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Abstract

SGD with Momentum (SGDM) is a widely used family of algorithms for large-scale optimization of

machine learning problems. Yet, when optimizing generic convex functions, no advantage is known

for any SGDM algorithm over plain SGD. Moreover, even the most recent results require changes

to the SGDM algorithms, like averaging of the iterates and a projection onto a bounded domain,

which are rarely used in practice. In this paper, we focus on the convergence rate of the last iterate of

SGDM. For the first time, we prove that for any constant momentum factor, there exists a Lipschitz

and convex function for which the last iterate of SGDM suffers from a suboptimal convergence rate

of Ω( lnT
√

T
) after T iterations. Based on this fact, we study a class of (both adaptive and non-adaptive)

Follow-The-Regularized-Leader-based SGDM algorithms with increasing momentum and shrinking

updates. For these algorithms, we show that the last iterate has optimal convergence O( 1
√

T
) for

unconstrained convex stochastic optimization problems without projections onto bounded domains

nor knowledge of T . Further, we show a variety of results for FTRL-based SGDM when used with

adaptive stepsizes. Empirical results are shown as well.

Keywords: Convex Optimization, Momentum methods , Stochastic Optimization

1. Introduction

Momentum methods have become one of the most used first-order optimization algorithms in

machine learning applications. When momentum is used together with Stochastic Gradient Descent

(SGD), there are two main variants considered in the literature: the stochastic version of the Heavy

Ball momentum (SHB) (Polyak, 1964) and Nesterov’s momentum (also called Nesterov Accelerate

Gradient method) (Nesterov, 1983). Besides these two, there are other variations as well. For

example, an exponential moving average of the (stochastic) gradients can be used to replace the

gradients in the updates (Kingma and Ba, 2015; Reddi et al., 2016; Alacaoglu et al., 2020; Liu et al.,

2020).

Despite this zoo of variants, due to the presence of noise, it is well-known that Stochastic

Gradient Descent with Momentum (SGDM) does not guarantee an accelerated rate of convergence

of noise nor any real advantage over plain SGD on generic convex problems. For example, recent

works have proved that a variant of SGD with momentum improves only the non-dominant terms

in the convergence rate on some specific stochastic problems (Dieuleveut et al., 2017; Jain et al.,

2018). Moreover, often an idealized version of SGDM is used in the theoretical analysis rather than

the actual SGDM people use in practice. For example, projections onto bounded domains at each

step, averaging of the iterates (e.g., Alacaoglu et al., 2020), and knowledge of the total number of
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iterations (Ghadimi and Lan, 2012) are often assumed. The mismatch between theory and practice is

concerning because, for example, it is known that in some cases the lack of projections can destroy

the convergence of some algorithms (Orabona and Pál, 2018). Overall, recent analyses seem unable

to pinpoint any advantage of using a momentum term in SGD in the stochastic optimization of

general convex functions.

In the following, we denote by SGDM the following updates

xt+1 = xt − ηtmt, mt = βtmt−1 + (1− βt)gt, (1)

where 0 ≤ βt ≤ 1.

In this paper, to show a discriminant difference between SGD and SGDM, we focus on the

convergence of the last iterate. Hence, we study the convergence of the last iterate of SGDM for

unconstrained optimization of convex functions. Unfortunately, our first result is a negative one:

We show that the last iterate of SGDM can have a suboptimal convergence rate for any constant

momentum setting.

Hence, motivated by the above result, we analyze yet another variant of SGDM. We start

from the very recent observation (Defazio, 2020) that SGDM can be seen as a primal averaging

procedure (Nesterov and Shikhman, 2015; Tao et al., 2018; Cutkosky, 2019) applied to the iterates of

Online Mirror Descent (OMD) (Nemirovsky and Yudin, 1983; Warmuth and Jagota, 1997). Based

on this fact, we analyze SGDM algorithms based on the Follow-the-Regularized-Leader (FTRL)

framework1 (Shalev-Shwartz, 2007; Abernethy et al., 2008) and the primal averaging. The use of

FTRL instead of OMD removes the necessity of projections onto bounded domains, while the primal

averaging acts as a momentum term and guarantees the optimal convergence of the last iterate. The

resulting algorithm has an increasing momentum and shrinking updates that precisely allow to avoid

our lower bound.

