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Abstract. Due to the omission of a hypothesis from an elemen-
tary lemma in the author’s paper “Gleason parts and point deriva-
tions for uniform algebras with dense invertible group”, some of the
proofs presented in that paper are flawed. We prove here that nev-
ertheless, all of the results in that paper, with the exception of the
one misstated lemma, are correct. In the process, we strengthen
slightly some of the results of that paper.

Dedicated to the memory of Andrew Browder

1. Introduction

In the author’s paper [3], it is shown that there exist compact sets X
inC

N (N ≥ 2) with nontrivial polynomial or rational hull for which the
uniform algebra P (X) or R(X) has a dense set of invertible elements,
a large Gleason part, and an abundance of bounded point derivations.
This is done by combining new constructions of “hulls with dense in-
vertibles” with a construction of a compact set X such that R(X) has
a Gleason part of full measure and a nonzero bounded point deriva-
tion at almost every point. (The first example of a “hull with dense
invertibles” was constructed by Joel Feinstein and Garth Dales [2].)
The purpose of the present paper is to correct two errors in [3] and, in
particular, to show that in spite of these errors, all of the results in [3]
are correct with the exception of one misstated lemma whose statement
is easily corrected.

One error occurs in the proof of [3, Theorem 1.7]. This error is easily
corrected. See Section 5.
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The other error at first sight appears even easier to fix. As anyone
with a background in complex analysis can see, [3, Lemma 5.1] is false
as stated, but becomes true upon the addition of the hypothesis that
the set Ω is connected. The trouble is that when the lemma is invoked
in [3], the unstated hypothesis that Ω is connected is not considered.
The lemma is invoked only in the proofs of Theorems 1.5 and 6.1. In
the case of Theorem 1.5, the sets that play the role of Ω when applying
the lemma are connected, as the reader can easily verify, so no change
is needed in the proof. In the case of Theorem 6.1 though, it is not at
all clear that the connectedness hypothesis is satisfied. While it is con-
ceivable that the construction can be carried out so as to insure that
the connectedness hypothesis is satisfied, we will instead give a new
construction to prove [3, Theorem 6.1]. This new construction, which
constitutes the bulk of the present paper, uses the ideas in the earlier
(flawed) argument, but also involves considerable additional complica-
tions.

Note that the proofs of [3, Theorems 1.2–1.4, and 1.6] relied upon
[3, Theorem 6.1], so correcting the proof of [3, Theorem 6.1] is needed
to establish the validity of those results also. (The proofs of some of
these results (Theorems 1.2–1.4) do not, however, require the full force
of [3, Theorem 6.1] and could surely be established by simpler means
than the argument we will give for [3, Theorem 6.1].)

The new construction we will give actually yields slightly more than
was claimed in [3] in that the set we construct is connected. Specifically,
we will establish the following result. Here, and throughout the paper,
B denotes the open unit ball {z : ‖z‖ < 1} in C

N , and µ denotes the
2N -dimensional Lebesgue measure on C

N .

Theorem 1.1. For each integer N ≥ 1, there exists a connected, com-

pact rationally convex set X ⊂ B ⊂ C
N of positive 2N-dimensional

measure such that the collection of polynomials zero-free on X is dense

in P (B) and such that there is a set P ⊂ X of full 2N-dimensional

measure in X such that P is contained in a single Gleason part for

R(X) and at every point of P the space of bounded point derivations

for R(X) has dimension N . Furthermore, given ε > 0, the set X can

be chosen so that µ(B \X) < ε.

We remark that as a consequence of this theorem, the set X in [3,
Theorem 1.6] can be taken to be connected.

In the next section we recall some standard definitions and notation
already used above, and we introduce some other notation we will use.
Section 3 is devoted to several lemmas which are used in Section 4
to prove Theorem 1.1. As mentioned earlier, the correction to the
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minor error in the proof of [3, Theorem 1.7] is given in the concluding
Section 5.

This paper was written while the author was a visitor at the Uni-
versity of Michigan. He would like to thank the Department of Math-
ematics for its hospitality. He would also like to thank the referees for
reading the paper especially carefully and providing helpful feedback.

It is with a mixture of joy and sorrow that I dedicate this paper
to the memory of Andrew Browder. Sorrow, of course, that he is no
longer with us; joy that I had the privilege of knowing him.

2. Preliminaries

Throughout the paper, N denotes a positive integer. There is no
further restriction on the value of N except in two places (the opening
sentence and the concluding section of the paper) where it is noted that
we impose the condition N ≥ 2.

For X a compact Hausdorff space, we denote by C(X) the algebra
of all continuous complex-valued functions on X with the supremum
norm ‖f‖X = sup{|f(x)| : x ∈ X}. A uniform algebra on X is a closed
subalgebra of C(X) that contains the constant functions and separates
the points of X.

