and allowing multiple reconfigurations within each training
iteration.

Training workloads. We consider ResNet, Transformer, and Mega-
tron, three representative DNN models widely used in computer
vision and natural language processing applications. ResNet [84] is
an image classification model with 25 million parameters. Trans-
former refers to a Universal Transformer with 350 million parame-
ters. Megatron[52] is a variant of the GPT model [85] with 18 billion
parameters.

We focus on time-to-accuracy as our primary metric. We de-
termine the time-to-accuracy by multiplying the time for a single
training iteration (obtained via our simulator) by the number of
training iterations required to reach the target accuracy. We use
numbers reported in prior work for the required training iterations
for these models at a given batch size. For ResNet and Transformer,
Shallue et al. [86] report the number of training iterations across a
range of batch sizes. Hence for these models, we optimize over batch
size to find the lowest possible time-to-accuracy in each network
configuration. For Megatron, we use batch size 1024 and 240,000
training iterations, following [50, 87]. Note that we report the total
pre-training time for Megatron, which requires significantly more
training iterations than a typical fine-tuning task. But the relative
improvements we report would hold for fine-tuning the model since
we are directly decreasing the iteration time.

ResNet and Transformer fit in a typical GPU’s memory. Hence
the main reason to parallelize them is to speed up training. Mega-
tron, cannot fit on one GPU and therefore cannot be trained with
only DP; MP is required to split it across multiple GPU memories.

4.2 Simulator

The overall flow of an end-to-end simulation in Rostam is as fol-
lows.

“In the extreme, eliminating reconfiguration latency entirely would make SiP-OCS
equivalent to the ideal Elect-Flat architecture.

663

Profiling. We first need to profile the average GPU and CPU com-
pute time, peak memory size, and input/output data sizes of each
operation in the model in addition to its data dependencies. Each
compute operation typically has one or more input/output arrays
of data, “tensors”. Profiling the operations over different input/out-
put tensor shapes helps predict the speed ups of partitioning each
operation in different input/output tensor dimensions. We start
profiling over a fair range of batch sizes, typically starting with 1
sample/iteration and continuing until we run out of GPU memory.
The profiling step is independent from the simulator and can use
any convenient profiling tool. Moreover, profiling along other than
the samples dimension (e.g., height and width in the 2D convolu-
tion) helps improve the simulation’s accuracy. In absence of the
profiling data in any dimension, we assume a linear dependency
between the total number of splits and each split’s compute time in
that dimension. Depending on the dimension of the split, RosTam
adds the required new data dependencies in the placement stage.
In addition to the operations profile, we need to know the required
number of iterations to achieve a certain level of model accuracy
as a function of the global batch. This profile depends on the DNN
model and the training dataset [46]. RosTaM can combine the latter
two profiles in the placement stage to come up with the best hybrid
parallelization strategy. In this paper, we profile all models on an
NVIDIA Tesla V100 GPU with 32 GB of memory.

Placement. Our approach to explore the space of hybrid paral-
lelism techniques takes as input: (1) the number of GPUs, (2) the
bandwidth available per GPU, (3) the graph profile for the DNN
model as described above, and (4) the curve providing the required
number of training iterations as a function of the (global) batch
size. We search through all possible hybrid parallelizations over a
range of global batch size configurations and use the placement
algorithm (e.g., Algorithm 1 (§3)) for device placement. We then
estimate each configuration’s run-time based on the graph profile
and the bottleneck bandwidth. To estimate the effect of the network,
we also compute the latency for each data transfer (edge) in the
graph profile according to the bottleneck bandwidth. We finally
select the fastest of all these parallelization strategies.

Two points are worth noting about this procedure. First, one of
the strategies that our task parallalization considers is the conven-
tional DP. However, as our results show (see §4.3), in many cases,
DP is not the best strategy for large-scale training. Second, the time



SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

mn 1,020 T T TTITT T T [T T TTTTTT 1,020 T T T T TTTTTT T T TTTTT
3 1,020 [ el —— - 1 ——— —
&0

g 25 | | 256 |- —
E 64 | —DP degree — 64 [— —
F 16| momom MPdegree 16| -
= - -

E 4 P . . 4 |- 2 —|
& 1 oot 402 — 1 - -—- —
© Il \\\Hm Il \HHHT [ L L] (il [

100 1,000 10,000 100 1,000 10,000

Bandwidth per GPU (Gbps) Bandwidth per GPU (Gbps)

(a) ResNet50

Figure 6: Optimal hybrid trade-off between the degree of MP
and DP at different per-node bandwidths for 1024 GPUs.

(b) Transformer

computed for a configuration in this procedure is only an estimate;
in our actual simulations, a GPU’s bandwidth can vary over time
(e.g., due to circuit reconfiguration). Therefore, our simulator re-
quires a runtime stage to track the effect of dynamic decisions on
ops scheduling more precisely.
Runtime. Our runtime simulator relies on three main compo-
nents: GPUs, an interconnect, and an executive session. The session
launches the operations onto the GPUs as soon as their dependen-
cies are met in the DNN graph. The interconnect can be electrical
or optical. Our current implementation includes SiP-Ring, SiP-OCS,
electrical, and full-mesh interconnects.

RosTaM models a latency for each op launched onto the GPU and
a minimum completion time for ops that run on the GPU. Hence,
there is a lower-bound on how quickly we can run a compute graph
that depends on its critical path length. We set the launch latency
and the minimum completion to 1 microsecond in our experiments.
Moreover, RostaM overlaps the communication and computation
whenever possible.

4.3 Results

Fig. 5 compares the time-to-accuracy of our three DNN models
with 1024 GPUs on different network architectures. We vary the
bandwidth per GPU, B, between 128—8192 Gbps, and compare
Elect-Flat, Elect-Cluster with two values of inter-server bandwidth
(200 Gbps or 400 Gbps), SiP-OCS, and SiP-Ring. For each value
of B and each network architecture, we use Algorithm 1 (§3.2) to
search for the best parallelization strategy, as described in §4.2.
To compare the different architectures on an equal footing, we
run Algorithm 1 for electrical networks by removing the degree
constraint. We then compare our results to the state-of-the-art
results reported in MLPerf [88] and find that they are comparable
or better (§A.3). For reference, we also show data parallel (DP)
training on Elect-Flat (except for Megatron which cannot use basic
DP).

We also experiment with FlexFlow [38] as a state-of-the-art
placement algorithm. FlexFlow’s network model does not support
the degree constraints required by our optical interconnects. For
electrical interconnects, we run the FlexFlow code [89] for our
workloads, but the strategies it finds are very similar to DP. We
believe there are two reasons for this. First, the scales we consider
(e.g., 1000 GPUs) are much larger than those in FlexFlow, making
the search space for its Metropolis algorithm significantly larger.
Second, FlexFlow’s implementation only searches for partitioning
strategies across the batch dimension (although the approach in [38]
is general).

664

M. Khani et al.

Analysis. We first consider the Elect-Flat architecture. Recall that
Elect-Flat has ideal performance. At every value of B, it provides
each GPU with its full interface bandwidth regardless of the commu-
nication pattern. Thus Elect-Flat’s training time serves as a lower
bound for any other network. Fig. 5 shows that increasing B on
Elect-Flat improves training time for all models, but the improve-
ment is much larger for Transformer and Megatron than ResNet50.
ResNet50 is less sensitive to network bandwidth for two reasons.
First, it is a smaller model than the others and therefore requires less
bandwidth for all-reduce operations. Second, ResNet50 trains effec-
tively with large batch sizes (via weak scaling), further reducing its
bandwidth requirements [86, 90-92].

Comparing DP with the best strategy found using Algorithm 1
on Elect-Flat is also instructive. Consider Transformer: when B is
less than 1 Tbps, our placement cannot beat DP. But as B increases
to 8 Tbps, SiP-ML’s hybrid strategy outperforms DP by ~50%.

Now let us turn to the Elect-Cluster architectures. For all three
models, the training time plateaus as we increase B, with Elect-
Cluster (400 Gbps) outperforming Elect-Cluster (200 Gbps). Recall
that here, B is the local bandwidth between the GPUs within each
server. The results show that scaling this local bandwidth can im-
prove training time to an extent (by enabling some model paral-
lelism), but the slow server-to-server network eventually becomes
a bottleneck and prevents further speedups.

Compared to Elect-Cluster architectures, SiP-OCS and SiP-Ring
achieve 1.3-9.1x faster training time as we scale B. The benefits
are smallest for ResNet50 (which does not require very high com-
munication bandwidth) and most significant for Megatron. SiP-ML
architectures are less efficient than the ideal Elect-Flat (which can-
not be realized in practice for large values of B and N): to achieve the
same training time, SiP-ML architectures require up to 2X higher
bandwidth per GPU (B) (e.g., Transformer), with a smaller gap in
many cases (e.g., Megatron). This difference reflects the constraints
imposed by optical circuit switching. Specifically, in our evalua-
tions, we set the degree constraint for both SiP-OCS and SiP-Ring
at D=16. SiP-OCS requires a one-shot reconfiguration, while SiP-
Ring imposes a traffic locality requirement on the communication
pattern. Despite these constraints, SiP-ML performs quite well, as
our placement algorithm adapts the parallelization strategy to suit
the degree requirement.

SiP-OCS and SiP-Ring perform similarly overall. Each architec-

ture has pluses and minuses. Unlike SiP-OCS, SiP-Ring has fast
reconfiguration, but it makes communication between more distant
GPUs on the ring less efficient. Our results show that the impacts of
these factors on overall performance effectively cancel each other
out.
Parallelization strategies. Fig. 6 plots the degrees of DP and MP
for each value of B in SiP-OCS. The figure shows that as the per-
node bandwidth increases on the x-axis, the optimal strategy uses
more model parallelism to decrease the total training time. This
is consistent with current practice: when the network is slow, DP
is more efficient but on a fast network, combining MP and DP
improves training time. For instance, the Transformer model shown
in Fig. 6b starts with 1024-way DP and 1-way MP, but at 10 Tbps
bandwidth per-GPU, the best training time is achieved with 16-way
MP and 64-way DP.



SiP-ML: Optical Network Interconnects for Machine Learning

MP=4

MP=8

MP=16

0 20

Figure 7: Traffic matrices generated by SiP-ML for the Trans-
former model on 1024 GPUs (displaying only the first 32
GPU s for brevity).

= —&— 2 Tbps
E 15 - —m— 4Tbps |
~ —a&— 8 Thps
;5 10| .
g
o
£ sh .
&

| | | |

10 12 14 16

Num. of OCSs

Figure 8: Impact of number of OCSs in SiP-OCS on time-to-
accuracy of a hybrid training of Transformer with one-shot
configuration. The lines correspond to different per-GPU
bandwidth (B). Dashed horizontal lines of the same color
show performance achieved by Elect-Flat at the same band-
width.

