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Abstract. We prove that every polynomially convex arc is con-
tained in a polynomially convex simple closed curve. We also es-
tablish results about polynomial hulls of arcs and curves that are
locally rectifiable outside a polynomially convex subset.

1. The Results

The main purpose of this paper is to prove the following theorem.

Theorem 1.1. A polynomially convex arc λ in Cn, n ≥ 2, is contained
in a polynomially convex simple closed curve γ that can be chosen to

lie in an arbitrarily small neighborhood of the given arc. Furthermore,

γ can be chosen such that the open arc γ \ λ is C ∞-smooth. With this

choice, if P(λ) = C(λ), then P(γ) = C(γ).

Recall that an arc is a space homeomorphic to the closed unit in-
terval, and a simple closed curve is a space homeomorphic to the unit
circle. As usual we denote by C(X) the space of all continuous C–valued
functions on X and by P(X) the subspace of C(X) comprising those
functions that can be approximated uniformly on X by holomorphic
polynomials. Throughout the paper neighborhoods will be assumed to
be open except when explicitly taken to be compact instead.

It is perhaps worth noting here that it remains an open question
whether for every polynomially convex arc λ in Cn, the algebras C(λ)
and P(λ) coincide.

The special case of the above theorem in which the arc is rectifiable
was proved by the authors earlier, and in that case the simple closed
curve can be chosen to be rectifiable as well [8, Corollary 3.6]. It was
also shown that when the arc is smooth of class C s, 1 ≤ s ≤ ∞, then
the closed curve can be chosen to be of class C s as well [8, Corollary 3.9].
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However, the methods used in the rectifiable and smooth cases are
not applicable to nonrectifiable arcs, and the proof we will give of
Theorem 1.1 is quite different from the proofs in [8].

As a first step toward proving Theorem 1.1, we will prove the fol-
lowing purely topological fact, which we suppose to be known but for
which we have no reference.

Theorem 1.2. If λ is an arc in Rn, n ≥ 2, and if Ω is an open set of

Rn containing λ, then there is a simple closed curve γ contained in Ω
that contains λ and is such that the open arc γ \ λ is C ∞-smooth.

The case in which λ is assumed to be rectifiable or smooth and
a rectifiable or smooth simple closed curve containing it is sought was
established by the authors in [8]. It should be noted that in the general
situation of Theorem 1.2, although the open arc γ \ λ is smooth, the
construction we will give does not guarantee that this open arc has
finite length.

As another step toward proving Theorem 1.1 we will establish the
following polynomial convexity result. Here we use the standard nota-

tion that the polynomial hull of a compact set X is denoted by X̂.

Theorem 1.3. Let Y ⊂ Cn be a compact polynomially convex set, and

let Γ be an arc both of whose end points lie in Y but that is otherwise

disjoint from Y . Assume in addition that Γ \ Y is locally rectifiable.

Let Ω be a Stein neighborhood of Ŷ ∪ Γ, and let V be a purely one-

dimensional analytic subvariety of Ω. If a nonempty open subarc of

Γ is contained in V , then either Y ∪ Γ is polynomially convex or else
̂(Y ∪ Γ) \Y is contained in V . The same conclusion holds with the arc

Γ replaced by a simple closed curve that intersects Y in a single point.

The following corollary is immediate.

Corollary 1.4. Under the hypotheses of Theorem 1.3, if a nonempty

open subarc of Γ is contained in V but Γ is not entirely contained in

V , then Y ∪ Γ is polynomially convex.

For instance if a nonempty open subarc of a nonpolynomially convex
rectifiable simple closed curve is contained in a purely one-dimensional
analytic variety, then the entire simple closed curve must be contained
in that variety.
We will establish the case of Theorem 1.3 in which Γ is rectifiable us-

ing a standard result [11, Theorem 3.1.1] about polynomial convexity
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and sets of finite length which we state here for the reader’s conve-
nience1.

Theorem 1.5. Let Y be a compact polynomially convex subset of Cn,

and let Γ be a subset of Cn contained in a compact connected set of finite

length such that Y ∪ Γ is compact. The polynomial hull Ŷ ∪ Γ has the

property that the complementary set Ŷ ∪ Γ \ (Y ∪Γ) either is empty or

else is a purely one-dimensional analytic subvariety of Cn \ (Y ∪Γ). If
the map Ȟ1(Y ∪Γ;Z) → Ȟ1(Y ;Z) induced by the inclusion Y ↪→ Y ∪Γ
is a monomorphism, then Y ∪Γ is polynomially convex and P(Y ∪Γ) =
{f ∈ C(Y ∪ Γ) : f |Y ∈ P(Y )}.

