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Abstract

Understanding the biochemically active amino acids in proteins
is a key factor to improve the knowledge of how enzymes work,
to predict the function of newly discovered protein structures of
unknown function, and to establish design principles for
enzyme engineering. Here, we explore recently reported
computational chemistry-based methods for the prediction of
active amino acids in protein 3D structures, including bio-
chemically important distal residues, and their implications for
functional genomics, for enzyme design, and for enhancing
understanding of the function of enzymes.
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Introduction

Understanding the biochemically active amino acids in
proteins is a key factor to improve knowledge of how
enzymes work, to predict the function of newly
discovered protein structures of unknown function, and
to establish design principles for enzyme engineering. A
key question is what gives rise to the biochemical ac-
tivity of active site amino acids and co-factors? While the
side chains of the ionizable residues are merely week
acids and bases for the free amino acids in solution, how
do they become strongly reactive in the active site
pocket? Local effects on biochemically active residues
have been discussed in a recent review by Mazmanian,
Sargsyan, and Lim [1] and by Coulther, Ko, and
Ondrechen (CKO) [2]. Here, we explore methods based

on computational chemistry for the prediction of active
amino acids in protein 3D structures and their impli-
cations for functional genomics, for enzyme design, and
for enhancing the understanding of how enzymes
achieve their biochemical activity.

Importance of electrostatic effects

Considerable evidence has been reported that electro-
static effects are very important in enzyme catalysis.
Furthermore these effects arise from both adjacent
residues and distal residues. Bajorath et al. reported on a
density functional theory study comparing free dihy-
drofolate (DHF) and DHF bound to the active site of a
model of the enzyme dihydrofolate reductase. They
showed that when the electrical potential of the enzyme
is applied to DHE the electrons in the T orbitals of the
reactive C=N double bond of DHF split apart, forming
two lobes that more closely resemble atomic 2p orbitals
on the C and N atoms. These two lobes are then avail-
able to form G bonds with the 1s orbitals of hydrogen
atoms, thus facilitating the reduction reaction. Both
nearby and more distant amino acids were reported to
contribute to the polarizing potential [3].

Local electric fields inside enzyme active sites can be
measured using vibrational Stark spectroscopy and have
been shown to be intense [4]. Boxer et al. have reported
examples where these electric fields are on the order of
100 MV/cm.

Very recently Chen et al. [5] reported on a theoretical
study of the effects of electrostatic interactions on re-
action energy barriers in enzymes. The authors argue
that energy barriers are lowered by increasing negative
charge (or decreasing positive charge) in the electron-
donating centers and by increasing positive charge (or
decreasing negative charge) in the electron-accepting
centers of the reaction. One reported example is the
decarboxylation of orotidine 5’-monophosphate cata-
lyzed by orotidine 5-monophosphate decarboxylase
[6,7]. In the enzymatic reaction mechanism, repulsion
between the negatively charged carboxylate groups of
the substrate and the side chain of Asp70 in the
enzyme causes electrostatic stress (Figure 1). The
energy of the substrate is raised relative to the transi-
tion state and thus the energy barrier for the reaction
is lowered.
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The initial state and transition state of orotidine 5’-monophosphate, as it undergoes decarboxylation by orotidine 5’-monophosphate decarboxylase. Note
the increased repulsion between the carboxylate groups of orotidine 5’-monophosphate and Asp70 in the initial state relative to the transition state, as

described by Chen et al. [5].

We have developed methods for the prediction of bio-
chemically active amino acids from protein 3D structures
using computed chemical and electrostatic properties
[8—12]. One chemical property that facilitates catalysis in
enzymes is an expanded buffer range of the ionizable
residues involved in catalysis. The buffer range for each
ionizable residue is calculated from the theoretical titra-
tion curve that is in turn calculated from the electrostatic
potential [13—16]. Indeed this computed property is
such a universal property of biochemically active residues
that we have used it successfully to identify the reactive
amino acids in protein structures [8—12]. This expanded
buffer range is a simple polyprotic acid effect arising from
interactions between residues that can transfer protons.
The expanded buffer range insures that both protonation
states exist over a wide pH range, so that the active amino
acids can return to their original protonation state for the
next turnover cycle [2]. The buffer range is the reactive
part of the titration curve, as it is the only part of the pH
range where both protonation states exist in significant
population. Given the dynamic nature of enzymes, an
amino acid that follows Henderson—Hasselbalch titration
behavior could spend too much time in its asymptotic,
unreactive region.