Communication patterns. To better understand the communi-
cation patterns produced by Algorithm 1, Fig. 7 shows the traffic
matrices for the Transformer model with MP degree k = 4, 8, 16,
corresponding to 2 Tbps, 6 Tbps, and 10 Tbps per-GPU bandwidth,
respectively. These traffic matrices have two main components:
(i) a set of identical k X k blocks, corresponding to the traffic be-
tween the nodes in each MP group (brighter colors represent larger
values); (ii) an off-diagonal component, corresponding to the DP
ring-all-reduce traffic used by each GPU to synchronize its param-
eters with its peers in other MP groups (holding the same part of
the model). Within the k X k blocks, the entries near the diagonal
are larger (brighter), indicating the GPUs communicate more with
their immediate neighbors. This property helps when mapping the
communication to SiP-Ring. The off-diagonal entries (DP traffic)
are smaller than the largest entries for the MP traffic, but they are
still significant. This is the downside of current hierarchical electri-
cal fabrics, as shown in Fig. 5, the low server-to-server bandwidth
becomes a chokepoint.

The traffic matrices also show how SiP-ML meets the degree
constraint. For example, in SiP-OCS, each GPU establishes circuits
with members of its MP group and is also part of a ring with its
peers in other MP groups. The resulting topology is effectively
the union of I = N/k identical direct-connect topologies and k
rings. The number of circuits to each destination is chosen based
on the traffic intensity towards that destination, although finding
the optimal circuit allocation is more subtle and requires solving
an ILP (§3.3).

Impact of number of OCSs and reconfiguration latency. In-
creasing the number of OCSs (or the total number of ports on each

665

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

[T T T T L——
—@— 2 Thps, Reconfig. —l— 4 Tbps, Reconfig. /.
- - = 2 Tbps, one-shot - - - 4 Tbps, one-shot

_ —
o a
T

Time-to-Acc. (mins)
wu
T

0 Lol

Reconfiguration Delay (usec)

Figure 9: Impact of OCS reconfiguration delay on time-to-
accuracy of Transformer in SiP-OCS for two per-GPU band-
widths. The critical reconfiguration delay when choosing be-
tween reconfigurable and one-shot allocation depends on
the bandwidth.

—@— Elect-Flat —l— Elect-Cluster 400Gbps
—A— SiP-OCS —4— SiP-Ring
| | | |

=
S
T

Time-to-Acc. (mins)
-
=

25 26 27 28 29 210 211 212 023 24 25 26 27 28 29 210
Number of GPUs Number of GPUs
(a) ResNet50 (b) Transformer

Figure 10: Overall performance of SiP-ML’s OCS and Ring
topologies at different scales.

OCS) in SiP-OCS can improve performance in two ways: (i) we
can increase the maximum permissible communication degree; or
(ii) for the same communication degree, we can allow a more fine-
grained allocation of circuits (with less bandwidth per circuit). The
latter enables SiP-ML to align circuit bandwidth to traffic demands
more closely, resulting in less wasted bandwidth. Fig. 8 shows the
time-to-accuracy vs. number of OCSs for a one-shot circuit con-
figuration of the Transformer model. Performance improves with
more OCSs, but benefits are marginal beyond 12 OCSs. Also, un-
surprisingly, a larger bandwidth per GPU (B) reduces sensitivity
to the number of OCSs; it has more headroom, thus masking the
inefficiencies caused by fewer OCSs.

Fig. 9 shows how future OCSs with faster reconfiguration time
could improve the total training time of a Transformer model. For
a reconfiguration delay of d, we use the traffic matrix of the past 5d
seconds to reconfigure the circuit allocations. We maintain circuits
for 5d to amortize the reconfiguration delay overhead. As expected,
reducing the reconfiguration delay always helps. However, note
that for d > 300us, a one-shot allocation outperforms a dynamic
reconfiguration. Once again, higher bandwidth per GPU masks
inefficiencies, and one-shot allocation performs as well as rapid
dynamic reconfiguration.

Impact of scale. Fig. 10 compares the training time of Resnet50
and Transformer on different network architectures across different
scales, with B = 8 Tbps of bandwidth per GPU. As in Fig. 5, we
see that SiP-OCS and SiP-Ring are close to the performance of



SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

Fabric Latency

#GPUs
1 pusec 3 psec 10 pusec 30 pysec 100 psec
32 1X  0.99%x 0.83% 0.73% 0.64x
128 2.11x  2.10X 1.52x 1.36X 1.29x
512 427x  4.04X 3.03% 2.49% 2.03x

Table 1: Impact of interconnect latency on the scaling effi-
ciency. Training speed-ups are normalized by the speed-up
at 32 GPUs with 1usec latency.

the ideal Elect-Flat at all scales, with SiP-Ring occasionally slightly
worse. With Elect-Cluster, the training time improves up to a certain
scale, and then the benefits taper off as the low server-to-server
bandwidth becomes a bottleneck. Once again, ResNet scales quite
well with Elect-Cluster, in line with current practice [31]. But larger
models and those less amenable to large-batch training, such as
Transformer, can benefit significantly from SiP-ML’s high per-GPU
bandwidth at moderate-to-large system scales.

Impact of network latency. Network fabric latency can play an
important role in scaling ML workloads at multi Tbps network
speeds. Table 1 shows the impact of different minimum interconnect
latencies on training performance. The results show the training
speedup relative to an Elect-Flat network with 32 GPUs with B =
10 Tbps, and 1 ps fabric latency. Latencies above ~10us degrade
performance. This suggests another potential advantage of optical
networks over electrical switching fabrics, the latter can suffer
from variable latency due to the presence of buffers. To compare to
the best-case performance of the baselines, our simulations do not
model buffering within electrical fabrics, as this depends on factors
such as the details of the transport protocols [93, 94].

SiP-Ring reconfiguration delay. While Tbps SiP-enabled chiplets
are just about to hit the market [8, 63, 95], their reconfiguration
latency has not been evaluated. To evaluate the reconfiguration
latency of SiP-ML’s ring topology, we build a small-scale testbed
(details in §4.4). Our testbed includes a thermo-optic SiP chip which
has six micro-ring resonators (MRRs). To hit 10 Tbps bandwidth
we must package 400 MRRs (each modulating light at 25 Gbps). As
a result, our testbed only supports 10 Gbps bandwidth. Rather than
bandwidth, we focus on validating reconfigurability. Our measure-
ments show a reconfiguration delay of 25 ys (Fig. 12b and Fig. 12¢
in §4.4).

4.4 Testbed

To benchmark the switching time and throughput of a SiP-based
architecture, we build a small-scale testbed.

Testbed setup. Fig. 11a shows a photograph of our experimental
testbed. We built a three-node prototype of SiP-ML using FPGA
development boards (to emulate GPUs), and a thermo-optic SiP chip
which has six micro-ring resonators (MRRs). Each MRR is tuned to
select one wavelength by receiving the appropriate bias signal from
the bias control board. We use Stratix V FPGAs to emulate the GPU
training workflow, as no commercial GPU chip supports optical
interfaces. Our FPGAs have 50 Mb embedded memory and 1152 MB
DDR3 memory. The FPGAs are programmed and configured as indi-
vidual compute nodes with their own local memory. The controller
logic is implemented using one of the FPGAs. A digital-to-analog
converter (DAC) provides the necessary bias signals to the SiP chip

666

M. Khani et al.

RxBuffer gy, Tocaldata
D—)Classlher-) MEM -)cun:ry m»m«m\ }
‘?://c"“ 5’;\:/ E Ais Aoy A3 Controller
request S
& Stratix V FPGA board (m o O B Micro Ring
— TxBulier s, : Bias Voltages
»
o ;
= Wavelength
@ s E
2 iswitch (MRR1) (MRR;) (MRR3 Allocguon
S i
B 15| Taffic Matrix
Qoldy [ Ayl 1142 Prediction
GPU;4 GPU;  GPUs
A Y S
v Voo N

(a) Photo

(b) Logical schematic

Figure 11: SiP-ML’s testbed.

to cause a state change in the MRRs, depending on the scheduling
decision. We use commodity SFP+ transceivers connected to the
high-speed serial transceiver port on the FPGA board to achieve
the conversion between electrical and optical domains. Our three
input wavelengths are A; =1546.92 nm, A2 =1554.94 nm, and A3 =
1556.55 nm. Our SiP optical chip consists of six MRRs (we use three
of them as shown in Fig. 11b) to select and forward any of the wave-
lengths to the target emulated GPUs. To evaluate our prototype, we
implement 2D convolutional computation workloads in Verilog to
perform data fetching, computing, and storing between emulated
GPU nodes. A GPU node can get access to the other GPU node’s
memory and perform read/write operations, similar to how real
GPUs communicate today.

Example: programming the MRRs. We set the first configura-
tion such that GPUj is connected to GPUj; this means MRR; is
tuned to select and forward Ay to GPU7, while MRRj is tuned to
select and forward A; to GPUj. For simplicity of the configura-
tion logic, MRR3 is always tuned to A; but is effectively in idle
mode, as the optical power of A1 has been dropped through MRR;.
To change the state to Configurationy where GPUj is connected
to GPUs, MRR; should be tuned to select and forward A3, while
MRR; should be detuned from A for the optical power of 11 to pass
through MRR3 to GPUs. Note that in this configuration, MRR3, can
remain tuned to A7.

Testbed limitations. Our use of commodity FPGAs and transceivers
is driven by pragmatic concerns. It allows us to implement work-
loads without needing separate modulation logic at the transmitter
or demodulation logic at the receiver. Packets are forwarded to the
SFP+ transceiver which modulates the light for us. However, this
method has limitations as well. Implementing convolutional neural
networks in an FPGA, rather than a GPU as would be the case in
the actual system, introduces complex Verilog logic with overhead
on (de)serializing the remote memory access commands.

To validate the feasibility of our optical design, we answer the
following four key questions. (i) What is the impact of using MRRs
to select/bypass wavelengths on throughput? (ii) How fast can we
reconfigure the MRRs to dynamically tune to appropriate wave-
lengths? (iii) What is the end-to-end switching time? (iv) What is
the impact of our scheduling algorithm on throughput?