For a compact set X in C
N , we denote by P (X) the uniform closure

onX of the polynomials in the complex coordinate functions z1, . . . , zN ,
and we denote by R(X) the uniform closure of the rational functions
holomorphic on (a neighborhood of) X. It is well known that the maxi-
mal ideal space of P (X) can be naturally identified with the polynomial

hull X̂ of X defined by

X̂ = {z ∈ C
N : |p(z)| ≤ max

x∈X
|p(x)| for all polynomials p},

and the maximal ideal space of R(X) can be naturally identified with
the rational hull hr(X) of X defined by

hr(X) = {z ∈ C
N : p(z) ∈ p(X) for all polynomials p}.

An equivalent formulation of the definition of hr(X) is that hr(X)
consists precisely of those points z ∈ C

N such that every polynomial
that vanishes at z also has a zero onX. Another equivalent formulation
is that hr(X) consists precisely of those points z ∈ C

N such that every
rational function g holomorphic on (a neighborhood of) X is defined
at z and satisfies |g(z)| ≤ maxx∈X |g(x)|.

The open unit disc in the plane will be denoted by D, and the open
unit ball in C

N will be denoted by B. Given a real number r ≥ 0 and
a subset S of CN , we will denote by rS the set {rs : s ∈ S}. For E a
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measurable subset of CN = R
2N , we will denote the 2N -dimensional

Lebesgue measure of E by µ(E). The real part of a complex number
(or function) z will be denoted by <z. We will use the notation ‖f‖S =
sup{|f(x)| : x ∈ S} even if S is not compact, and we will adopt the
convention that ‖f‖S = 0 if S is empty. As in [3], we will use the
following notation in which we assume that X is a compact set in C

N

and that Ω is an open set in C
N each of which contains the origin:

B(X) denotes the set of rational functions f holomorphic on a neigh-
borhood of X such that ‖f‖X ≤ 1,
B0(X) denotes the set of functions in B(X) that vanish at the origin,
B(Ω) denotes the set of functions f holomorphic on Ω such that
‖f‖Ω ≤ 1, and
B0(Ω) denotes the set of functions in B(Ω) that vanish at the origin.

Let A be a uniform algebra on a compact spaceX. The Gleason parts

for the uniform algebra A are the equivalence classes in the maximal
ideal space of A under the equivalence relation ϕ ∼ ψ if ‖ϕ − ψ‖ < 2
in the norm on the dual space A∗. (That this really is an equivalence
relation is well-known but not obvious.) For φ a multiplicative linear
functional on A, a point derivation on A at φ is a linear functional ψ
on A satisfying the identity

ψ(fg) = ψ(f)φ(g) + φ(f)ψ(g) for all f, g ∈ A.

A point derivation is said to be bounded if it is bounded (continuous)
as a linear functional.

We will make use of the following standard lemma. (For a proof see
[1, Lemma 2.6.1].)

Lemma 2.1. Two multiplicative linear functionals φ and ψ on a uni-

form algebra A lie in the same Gleason part if and only if

sup{|ψ(f)| : f ∈ A, ‖f‖ ≤ 1, φ(f) = 0} < 1.

We will also need the following elementary observation about bounded
point derivations whose easy proof is given in [3, p. 4304].

Lemma 2.2. Let X ⊂ C
N be a compact set. Then the complex vector

space of bounded point derivations on R(X) at a particular point x ∈ X
has dimension at most N , and the dimension is exactly N if and only

if there is a number M <∞ such that

|∂f/∂zν(x)| ≤M for every f ∈ B(X) and ν = 1, . . . , N.

3. Lemmas

In this section we present several lemmas that will be used in the
proof of Theorem 1.1.
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Lemma 3.1. Let X ⊂ C
N be a compact, rationally convex set. Then

each component of X is rationally convex.

It is also true that each component of a polynomially convex set is
polynomially convex, and more generally, that each component of the
maximal ideal space of a uniform algebra A is A-convex, but we will
not need these facts.

Proof. Let K be a component of X. Since hr(K) ⊂ hr(X) = X, it
suffices to show that given x ∈ X \ K, there is a rational function g
holomorphic on a neighborhood of X such that |g(x)| > ‖g‖K . Choose
a separation X0, X1 of X with K ⊂ X0 and x ∈ X1. By the Shilov
idempotent theorem, there exists a function f ∈ R(X) such that f is
identically 0 on X0 and identically 1 on X1. Now taking for g a rational
function holomorphic on a neighborhood ofX such that ‖f−g‖X < 1/4
completes the proof. �

Lemma 3.2. Fix N ≥ 1 and ε > 0. Let {pj} be a countable collection

of polynomials on C
N such that pj(0) 6= 0 for each j. Then there

exists a totally disconnected, compact polynomially convex set E with

0 ∈ E ⊂ B ⊂ C
N such that

(i) each pj is zero-free on E
(ii) µ(B \ E) < ε.