More in detail, we prove that the expected suboptimality gap of the last iterate of FTRL-based

SGDM converges at the optimal rate of O(1/
√
T ) on convex functions, without assuming bounded

domains nor the knowledge of the total number of iterations. This also disproves a more general

conjecture than the one in (Jain et al., 2019, 2021), removing the bounded assumption. Moreover, we

show that our construction is general enough to allow for an entire family of FTRL-based SGDM

methods, both adaptive and non-adaptive. For example, we show that “adaptive” learning rates give

rise to convergence rates that are adaptive to gradients, noise, and to the interpolation regime.

The rest of the paper is organized as follows: We discuss the related work in Section 2 and the

setting and assumptions in Section 3. We then present our main results: the lower bound (Section 4)

and the new FTRL-based SGDM (Section 5). Finally, in Section 6 we present an empirical evaluation

of our algorithms and in Section 7 we outline a future work direction.

2. Related Work

Stochastic Momentum Methods SGDM has become a popular tool in deep learning and its impor-

tance has been discussed by recent studies (Sutskever et al., 2013). Polyak (1964) first proposed the

use of momentum in gradient descent, calling it the Heavy-Ball method. In the stochastic setting,

there are multiple work analyzing the use of momentum in SGD. In particular, Yang et al. (2016)

1. FTRL is known in the offline optimization literature as Dual Averaging (DA) (Nesterov, 2009), but in reality, DA is a

special case of FTRL when the functions are linearized.
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prove a convergence rate of O(1/
√
T ) for the averaged iterate in the convex setting, and for an iterate

taken uniformly at random in the nonconvex setting. Liu et al. (2020) provide a convergence analysis

for SGDM and Multistage SGDM for smooth functions in the strongly convex and nonconvex

settings. Also, adaptive variants of momentum methods (Kingma and Ba, 2015; Reddi et al., 2018;

Luo et al., 2018) are very popular in the deep learning literature, even if their guarantees are only

for the online convex optimization setting assuming a decreasing momentum factor and projections

onto bounded domains. Alacaoglu et al. (2020) recently removed the assumption of a vanishing

momentum factor, but they still require projections over a bounded domain. In the non-convex and

smooth case, Cutkosky and Orabona (2019) introduce a variant of SGDM with a variance-reduction

effect and a faster convergence rate than SGD on non-convex functions, but it requires two stochastic

gradients per step.

Lower Bound Harvey et al. (2019) prove the tight convergence bound O(lnT/
√
T ) of the last

iterate of SGD for convex and Lipschitz functions. Kidambi et al. (2018) provide a lower bound for

the Heavy Ball method for least square regression problems. To the best of our knowledge, there is

no lower bound for the last iterate of SGDM in the general non-smooth non-strongly-convex setting.

Last Iterate Convergence of SGDM Nesterov and Shikhman (2015) introduces a quasi-monotone

subgradient method, which uses double averaging (both in Primal and Dual) based on Dual Averaging,

to achieve the optimal convergence of the last iterate for the convex and Lipschitz functions. However,

they just considered the batch case. This approach was then rediscovered and extended by Cutkosky

(2019). Our FTRL-based SGDM is a generalization of the approach in Nesterov and Shikhman

(2015) with generic regularizers and stochastic gradients. Tao et al. (2018) extends Nesterov and

Shikhman (2015)’s method to Mirror Descent, calling it stochastic primal averaging. They recover the

same bound for convex functions, again with a bounded domain assumption. Defazio (2020) points

out that the sequence generated by the stochastic primal averaging (Tao et al., 2018) can be identical

to that of stochastic gradient descent with momentum for specific choices of the hyper-parameters.

Accordingly, they give a Lyapunov analysis in the nonconvex and smooth case. Based on this work,

Jelassi and Defazio (2020) introduce “Modernized dual averaging method”, which is actually equal

to the one by Nesterov and Shikhman (2015). They also give a similar Lyapunov analysis as in

Defazio (2020) with specific choices of hyper-parameters in the non-convex and smooth optimization

setting, where they assume a bounded domain and get a convergence bound O(lnT/
√
T ). Recently,

Tao et al. (2021) propose the very same algorithm as in Tao et al. (2018) and analyze it as a modified

Polyak’s Heavy-ball method (already pointed out by Defazio (2020)). They give an analysis in the

convex cases and extend it to an adaptive version, obtaining in both cases an optimal convergence of

the last iterate. However, they still assume the use of projections onto bounded domains.