MRRs as select/bypass interfaces. We first examine the selec-
t/bypass functions of our MRR-based interfaces. A transceiver chan-
nel is instantiated on the FPGA and a SFP+ optical transceiver at



SiP-ML: Optical Network Interconnects for Machine Learning

4 --- MRRy —— MRR>
T = - T T T T
1" —— Loopback = é 20ﬁ.v 8.4us
- - == Bypass = 3w N st
6 0.5 | === Select B E 21 ' -
20
@ 1r b
o i ) ) B N
- - oI wrvor ] 1
o o1 92 93 0 50 100 150 200

Throughput (Gbps) Time (us)

(a) Micro-ring select/bypass through- (b) Micro-ring reconfiguration time
put

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

00 copfiga B8 Config,

S o
oW

osf /

Frequency

e
-

—e— GPU; — GPU>
-®- GPUs; — GPU3
| I h

0.6 -

=

g
£
=

g
kS
3

=

5
Z

| |
0 200 400 60O 800
Slot length (us)

10 15 20 25

Reconfirguration Time (j15)

1,000

(c) End-to-end reconfiguration time (d) End-to-end throughput

Figure 12: Testbed benchmarks.

1546.92 nm is used to perform the throughput measurements for
select, bypass and loopback cases. As shown in Fig. 12a, the through-
put measurement of the select mode (the MRR tuned at 1546.92 nm)
is the curve in black while the result for bypassing the MRR is in
blue. The red curve is the baseline measurement where the optical
transmitter is connected directly to the receiver channel without
coupling the optical signal in/out the SiP chip. Our measurements
show in all three cases, the throughput is 9 to 9.3 Gbps confirming
the feasibility of the idea of using MRRs as select/bypass interfaces.
MRR reconfiguration time. To measure the reconfiguration time
of our MRRs, we place InGaAs PIN photodetectors after MRR; and
MRR; in Fig. 11b and change the bias voltage from Config; to
Configy, where MRR; and MRR; are tuned into and out of reso-
nance with A;. We switch light between the two photodetectors by
applying different bias signals to the SiP chip every 125 ps. The pho-
todetectors convert the received photocurrent into voltage. We use
an oscilloscope to measure real time light intensity and can there-
fore measure the reconfiguration speed. Fig. 12b shows the receive
signal at the photodetectors. In one case, the signal reaches stable
state in approximately 20 ps, and in another case, it takes only 8.4 ps.
This is because tuning the MRR into the chosen wavelength is faster
than tuning out of that wavelength due to our use of the thermal
tuning effect. We conservatively, consider 25 ps as the switching
time in our simulations. This experiment micro-benchmarks the
micro-ring reconfiguration time; additional time might be required
for transceivers to start decoding bits. This additional time is not
fundamental, and next we show how we measured the end-to-end
reconfiguration time between FPGAs.

End-to-end reconfiguration time. The end-to-end reconfigura-
tion time includes the MRRs’ reconfiguration time, the transceivers’
locking time, and the handshaking time between newly connected
nodes. The distribution of end-to-end switching time between
Config; and Configy is shown in Fig. 12c. We perform 300 mea-
surements to obtain the distribution, showing that the average
switching time to Config; is 13 ps and Configy is 15 ps. Indeed, it
is reasonable that the fastest end-to-end reconfiguration time may
be less than the micro-ring reconfiguration time, as the receiver
at the FPGA receives enough optical power to start the synchro-
nization process before stabilization of the light output power. As
described above, the micro-ring reconfiguration times for tuning
and detuning are not equal, leading to two distinct distributions.
The additional variations in the distribution of the reconfiguration
time are a consequence of the time required for the transceiver to
lock onto the new signal and carry out the handshaking protocol.

Putting it all together. We also measure the achieved throughput
while changing the scheduling slot length between the two config-
urations. We conduct five different case studies with slot lengths of
64, 128, 256, 512 and 1000 is and measure the ideal throughput. The
curve in blue in Fig. 12d indicates the switching state from GPUj3
to GPUj, lasting the duration set by the experiment; the curve in
red indicates the switching from GPUj to GPUs. As the plot shows,
the link can achieve above 90% of the ideal throughput, when the
scheduling slot length is 220 ps. This is because the end-to-end
reconfiguration takes only about 20 ps; hence, having a scheduling
slot 10 times larger will result in near optimal throughput.

5 DISCUSSION

Power budget and scalability. Optical power loss is a key mea-
sure for any optical system. To estimate the D of our SiP-Ring
topology, we measure the loss of light in our testbed. Our experi-
ments indicate that the loss per MRR is negligible (0.125-0.025 dB
per MRR). However, coupling the light in and out of each node
creates 0.5 dB loss because each I/O interface has an input and
output coupler with loss. Overall, the total loss incurred by passing
through each node on SiP-Ring is 0.625-0.525 dB. Hence, assuming
a 10 dB power budget based on transmit power and receiver sen-
sitivity [96], SiP-Ring can send light to 16 back-to-back neighbors
without requiring amplification. At first blush, it appears infeasible
to scale SiP-Ring, as building a cluster with more than 16 nodes
needs amplifiers which add non-linear noise to the system. How-
ever, SiP-Ring can capture path length limitations in its placement
algorithm. For instance, the path length in our evaluations is lim-
ited to 16 nodes (Appendix A.1). This is because the placement
algorithm is able to place GPUs locally close to each other such
that every GPU only interacts with, at most, a GPU that is 15 nodes
away (i.e., the node degree is 16). As a result, SiP-Ring’s design can
take path length into account to scale to large numbers of nodes.

Cost of SiP-ML. The entire field of silicon photonics is based on
the concept that the fundamental way to reduce the cost of photonic
devices is to leverage the high volume manufacturing capabilities
of the silicon electronics industry. As a result, it is impossible to
provide an accurate cost estimation for SiP-ML. Prior work has
built TeraPHY SiP interfaces with size 8.86 mm X 5.5 mm [20, Slide
41]. This area contains optical transmit, receive, and MRRs. The
cost of manufacturing this SiP interface is $44,082 for a volume of
20 chips ($4,408/chip) based on 2020 Europractice pricelist [97].°

SEuropractice is an EC initiative that provides the industry and academia with a
platform to develop smart integrated systems, ranging from advanced prototype
design to volume production. The cost is listed as €80,000 on page 10 under imec
Si-Photonics iSiPP50G; the volume is listed as 20 samples on page 6 under iSiPP50G.

667



SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

Hence, assuming the cost will drop by a factor of 10 at mass produc-
tion, our current cost estimation for each SiP interface in SiP-ML is
~$440. We further estimate the cost of on-chip electrical circuitry
(drivers, MRR’s tuning control logic, and CMOS transimpedance
amplification) to be #$300. This estimate is based on Europractice
pricelist for a 10 mm? chip area [14, 19, 98, 99].° Another approach
to observe the potential cost effectiveness of SiP solutions is to
look at it from the standpoint of pluggable transceivers and active
copper cables. Today’s SiP-based pluggable optics at 100 Gbps cost
roughly $1/Gbps (SiP PSM4 and CWDM4). In comparison, a non
SiP-based SR-4 pluggable transceiver is around $3/Gbps (multimode
and VCSEL based). Similarly, a 400 Gbps SR8 is $3/Gbps, while a
SiP based 400 Gbps DR4 and FR4 is projected to be $1/Gbps. We
note that there is a large distinction between the cost of commodity
DWDM transponders used in wide-area networks and SiP-ML’s
SiP interfaces. In particular, DWDM transponders are designed
to operate at long distances; this imposes strict challenges on the
laser, manufacturing, forward-error correction, photodiode sen-
sitivity, modulation scheme, and light coupling. In contrast, SiP
interfaces are designed for short distances and do not require coher-
ent detection; hence, they can take advantage of the development
and commercialization of photonics components for short distance
datacenters.

6 RELATED WORK

Our work builds on two lines of related work.
Software/hardware systems for distributed ML. Many soft-
ware platforms and techniques have focused on enabling large-
scale distributed machine learning in recent years [100-105]. In
particular several papers focus on enabling large-scale data par-
allel training [45, 100-104, 106]. Relevant to this paper, several
aim to reduce communication overhead using techniques such
as compression [107-110], asynchronous updates [28, 111-114],
partially-exchanged gradients [115], and smart parameter propa-
gation [2, 45, 116-119]. In addition, a variety of algorithmic ap-
proaches have been developed to accelerate communication among
devices customized for the underlying network [120], or to improve
model parallel training using smart task device placement [121, 122],
and more efficient pipelining strategies [4, 123]. There is also a
significant body of work on new electrical hardware designs to ac-
celerate machine learning computations [118, 124-129]. The work
proposed here is orthogonal to the above mentioned techniques, as
they can still be applied to further improve both data and model
parallel training. Our work differs in that we investigate the sys-
tem requirements of using SiP as a new underlying technology to
interconnect hundreds of GPUs in an all-optical architecture.
Datacenter Interconnects. The broad vision for this paper is to
use all-optical interconnects for future distributed ML systems.
Optical interconnects have a long and rich history in the data-
center research community [24-26, 55, 66, 70, 71, 130—135]. Prior
work shows the benefits of reconfigurable topologies in datacenter
networks by adding optical links to the electrical topology [24,
66, 71, 133, 136] or by creating all-optical datacenter intercon-
nects [26, 55, 70, 131, 132]. The unpredictability of legacy datacenter
workloads and the complexity of managing hybrid topologies are

Page 6 under GLOBALFOUNDRIES 22 nm FDSOI lists €14,000/mm? for 50 samples.

668

M. Khani et al.

two main reasons for the lack of adoption of all-optical datacen-
ters so far. In contrast, this paper builds an all-optical interconnect
with a simple and practical task placement algorithm primarily
used to accelerate ML workloads. Our ring topology (SiP-Ring) is
inspired by Quartz [70], Mordia [71], and Megaswitch [26]. They
all use a fiber ring to interconnect the datacenter topology, but
they do not leverage MRRs. Moreover, Mordia realizes a microsec-
ond switching circuit switch, but it does not reuse wavelengths,
and this significantly reduces its bandwidth efficiency compared
to SiP-Ring. As a result, Mordia’s number of ports is limited by
the number of wavelengths. Jellyfish [137], Rotornet [66], and
Opera [69] take advantage of the unpredictability of datacenter
workloads and use expander-based topologies to improve the com-
pletion time of short and long flows. Random permutations are
not ideal for ML workloads, as a training workload is a periodic
repetition of thousands of iterations. Shoal [135], Larry [138], XFab-
ric [139], and Sirius [55] have proposed reconfigurable datacenter
interconnects with nanosecond switching fabric. We believe these
proposals have the potential to change the game in datacenter en-
vironments, but they are not commercially available yet and they
do not support Tbps bandwidth between communicating nodes.
Moreover, our results show ps reconfiguration latency is close to
optimal for ML; a control plane with nanosecond response time
might be needed for a general purpose datacenter traffic, but it is
an overkill for distributed ML training. Finally, there is rich body of
research on silicon photonics [17, 140-142], embedding silicon pho-
tonics switches in High Performance Computing clusters [143] and
energy-efficient datacenters [144]. By focusing on ML, our work
takes an application-level perspective to build an interconnect with
SiP components.