Proof. The main idea of the proof is the same as the proof of [3,
Lemma 4.2].

Obviously it is sufficient to prove the lemma with the conditions
E ⊂ B and µ(B \ E) < ε replaced by E ⊂ B and µ(B \ E) < ε.
By multiplying each pj by a suitable complex number if necessary, we
may assume that <pj(0) 6= 0 for each j. Furthermore, by enlarging the
collection {pj}, we may assume that {pj} is dense in P (B).

For each j, the set p−1
j ({z ∈ C : <z = 0}) is a proper real-analytic

subvariety of CN and hence has 2N -dimensional measure zero. Conse-
quently, we can choose 0 < εj < min{|<pj(0)|, 1} such that

µ
(
p−1
j

(
{z ∈ C : |<z| < εj}

)
∩B
)
< ε/2j.

Then

µ
( ∞⋃

j=1

p−1
j

(
{z ∈ C : |<z| < εj}

)
∩B
)
<

∞∑

j=1

ε/2j = ε.

Thus setting E = B \
⋃

∞

j=1 p
−1
j

(
{z ∈ C : |<z| < εj}

)
we have that

µ(B \ E) < ε. Obviously 0 ∈ E ⊂ B, each pj is zero-free on E, and E
is compact.
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For each j, choose a closed disc Dj containing pj(B). Then

E =
∞⋂

j=1

(
p−1
j

(
{z ∈ Dj : |<z| ≥ εj}

)
∩B

)
.

Each set {z ∈ Dj : |<z| ≥ εj} is polynomially convex since it has con-
nected complement in the plane. Hence each set p−1

j

(
{z ∈ Dj : |<z| ≥

εj}
)
∩B is polynomially convex (by the elementary [3, Lemma 3.1]).

Consequently, E is polynomially convex.
Let x and y be arbitrary distinct points of E. Because {pj} is dense in

P (B), there is some pj such that <pj(x) > 1 and <pj(y) < −1. Because
|<pj| ≥ εj everywhere on E, it follows that x and y lie in different
components of E. Consequently, E is totally disconnected. �

Lemma 3.3. Fix N ≥ 1 and ε > 0. Then there exists a compact

rationally convex set Y with 0 ∈ Y ⊂ B ⊂ C
N such that

(i) the set of polynomials zero-free on Y is dense in P (B)
(ii) µ(B \ Y ) < ε
(iii) Y is connected.

In fact, the set Y in the lemma can be taken to be a polynomially
convex arc with the property that P (Y ) = C(Y ) [5, Theorem 1.2], but
that is much more difficult to prove and will not be needed here.

Proof. Assume without loss of generality that ε < µ(B). Choose a
countable collection {pj} of polynomials that is dense in P (B) and
such that pj(0) 6= 0 for each j. By the preceding lemma, there exists a
totally disconnected, compact polynomially convex set E such that 0 ∈
E ⊂ B, each pj is zero-free on E, and µ(B\E) < ε. Let σ : [0, 1] → C

N

be a continuous map whose image contains E. (For instance, σ could
be a space-filling curve.) Assume without loss of generality that σ(0)
and σ(1) are in the set E, and let K = σ−1(E). Let (a1, b1), (a2, b2),
. . . be the disjoint open intervals whose union is [0, 1] \ K. Define a
map γ : [0, 1] → C

N by setting γ = σ on K and taking γ to be affine
on each interval [ak, bk] for k = 1, 2, . . .. The reader can verify that γ
is continuous. Consequently, γ([0, 1]) is a connected, compact subset
of B ⊂ C

N that contains E.
Set J = γ([0, 1]). Set Ik = [ak, bk] for k = 1, 2, . . .. Because each pj

is zero-free on E, there exists εj > 0 such that pj(E) is disjoint from
{z ∈ C : |z| < εj}. Each set pj

(
γ(Ik)

)
has empty interior in the plane,

so it follows that the set pj(J)∩{z ∈ C : |z| < εj} is a countable union
of nowhere dense sets and thus has empty interior. Thus there exist
arbitrarily small complex numbers α such that pj + α has no zeros on
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J . Consequently, conditions (i), (ii), and (iii) all hold with Y replaced
by J .

Now set Y = hr(J). Then conditions (i) and (ii) are immediate,
and condition (iii) follows from the connectedness of J by the Shilov
idempotent theorem. �

The proof of the next lemma is an easy exercise. However, given
that the incorrect statement of the lemma in [3] is what created the
need for the present paper, and given the central role the lemma plays
in the proof of our main result, we include the proof in full.