Last iterate convergence rate O( 1√
T
) Ghadimi and Lan (2012) present the last iterate of AC-

SA (Nemirovski et al., 2009; Lan, 2012) for convex functions in the unconstrained setting, that in

the Euclidean case reduces to SGD with an increasing Nesterov momentum, showing that it can

achieve a convergence rate O( 1√
T
) if the number of iterations T is known in advance. Sebbouh

et al. (2021) analyze Stochastic Heavy Ball-Iterave Moving Average method (SHB-IMA), which

is equal to the Stochastic Heavy Ball method (SHB) with a specific choice of hyper-parameters.

They prove a convergence rate for the last iterate of of O( 1√
T
) if T is given in advance, and is

O( lnT√
T
) if T is unknown. Jain et al. (2019, 2021) conjecture that under assumption (H3’) (see

next Section) “for any-time algorithm (i.e., without apriori knowledge of T ) expected error rate of
DG lnT√

T
is information-theoretically optimal”, where D is the diameter of the bounded domain. This
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Table 1: Last iterate convergence of momentum methods in convex setting

Algorithm Assumption
Bounded

Domain

Requires

T
Rate Reference

Adaptive-HB (H3’) Yes No O( 1√
T
) Tao et al. (2021)

SHB-IMA (H1) + (H2) No
Yes O( 1√

T
)

Sebbouh et al. (2021)
No O( lnT√

T
)

AC-SA

(H2) + (H1)

or

(H2) + Lipschitz

No Yes O( 1√
T
) Ghadimi and Lan (2012)

FTRL-SGDM
(H3) No No O( 1√

T
) This paper, Corollary 1

(H1)+(H2)+(H3’) No No O( lnT
T

+ σ√
T
) This paper, Corollary 4

was already disproved by the results in Tao et al. (2021), but here we disprove it even in the more

challenging unconstrained setting.

We summarize the results on the last iterate convergence for convex optimization and their

assumptions in Table 1. The assumptions are defined in the next section.

3. Problem Set-up

Notation We denote vectors by bold letters, e.g. x ∈ R
d. All standard operations on the vectors,

e.g., xy,x/y,
√
x and x < y, are to be considered element-wise. We denote by E[·] the expectation

with respect to the underlying probability space and by Et[·] the conditional expectation with respect

to the past. Any norm without particular notation in this work is the ℓ2 norm.

Setting We consider the unconstrained optimization problem min
x∈Rd f(x), where f(x) : Rd →

R is a convex function and we denote its infimum by f⋆. We also assume to have access to a

first-order black-box optimization oracle that returns a stochastic subgradient in any point x ∈ R
d.

In particular, we assume that we receive a vector g(x, ξ) such that Eξ [g(x, ξ)] = ∇f(x) for any

x ∈ R
d. To make the notation concise, we let gt , g(xt, ξt) and Et[gt] = ∇f(xt), ∀t.

We will make different assumptions on the objective function f . Sometimes, we will assume that

• (H1) f is L-smooth, that is, f is continuously differentiable and its gradient is L-Lipschitz,

i.e., ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖.

We also use one or more of the following assumptions on the stochastic gradients gt.

• (H2) bounded variance: Et‖gt −∇f(xt)‖2 ≤ σ2.

• (H3) bounded in expectation: E‖gt‖2 ≤ G2.

• (H3’) ℓ2 bounded: ‖gt‖ ≤ G.

• (H3”) ℓ∞ bounded: ‖gt‖∞ ≤ G∞.

4. Lower bound for SGDM

First of all, as we discussed in the related work, most of the analyses of SGDM assume a vanishing

momentum or a constant one. However, is constant momentum the best setting for stochastic

optimization of convex functions, especially for the convergence of the last iterate? For this question,
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it is worth remembering that the use of a constant momentum term is mainly motivated by the

empirical evidence in the deep learning literature. However, deep learning objective functions are

non-convex and the convex setting might be different. Also, the deep learning literature offers no

theoretical explanations.

In this section, we show the surprising result that for SGD with any constant momentum, there

exists a function for which the lower bound of the last iterate is Ω
(

lnT/
√
T
)

. Our proof extends

the one in Harvey et al. (2019) to SGD with momentum.

We consider SGDM with constant momentum factor β in (1), where gt ∈ ∂f(xt) and a

polynomial stepsize ηt = c · t−α, 0 ≤ α ≤ 1
2 .