7 CONCLUSION

In this paper, we propose optical network interconnects for dis-
tributed ML training clusters capable of providing multiple terabits-
per-second of bandwidth per GPU. Our results show that the pre-
dictability of ML workloads makes them a great fit for optical inter-
connects. We develop a new task partitioning and placement algo-
rithm that exploits the degree requirement of optical networks to
find a parallelization strategy suitable for a given network topology.
We show this approach can mitigate and in fact largely overcome
concerns such as limited communication degree and reconfigura-
bility of optical circuit-switched networks. Simulations using three
real DNN models show that, compared to today’s electrical network
fabrics with limited server-to-server bandwidth, SiP-ML improves
the training time by 1.3-9.1X at scale.

8 ACKNOWLEDGMENTS

We would like to thank our shepherd Hitesh Ballani and anony-
mous reviewers for their feedback. This work was partly supported
by AEPA-E ENLITENED PINE, DARPA FastNICs, DARPA PIPES,
a Cisco Research Center Award, NSF ASCENT-2023468, NSF CNS-
2008624, NSF CNS-1751009, NSF CNS-2006827, NSF CNS-1563826
as well as by a SystemsThatLearn@CSAIL Ignite Grant and a Ma-
chineLearningApplications@CSAIL Award.



SiP-ML: Optical Network Interconnects for Machine Learning

REFERENCES

(1]
[2]

==

8

[9]

[10

(11]

(14]

[20]

[21

[22]

Al and Compute. https://openai.com/blog/ai-and-compute/.

Minsik Cho, Ulrich Finkler, David Kung, and Hillery Hunter. Blueconnect:
Decomposing all-reduce for deep learning on heterogeneous network hierarchy.
In SysML Conference, 2019.

Siddharth Das. CNN Architectures, 2017.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R.
Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei Zaharia. Pipedream:
Generalized pipeline parallelism for dnn training. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles, SOSP 4AZ19, page 14A$15,
New York, NY, USA, 2019. Association for Computing Machinery.

NVIDIA DGX A100. https://www.nvidia.com/en-us/data-center/dgx-a100/.
NVIDIA Selene Cluster. https://blogs.nvidia.com/blog/2020/12/18/nvidia-
selene-busy/.

S S Vazhkudai, B R de Supinski, A S Bland, A Geist, J Sexton, J Kahle, C J Zimmer,
S Atchley, S H Oral, D E Maxwell, V G Vergara Larrea, A Bertsch, R Goldstone,
W Joubert, C Chambreau, D Appelhans, R Blackmore, B Casses, G Chochia,
G Davison, M A Ezell, E Gonsiorowski, L Grinberg, B Hanson, B Hartner, I Karlin,
M L Leininger, D Leverman, C Marroquin, A Moody, M Ohmacht, R Panka-
jakshan, F Pizzano, ] H Rogers, B Rosenburg, D Schmidt, M Shankar, F Wang,
P Watson, B Walkup, L D Weems, and J Yin. The design, deployment, and
evaluation of the coral pre-exascale systems. 7 2018.

Valerie Coffey. DARPA PIPES Program demonstrates 2 Tbit/s optical intercon-
nects at the chip level, July 2020. https://www.laserfocusworld.com/fiber-
optics/article/14176186/darpa-pipes-program-demonstrates- 2- tbits-optical-
interconnects-at-the-chip-level.

Mark Wade. Optical i/o chiplets eliminate bottlenecks to unleash innovation,
2020. https://ayarlabs.com/ayar-labs-solving-critical-computing- challenges-
through-optical-i-o/.

Yutaka Urino, Takahiro Nakamura, and Yasuhiko Arakawa. Silicon Optical
Interposers for High-Density Optical Interconnects, pages 1-39. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2016.

D.Kim, K. Y. Au,H. Y.L.X. Luo, Y. L. Ye, S. Bhattacharya, and G. Q. Lo. 2.5d silicon
optical interposer for 400 gbps electronic-photonic integrated circuit platform
packaging. In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC),
pages 1-4, Dec 2017.

E. R. H. Fuchs, R. E. Kirchain, and S. Liu. The future of silicon photonics: Not
so fast? insights from 100g ethernet lan transceivers. Journal of Lightwave
Technology, 29(15):2319-2326, Aug 2011.

David Thomson, Aaron Zilkie, John E Bowers, Tin Komljenovic, Graham T Reed,
Laurent Vivien, Delphine Marris-Morini, Eric Cassan, Leopold Virot, Jean-Marc
Fedeli, Jean-Michel Hartmann, Jens H Schmid, Dan-Xia Xu, Frederic Boeuf,
Peter O’Brien, Goran Z Mashanovich, and M Nedeljkovic. Roadmap on silicon
photonics. Journal of Optics, 18(7):073003, 2016.

M. Wade, M. Davenport, M. De Cea Falco, P. Bhargava, J. Fini, D. Van Orden,
R. Meade, E. Yeung, R. Ram, M. Popovic, V. Stojanovic, and C. Sun. A bandwidth-
dense, low power electronic-photonic platform and architecture for multi-tbps
optical i/o. pages 1-3, Sep. 2018.

N. Ophir, C. Mineo, D. Mountain, and K. Bergman. Silicon photonic microring
links for high-bandwidth-density, low-power chip i/o. IEEE Micro, 33(1):54-67,
Jan 2013.

G.T. Reed and A.P. Knights. Silicon Photonics: An Introduction. Wiley, 2004.
Qixiang Cheng, Meisam Bahadori, Madeleine Glick, Sebastien Rumley, and
Keren Bergman. Recent advances in optical technologies for data centers: a
review. Optica, 5(11):1354-1370, Nov 2018.

Madeleine Glick, Lionel C. Kimmerling, and Robert C. Pfahl. A roadmap for
integrated photonics. Opt. Photon. News, 29(3):36-41, Mar 2018.

Amir H. Atabaki, Sajjad Moazeni, Fabio Pavanello, Hayk Gevorgyan, Jelena
Notaros, Luca Alloatti, Mark T. Wade, Chen Sun, Seth A. Kruger, Huaiyu Meng,
Kenaish Al Qubaisi, Imbert Wang, Bohan Zhang, Anatol Khilo, Christopher V.
Baiocco, Milovs A. Popovic, Vladimir M. Stojanovic, and Rajeev J. Ram. Integrat-
ing photonics with silicon nanoelectronics for the next generation of systems
on a chip. Nature, 556(7701):349-354, 2018.

Mark Wade, Erik Anderson, Shahab Ardalan, Pavan Bhargava, Sidney Buch-
binder, Michael Davenport, John Fini, Anatoly Khilo, Chandru Ramamurthy
Roy Meade, Michael Rust, Vladimir Stojanovic Forrest Sedgwick, Derek Van
Orden, Chong Zhang Edward Wang, Chen Sun, Sergey Shumarayev, Conor
O’Keeffe, Tim T. Hoang, David Kehlet, Ravi V. Mahajan, Allen Chan, and Tina
Tran. TeraPHY: A Chiplet Technology for Low-Power, High-Bandwidth Optical
1/0. HotChips, pages i-xlviii, August 2019. https://www.hotchips.org/hc31/
HC31;.9ayarLabs0190820y CRINAL. pdf.

Valentina Donzella, Ahmed Sherwali, Jonas Flueckiger, Samantha M. Grist,
Sahba Talebi Fard, and Lukas Chrostowski. Design and fabrication of soi micro-
ring resonators based on sub-wavelength grating waveguides. Opt. Express,
23(4):4791-4803, Feb 2015.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. Kumar Selvaraja,
T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets. Silicon

669

[23

[24

[25

[26

[27

[28

[29

[30
[31

[32

[33

[34

[35

[36

[37

[38

[39

[40

[41

[42

[43

[44

]

]

]

]

]

]

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

microring resonators. Laser & Photonics Reviews, 6(1):47-73, 2012. https://
onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman. Scalable
microring-based silicon clos switch fabric with switch-and-select stages. IEEE
Journal of Selected Topics in Quantum Electronics, 25(5):1-11, Sep. 2019.
Nathan Farrington, George Porter, Sivasankar Radhakrishnan, Hamid Hajab-
dolali Bazzaz, Vikram Subramanya, Yeshaiahu Fainman, George Papen, and
Amin Vahdat. Helios: A hybrid electrical/optical switch architecture for modular
data centers. SIGCOMM’10, pages 339-350.

Guohui Wang, David G. Andersen, Michael Kaminsky, Konstantina Papagian-
naki, T.S. Eugene Ng, Michael Kozuch, and Michael Ryan. c-Through: Part-time
optics in data centers. SSIGCOMM’10, pages 327-338.

Li Chen, Kai Chen, Zhonghua Zhu, Minlan Yu, George Porter, Chunming Qiao,
and Shan Zhong. Enabling wide-spread communications on optical fabric with
megaswitch. In 14th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 17), pages 577-593, Boston, MA, 2017. USENIX Association.
Pengtao Xie, Jin Kyu Kim, Yi Zhou, Qirong Ho, Abhimanu Kumar, Yaoliang
Yu, and Eric Xing. Lighter-communication distributed machine learning via
sufficient factor broadcasting. In Proceedings of the Thirty-Second Conference on
Uncertainty in Artificial Intelligence, pages 795-804, Arlington, Virginia, USA,
2016. AUAI Press.

Mu Lij, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. OSDI'14, pages 583-598. USENIX
Association, 2014.

Rajeev Thakur, Rolf Rabenseifner, and William Gropp. Optimization of collec-
tive communication operations in mpich. Int. J. High Perform. Comput. Appl.,
19(1):49-66, February 2005.

Baidu, 2017. https://github.com/baidu-research/baidu-allreduce.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu
Zhou, Liqgiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, Tiegang Chen,
Guangxiao Hu, Shaohuai Shi, and Xiaowen Chu. Highly scalable deep learning
training system with mixed-precision: Training imagenet in four minutes. CoRR,
abs/1807.11205, 2018.

J. R. Quinlan. Induction of decision trees. Mach. Learn., 1(1):81-106, March
1986.

Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P
Xing. On model parallelization and scheduling strategies for distributed machine
learning. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence, and K. Q.
Weinberger, editors, Advances in Neural Information Processing Systems 27, pages
2834-2842. Curran Associates, Inc., 2014.

Zhihao Jia, Sina Lin, Charles R. Qi, and Alex Aiken. Exploring hidden dimensions
in accelerating convolutional neural networks. volume 80 of Proceedings of
Machine Learning Research, pages 2274-2283, StockholmsmAdssan, Stockholm
Sweden, 10-15 Jul 2018. PMLR.