Lemma 3.4. Suppose K is a compact set contained in an open set

Ω ⊂ C
N with 0 ∈ Ω. Then there exists an R with 0 < R < 1 such

that ‖f‖K ≤ R for all f ∈ B0(Ω) if and only if K is contained in the

component of Ω that contains the origin.

Proof. Suppose that K is contained in the component of Ω that con-
tains the origin. Assume to get a contradiction that no R as in the
statement of the lemma exists. Then for each n = 1, 2, . . ., there ex-
ists a function fn ∈ B0(Ω) such that ‖fn‖K ≥ 1 − 1/n. By Montel’s
theorem, B0(Ω) is a normal family, so some subsequence of (fn) con-
verges uniformly on compact subsets of Ω to a limit function f . Then
f is a holomorphic function on Ω such that f(0) = 0, ‖f‖Ω ≤ 1, and
‖f‖K ≥ 1. But then the restriction of f to the component of Ω that
contains the origin is a nonconstant holomorphic function on a con-
nected, open set that takes on a maximum in modulus at some point,
a contradiction.

Now suppose that K fails to be contained in the component of Ω
that contains the origin. Let g be the function on Ω that is identically
0 on the component of Ω that contains the origin and is identically 1
everywhere else on Ω. Then ‖g‖K = 1 and g ∈ B0(Ω). Thus no R as
in the statement of the lemma exists. �

The next three lemmas are taken from [3]. (As stated in [3], the
second of these lemmas contained the hypothesis that 0 ∈ K. That
hypothesis is actually irrelevant, and so the statement of the lemma
has been modified here.)

Lemma 3.5. [3, Lemma 5.2] Suppose K is a compact set contained

in an open set Ω ⊂ C
N . Then there exists an M < ∞ such that

‖∂f/∂zν‖K ≤M for all f ∈ B(Ω) and ν = 1, . . . , N .

Lemma 3.6. [3, Lemma 6.2, modified] Let K be a compact set con-

tained in an open set Ω ⊂ C
N with 0 ∈ Ω, let p be a polynomial on

C
N with no zeros on K ∪ {0}, and let ε > 0 be given. Let 0 < R < 1,
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and suppose that ‖f‖K ≤ R for all f ∈ B0(Ω). Then there exists an

r > 0 such that p−1(rD) ∩ (K ∪ {0}) = ∅ and ‖f‖K ≤ R + ε for all

f ∈ B0(Ω \ p−1(rD)).

Lemma 3.7. [3, Lemma 6.3] Let K be a compact set contained in

an open set Ω ⊂ C
N , let p be a polynomial on C

N with no zeros

on K, and let ε > 0 be given. Let 0 < M < ∞, and suppose that

‖∂f/∂zν‖K ≤M for all f ∈ B(Ω) and ν = 1, . . . , N . Then there exists

an r > 0 such that p−1(rD) ∩K = ∅ and ‖∂f/∂zν‖K ≤ M + ε for all

f ∈ B(Ω \ p−1(rD)) and ν = 1, . . . , N .

Note that in Lemmas 3.6 and 3.7 the conclusion continues to hold
with r replaced by any number r′ such that 0 < r′ < r.

Lemma 3.8. Let K be a compact set contained in an open set Ω ⊂ C
N

with 0 ∈ Ω, and let ε > 0 be given. Let 0 < R < 1, and suppose that

‖f‖K ≤ R for all f ∈ B0(Ω). Let (Ωn) be an increasing sequence

of open sets of CN with union Ω. Then there exists an n such that

Ωn ⊃ K ∪ {0} and ‖f‖K ≤ R + ε for all f ∈ B0(Ωn).

Proof. Assume to get a contradiction that no such n exists. Let J
be a positive integer large enough that ΩJ ⊃ K ∪ {0}. Then for each
n = J, J+1, . . ., there exists a function fn ∈ B0(Ωn) such that ‖fn‖K >
R+ε. For eachm = J, J+1, . . ., the set {fn : n ≥ m} is a normal family
on Ωm. Thus there is a subsequence of (fn) that converges uniformly
on compact subsets of ΩJ . We may then choose a further subsequence
that converges uniformly on compact subsets of ΩJ+1. Continuing in
this manner taking subsequences of subsequences, and then applying
the usual diagonalization argument, we arrive at a subsequence (fnk

)
of (fn) such that for each compact subset L of Ω, the sequence (fnk

)
converges uniformly on L. Note that given L, there may be a finite
number of terms of the sequence (fnk

) that are not defined on L, but
this does not matter. Thus there is a well-defined limit function f that
is holomorphic on Ω. The function f is in B0(Ω). Thus by hypothesis,
‖f‖K ≤ R. But since fnk