A recent article by Franco and Pessoa Filho [17] describes
the importance of anomalous titration behavior of amino
acids in proteins and reports on a Hill Equation formalism
to describe the anomalous titration curve shapes.

Biochemical roles of distal residues

Reports in the past two years [18,19] have added to the
body of evidence that distal residues play key roles in
promoting catalytic activity and controlling specificity.
Furthermore, these active distal residues are computa-
tionally predictable [20].

Escherichia coli prolyl-tRNA synthetase (Ec ProRS) is an
aminoacyl-tRNA synthetase whose role is to attach
proline to tRNA. Zajac et al. [18] demonstrated that

mutations of distal residues not in the main active site
have an effect on the catalytic efficiency of Ec ProRs.
Two examples are the leucines [L.281 and 1.304, whose
mutation lowered the proline activation and the effi-
ciency of aminoacylation of the cognate tRNA. The
variants T199A, H208A, and V411A were observed to
have significantly decreased catalytic efficiency
compared to wild type. Mutations in the hinge residues
A238 and V391 also have an effect on efficiency, since
the hinges are responsible for maintaining the balance of
flexibility and stability, which gives the enzyme its cat-
alytic activity.

Ornithine transcarbamoylase (OTC) is an essential
enzyme in the urea cycle and arginine biosynthesis
pathway; it catalyzes the formation of citrulline (CIT)
and inorganic phosphate (P;) from carbamoyl phosphate
(CP) and r-ornithine (ORN) [21—24]. Ngu et al. re-
ported a study of computationally predicted distal resi-
dues in E. ki OTC, employing site-directed
mutagenesis at predicted distal positions, with Kki-
netics and binding assays of wild type and variants, and
have established that distal residues play roles in cata-
lytic activity [19]. D140 is a second-shell residue located
just behind first-shell residue Q136 with respect to the
substrates, about 8 A from CP and about 10 A from ORN
(Figure 2). The D140N variant has a 28-fold decrease in
catalytic efficiency with respect to ORN, compared to
wild type. This somewhat lower overall activity suggests
that the protonation equilibrium on the side chain of
D140, which is lost upon mutation to Asn, couples to the
first-shell residues and helps them to affect catalysis.
Indeed, results of multi-conformer continuum electro-
statics (MCCE) [14,25—27] calculations show that
D140 is electrostatically coupled to key first-layer resi-
dues R57 and C273. H272 is a second-shell residue,
located behind first-shell residues D231 and C273 with
respect to ORN. The variant H272L. shows a 120-fold
decrease in catalytic efficiency with respect to ORN
and a 310-fold decrease with respect to CP. E299 is a
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The active site of E. coli ornithine transcarbamylase in cross-eyed stereo. The substrate ORN is shown in yellow. R57, R106, H133, Q136, D231, C273,
and R319 are first-shell residues previously reported to be catalytically important [66]. D140, H272, and E299 are distal residues not in direct contact with
the substrate that were shown by Ngu et al. [19] to be important for catalysis. Image drawn from structure PDB 1DUV [24] and rendered in YASARA [67].

third-shell residue located behind H272. OTC E2990Q
exhibits a 51-fold decrease in catalytic efficiency with
respect to ORN and a 110-fold decrease with respect to
CP. Thus, the protonation equilibrium on the side chain
of E299, although not in direct contact with any first-
shell residue, contriQutes to the catalytic reaction
located more than 10 A away (Figure 2).

Yao and Hamelberg [28] have developed a computational
approach to the identification of allosteric pathways,
wherein networks of interacting residues affect commu-
nication across distance within enzymes. Their method is
based on difference contact network analysis (dCNA). For
the case of imidazole glycerol phosphate synthase (IGPS)
[29], in which the catalytic site and the allosteric binding
site are 30 A apart, their approach is able to identify the
experimentally-verified residues in the allosteric network.
The method is based on conformational ensembles ob-
tained from molecular dynamics simulations starting from
both conformational states, that is, the states with and
without the allosteric ligand bound.

Javier Garcia-Marin [30] built homology models for two
enzymes, the protein tyrosine phosphatase 1B (PTP1B)
and lymphocyte T tyrosine phosphatase (TCPTP),
involved in Type 2 diabetes, for their apo and inhibitor-
bound forms. He produced four 50-ns simulations of
both enzymes in their apo and bound states (with the
benzbromarone inhibitor BB2 as the ligand in the allo-
steric site) and compared their RMSD, RMSE and free
energies. This work identifies a phenylalanine, F280, as

important to allosteric binding to PTP1B and the likely
basis for selective inhibition. It was found that the BB2
ligand shifted position in the binding site of TCPTP but
maintained its pose in PTP1B.