Tal BenNun and Torsten Hoefler. Demystifying parallel and distributed deep
learning: An in-depth concurrency analysis. CoRR, abs/1802.09941, 2018.

L. Song, F. Chen, Y. Zhuo, X. Qian, H. Li, and Y. Chen. Accpar: Tensor partition-
ing for heterogeneous deep learning accelerators. In 2020 IEEE International
Symposium on High Performance Computer Architecture (HPCA), pages 342-355,
2020.

Nikoli Dryden, Naoya Maruyama, Tim Moon, Tom Benson, Marc Snir, and
Brian Van Essen. Channel and filter parallelism for large-scale cnn training.
In Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC’19, New York, NY, USA, 2019. Association
for Computing Machinery.

Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and model parallelism
for deep neural networks. SysML, 2019.

Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Marc aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc V. Le, and
Andrew Y. Ng. Large scale distributed deep networks. In F. Pereira, C. J. C.
Burges, L. Bottou, and K. Q. Weinberger, editors, Advances in Neural Information
Processing Systems 25, pages 1223-1231. Curran Associates, Inc., 2012.

Amir Gholami, Ariful Azad, Kurt Keutzer, and Aydin Bulug. Integrated model
and data parallelism in training neural networks. CoRR, abs/1712.04432, 2017.
Ravichandra Addanki, Shaileshh Bojja Venkatakrishnan, Shreyan Gupta, Hongzi
Mao, and Mohammad Alizadeh. Learning generalizable device placement al-
gorithms for distributed machine learning. In Advances in Neural Information
Processing Systems 32, pages 3983-3993. Curran Associates, Inc., 2019.

Shar Narasimhan. NVIDIA Clocks World’s Fastest BERT Training Time and
Largest Transformer Based Model, Paving Path For Advanced Conversational
Al Aug. 2019. https://devblogs.nvidia.com/training-bert-with-gpus/.

Nikoli Dryden, Naoya Maruyama, Tom Benson, Tim Moon, Marc Snir, and
Brian Van Essen. Improving strong-scaling of cnn training by exploiting finer-
grained parallelism, 2019.

Elad Hoffer, Itay Hubara, and Daniel Soudry. Train longer, generalize better:
Closing the generalization gap in large batch training of neural networks. In


https://openai.com/blog/ai-and-compute/
https://www.nvidia.com/en-us/data-center/dgx-a100/
https://blogs.nvidia.com/blog/2020/12/18/nvidia-selene-busy/
https://blogs.nvidia.com/blog/2020/12/18/nvidia-selene-busy/
https://www.laserfocusworld.com/fiber-optics/article/14176186/darpa-pipes-program-demonstrates-2-tbits-optical-interconnects-at-the-chip-level
https://www.laserfocusworld.com/fiber-optics/article/14176186/darpa-pipes-program-demonstrates-2-tbits-optical-interconnects-at-the-chip-level
https://www.laserfocusworld.com/fiber-optics/article/14176186/darpa-pipes-program-demonstrates-2-tbits-optical-interconnects-at-the-chip-level
https://ayarlabs.com/ayar-labs-solving-critical-computing-challenges-through-optical-i-o/
https://ayarlabs.com/ayar-labs-solving-critical-computing-challenges-through-optical-i-o/
https://www.hotchips.org/hc31/HC31_2.9_AyarLabs_20190820_HC_FINAL.pdf
https://www.hotchips.org/hc31/HC31_2.9_AyarLabs_20190820_HC_FINAL.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017
https://onlinelibrary.wiley.com/doi/abs/10.1002/lpor.201100017
https://github.com/baidu-research/baidu-allreduce
https://devblogs.nvidia.com/training-bert-with-gpus/

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

Proceedings of the 31st International Conference on Neural Information Processing
Systems, NIPS’17, pages 1729-1739, Red Hook, NY, USA, 2017. Curran Associates
Inc.

Priya Goyal, Piotr Dollar, Ross B. Girshick, Pieter Noordhuis, Lukasz Wesolowski,
Aapo Kyrola, Andrew Tulloch, Yangging Jia, and Kaiming He. Accurate, large
minibatch SGD: training imagenet in 1 hour. CoRR, abs/1706.02677, 2017.
Christopher J. Shallue, Jachoon Lee, Joseph Antognini, Jascha Sohl-Dickstein,
Roy Frostig, and George E. Dahl. Measuring the effects of data parallelism on
neural network training. Journal of Machine Learning Research, 20(112):1-49,
2019.

Yosuke Oyama, Naoya Maruyama, Nikoli Dryden, Erin McCarthy, Peter Har-
rington, Jan Balewski, Satoshi Matsuoka, Peter Nugent, and Brian Van Essen.
The case for strong scaling in deep learning: Training large 3d cnns with hybrid
parallelism. IEEE Transactions on Parallel and Distributed Systems, 2020.
MLPerf v0.6: NVIDIA Implementation of Attention Mechanisms for Translation,
Aug. 2019. https://github.com/mlperf/training,esults, 0.6/tree/master/NVIDIA/
benchmarks/transformer/implementations/pytorch.

ResNet v1.5 for TensorFlow, 2020.

NVIDIA Data Center Deep Learning Product Performance.
developer.nvidia.com/deep-learning-performance-training-inference.
Nvidia DGX-2. https://www.nvidia.com/content/dam/en-zz/Solutions/Data-
Center/dgx-2/dgx- 2-print-datasheet-738070-nvidia-a4-web-uk. pdf.
MegatronLM: Training Billion+ Parameter Language Models Using GPU Model
Parallelism, Jul. 2019. https://nv-adlr.github.io/MegatronLM.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero:
Memory optimizations toward training trillion parameter models, 2019. https:
//www.deepspeed.ai/.

Saeed Rashidi, Srinivas Sridharan, Sudarshan Srinivasan, Matthew Denton, and
Tushar Krishna. Efficient communication acceleration for next-gen scale-up
deep learning training platforms, 2020.

Hitesh Ballani, Paolo Costa, Raphael Behrendt, Daniel Cletheroe, Istvan Haller,
Krzysztof Jozwik, Fotini Karinou, Sophie Lange, Kai Shi, Benn Thomsen, and
Hugh Williams. Sirius: A Flat Datacenter Network with Nanosecond Optical
Switching. SIGCOMM’20, Aug. 2020.

H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and D. Burger. Dark
silicon and the end of multicore scaling. In 2011 38th Annual International
Symposium on Computer Architecture (ISCA), pages 365-376, June 2011.

R. Colwell. The chip design game at the end of moore’s law. In 2013 IEEE Hot
Chips 25 Symposium (HCS), pages 1-16, Aug 2013.

H.J.S. Dorren, E. H. M. Wittebol, R. de Kluijver, G. Guelbenzu de Villota, P. Duan,
and O. Raz. Challenges for optically enabled high-radix switches for data center
networks. Journal of Lightwave Technology, 33(5):1117-1125, March 2015.
Alexis BjAtirlin and Manish Mehta. Broadcom discusses its co-packaged optics
plans. http://www.gazettabyte.com/home/2021/4/27/broadcom-discusses-its-
co-packaged-optics-plans.html, 2021. [Online; last accessed 25-June-2021].
Steven Leibson. Ayar labs and Intel demo FPGA with optical transceivers
in DARPA PIPES project: 2 Tbps now, >100 Tbps is the goal, Mar.
2020. https://blogs.intel.com/psg/ayar-labs-and-intel- demo-fpga-with-optical-
transceivers-in-darpa- pipes-project-2- tbps-now- 100- tbps-is-the-goal/.

Pipes researchers demonstrate optical interconnects to improve performance of
digital microelectronics, Mar. 2020. https://www.darpa.mil/news-events/2020-
03-25.

Tiffany Trader. Ayar Labs to Demo Photonics Chiplet in FPGA Package at Hot
Chips, Aug. 2019. https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-
photonics-chiplet-in-fpga-package-at-hot-chips/.

F. Douglis, S. Robertson, E. Van den Berg, J. Micallef, M. Pucci, A. Aiken, M. Hat-
tink, M. Seok, and K. Bergman. Fleet—fast lanes for expedited execution at 10
terabits: Program overview. IEEE Internet Computing, (01):1-1, apr 5555.

Ayar Labs TeraPHY Silicon Chip. https://ayarlabs.com/products/.
Demonstration of Ayar Labs’ Optical I/O Multi-Chip Package and Single-Die
Package solutions, Aug. 2020. https://vimeo.com/449164007.

William M. Mellette, Rob McGuinness, Arjun Roy, Alex Forencich, George Papen,
Alex C. Snoeren, and George Porter. Rotornet: A scalable, low-complexity,
optical datacenter network. SIGCOMM ’17, pages 267-280, 2017.

Tae Joon Seok, Niels Quack, Sangyoon Han, Richard S. Muller, and Ming C. Wu.
Large-scale broadband digital silicon photonic switches with vertical adiabatic
couplers. Optica, 3(1):64-70, Jan 2016.

Kyungmok Kwon, Tae Joon Seok, Johannes Henriksson, Jianheng Luo, Lane
Ochikubo, John Jacobs, Richard S Muller, and Ming C Wu. 128x 128 silicon
photonic mems switch with scalable row/column addressing. In CLEO: Science
and Innovations, pages SF1A-4. Optical Society of America, 2018.

William M. Mellette, Rajdeep Das, Yibo Guo, Rob McGuinness, Alex C. Snoeren,
and George Porter. Expanding across time to deliver bandwidth efficiency and
low latency. NSDI'20, 2020.

Yunpeng James Liu, Peter Xiang Gao, Bernard Wong, and Srinivasan Keshav.
Quartz: A new design element for low-latency dens. SIGCOMM’14, pages 283—
294.

https://

[71]

[72]

[73

[74

[75]

[76]

[77

[78]

[79

[80]

[81

[82

[83

[84]

[85

[86

[87]

(88
[89
[90

[o1

[92

[93]

[94

M. Khani et al.

George Porter, Richard Strong, Nathan Farrington, Alex Forencich, Pang Chen-
Sun, Tajana Rosing, Yeshaiahu Fainman, George Papen, and Amin Vahdat.
Integrating microsecond circuit switching into the data center. SSIGCOMM 13,
pages 447-458.

meg walraed sullivan, Jitu Padhye, and Dave Maltz. Theia: Simple and cheap
networking for ultra-dense data centers. In HotNets-XIII Proceedings of the 13th
ACM Workshop on Hot Topics in Networks. ACM, October 2014.