Let X denote the Euclidean ball with radius 2c
1−β

in R
T . For any fixed β and α and L > 0, we

introduce the following function. Define f : X → R and hi ∈ R
T for i ∈ [T + 1] by

f(x) = max
i∈[T+1]

hT
i x, hi,j =











aj , 1 ≤ j < i

−bj , i = j < T

0, i < j ≤ T

(2)

where bj =
Ljα

2Tα and aj =
L(1−β)

8(T−j+1) . We have that ∂f(xt) is the convex hull of hi : i ∈ I(x) where

I(x) = {i : hT
i x = f(x)}. Note that f is L-Lipschitz over RT since

‖hi‖2 ≤
T
∑

i=1

a2i + b2T ≤ L2(1− β)2

64

T
∑

i=1

1

i2
+
L2

4
≤ L2 .

Claim 1 For f defined in (2), it satisfies that infx∈RT f(x) = 0.

Proof First, since f(0) = 0, we have that infx∈RT f(x) ≤ 0.

We continue to prove this claim by contradiction. Assume that there exists x⋆ = [x⋆1, x
⋆
2, . . . , x

⋆
T ]

such that

f(x⋆) < 0 .

By the definition of f , it satisfies that

hT
i x

⋆ < 0, ∀i ∈ [T + 1] . (3)

In particular, hT
1 x

⋆ = −b1x⋆1 < 0. Since that b1 is positive, we know that x⋆1 > 0. Also, hT
2 x

⋆ =
a1x

⋆
1 − b2x

⋆
2 < 0. Due to the positiveness of a1, x

⋆
1, and b2, x⋆2 has to be positive. Similarly, we have

that for any x⋆j , j ∈ [T ], x⋆j > 0.

Then, we have

hT
T+1x

⋆ =
T
∑

j=1

ajx
⋆
j > 0 .

However, this is contradict with (3).

Thus, we conclude that infx∈RT f(x) = 0.
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Theorem 1 (Lower bound of SGDM) Fix a polynomial stepsize sequence ηt = c · t−α, where

0 ≤ α ≤ 1
2 , a momentum factors β ∈ [0, 1), a Lipschitz constant L > 0 and a number of iterations

T . Then, there exists a sequence zt generated by SGDM with stepsizes ηt and momentum factor β
on the function f in (2), where the T -th iterate satisfies

f(zT )− f⋆ ≥ L2(1− β)2c lnT

4Tα
.

We stress that lnT cannot be cancelled by any setting of β or c. Indeed, the above lower bound

can be instantiated by any β and any T . Hence, for a given β, there exists T large enough such that

lnT is constant-times bigger than 1
(1−β)2

.

When β = 1, the algorithm is basically staying at the initial point. We can choose an arbitrary

positive number C > 0 and let z1 = C, then

f(zT )− f⋆ ≥ C, C > 0 .

We will use the following lemma in the proof.

Proof Define a sequence zt for t ∈ [T + 1] as follows: z = 0, where s is a positive number decided

later, and

zt+1 = zt − (1− β)ηt

t
∑

i=1

βt−ihi . (4)

We will show that zt are exactly the updates of SGDM and f(zT+1) ≥ Ω
(

lnT
Tα

)

. We will use the

following two lemmas.

Lemma 2 Let bj = Ljα

2Tα , aj = L(1−β)
8(T−j+1) , and ηj = c · j−α. zt is defined as in (4). Then, for

1 ≤ t < j, zt,j = 0, and for t > j, zt,j ≥ L(1−β)c
4Tα .

Proof We first prove by induction that when 1 ≤ t ≤ j, zt,j = 0. First, z1 = 0 Also, suppose it

holds for t. Then, in the case of t+ 1, for any j ≥ t+ 1,

zt+1,j = zt,j − (1− β)ηt

t
∑

i=1

βt−ihi,j = 0− 0 = 0,

which implies t ≤ j, zt,j = 0 holds. Next, we claim that zt satisfies

zt,j ≥ zj,j + (1− β)bjηj − aj

t−1
∑

k=j+1

ηk, 1 ≤ j < t ≤ T . (5)

We prove (5) by induction. For any t, zt,t−1 satisfies (5) since

zt+1,t = zt,t − (1− β)ηt

t
∑

i=1

βt−ihi,t = −(1− β)ηtht,t = (1− β)ηtbt .