To obtain the general case of Theorem 1.3 in which Γ \ Y is only
locally rectifiable, we will prove the following partial generalization of
the above theorem.

Theorem 1.6. Let Y be a compact polynomially convex subset of Cn,

and let Γ be a subset of Cn such that Y ∪ Γ is compact and such that

for every neighborhood U of Y in Cn, the set Γ \ U is contained in

a compact connected set of finite length. Suppose also that the map

Ȟ1(Y ∪ Γ;Z) → Ȟ1(Y ;Z) induced by the inclusion Y ↪→ Y ∪ Γ is a

monomorphism. Then Y ∪ Γ is polynomially convex and P(Y ∪ Γ) =
{f ∈ C(Y ∪ Γ) : f |Y ∈ P(Y )}.

It is well known (and immediate from Theorem 1.5) that every recti-
fiable arc in Cn is polynomially convex and that for a rectifiable simple
closed curve γ in Cn, the set γ̂ \ γ, if not empty, is a purely one-
dimensional analytic subvariety of Cn \ γ. As applications of Theo-
rem 1.6 we obtain generalizations in which the arc or simple closed
curve is required to be only locally rectifiable outside a polynomially
convex subset.

Theorem 1.7. Let λ be an arc in Cn, and let E be a compact subset of

λ that is polynomially convex. Suppose that λ \ E is locally rectifiable.

Then λ is polynomially convex. Furthermore, if P(E) = C(E), then
P(λ) = C(λ).

As special cases we mention the following immediate corollaries.
(Note that every compact set E of zero length is polynomially con-
vex and satisfies P(E) = C(E) [11, Theorem 1.6.2].)

1As stated in [11], the hypothesis in the last sentence of the theorem is that the
map Ȟ

1(Y ∪Γ;Z) → Ȟ
1(Y ;Z) is an isomorphism. However, as is evident from the

proof given there, it is enough to assume that this map is a monomorphism. Also
the assertion in the last sentence that Y ∪ Γ is polynomially convex is not stated
in the theorem in [11] but is established in the proof given there.
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Corollary 1.8. If an arc λ in Cn is locally rectifiable off a closed subset

of zero length, then λ is polynomially convex and satisfies P(λ) = C(λ).

Corollary 1.9. An arc λ in Cn whose interior is locally rectifiable is

polynomially convex and satisfies P(λ) = C(λ).

By analogy with Theorem 1.5, one might be tempted to imagine
that without the hypothesis regarding cohomology in Theorem 1.6, the

set ̂(Y ∪ Γ) \ (Y ∪ Γ), if nonempty, must be a purely one-dimensional
analytic subvariety of Cn \ (Y ∪Γ). However, this is not so, as is shown
by an example of Herbert Alexander [1] of a set that is a countable
union of rectifiable simple closed curves whose polynomial hull is not
an analytic variety but is instead a countable union of analytic varieties.
Alexander’s example is a union of the circle C = {(z, 0) ∈ C2 : |z| = 1}
and a countable collection {γk}k=1,2,... of analytic simple closed curves

that accumulate on C. Thus setting Y = Ĉ and Γ = ∪k=1,2,...γk, for
every neighborhood U of Y the set Γ \U is contained in a finite union
of simple closed curves of finite length and consequently is contained
in a connected set of finite length.

The proof of Theorem 1.6 does, however, show that in the setting of
the theorem with the cohomology hypothesis removed, the set Y ∪ Γ
satisfies Gabriel Stolzenberg’s generalized argument principle (which
we recall in Section 3). Furthermore from Theorem 1.6 we will obtain
the following analogue of Theorem 1.7 for simple closed curves, thus
generalizing the well-known result about polynomial hulls of rectifiable
simple closed curves.

Theorem 1.10. Let γ be a simple closed curve in Cn, and let E be a

compact subset of γ that is polynomially convex. Suppose that γ \ E
is locally rectifiable. Then γ̂ \ γ either is empty or else is a purely

one-dimensional analytic subvariety of Cn \ γ.

As a corollary we obtain the following.