Paolo Costa, Austin Donnelly, Greg O’Shea, and Antony Rowstron. Camcubeos:
A key-based network stack for 3d torus cluster topologies. In Proceedings of
the 22nd International Symposium on High-Performance Parallel and Distributed
Computing, HPDC 13, pages 73-84, New York, NY, USA, 2013. Association for
Computing Machinery.

Hussam Abu-Libdeh, Paolo Costa, Antony Rowstron, Greg O’Shea, and Austin
Donnelly. Symbiotic routing in future data centers. In Proceedings of the ACM
SIGCOMM 2010 Conference, SIGCOMM ’10, page 51?62, New York, NY, USA,
2010. Association for Computing Machinery.

J. M. Kumar and L. M. Patnaik. Extended hypercube: a hierarchical intercon-
nection network of hypercubes. IEEE Transactions on Parallel and Distributed
Systems, 3(1):45-57, 1992.

John Kim, Wiliam J. Dally, Steve Scott, and Dennis Abts. Technology-
driven, highly-scalable dragonfly topology. SIGARCH Comput. Archit. News,
36(3):774A$88, June 2008.

Min Yee Teh, Jeremiah J. Wilke, Keren Bergman, and Sébastien Rumley. Design
space exploration of the dragonfly topology. In Julian M. Kunkel, Rio Yokota,
Michela Taufer, and John Shalf, editors, High Performance Computing, pages
57-74, Cham, 2017. Springer International Publishing.

J. Kim, W. J. Dally, S. Scott, and D. Abts. Technology-driven, highly-scalable
dragonfly topology. In 2008 International Symposium on Computer Architecture,
pages 77-88, 2008.

Calient Optical Circuit Switch. https://www.calient.net/products/edge640-
optical-circuit- switch/.

Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. A scalable,
commodity data center network architecture. SIGCOMM Comput. Commun.
Rev., 38(4):63-74, August 2008.

Chuanxiong Guo, Guohan Lu, Dan Li, Haitao Wu, Xuan Zhang, Yunfeng Shi,
Chen Tian, Yongguang Zhang, and Songwu Lu. Bcube: A high performance,
server-centric network architecture for modular data centers. In Proceedings of
the ACM SIGCOMM 2009 Conference on Data Communication, SIGCOMM ’09,
page 63?74, New York, NY, USA, 2009. Association for Computing Machinery.
M. Besta and T. Hoefler. Slim fly: A cost effective low-diameter network topol-
ogy. In SC ’14: Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, pages 348-359, Nov 2014.
Alexander Ishii, Denis Foley, Eric Anderson, Bill Dally, Glenn Dearth Larry
Dennison, Mark Hummel, and John Schafer. NVIDIA’s NVLink-Switching Chip
and Scale-Up GPU-Compute Server. HotChips, 2018. https://www.hotchips.org/
hc30/2conf/2.01yvidian Vswitchy otChips2018p GX2NVSginal. pdf.

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770-778, June 2016.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
Language Understanding by Generative Pre-Training.

Christopher J. Shallue, Jaechoon Lee, Joseph M. Antognini, Jascha Sohl-Dickstein,
Roy Frostig, and George E. Dahl. Measuring the effects of data parallelism on
neural network training. CoRR, abs/1811.03600, 2018.

Raul Puri. Megatron: a large, powerful transformer, Aug. 2019. https://
github.com/NVIDIA/Megatron-LM.

MLPerf: A broad ML benchmark suite. https://mlperf.org/.

FlexFlow Github. https://github.com/flexflow/FlexFlow.git.

Takuya Akiba, Shuji Suzuki, and Keisuke Fukuda. Extremely large minibatch sgd:
Training resnet-50 on imagenet in 15 minutes. arXiv preprint arXiv:1711.04325,
2017.

Yang You, Zhao Zhang, Cho-Jui Hsieh, James Demmel, and Kurt Keutzer. Ima-
genet training in minutes. In Proceedings of the 47th International Conference on
Parallel Processing, pages 1-10, 2018.

Xianyan Jia, Shutao Song, Wei He, Yangzihao Wang, Haidong Rong, Feihu Zhou,
Ligiang Xie, Zhenyu Guo, Yuanzhou Yang, Liwei Yu, et al. Highly scalable
deep learning training system with mixed-precision: Training imagenet in four
minutes. arXiv preprint arXiv:1807.11205, 2018.

Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data
Center TCP (DCTCP). In Proceedings of the ACM SIGCOMM 2010 Conference,
SIGCOMM 10, pages 63-74, New York, NY, USA, 2010. ACM.

Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. Hpcc: high
precision congestion control. In Proceedings of the ACM Special Interest Group
on Data Communication, pages 44-58. 2019.


https://github.com/mlperf/training_results_v0.6/tree/master/NVIDIA/benchmarks/transformer/implementations/pytorch
https://github.com/mlperf/training_results_v0.6/tree/master/NVIDIA/benchmarks/transformer/implementations/pytorch
https://developer.nvidia.com/deep-learning-performance-training-inference
https://developer.nvidia.com/deep-learning-performance-training-inference
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-2/dgx-2-print-datasheet-738070-nvidia-a4-web-uk.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/dgx-2/dgx-2-print-datasheet-738070-nvidia-a4-web-uk.pdf
https://nv-adlr.github.io/MegatronLM
https://www.deepspeed.ai/
https://www.deepspeed.ai/
http://www.gazettabyte.com/home/2021/4/27/broadcom-discusses-its-co-packaged-optics-plans.html
http://www.gazettabyte.com/home/2021/4/27/broadcom-discusses-its-co-packaged-optics-plans.html
https://blogs.intel.com/psg/ayar-labs-and-intel-demo-fpga-with-optical-transceivers-in-darpa-pipes-project-2-tbps-now-100-tbps-is-the-goal/
https://blogs.intel.com/psg/ayar-labs-and-intel-demo-fpga-with-optical-transceivers-in-darpa-pipes-project-2-tbps-now-100-tbps-is-the-goal/
https://www.darpa.mil/news-events/2020-03-25
https://www.darpa.mil/news-events/2020-03-25
https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-photonics-chiplet-in-fpga-package-at-hot-chips/
https://www.hpcwire.com/2019/08/19/ayar-labs-to-demo-photonics-chiplet-in-fpga-package-at-hot-chips/
https://ayarlabs.com/products/
https://vimeo.com/449164007
https://www.calient.net/products/edge640-optical-circuit-switch/
https://www.calient.net/products/edge640-optical-circuit-switch/
https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://www.hotchips.org/hc30/2conf/2.01_Nvidia_NVswitch_HotChips2018_DGX2NVS_Final.pdf
https://github.com/NVIDIA/Megatron-LM
https://github.com/NVIDIA/Megatron-LM
https://mlperf.org/
https://github.com/flexflow/FlexFlow.git

SiP-ML: Optical Network Interconnects for Machine Learning

[95]

[96

<
=

(98]

[99

[100]

[101

[102

[103

[104

[105]

[106

[107

[108

[109

[110

[111

[112

[113

[114

[115

[116

[117

Roy Meade, Shahab Ardalan, Michael Davenport, John Fini, Chen Sun, Mark
Wade, Alexandra Wright-Gladstein, and Chong Zhang. Teraphy: A high-density
electronic-photonic chiplet for optical i/o from a multi-chip module. In Optical
Fiber Communication Conference (OFC) 2019, page M4D.7. Optical Society of
America, 2019.

Alvaro moscoso martir, Juliana MAijller, Johannes Hauck, Nicolas Chimot, Rony
Setter, Avner Badihi, Daniel Rasmussen, Alexandre Garreau, Mads Nielsen,
Elmira Islamova, Sebastian Romero-GarcAna, Bin Shen, Anna Sandomirsky,
Sylvie Rockman, Chao Li, Saeed Sharif Azadeh, Guo-Qiang Lo, Elad Mentovich,
Florian Merget, and Jeremy Witzens. Silicon photonics wdm transceiver with
soa and semiconductor mode-locked laser. Scientific Reports, 7, 05 2016.

2020 General Europractice Pricelist, Jan. 2020. https://europractice-ic.com/wp-
content/uploads/2020/01/General- MPW-EUROPRACTICE-200123-v3.pdf.
D.Kim,K.Y. Au,H. Y. L. X. Luo, Y. L. Ye, S. Bhattacharya, and G. Q. Lo. 2.5d silicon
optical interposer for 400 gbps electronic-photonic integrated circuit platform
packaging. In 2017 IEEE 19th Electronics Packaging Technology Conference (EPTC),
pages 1-4, Dec 2017.

Chen Sun, Mark T. Wade, Yunsup Lee, Jason S. Orcutt, Luca Alloatti, Michael S.
Georgas, Andrew S. Waterman, Jeffrey M. Shainline, Rimas R. Avizienis, Sen Lin,
Benjamin R. Moss, Rajesh Kumar, Fabio Pavanello, Amir H. Atabaki, Henry M.
Cook, Albert J. Ou, Jonathan C. Leu, Yu-Hsin Chen, Krste Asanovi¢, Rajeev J.
Ram, Milo3A. Popovi¢, and Vladimir M. Stojanovi¢. Single-chip microprocessor
that communicates directly using light. Nature, 528(7583):534-538, 2015.
Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark Mao,
Andrew Senior, Paul Tucker, Ke Yang, Quoc V Le, et al. Large scale distributed
deep networks. In Advances in neural information processing systems, pages
1223-1231, 2012.

Adam Coates, Brody Huval, Tao Wang, David Wu, Bryan Catanzaro, and Ng An-
drew. Deep learning with cots hpc systems. In International conference on
machine learning, pages 1337-1345, 2013.

Trishul Chilimbi, Yutaka Suzue, Johnson Apacible, and Karthik Kalyanaraman.
Project adam: Building an efficient and scalable deep learning training system.
In OSDI'14, pages 571-582, 2014.

Juncheng Gu, Mosharaf Chowdhury, Kang G Shin, Yibo Zhu, Myeongjae Jeon,
Junjie Qian, Honggiang Liu, and Chuanxiong Guo. Tiresias: A {GPU} cluster
manager for distributed deep learning. In NSDI'19, pages 485-500, 2019.

Peng Sun, Wansen Feng, Ruobing Han, Shengen Yan, and Yonggang Wen. Op-
timizing network performance for distributed dnn training on gpu clusters:
Imagenet/alexnet training in 1.5 minutes. arXiv preprint arXiv:1902.06855, 2019.
Adam Lerer, Ledell Wu, Jiajun Shen, Timothée Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alexander Peysakhovich. Pytorch-biggraph: A large-scale graph
embedding system. CoRR, abs/1903.12287, 2019.

Luo Mai, Chuntao Hong, and Paolo Costa. Optimizing network performance in
distributed machine learning. In 7th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 15), Santa Clara, CA, 2015. USENIX Association.

Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J Dally. Deep gradient
compression: Reducing the communication bandwidth for distributed training.
arXiv preprint arXiv:1712.01887, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic.
QSGD: Communication-efficient SGD via randomized quantization and encod-
ing. volume 3, pages 1710 - 1721, 2018.

Hyeontaek Lim, David G Andersen, and Michael Kaminsky. 3lc: Lightweight
and effective traffic compression for distributed machine learning. arXiv preprint
arXiv:1802.07389, 2018.

Peng Jiang and Gagan Agrawal. A linear speedup analysis of distributed deep
learning with sparse and quantized communication. In S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in
Neural Information Processing Systems 31, pages 2525-2536. Curran Associates,
Inc., 2018.

Alex Krizhevsky. One weird trick for parallelizing convolutional neural net-
works. arXiv preprint arXiv:1404.5997, 2014.

Sixin Zhang, Anna E Choromanska, and Yann LeCun. Deep learning with elastic
averaging sgd. In Advances in Neural Information Processing Systems, pages
685-693, 2015.

Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization.
In Advances in Neural Information Processing Systems, pages 873-881, 2011.
Feng Niu, Benjamin Recht, Christopher Re, and Stephen J. Wright. Hogwild!: A
lock-free approach to parallelizing stochastic gradient descent. In Proceedings
of the 24th International Conference on Neural Information Processing Systems,
NIPS’11, pages 693701, 2011.

Pijika Watcharapichat, Victoria Lopez Morales, Raul Castro Fernandez, and Peter
Pietzuch. Ako: Decentralised deep learning with partial gradient exchange.
SoCC 16, 2016.

Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy H. Campbell. Communi-
cation scheduling as a first-class citizen in distributed machine learning systems.
CoRR, abs/1803.03288, 2018.

Forrest N. Iandola, Khalid Ashraf, Matthew W. Moskewicz, and Kurt Keutzer.
Firecaffe: near-linear acceleration of deep neural network training on compute

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

clusters. CoRR, abs/1511.00175, 2015.

Eric Chung, Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Adrian
Caulfield, Todd Massengil, Ming Liu, Daniel Lo, Shlomi Alkalay, and Michael
Haselman. Accelerating persistent neural networks at datacenter scale. In Hot
Chips, volume 29, 2017.

Anand Jayarajan, Jinliang Wei, Garth Gibson, Alexandra Fedorova, and Gen-
nady Pekhimenko. Priority-based parameter propagation for distributed DNN
training. CoRR, abs/1905.03960, 2019.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep
learning in tensorflow. CoRR, abs/1802.05799, 2018.

Azalia Mirhoseini, Hieu Pham, Quoc V Le, Benoit Steiner, Rasmus Larsen,
Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean.
Device placement optimization with reinforcement learning. In Proceedings of
the 34th International Conference on Machine Learning-Volume 70, pages 2430-
2439. JMLR. org, 2017.

Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song,
Zenglin Xu, and Tim Kraska. Superneurons: dynamic gpu memory management
for training deep neural networks. In ACM SIGPLAN Notices, volume 53, pages
41-53. ACM, 2018.

Yanping Huang, Yonglong Cheng, Dehao Chen, HyoukJoong Lee, Jiquan Ngiam,
Quoc V. Le, and Zhifeng Chen. Gpipe: Efficient training of giant neural networks
using pipeline parallelism. NeurIPS, 2019.

Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. Eyeriss: An
energy-efficient reconfigurable accelerator for deep convolutional neural net-
works. IEEE Journal of Solid-State Circuits, 52(1):127-138, 2017.

Yichen Shen, Nicholas C Harris, Scott Skirlo, Mihika Prabhu, Tom Baehr-Jones,
Michael Hochberg, Xin Sun, Shijie Zhao, Hugo Larochelle, Dirk Englund, et al.
Deep learning with coherent nanophotonic circuits. Nature Photonics, 11(7):441,
2017.

Mahdi Nazm Bojnordi and Engin Ipek. Memristive boltzmann machine: A
hardware accelerator for combinatorial optimization and deep learning. In
2016 IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 1-13. IEEE, 2016.

Chao Wang, Lei Gong, Qi Yu, Xi Li, Yuan Xie, and Xuehai Zhou. Dlau: A scalable
deep learning accelerator unit on fpga. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 36(3):513-517, 2017.

Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, et al. In-
datacenter performance analysis of a tensor processing unit. In 2017 ACM/IEEE
44th Annual International Symposium on Computer Architecture (ISCA), pages
1-12. IEEE, 2017.

Stephen W Keckler, William J Dally, Brucek Khailany, Michael Garland, and
David Glasco. Gpus and the future of parallel computing. IEEE Micro, 31(5):7-17,
2011.

Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson
Huang, and Amin Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In Proceedings of the 7th USENIX Conference on Networked Systems
Design and Implementation, NSDI'10, pages 19-19, Berkeley, CA, USA, 2010.
USENIX Association.

Navid Hamedazimi, Zafar Qazi, Himanshu Gupta, Vyas Sekar, Samir R. Das,
Jon P. Longtin, Himanshu Shah, and Ashish Tanwer. Firefly: A reconfigurable
wireless data center fabric using free-space optics. SIGCOMM’14, pages 319-330.
M. Ghobadi, R. Mahajan, A. Phanishayee, N. Devanur, J. Kulkarni, G. Ranade,
P. Blanche, H. Rastegarfar, M. Glick, and D. Kilper. Projector: Agile reconfig-
urable data center interconnect. SSGCOMM 16, pages 216-229, 2016.

He Liu, Matthew K. Mukerjee, Conglong Li, Nicolas Feltman, George Papen,
Stefan Savage, Srinivasan Seshan, Geoffrey M. Voelker, David G. Andersen,
Michael Kaminsky, George Porter, and Alex C. Snoeren. Scheduling techniques
for hybrid circuit/packet networks. In CoNEXT, pages 41:1-41:13. ACM, 2015.

Ankit Singla, Atul Singh, and Yan Chen. OSA: An optical switching architecture
for data center networks with unprecedented flexibility. In Presented as part of
the 9th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 12), pages 239-252, San Jose, CA, 2012. USENIX.

Vishal Shrivastav, Asaf Valadarsky, Hitesh Ballani, Paolo Costa, Ki Suh Lee,
Han Wang, Rachit Agarwal, and Hakim Weatherspoon. Shoal: A network
architecture for disaggregated racks. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI’19). USENIX, February 2019.

He Liu, Feng Lu, Alex Forencich, Rishi Kapoor, Malveeka Tewari, Geoffrey M.
Voelker, George Papen, Alex C. Snoeren, and George Porter. Circuit switching
under the radar with REACToR. NSDI'14, pages 1-15.

Ankit Singla, Chi-Yao Hong, Lucian Popa, and P. Brighten Godfrey. Jellyfish:
Networking data centers randomly. In Proceedings of the 9th USENIX Confer-
ence on Networked Systems Design and Implementation, NSDI'12, pages 17-17,
Berkeley, CA, USA, 2012. USENIX Association.

Andromachi Chatzieleftheriou, Sergey Legtchenko, Hugh Williams, and Antony
Rowstron. Larry: Practical network reconfigurability in the data center. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 141-156, Renton, WA, April 2018. USENIX Association.


https://europractice-ic.com/wp-content/uploads/2020/01/General-MPW-EUROPRACTICE-200123-v3.pdf
https://europractice-ic.com/wp-content/uploads/2020/01/General-MPW-EUROPRACTICE-200123-v3.pdf

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

[139] Sergey Legtchenko, Nicholas Chen, Daniel Cletheroe, Antony Rowstron, Hugh

[140

[141

[142

[143

[144

[145
[146
[147

[148

]

Williams, and Xiaohan Zhao. Xfabric: A reconfigurable in-rack network for rack-
scale computers. In 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16), pages 15-29, Santa Clara, CA, March 2016. USENIX
Association.

Sebastien Rumley, Meisam Bahadori, Robert Polster, Simon D. Hammond,
David M. Calhoun, Ke Wen, Arun Rodrigues, and Keren Bergman. Optical
interconnects for extreme scale computing systems. Parallel Computing, 64:65 —
80, 2017. High-End Computing for Next-Generation Scientific Discovery.
Nicolas Sherwood-Droz, Howard Wang, Long Chen, Benjamin G. Lee, Aleksandr
Biberman, Keren Bergman, and Michal Lipson. Optical 4x4 hitless silicon router
for optical networks-on-chip (noc). Opt. Express, 16(20):15915-15922, Sep 2008.
Qixiang Cheng, Sebastien Rumley, Meisam Bahadori, and Keren Bergman. Pho-
tonic switching in high performance datacenters. Opt. Express, 26(12):16022—
16043, Jun 2018.

G. Michelogiannakis, Y. Shen, X. Meng M. Y. Teh, B. Aivazi, T. Groves, J. Shalf,
M. Glick, M. Ghobadi, L. Dennison, and K. Bergman. Bandwidth steering for
hpc using silicon nanophotonics. ACM/IEEE Supercomputing Conference (SC),
10 2019.

Keren Bergman, John Shalf, George Michelogiannakis, Sebastien Rumley, Larry
Dennison, and Monia Ghobadi. Pine: An energy efficient flexibly interconnected
photonic data center architecture for extreme scalability. In 2018 IEEE Optical
Interconnects Conference (OI), OI ’18, 2018.

Ravindra K Ahuja, Thomas L Magnanti, and James B Orlin. Network flows.
1988.

Robert E Tarjan. Dynamic trees as search trees via euler tours, applied to the
network simplex algorithm. Mathematical Programming, 78(2):169-177, 1997.
James B Orlin, Serge A Plotkin, and Eva Tardos. Polynomial dual network
simplex algorithms. Mathematical programming, 60(1-3):255-276, 1993.
Prabhakar Raghavan and Clark D. Thompson. Randomized rounding: A tech-
nique for provably good algorithms and algorithmic proofs. Technical Report
UCB/CSD-85-242, EECS Department, University of California, Berkeley, May
1985.

672

M. Khani et al.



SiP-ML: Optical Network Interconnects for Machine Learning

A APPENDIX

Appendices are supporting material that has not been peer-reviewed.