→ f uniformly on K, and ‖fn‖K > R+ ε for
all n, this is a contradiction. �

Lemma 3.9. Let K be a compact set contained in an open set Ω ⊂
C

N , and let ε > 0 be given. Let 0 < M < ∞, and suppose that

‖∂f/∂zν‖K ≤ M for all f ∈ B(Ω) and ν = 1, . . . , N . Let (Ωn) be an

increasing sequence of open sets of CN with union Ω. Then there exists

an n such that Ωn ⊃ K and ‖∂f/∂zν‖K ≤ M + ε for all f ∈ B(Ωn)
and ν = 1, . . . , N .
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Proof. This is proven by a normal families argument similar to the one
just presented and hence is left to the reader. �

Lemma 3.10. Given K ⊂ U ⊂ C
N with K a compact set and U a

connected open set, there exists a connected open set W with compact

closure such that K ⊂ W ⊂ W ⊂ U .

Proof. Cover K by a finite number of open balls B1, . . . , Bk whose
closures are contained in U . Let a1, . . . , ak be the centers of these balls.
For each j = 2, . . . , k, choose a path γj from a1 to aj in U . Let γ

∗

j denote

the image of the path γj. Set J = B1 ∪ · · · ∪ Bk ∪ γ
∗

2 ∪ · · · ∪ γ∗k . Then
J is a compact, connected subset of U that contains K. Cover J by a
finite number of open balls W1, . . . ,Wm whose closures are contained
in U . Assume without loss of generality that each Wj intersects J . Set
W = W1 ∪ · · · ∪Wm. Then W is as asserted in the statement of the
lemma. �

4. Proof of Theorem 1.1

Recall that given a real number r ≥ 0 and a subset S of CN , we
denote by rS the set {rs : s ∈ S}. Recall also the notations B(X),
B0(X), B(Ω), and B0(Ω) introduced in Section 2.

Proof of Theorem 1.1. Fix ε > 0. Let Y be the set whose existence is
given by Lemma 3.3, and choose a countable collection {pj} of polyno-
mials on C

N that is dense in P (B) and such that each pj is zero-free
on Y .

It is to be understood that throughout the proof, all subscripts and
superscripts are positive integers. We will choose a strictly decreasing
sequence (sm)

∞

m=1 of strictly positive numbers less than 1 and a doubly

indexed collection {r
(m)
j : 1 ≤ j ≤ m} of strictly positive numbers

such that for each j, the sequence (r
(m)
j )∞m=j is strictly increasing and

bounded. Given these, we define X̃m and Ω̃m by

(1) X̃m = smB \
m⋃

j=1

p−1
j (r

(m)
j D)

and

(2) Ω̃m = smB \
m⋃

j=1

p−1
j (r

(m)
j D).

The numbers r
(m)
j will be chosen small enough that Ω̃m, and hence also

X̃m, contains the origin. We denote the component of each of X̃m and



10 ALEXANDER J. IZZO

Ω̃m that contains the origin respectively by Xm and Ωm. Note that Xm

is compact and Ωm is open. Note also that

X̃1 ⊃ Ω̃1 ⊃ X̃2 ⊃ Ω̃2 ⊃ X̃3 ⊃ Ω̃3 ⊃ · · ·

and
X1 ⊃ Ω1 ⊃ X2 ⊃ Ω2 ⊃ X3 ⊃ Ω3 ⊃ · · · .

Let

X =
∞⋂

m=1

Xm.

Letting s = inf sm and rj = sup
m
r
(m)
j , we have that the intersection

X̃ =
⋂

∞

m=1 X̃m is given by

X̃ = sB \
∞⋃

j=1

p−1
j (rjD),

and since the intersection of a decreasing sequence of compact con-

nected sets is connected, X is the component of X̃ that contains the
origin. We will show that for a suitable choice of the sequence (sm)

and the collection {r
(m)
j }, the set X has the properties stated in the

theorem.
The choice of (sm) and {r

(m)
j } will involve also choosing a nonstrictly

increasing sequence (tn) of strictly positive numbers and a doubly in-

dexed collection {u
(n)
j : j = 1, 2, . . . and n = 1, 2, . . .} of strictly posi-

tive numbers such that for each j, the sequence (u
(n)
j )∞n=1 is nonstrictly

decreasing. The choices will be made in such a way that tα < sβ and

u
(β)
j > r

(α)
j for all α, β, and j for which the quantities are defined. We

then define K̃m
n for all m ≥ n ≥ 1 by

(3) K̃m
n = tnB \

m⋃

j=1

p−1
j (u

(n)
j D).

Note that then K̃m
n is contained in Ω̃m. We set

(4) Km
n = K̃m

n ∩ Ωm.