Corollary 1.11. If a simple closed curve γ in Cn is locally rectifiable

off a closed subset of zero length, then γ̂ \ γ either is empty or else is

a purely one-dimensional analytic subvariety of Cn \ γ. In the former

case, P(γ) = C(γ).

We prove the topological Theorem 1.2 in the next section. The
proofs of our other results are given in Section 3, except for the proof
of Theorem 1.1 which we give here.

Proof of Theorem 1.1. Let U be an arbitrary neighborhood of the
polynomially convex arc λ. By Theorem 1.2 there is a simple closed
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curve γ contained in U that contains λ and is such that γ \ λ is C ∞-
smooth. By Corollary 1.4 (with Y = λ, Γ the closure of the open
arc γ \ λ, Ω = Cn, and V a complex line), all that is needed to see
that γ can be chosen so as to be polynomially convex is to note that
we can modify γ so that some open subarc of γ \ λ is contained in a
complex line but γ \ λ is not entirely contained in the complex line.
That P(λ) = C(λ) then implies P(γ) = C(γ) follows from the following
well-known result [11, Corollary 1.6.8].

Theorem 1.12. If Y is a rationally convex subset of Cn and Γ is

a subset of Cn of zero two-dimensional Hausdorff measure such that

K = Y ∪Γ is compact, then K is rationally convex, and R(K) = {f ∈
C(K) : f |Y ∈ R(Y )}.

Again our notation is standard: R(K) is the algebra of all func-
tions that can be approximated uniformly on K by restrictions to K
of rational functions holomorphic on a neighborhood of K.

Remark 1.13. In fact the construction in the proof of Theorem 1.2
can easily be carried out so as to yield a polynomially convex simple
closed curve γ at the outset so that no modification of the curve γ is
needed in the proof of Theorem 1.1. To see this, simply observe that
the curve γ that we construct contains straight line segments and that
obviously the points bk, k = 0, 1, 2, . . . selected in the construction, and
hence the open arc γ \ λ, can be chosen so as to be contained in no
proper vector subspace of Rn.

2. Proof of the Topological Theorem 1.2

We first treat the case that n ≥ 3; the planar case, which is not
needed for the proof of Theorem 1.1, requires a different argument.
Throughout, by smooth we mean of class C ∞.

With no loss of generality, suppose Ω to be connected. Let the end
points of λ be the points a and a′. Let B0 be an open ball contained
in Ω and centered at a, and let B′

0 be an open ball contained in Ω and
centered at a′. Choose the balls B0 and B′

0 small enough that their
closures are disjoint and are contained in Ω. For notational convenience
we suppose the balls B0 and B′

0 each to be of radius one. For k =
1, 2, . . . , let Bk be the open ball of radius 2−k centered at the point a,
and let B′

k be the corresponding ball centered at the point a′. For each
k = 0, 1, 2, . . ., let bk be a point of bBk \ λ and b′k a point of bB′

k \ λ.
(Here bBk denotes the boundary of Bk.)
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The set Ω\(B0∪B
′

0) is a connected manifold-with-boundary. Since a
space of topological dimension one cannot disconnect a manifold-with-
boundary of dimension greater than or equal to three (see [6, p. 48]),
the set Ω \ (B0 ∪ B′

0 ∪ λ) is also a connected manifold-with-boundary.
Therefore, there is a smooth arc ρ in Ω\ (B0∪B′

0∪λ) from the point b0
of bB0 to the point b′0 of bB′

0. In addition, we can choose ρ so that its
interior is disjoint from bB0 ∪ bB′

0 and so that a subarc of ρ with end
point b0 lies in the real line through the points a and b0 and a subarc
of ρ with end point b′0 lies in the real line through the points a′ and b′0.

For each k = 0, 1, 2, . . ., the set Bk \ (Bk+1 ∪ λ) is a connected
manifold-with-boundary (again by [6, p. 48]), so there is a smooth
arc τk in this set from bk to bk+1. In addition, we can choose τk so that
its interior is disjoint from bBk ∪ bBk+1 and so that a subarc of τk with
end point bk lies in the real line through the points a and bk and a
subarc of τk with end point bk+1 lies in the real line through the points
a and bk+1. Then the union τ = (∪k=0,1,2,...τk) ∪ {a} is an arc from b0
to a whose interior lies in B0. Also τ intersects λ only in the point a.
The arc τ is smooth except possibly at the end point a.