A.1 SiP-Ring

One of the core properties of SiP-ML-Ring is the ability to dynami-
cally place bandwidth around the static topology to maximize the
throughput between communicating nodes for model parallel jobs.
Note that for ring-allreduce data parallel jobs, there is no need to
reschedule the bandwidth once a physical ring is established by
the patch panel. However, we find that model parallel jobs benefit
from bandwidth rescheduling. The optimal bandwidth allocation
maximizes the throughput while ensuring no two paths sharing
the same fiber are assigned the same wavelength. More formally,
the bandwidth allocation problem corresponds to the following
optimization problem. Let TM;; denote the predicted GPU-to-GPU
traffic matrix, and W denote the total number of wavelengths (a.k.a
available bandwidth). We can represent a wavelength allocation as
a 3-dimensional binary matrix, A, where A;j is 1if GPU i sends
data to GPU j using A and is zero otherwise. There are several
possible objectives. A natural one is to minimize the maximum com-
pletion time for any GPU-to-GPU transfer, where the completion

M

2k Ai_]jk
(ILP) by maximizing the minimum inverse of the completion time,
as follows:

time is . This can be expressed as an Integer Linear Program

maximizeAe{O’l}Nxwa ij:]l:r]t}g>0 Zk Aljk/TMlj
s.t. (1)
(1) XZ(<isN+DnU<) DG mod Mjk < 1 Vi, k
(2) Zilijp <1 Vj, k
3) Ak < 1 Vik

The constraints are (1) ensure fiber segments do not contain over-
lapping wavelengths (ring constraint), and (2) ensure each GPU can
use each wavelength for communication with, at most, one other
GPU (node constraint).

Note that the size of the ILP solution space, A € {0, 1}NXNXW,

grows with the number of nodes in the network, rendering it in-
tractable at larger scale. Therefore, instead of solving the ILP, we
present a more practical algorithm that turns this discrete optimiza-
tion problem into a min-cost flow routing problem which can be
solved efficiently.
Step 1: Communication graph construction. We construct a
directed communication graph, G = (V, E), where V is the set of
nodes and for every TMy,, > 0, there is a directed edge e = (u, v).
After including edges for the entire TM in G, we check whether
every adjacent node-pair on the topology is connected in G. If not,
we add a “dummy” edge between them to E. The direction of all
edges in G is the same as that of wave propagation on the fiberWe
then add dummy sink and source nodes by cutting the edges in G
along an arbitrary topology segment. For simplicity, let us assume
for now that this process cuts only one edge of the graph.-We add
two terminal nodes on the two ends of the cut edge to be the source
and sink. The source node injects a unit-sized flow into the ring
and the sink node receives it.

673

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

Step 2: Compute min-cost flow. Having constructed the graph
G, we solve the following flow routing problem:

fe

maximize Z T
ecE:TM,>0 €

()

where for an edge e = (u,v), fe is the flow on the edge, and
TM, = TMyy is the traffic demand on that edge. The constraints
(not shown for brevity) are the standard flow conservation con-
straints. The intuition for the above objective is that we wish to
maximize throughput but preferentially allocate a larger flow (more
wavelengths) to GPU-to-GPU paths with smaller demand. The rea-
son for favoring smaller demands is to complete them quickly,
reducing the number of nodes with which each node must commu-
nicate. This keeps the unsatisfied traffic pattern sparse over time,
allowing the remaining traffic to be handled efficiently in future
wavelength reconfiguration events.

The objective in Eq. (2) can be equivalently be written as a min-
cost flow routing problem [145] by defining the weight of edge e
as we = —1/TM, if TM, > 0, and we = 0 if e is a dummy edge.
The problem is then to minimize ), we fe. Min-cost flow routing
can be solved using the network simplex algorithm [145-147]. The
procedure for constructing the graph and defining the flow routing
problem is slightly more complicated when the cut chosen for
adding the source and sink nodes includes more than one edge. In
this case, we need additional constraints to ensure consistency of
flows between the cut edges.

In the more general case of cuts with higher degrees, suppose we
would like to inject the flows at the segment between Nodes and
Nodey. The problem remains basically the same, but we need to add
the following three constraints in addition to the flow conservation
constraints: (1) X = X/, 2) Y = Y/, and 3) X + Y = 1. We can
simply add these constraints to our simplex problem as well.

2 Node; ~ Src
3, X Node
1 2
3 3AN3

Nodez Nodes
T
v
v
1 4
¢
Node; [€~

(b) Flow allocation

GB, Nodes
K R

Nodea Nodes

RGB
Node:

(a) Wavelength allocation

Figure 13: Wavelength allocation and its equivalent flow
routing translation for multiedge cut.

Step 3: Remove and repeat. The solution obtained by solving
the above min-cost flow problem may result in some GPU-to-GPU
demands completing very quickly. However, since reconfiguration
incurs delay (e.g., 25 ps in our prototype), we cannot reconfigure
wavelengths too quickly without hurting efficiency (more on this
below). Therefore we should plan the wavelength allocation based
on a time horizon rather than looking only at the instantaneous
traffic demands. To this end, we iteratively solve the min-cost flow



SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

problem in Equation (2), serving the TM with step-size of A based on
the flows obtained after each iteration, and repeating this procedure
until there is no unserved demand left in the TM. We compute the
mean of the flow allocations over all iterations as the final flow
allocation.

Step 4: Mapping flows to bandwidth. Finally, we scale the flows
from the previous step by W and map them to integer numbers
using a technique called randomized rounding [148]. This produces
the final compute and bandwidth allocation. An important con-
sideration in SiP-ML’s design is how frequently to reschedule the
bandwidth allocations. By rescheduling frequently, we can better
tailor the bandwidth allocation to meet the traffic demands. But
rescheduling too quickly is undesirable, because each reconfigu-
ration incurs a delay during which no traffic can be sent. In our
experiments, we found setting the rescheduling period to 100 us
(4% the reconfiguration delay) provides the best performance.

A.2 SiP-OCSILP

Similar to §A.1, we assume TM;; denotes the estimated traffic matrix
between GPUs i and j. We have N GPUs and Q OCSs each with N
ports. There is B/Q bandwidth available between each GPU and
0CS. Let P € {0, 1}N*NXQ stand for the permutation configuration
of all OCSs with P;; = 1 if there is a circuit between GPUs i and j
on OCS k. Therefore, the total available bandwidth between GPUs
i and j would be: (B/Q) (Zg:1 Pijk)~ Our circuit scheduling goal
can be expressed as an Integer Linear Program (ILP) by maximizing
the minimum inverse of the completion time, as follows:

maximizep g 1)}NxNxQ ij:TH}&g>0 2k Pij/TM;j
s.t. (3)
(1 ZiPjr < 1 Vi, k

where constraints (1) and (2) would enforce the OCS configurations
to be in the form of a permutation for each OCS; i.e., each GPU can
establish a circuit with only one other GPU on each OCS. For com-
mercial OCSs that have orders of magnitude higher reconfiguration
delay than MRRs, we only use one-shot configuration. For such
configurations, our experiments show ILPs can be solved reason-
ably fast enough for thousands of nodes. Note that with one-time
scheduling, this optimization happens only once at the beginning
of training each new workload.

A.3 Scaling Efficiency of the Placement

In Fig. 14, we compare the scaling efficiency of SiP-ML’s placement
algorithm on 1024 GPUs to the efficiency achieved in the most
recent version of the MLPerf training benchmark [88]. We highlight
the following takeaways: 1) workloads like ResNet50 are too small to
be efficiently scaled to 1000s of GPUs; 2) our placement generalizes
to electrical topologies without degree constraint; 3) placement
with optical degree constraints respects the compute efficiency in
addition to interconnect constraints; 4) overall, SiP-ML achieves
up to 4.3X better scaling efficiency than today’s expert-designed
parallelization strategies for clusters in MLPerf benchmark.

674

. Khani et al.

—@— SiP-ML (A = oo) —l— SiP-ML (A = 16)

= = = MLPerf v0.7

e ® 100

; 30 75

2

9

€ 25 50

=

o0

£ 20 25

=

9

@ 15 ob— 1 1 1 1 1]

o7 28 99 210 oll 912 513 27 98 99 910 9ll 512 513

BW per GPU (Gbps) BW per GPU (Gbps)
(a) ResNet50 (b) Transformer

Figure 14: Comparing the scaling efficiency of our place-
ment algorithm at different bandwidths to state-of-the-art
expert designed placements in MLPerf benchmark for 1024

GPUs.
{de)Mux + VOAs
Y ERIERRENE
l-11] | ©-~000 10000 2
Grouped | Orop Add G Optical
channels Amplifier
t 44 B P
-l 8-034 | 6b6-6
- | AL C=000  ©00-0 BBy | |y
YRR
[-11l 0~-000 ©00-0 &l
‘:’,T I f 3’
YRR RS
I+l 0000 0000 F

Optical
Interleaver

Optical
De-Interleaver

Figure 15: System level diagram of GPU nodes with scalable
SiP select/bypass interface. The incoming 64 wavelengths
are separated into four groups with 16 wavelengths each for
select/bypass.

A.4 Optical Simulations

Fig. 15 demonstrates our approach to achieve SiP interfaced GPU
nodes at large scale. Every WDM input of 64 wavelengths from the
previous GPU node is first de-interleaved into 4 groups with 16
wavelengths each. We use cascaded SiP micro-ring filters to perform
wavelength selective add/drop or to pass wavelength(s) through the
node based on the requirement of global scheduler. To overcome
the spectral power variability caused by the multi-staged optical
components, we add optical amplifiers, optical (de)multiplexers and
variable optical attenuators (VOAs) to equalize the optical power for
each wavelength at the output of the GPU node. An interleaver then
combines all 4 groups and forwards the new WDM signal to the
next GPU node. We simulate our SiP add/drop interface using the
American Institute for Manufacturing Integrated Photonics (AIM



SiP-ML: Optical Network Interconnects for Machine Learning

Photonics) process design kit (PDK) in OptSim software. The add/-
drop filters are from the AIM PDK and the (de)interleavers are built
with cascaded 2-stage MZI. The optical multiplexer/demultiplexers
are designed using ideal OptSim models with a bandwidth of 0.5nm.
The multiplexer/demultiplexer function can also be implemented

SIGCOMM 21, August 23-27, 2021, Virtual Event, USA

with multimode interference (MMI) couplers. In the simulation,
we achieve an equalized optical spectrum at the output of a GPU
node for two cases: 1) 64 bypass wavelengths; 2) 64 wavelengths
with 32 wavelengths being dropped and added, while the other 32
wavelengths bypassing the node.

675



	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Parallelization Strategies
	2.2 Weak and Strong Scaling of ML Jobs
	2.3 Silicon Photonics for ML Training

	3 SiP-ML Design
	3.1 Degree and Reconfiguration Latency
	3.2 Degree-Aware Parallelization Strategy
	3.3 Circuit Scheduling

	4 Evaluation
	4.1 Methodology & Setup
	4.2 Simulator
	4.3 Results
	4.4 Testbed

	5 Discussion
	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References
	A Appendix
	A.1 SiP-Ring
	A.2 SiP-OCS ILP
	A.3 Scaling Efficiency of the Placement
	A.4 Optical Simulations