Predicting protein function from 3D
structure

Structural Genomics work over the past 22 years has
produced 15,0004+ new three-dimensional structures of
proteins [31,32]. Most of these structures are of unknown
or uncertain biochemical function. The most commonly
used approaches for the prediction of function from
structure are informatics-based [33,34]. However
computational chemistry-based methods utilizing the
local structure at the sites of biochemical activity can be
highly effective in the prediction of protein func-
tion [35—37].

The ability to identify the biochemically active amino
acids in a protein 3D structure can provide information
about protein function via local structure matching
[37—43]. Bittrich et al. have reported a new method for
local structure matching using an inverse indexing
approach [44]. Their inverted index compiles all struc-
tures in the Protein Data Bank (PDB) that contain
specific residue pairs. A local structure motif is
described as a set of residue pairs, where residues may
be amino acids or nucleic acids. Then all structures in
the PDB that contain the specified set of residue pairs
may be obtained. Fast computational time is a major
advantage of this approach.
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The members of the crotonase superfamily catalyze a
wide range of reaction types, including important re-
actions in fatty acid metabolism, with the common
feature of a stabilized enolate intermediate [45,46].In a
study of Structural Genomics (SG) proteins in the
crotonase superfamily, Mills and et al. [47] used local
structural matching [37] of predicted active residues to
predict biochemical function. While enzymes in this
superfamily often catalyze more than one reaction
[48,49], kinetics studies showed that three SG proteins
previously annotated as enoyl-CoA hydratases (ECH),
but predicted by local structure matching to be hydro-
lases, have higher catalytic efficiency for hydrolase ac-
tivity than for ECH activity: Q5SLS5 from 7kermus
thermophilus (PDB 1WZ8), AOAOH2ZRU2 from Myco-
bacterium avium (PDB 3Q1T), and BZHM22 from Myco-
bacterium marimum (PDB 3QK8) were reported to have
kinetics similar to that of a previously identified hy-
drolase, Cyanobacterium anabaena B-diketone hydrolase
(UniproQ8YNV6, PDBs 2]J5S and 2]J5G) [50]. Five
additional SG proteins were predicted by matching of
predicted active residues to be ECHs: Q5KYF9 from
Geobacillus  kaustophilus (PDB  2PPY); Q82Q85 from
Streptomyces avermitilis (PDB 3HOU); Q5KYB2 from G.
kaustophilus (PDB 2PBP); Q82Q1.3 from S. avermitilis
(PDB 3GKB); and Q6N8W7 from Rhodopseudomonas
palustris (PDB 3HIN). All five were reported to have
ECH activity [47].

The ab imitio prediction of protein 3D structure from
sequence has been hailed as the Method of the Year for
2021 [51]. Indeed the advent of more reliable methods
[52,53] using deep learning technologies to predict 3D
structure opens the door to the subsequent prediction
of function for the vast array of proteins without func-
tional annotations, many newly discovered from gene
sequencing. Wehrspan et al. [54] reported identification
of iron-sulfur cluster sites and Zn binding sites in the
space of over 360,000 protein structures from the
AlphaFold database [55]. Those authors report tens of
thousands of Fe—S cluster or Zn-binding proteins that
are not annotated in Uniprot as such, greatly increasing
the set of known metalloproteins.

Feehan, Franklin, and Slusky (FFS) describe a newly
developed model, metal activity heuristic of metal-
loprotein and enzymatic sites (MAHOMES) to distin-
guish between enzymatic and non-enzymatic metal
species in proteins [56]. Their machine learning
approach employs multiple input features, including
energy terms, pocket geometry, descriptors of adjacent
residues, electrostatic metrics, and metal coordination
geometry. FFS report that the most important input
feature for prediction is an electrostatic metric derived
from the theoretical titration curves [9] of the ionizable
residues. MAHOMES is reported to predict enzymatic
metal species with 90.1% recall and 92.2% precision.

Protein design

The enzymatic production of biofuels from cellulose is
one possible path toward sustainable, carbon-recycling
fuel production. Summers et al. [57] have used the
substitution of both first-shell residues and distal resi-
dues to address the problem of cellulase inhibition by its
reaction products, a major barrier to the deployment of
enzymatic biofuel synthesis. Their designed variants
W212A, W213A, Q247A, W249A and F250A of endo-
glucanase 1 (E1) from Acidothermus cellulolyticus [58] are
reported to have reduced cellobiose inhibition. W212,
W213, and Q247 are first-shell residues, while W249 and
F250 are distal residues with side chains located 8—10 A
away from the ligand (Figure 3). Replacement of these
residues by alanine induces conformational changes that
decrease binding affinity for products and therefore can
improve enzyme activity.