By a similar construction we obtain an arc τ ′ from b′0 to a′ such that
the interior of τ ′ lies in B′

0, such that τ ′ intersects λ only in the point
a′, and such that τ ′ is smooth except possibly at the end point a′.
The union γ = λ ∪ ρ ∪ τ ∪ τ ′ is a simple closed curve in Ω that

contains λ. Furthermore, the open arc γ \ λ is smooth.
The theorem is proved in the case of arcs in Rn with n at least three.

The argument above does not work in the case of arcs in the plane.
For that case we will apply conformal mapping methods.

The following well known theorem is proved in the paper of Philip
Church [2, Theorem 2.1]. In fact, the theorem seems to be due to Marie
Torhorst [12].

Theorem 2.1. If G is a simply connected region on the Riemann

sphere whose boundary is a nondegenerate Peano continuum, then each

prime end of G is a single point. Thus, if φ is a conformal homeo-

morphism of the open unit disc U onto G, then φ extends to U as a

continuous map.

With C∗ the Riemann sphere, there is a conformal map φ : U →
C∗ \ λ of U onto C∗ \ λ. By the Church-Torhorst theorem above, φ
extends continuously to the closure of U. With a and a′ the end points
of λ, choose points p and p′ in the boundary of U that satisfy φ(p) = a
and φ(p′) = a′. For ℓ an arc in U∪ {p, p′} with endpoints p and p′ and
interior contained in U, setting γ = λ∪ φ(ℓ) we obtain a simple closed
curve in the plane that contains λ. By choosing ℓ to be smooth and to
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lie sufficiently near bU, we can insure that the open arc γ \λ is smooth
and contained in Ω.

Remark 2.2. In fact, the smoothness conclusion in Theorem 1.2 can be
strengthened: the simple closed curve γ can be chosen so that the open
arc γ \ λ is real-analytic. To see this, choose a mapping G : R → Rn

that takes the real line diffeomorphically onto the open arc γ \ λ and
satisfies limx→−∞ G(x) = a and limx→∞ G(x) = a′. By the openness
of C 1 embeddings in the strong topology (also know as the fine or
Whitney topology) on C 1(R,Rn) [4, Chapter 2, Theorem 1.4], there is
a positive continuous function δ on R such that every Rn-valued C 1

mapping F on R that satisfies

(1) |F (x)−G(x)| < δ(x) and |F ′(x)−G′(x)| < δ(x) for all x ∈ R

is an embedding. Since we can replace δ by a smaller positive continu-
ous function, we may assume that δ tends to zero at ±∞ and that for
every x ∈ R, the number δ(x) is smaller than the distance from G(x)
to the closed set Cn \ (Ω\λ). Then every mapping F satisfying (1) has
range in Ω \ λ and satisfies limx→−∞ F (x) = a and limx→∞ F (x) = a′.
Thus to establish the existence of the desired simple closed curve γ with
γ \ λ real-analytic, it suffices to show that there exists a real-analytic
mapping F that satisfies (1).

Recall that R is a Carleman continuum, i.e., that given a continuous
C–valued function g on R, and regarding R as the real axis in the
complex plane C, for every positive continuous function ε on R there
is an entire function f on C such that

|f(x)− g(x)| < ε(x) for all x ∈ R.

Indeed, more is true: If g is of class C k, k a positive integer, then there
is an entire function f on C with

(2) |f (j)(x)− g(j)(x)| < ε(x) for all x ∈ R and all j = 0, 1, . . . , k.

The existence of the function f was established in the case of first
derivatives byWilfred Kaplan [9, Theorem 3]. The result for derivatives
of higher order (which we do not need) was given by Lothar Hoischen
[5, Satz 2]. Of course when g is R–valued, (2) continues to hold with
f replaced by the real part of f . Applying this approximation result
(with k = 1) to each component of G yields the desired real-analytic
mapping F .



8 ALEXANDER J. IZZO AND EDGAR LEE STOUT

3. Proofs of the Polynomial Convexity Results

Our results regarding polynomial convexity (with the exception of
Theorem 1.1 which was proved in the introduction) will be proved in
the following order: Theorem 1.6, Theorem 1.3, Theorem 1.7, Theo-
rem 1.10, Corollary 1.11.

To prove Theorem 1.6 we will use Stolzenberg’s generalized argument
principle [10].