As a component of Ω̃m, the set Ωm is closed in Ω̃m, and consequently,
Km

n is compact.
We will also choose sequences of numbers (Rn) and (Mn) such that

0 < Rn < 1 and 0 < Mn <∞ for all n.
We will show that (sm), {r

(m)
j }, (tn), {u

(n)
j }, (Rn), and (Mn) can be

chosen so that the following conditions hold for all 1 ≤ n ≤ m and
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1 ≤ j ≤ m. (We present our required conditions in a slightly odd way
so as to set up a proof by induction. Conditions (i)–(vii) and (xii)–(xiii)
have already been mentioned above.)

(i) The numbers sm, r
(m)
j , tn, and u

(n)
j are strictly positive.

(ii) 1 > s1 > s2 > · · · > sm

(iii) r
(j)
j < r

(j+1)
j < · · · < r

(m)
j

(iv) t1 ≤ t2 ≤ · · · ≤ tm

(v) u
(1)
j ≥ u

(2)
j ≥ · · · ≥ u

(m)
j

(vi) tm < sm (and hence, tα < sβ for all 1 ≤ α ≤ m and 1 ≤ β ≤ m)

(vii) u
(m)
j > r

(m)
j (and hence u

(β)
j > r

(α)
j for all j ≤ α ≤ m and

1 ≤ β ≤ m)

(viii) smB ⊃ Y

(ix) p−1
j (r

(m)
j D) is disjoint from Y

(x) µ(Xn \K
n
n) ≤ (1/n)µ(B)

(xi) µ
(
p−1
j (u

(n)
j D) ∩ B

)
≤ (1/2j−1)µ(B)

(xii) 0 < Rn < 1

(xiii) 0 < Mn <∞

(xiv) For all f ∈ B0(Ωm),

‖f‖Km
n
≤ Rn + (1

4
+ 1

8
+ · · ·+ 1

2m−n+1 )(1−Rn).

(When m = n, the sum in parentheses is understood to be

zero.)

(xv) For all f ∈ B(Ωm) and ν = 1, . . . , N ,

‖∂f/∂zν‖Km
n
≤ (1 + 1

2
+ · · ·+ 1

2m−n )Mn.

Assuming for the moment that (sm), {r
(m)
j }, (tn), {u

(n)
j }, (Rn), and

(Mn) have been chosen so that the above conditions are satisfied, we
now prove that the set X has the properties stated in the theorem.

Obviously X is contained in B. Clearly X̃ is rationally convex, and

hence the component X of X̃ is rationally convex by Lemma 3.1. By

conditions (viii) and (ix), X̃ ⊃ Y . Therefore, X ⊃ Y since Y is
connected and contains the origin. Consequently, µ(B \X) < ε. Since
each pj is zero-free on X, the collection of polynomials zero-free on X
is dense in P (B). Finally, for each n = 1, 2, . . ., set Kn =

⋂
∞

m=nK
m
n ,

and set P =
⋃

∞

n=1Kn. Then P is contained in X, and we now show
that P is as asserted in the statement of the theorem.
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Note that for every n,

X \ P ⊂ X \Kn ⊂
[
X \Kn

n

]⋃
[

∞⋃

j=n+1

(
p−1
j (u

(n)
j D) ∩ B

)
]
.

Letting n → ∞, we see that conditions (x) and (xi) imply that µ(X \
P ) = 0.

Now consider an arbitrary point z ∈ P . Fix n such that z ∈ Kn.
Given g ∈ B0(X) and a constant 0 < a < 1, there is some m ≥ n such
that ag ∈ B0(Ωm). Since z ∈ Km

n , condition (xiv) gives that

|ag(z)| ≤ Rn + (1
4
+ 1

8
+ · · ·+ 1

2m−n+1 )(1−Rn).

Letting a → 1 shows that this inequality continues to hold with ag
replaced by g. Therefore,

sup
f∈B0(X)

|f(z)| ≤ Rn +
1
2
(1−Rn) < 1.

Thus by Lemma 2.1, z lies in the Gleason part of the origin for R(X).
Similarly, using condition (xv), we get that

sup
f∈B(X)

|(∂f/∂zν)(z)| ≤ 2Mn <∞ for all ν = 1, . . . , N.

Thus by Lemma 2.2, the space of bounded point derivations on R(X)
at z has dimension N .
It remains to choose (sm), {r

(m)
j }, (tn), {u

(n)
j }, (Rn), and (Mn). First

choose 0 < s1 < 1 large enough that s1B ⊃ Y , and choose r
(1)
1 > 0 small

enough that p−1
1 (r

(1)
1 D) is disjoint from Y . Then choose 0 < t1 < s1

and u
(1)
1 > r

(1)
1 . The sets X̃1, Ω̃1, X1, Ω1, K̃

1
1 , and K

1
1 are now defined

in accordance with equations (1), (2), (3) and (4), and the remarks
that immediately follow them. Lemmas 3.4 and 3.5 yield numbers
0 < R1 < 1 and 0 < M1 <∞ such that

‖f‖K1
1
≤ R1 for all f ∈ B0(Ω1)

and

‖∂f/∂zν‖K1
1
≤M1 for all f ∈ B(Ω1) and ν = 1, . . . , N.