Then, suppose (5) holds for any j < t. We show that it holds for any j < t+ 1. We already proved

for j = t. For j < t,
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zt+1,j = zt,j − (1− β)ηt

t
∑

i=1

βt−ihi,j = zt,j − (1− β)ηt

t
∑

i=j

βt−ihi,j

= zt,j + (1− β)ηtβ
t−jbj − (1− β)ηt

t
∑

i=j+1

βt−ihi,j

≥ zt,j − (1− β)ηt

t
∑

i=j+1

βt−iaj

≥ (1− β)bjηj − aj

t−1
∑

k=j+1

ηk − (1− β)ajηt

t
∑

i=j+1

βt−i

≥ (1− β)bjηj − aj

t
∑

k=j+1

ηk, (6)

where in the second inequality we used the induction hypothesis.

Using that bj =
Ljα

2Tα , aj =
L(1−β)

8(T−j+1) and ηj =
c
jα

, we have

(6) =
L(1− β)c

2Tα
− L(1− β)c

8(T − j + 1)

t
∑

k=j+1

1

kα
. (7)

By Lemma 8 in the Appendix, we have that for 0 < α ≤ 1
2 ,

(7) ≥ L(1− β)c

2Tα
− L(1− β)c

4Tα
≥ L(1− β)c

4Tα
,

and for α = 0,

(7) ≥ L(1− β)c

2
− L(1− β)(t− j − 1)c

8(T − j + 1)
≥ L(1− β)c

4
.

Thus, we have zt,j ≥ L(1−β)c
4Tα ≥ L(1−β)c

4Tα .

Lemma 3 f(zt) = hT
t zt for any t ∈ [T + 1]. The subgradient oracle for f at zt returns ht.

Proof We claim that hT
t zt = hT

i zt for all i > t ≥ 1 and hT
t zt > hT

i zt for all 1 ≤ i < t.
When i > t ≥ 2, zt is supported on the first t− 1 coordinates, while ht and hi agree on the first

t− 1 coordinates.

In the case of 1 ≤ i < t, by the definition of zt and ht, we have

zT
t (ht − hi) =

t−1
∑

j=1

zt,j(ht,j − hi,j) =

t−1
∑

j=i

zt,j(ht,j − hi,j) = zt,i(ai + bi) +

t−1
∑

j=i+1

zt,jaj > 0,

where in the last inequality we used the fact that ai, bi and zt,i are at least non-negative.

Thus, we have proved f(zt) = hT
t zt by the definition. Moreover, I(zt) = {i : hT

i zt =
f(zt)} = {t, . . . , T + 1}. So the subgradient evaluated at zt is ht.
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Algorithm 1 FTRL-based SGDM

1: Input: A sequence α1, ..., αT , with α1 > 0. Non-increasing sequence γ1, . . . ,γT−1. m0 = 0.

x1 ∈ R
d.

2: for t = 1, . . . , T do

3: Get gt at xt such that Et [gt] = ∇f(xt)

4: βt =
∑t−1

i=1
αi∑t

i=1
αi

(Define
∑0

i=1 αi = 0)

5: mt = βtmt−1 + (1− βt)gt

6: ηt =
αt+1

∑t
i=1

αi
∑t+1

i=1
αi

γt

7: xt+1 =
∑t

i=1
αi

∑t+1

i=1
αi
xt +

αt+1∑t+1

i=1
αi
x1 − ηtmt

8: end for

Now, we first get a lower bound and an upper bound of zt using Lemma 2. Then, by Lemma 3,

we have shown that zt are exactly the updates of SGDM.

Thus, for β ∈ [0, 1), we have

f(zT+1) = hT
T+1zT+1 =

T
∑

j=1

hT+1,jzT+1,j

≥ L2(1− β)2c

4Tα

T
∑

j=1

1

T − j + 1
≥ L2(1− β)2c lnT

4Tα
.

5. FTRL-based SGDM

The lower bound for the last iterate in the previous section motivates us to study a different variant of

SGDM. In particular, we aim to find a way to remove the lnT term from the convergence rate.