Definition 3.1. A compact set X in Cn satisfies the generalized argu-

ment principle provided that, if P is a polynomial that has a continuous

logarithm on X, then 0 /∈ P (X̂).

Theorem 1.6 will be proved by showing that Y ∪ Γ satisfies the gen-
eralized argument principle and then obtaining the result from Theo-
rem 1.5 and the construction of a certain polynomial that has a con-
tinuous logarithm on Y ∪ Γ. Note that we actually need Theorem 1.6
only in the case when Y and Y ∪ Γ are arcs. In that case the proof
simplifies; once we have shown that Y ∪Γ satisfies the generalized argu-
ment principle we just need to note that Y ∪ Γ is rationally convex by
Theorem 1.12 and then invoke the following observation of Stolzenberg.

Proposition 3.2. [10, Corollary 2.3] If X is simply coconnected, i.e.,

satisfies Ȟ1(X;Z) = 0, and satisfies the generalized argument principle,

then the polynomial and rational hulls of X coincide.

The following modification of [10, (2.4)] is stated in [7, Proposi-
tion 3.5]; it follows from the classical argument principle in the same
manner as [10, (2.4)].

Proposition 3.3. If V is a purely one-dimensional analytic subvariety

of an open subset of Cn with V compact, and P is a polynomial with a

continuous logarithm on bV = V \ V , then 0 /∈ P (V ).

Thus the boundary of a relatively compact purely one-dimensional

analytic variety V with b̂V = V satisfies the generalized argument
principle.

The following result of Stolzenberg shows that the generalized argu-
ment principle is preserved by certain limits.

Theorem 3.4. [10, (2.12)] Let (Xk)k=1,2,... be a sequence of compact

sets in Cn each of which satisfies the generalized argument principle.

If in the Hausdorff metric Xk → X and X̂k → X̂, then X satisfies the

generalized argument principle.
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Lemma 3.5. If (Xk)k=1,2,... is a decreasing sequence of compact sets in

Cn such that
⋂

k=1,2,... Xk = X, then in the Hausdorff metric Xk → X

and X̂k → X̂.

Proof. It follows from the hypotheses of the lemma that
⋂

k=1,2,... X̂k =

X̂. Since for every decreasing sequence (Yk)k=1,2,... of compact sets in
Cn one has that Yk →

⋂
k=1,2,... Yk, the lemma follows.

Proof of Theorem 1.6. SetX = Y ∪Γ. We first show thatX satisfies
the generalized argument principle. Choose a decreasing sequence of
compact polynomially convex neighborhoods (Lk)k=1,2,... of Y with in-
tersection Y . Let Xk = Lk ∪Γ. Then

⋂
k=1,2,... Xk = X. By hypothesis

Γ\Lk is contained in a compact connected set of finite length. Thus by

Theorem 1.5, X̂k\Xk either is empty or else is a purely one-dimensional
analytic subvariety of Cn \Xk.

If Xk is polynomially convex, then it satisfies the generalized argu-

ment principle. If X̂k\Xk is a variety, say V , then a polynomial that has
a logarithm on Xk has a logarithm on bV and so, by Proposition 3.3,
has no zero on V . Thus, Xk is again seen to satisfy the generalized ar-
gument principle. By Lemma 3.5, in the Hausdorff metric Xk → X and

X̂k → X̂. Thus by Theorem 3.4, X satisfies the generalized argument
principle.

To conclude the proof that X is polynomially convex, we assume

that X̂ \X is nonempty and derive a contradiction to the generalized
argument principle. (For this we essentially follow the beginning of the
proof of Theorem 1.5 given in [11, p. 151].) We can assume without
loss of generality that Γ is disjoint from Y . Then Γ is a countable
union of sets of finite length and hence has two-dimensional Hausdorff
measure zero. Consequently, X is rationally convex by Theorem 1.12.