Now conditions (i)–(xv) hold for n = m = j = 1.
We continue by induction. Suppose that for some k ≥ 1 we have

chosen sm, r
(m)
j , tn, u

(n)
j , Rn, and Mn for all 1 ≤ n ≤ m ≤ k and

1 ≤ j ≤ m ≤ k such that conditions (i)–(xv) hold for all these values
of n, m, and j. We will refer to conditions (i)–(xv) for these values of
n, m, and j as conditions (i)–(xv) of the induction hypothesis.
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Choose u
(1)
k+1 = u

(2)
k+1 = · · · = u

(k)
k+1 > 0 small enough that for each

n = 1, . . . , k we have that µ
(
p−1
k+1(u

(n)
k+1D)∩B

)
< (1/2k)µ(B). Equation

(3) now defines sets K̃k+1
1 , . . . , K̃k+1

k . For n = 1, . . . , k, set

K̆k+1
n = K̃k+1

n ∩ Ωk,

and note that then K̆k+1
n ⊂ Kk

n. Note also that each of K̆k+1
1 , . . . , K̆k+1

k

is compact. Lemmas 3.6 and 3.7, together with conditions (xiv) and (xv)

of the induction hypothesis, yield the existence of 0 < c < u
(k)
k+1 such

that 0 /∈ p−1
k+1(cD) and such that for all n = 1, . . . , k, we have

‖f‖K̆k+1
n

≤ Rn + (1
4
+ 1

8
+ · · ·+ 1

2k−n+1 +
1/2

2(k+1)−n+1 )(1−Rn)

for all f ∈ B0(Ωk \ p
−1
k+1(cD))

(5)

and

‖∂f/∂zν‖K̆k+1
n

≤ (1 + 1
2
+ · · ·+ 1

2k−n + 1/2

2(k+1)−n
)Mn

for all f ∈ B(Ωk \ p
−1
k+1(cD)) and ν = 1, . . . , N.

(6)

Note that by choosing c small enough, we can arrange to have p−1
k+1(cD)

disjoint from Y .
Denote the component of Ωk \ p

−1
k+1(cD) containing the origin by U .

By the regularity of Lebesgue measure, there exists a compact set K
contained in U such that µ(U\K) < 1

2
(1/(k+1))µ(B). By Lemma 3.10,

there exists a connected open setW such thatK ⊂ W ⊂ W ⊂ U . Then
of course

(7) µ(U \W ) < 1
2
(1/(k + 1))µ(B).

If we let (αn), (β
(n)
j )∞n=1 for j = 1, . . . , k, and (γn) be sequences

of strictly positive numbers with (αn) strictly increasing to sk, with

(β
(n)
j )∞n=1 strictly decreasing to r

(k)
j , and with (γn) strictly decreasing

to c, and we set

Vn = αnB \

[(
k⋃

j=1

p−1
j (β

(n)
j D)

)
∪ p−1

k+1(γnD)

]
,

then (Vn) is an increasing sequence of open sets with union Ω̃k\p
−1
k+1(cD).

Therefore, by Lemmas 3.8 and 3.9, it follows from inequalities (5)

and (6) that there exist numbers sk+1 and r
(k+1)
j for j = 1, . . . , k+1 such

that 0 < tk < sk+1 < sk, such that r
(k)
j < r

(k+1)
j < u

(k)
j for j = 1, . . . , k,

such that c < r
(k+1)
k+1 < u

(k)
k+1, and such that defining Ω̃k+1 in accordance

with equation (2), we have that Ω̃k+1 contains each of K̆k+1
1 , . . . , K̆k+1

k
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and contains the origin and we have, for each n = 1, . . . , k, the inequal-
ities

‖f‖K̆k+1
n

≤ Rn + (1
4
+ 1

8
+ · · ·+ 1

2k−n+1 +
1

2(k+1)−n+1 )(1−Rn)

for all f ∈ B0(Ω̃k+1)
(8)

and

‖∂f/∂zν‖K̆k+1
n

≤ (1 + 1
2
+ · · ·+ 1

2k−n + 1
2(k+1)−n

)Mn

for all f ∈ B(Ω̃k+1) and ν = 1, . . . , N.
(9)

Then by Lemma 3.4, each of K̆k+1
1 , . . . , K̆k+1

k is contained in the com-

ponent Ωk+1 of Ω̃k+1 containing the origin, and inequalities (8) and (9)

continue to hold with Ω̃k+1 replaced by Ωk+1. Furthermore, by condi-
tions (viii) and (ix) of the induction hypothesis and the compactness of

Y andW , the numbers sk+1 and r
(k+1)
1 , . . . , r

(k+1)
k+1 can be chosen so that

in addition, sk+1B ⊃ Y and for j = 1, . . . , k+1, the set p−1
j (r

(k+1)
j D) is

disjoint from Y (and hence Y ⊂ Ω̃k+1), and also W ⊂ Ω̃k+1. Then by
the connectedness of Y andW , we have that Y ⊂ Ωk+1 andW ⊂ Ωk+1.