The designed retroaldolases are among the most highly
evolved of designed enzymes. Coulther et al. [59]
analyzed a series of designed retroaldolases in the RA95
family of retroaldolases [60—63]. Specifically they re-
ported on the series RA95.5, RA95.5—5, RA95.5—8, and
RA95.5—8E representing the evolutionary trajectory
along which activity is increased by orders of magnitude.
The authors demonstrate that, as evolution proceeds
and higher activities are achieved, the electrostatic
couplings between the catalytically active lysine K83
and surrounding amino acids is increased. Y51 is a key
coupled residue and the variant Y51F was observed to
have decreased activity along the evolutionary trajectory.

Pirro et al. reported on the design of an allosterically
controlled phenol oxidase [64]. The authors recombine
a DF (due ferri/two iron) de novo protein with a Zinc-
porphyrin (ZnP) binding protein (PS1) to create a
new synthetic protein that catalyzes a phenol oxidase
reaction like DF but whose catalytic rate can be regu-
lated by ZnP binding with an allosteric site on the
PS1 section.

Machine learning methods require a training dataset with
reliable labels that is of sufficient size and diversity to
make predictions about unlabeled cases. These methods
have been used to identify biochemically active residues,
to predict protein function, and to predict natural sub-
strates; a 2021 review by Feehan, Montezano, and Slusky
provides details about applications of machine learning
methods to protein design [65].

Understanding how enzymes work

In the recent article of CKO [2], it is argued that an
expanded theoretical buffer range is essentially a uni-
versal property of catalytic residues that are ionizable
and that specific types of interactions lead to increased
buffer ranges. The degree of perturbation of the
computed titration curve of a residue depends on the
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The active site of endoglucanase 1 (E1) from Acidothermus cellulolyticus. The ligand, shown in cyan, is a 8-(1,4) linked tetramer of b-glucopyranose. The
two catalytic glutamates, E162 and E282, are rendered in ball-and-stick form and colored by element. The five residues that, when mutated to alanine, are
reported to reduce inhibition by product are shown in magenta. Stereo image drawn from structure PDB 1ECE [58] and rendered in YASARA [67].

electrostatic potential energy € between the residue and
each of its coupling partners and on the difference be-
tween their intrinsic pK,s. (The intrinsic pK, of an
amino acid in a protein structure is the pK, of that
residue in the hypothetical state of the protein with all
other titratable sites in their charge-neutral state.)
Expanded titration curves arise from strong coupling
between residues that form like charges when the dif-
ferences in their intrinsic pK,s are within about 1 pH
unit. For pairs of residues that form opposite charges,
the intrinsic pK, of the anion-forming residue must be
higher than that of the cation-forming residue to
contribute to buffer range expansion. For the case of
oppositely-charged residues, the range of intrinsic pK,
differences that lead to expanded buffer ranges are also
dependent on the electrostatic potential energy and are
given approximately by inequality (1), where € is in
units of —In(10)RT:

e —1 ipl{zz(z'm‘r)ani(m _pKa(iﬂlr)mﬂon% e+ 1 (1)

Thus, catalytic aspartate and glutamate residues tend to
be strongly coupled to other aspartate and glutamate
residues with similar intrinsic pK,s; they may sometimes
be coupled to histidines, where the intrinsic pK, of the
acid is higher than that of the histidine. Catalytic lysines
tend to be coupled to tyrosines, where the intrinsic pK,
of the tyrosine is higher than that of the lysine; they may
sometimes be coupled to other lysines with intrinsic
pK,s within about 1 pH unit. The coupling partners to
the catalytic residues may be other first-layer residues or
may be distal residues.

Discussion and conclusions

Reliable functional annotation of the thousands of
recently discovered protein structures of unknown or
uncertain function has yet to be completed. Currently all

of the factors that give enzymes their remarkable catalytic
power are not yet fully understood. Thus the establish-
ment of the basic principles for engineering novel en-
zymes remains an unsolved problem. The recent articles
discussed here represent significant steps toward the
achievement of these difficult but game-changing goals.
The computational identification of biochemically active
amino acids in proteins enables the prediction of function
from structure. The space of 3D structures available for
such local-site-based function analysis has been greatly
expanded by more reliable @b mnitio structure predictors.
The identification of coupled residues, including distal
residues, is one key piece necessary for the understanding
of how enzymes work and for the development of guiding
principles for protein engineering.
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