Now fix a point p ∈ X̂ \X. By the polynomial convexity of Y , there
exists a polynomial Q such that ℜQ < 0 on Y and Q(p) = 0. By
the rational convexity of X, there exists a polynomial R such that 0 /∈
R(X) and R(p) = 0. Choose a positive constant c sufficiently large that
ℜ(cQ+ ζR) < 0 on Y for all choices of ζ ∈ C with |ζ| < 1. No matter
what the choice of c and ζ, we have (cQ + ζR)(p) = 0. The function
H = cQ/R is holomorphic on a neighborhood of X, so the set H(Γ) has
zero area in C. Choose ζ such that |ζ| < 1 and −ζ /∈ H(Γ). Then the
polynomial P = cQ+ ζR vanishes at p but is zero-free on X. Because
ℜP < 0 on Y , the function P has a continuous logarithm on Y . The
hypothesis that the map Ȟ1(X;Z) → Ȟ1(Y ;Z) induced by inclusion
is a monomorphism then implies that P has a continuous logarithm on
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X. We thus have a contradiction to the generalized argument principle
for X.

The final assertion of the theorem now follows from Theorem 1.12.

Proof of Theorem 1.3. We treat first the case that Γ is rectifiable.
Suppose that some nonempty open subarc σ of Γ is contained in

V and that Y ∪ Γ is not polynomially convex. We first show that

Ŷ ∪ Γ\(Y ∪Γ) is contained in V and then obtain that, in fact, Ŷ ∪ Γ\Y
is contained in V .

Fix a point p ∈ Ŷ ∪ Γ \ (Y ∪ Γ), and choose a Jensen measure µ
for the functional of evaluation at p on P(Y ∪ Γ) supported on Y ∪ Γ.
Note that Y is a deformation retract of Y ∪ (Γ\σ), and hence, the map
Ȟ1

(
Y ∪(Γ\σ);Z

)
→ Ȟ1(Y ;Z) induced by inclusion is an isomorphism.

Thus Y ∪(Γ\σ) is polynomially convex by the last part of Theorem 1.5,
so necessarily µ(σ) > 0. Therefore, for every holomorphic function f
on Ω that vanishes identically on V ,

log |f(p)| ≤

∫
log |f | dµ = −∞,

so f(p) = 0. Consequently, p is in V , because since V is an analytic
variety in the Stein domain Ω, for each point q not in V there is a
holomorphic function f on Ω that vanishes identically on V but not at
q [3, Theorem I5].

We have shown that Ŷ ∪ Γ \ (Y ∪ Γ) is contained in V . Let W =

Ŷ ∪ Γ \ (Y ∪ Γ). To conclude the proof it suffices to show that Γ is
contained in the closure of W . By Theorem 1.5, W is an analytic
subvariety of Cn \ (Y ∪ Γ). The boundary bW of W lies in Y ∪ Γ, and
by the maximum principle, W is contained in the polynomial hull of
bW . Since removing an arbitrary open subarc of Γ from Y ∪Γ yields a
polynomially convex set (by the last part of Theorem 1.5), we conclude
that bW must contain Γ thereby concluding the proof in the special
case that Γ is rectifiable.

With the case that Γ is rectifiable in hand, we turn to the general
case, i.e., the case that Γ \ Y is locally rectifiable, and hence, every
compact subset of Γ \ Y has finite length. Theorem 1.6 shows that
for σ an open subarc of Γ \ Y whose closure is contained in Γ \ Y ,
the compact set X = Y ∪ (Γ \ σ) is polynomially convex. Note that
X ∪ σ = Y ∪ Γ. The closure of σ is a rectifiable arc with end points in
X and otherwise disjoint from X. Thus the special case of the theorem
already established (applied with X in place of Y ) shows that either

X ∪ σ = Y ∪ Γ is polynomially convex or else X̂ ∪ σ \X = Ŷ ∪ Γ \X

is contained in V . Since each point of Γ is contained in Ŷ ∪ Γ \X for
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some choice of σ, this shows that Ŷ ∪ Γ \ Y is contained in V if Y ∪ Γ
is not polynomially convex.

Proof of Theorem 1.7. This follows immediately from Theorem 1.6
by setting Y = E and Γ = λ, and noting that for every neighborhood U
of Y , the set Γ \U is contained in the union of finitely many rectifiable
arcs, e.g., the union of finitely many components of Γ \ U ′ for U ′ a
neighborhood of Y whose closure is contained in U .

Proof of Theorem 1.10. Let σ be an open subarc of γ \ E whose
closure Γ is an arc of finite length contained in γ \ E. Then the arc
Y = γ \ σ is polynomially convex by Theorem 1.6. The result now
follows immediately by applying Theorem 1.5 to γ = Y ∪ Γ.

Proof of Corollary 1.11. The first assertion is immediate from The-
orem 1.10. The second assertion follows from Theorem 1.12.
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