With sk+1 and r
(k+1)
1 , . . . , r

(k+1)
k+1 now chosen, X̃k+1 is defined in ac-

cordance with equation (1), and Xk+1 is defined to be the component

of X̃k+1 that contains the origin. Note that X̃k+1 ⊂ Ω̃k \ p−1
k+1(cD),

and so Xk+1 ⊂ U . Consequently, Xk+1 \ Ωk+1 ⊂ U \W . Therefore, by
inequality (7) we have

(10) µ(Xk+1 \ Ωk+1) ≤ µ(U \W ) < 1
2
(1/(k + 1))µ(B).

We define the sets Kk+1
1 , . . . , Kk+1

k in accordance with equation (4).
Observe that then

Kk+1
n = K̆k+1

n for all n = 1, . . . , k.

Therefore, since inequalities (8) and (9) hold with Ω̃k+1 replaced by
Ωk+1, we have for all n = 1, . . . , k that

‖f‖Kk+1
n

≤ Rn + (1
4
+ 1

8
+ · · ·+ 1

2k−n+1 +
1

2(k+1)−n+1 )(1−Rn)

for all f ∈ B0(Ωk+1)

and

‖∂f/∂zν‖Kk+1
n

≤ (1 + 1
2
+ · · ·+ 1

2k−n + 1
2(k+1)−n

)Mn

for all f ∈ B(Ωk+1) and ν = 1, . . . , N.

Finally, choose tk+1 and u
(k+1)
1 , . . . , u

(k+1)
k+1 such that 0 < tk ≤ tk+1 <

sk+1 and u
(k)
j ≥ u

(k+1)
j > r

(k+1)
j for j = 1, . . . , k + 1 with tk+1 close
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enough to sk+1 and each u
(k+1)
j close enough to r

(k+1)
j that defining

K̃k+1
k+1 in accordance with equation (3) we have K̃k+1

k+1 ⊂ Ω̃k+1 and

µ(Ω̃k+1 \ K̃
k+1
k+1) <

1
2
(1/(k + 1))µ(B).

Then with Kk+1
k+1 defined in accordance with equation (4), we also have

µ(Ωk+1 \K
k+1
k+1) <

1
2
(1/(k + 1))µ(B).

Combined with inequality (10), this gives that

µ(Xk+1 \K
k+1
k+1) < (1/(k + 1))µ(B).

Lemmas 3.4 and 3.5 yield numbers 0 < Rk+1 < 1 and 0 < Mk+1 <∞
such that

‖f‖Kk+1
k+1

≤ Rk+1 for all f ∈ B0(Ωk+1)

and

‖∂f/∂zν‖Kk+1
k+1

≤Mk+1 for all f ∈ B(Ωk+1) and ν = 1, . . . , N.

Now, as the reader can verify, we have chosen sm, r
(m)
j , tn, u

(n)
j , Rn,

and Mn for all 1 ≤ n ≤ m ≤ k + 1 and 1 ≤ j ≤ m ≤ k + 1 in such
a way that conditions (i)–(xv) hold for all these values of n, m, and
j. Thus the induction can proceed, and the proof of Theorem 1.1 is
complete. �

5. Correction to the proof of [3, Theorem 1.7]

In the proof of [3, Theorem 1.7] there are compact subsets K and X

of CN (N ≥ 2) with K ⊂ hr(X) = X̂, an injective holomorphic map

σ : D → X̂ \K, and a polynomial p on C
N such that p(σ(0)) = 0 and

p has no zeros on K. It is asserted that “because σ is injective, we
may assume, by adding to p a small multiple of a suitable first degree
polynomial if necessary, that

(
∂(p ◦ σ)/∂z

)
(0) 6= 0”. This is of course

false since it could be that
(
∂σ/∂z

)
(0) = 0. (For instance, σ could be

given by σ(z) = (z2, z3).) However, all that is needed in the proof of
[3, Theorem 1.7] is the ability to assume that p is not identically zero
on σ(D). This can be achieved by adding to p, if necessary, a small
multiple of a polynomial that vanishes at σ(0) but is not identically
zero on σ(D).
A generalization of [3, Theorem 1.7], whose proof runs along the

same lines, is given in the author’s paper [4]. There the argument is
presented correctly; see the proof of [4, Theorem 5.1].
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