Defazio (2020) points out that the stochastic primal averaging method (Tao et al., 2018) (which

is also an instance of Algorithm 1 in Cutkosky (2019) with OMD):

zt+1 = zt − γtgt, xt+1 = stxt + (1− st)zt

could be one-to-one mapped to the momentum method

mt+1 = βtmt + gt, xt+1 = xt − αtmt

by setting γt+1 =
γt−αt

βt+1
. While this is true, the convergence rate depends on the convergence rate of

OMD with time-varying stepsizes, that in turn requires to assume that ‖xt − x⋆‖2 ≤ D2. This is

possible only by using a projection onto a bounded domain in each step.

Thus, to go beyound bounded domains, we propose to study a new variant of SGDM which has

the following form (details in Algorithm 1),

mt+1 = βtmt + (1− βt)gt, xt+1 = stxt − αtmt .
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Note the presence of a shrinking factor st ≤ 1 in the iterates in each step. This variant comes

naturally when using the primal averaging scheme with FTRL rather than OMD. Hence, we just

denote it by FTRL-based SGDM. Now, this momentum variant inherits all the good properties of

FTRL. In particular, we no longer need the bounded domain assumption. Moreover, we will show

that it guarantees the optimal convergence O( 1√
T
) (Agarwal et al., 2012) of the last iterate for convex

and Lipschitz functions.

5.1. Convergence Rates for FTRL-based SGDM

We first present a very general theorem for FTRL-based SGDM.

Theorem 4 Under the assumption in Section 3, Algorithm 1 guarantees

E [f(xT )]− f⋆ ≤ 1
∑T

t=1 αt

E

[

∥

∥

∥

∥

x1 − x⋆

√
γT−1

∥

∥

∥

∥

2

+
T
∑

t=1

〈γt−1, α
2
tg

2
t 〉
]

.

The above theorem is very general and it gives rise to a number of different variations of the

FTRL-based SGDM. In particular, we can instantiate it with the following choices.

First, we consider the most used polynomial stepsize c√
t

for convex and Lipschitz function, and

the constant stepsize c√
T

if T is given in advance.

Corollary 1 Assume (H3) and set αt = 1 for all t. Algorithm 1 with either γt−1 = c

G
√
t
· 1 or

γt−1 =
c

G
√
T
· 1 guarantees

E [f(xT )]− f⋆ ≤ ‖x1 − x⋆‖2G
c
√
T

+
2cG√
T
.

The above corollary tells that both of these two stepsizes give the optimal bound O( 1√
T
) for

the last iterate. Next, we will show that if we use an adaptive2 stepsize, Algorithm 1 gives a data-

dependent convergence rate for the last iterate. We first consider a global version of the AdaGrad

stepsize as in Streeter and McMahan (2010); Li and Orabona (2019); Ward et al. (2019).

Corollary 2 Assume (H3’) and take γt =
α·1√

ǫ+
∑t

i=1
α2
i ‖gi‖2

, ǫ > 0, 1 ≤ t ≤ T and αt = 1. Then,

Algorithm 1 guarantees

E [f(xT )]− f⋆ ≤ 1

T





(‖x1 − x⋆‖2
α

+ 2α

)

E

√

√

√

√

T
∑

t=1

‖gt‖2 + ǫ+
αG2

√
ǫ



 .

We also state a result for the coordinate-wise AdaGrad stepsizes (McMahan and Streeter, 2010;

Duchi et al., 2010).

Corollary 3 Assume (H3”) and set γt = α√
ǫ+

∑t
i=1

α2
i g

2
i

, ǫ > 0, 1 ≤ t ≤ T and αt = 1. Then,

Algorithm 1 guarantees

E [f(xT )]− f⋆ ≤ 1

T





(‖x1 − x⋆‖2
α

+ 2α

) d
∑

j=1

E

√

√

√

√

T
∑

t=1

g2
t,j + ǫ+

αdG2
∞√
ǫ



 .

2. Even if widely used in the literature, it is a misnomer to call these stepsize “adaptive”: an algorithm can be adaptive to

some unknown quantities (if proved so), not the stepsizes.
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The above two corollaries show that the convergence bound are adaptive to the stochastic gradients.

In words, in the worst case (i.e.,
∑T

t=1 ‖gt‖2 = O(T ) and
∑T−1

t=1 g2
t,j = O(T )), the convergence

rate is O( 1√
T
). However, when the stochastic gradients are small or sparse, the rate could be much

faster than O( 1√
T
). Moreover, the above results give very simple ways to obtain optimal convergence

for the last iterate of first-order stochastic methods, that was still unclear if it could be obtained as

discussed in Jain et al. (2019, 2021).

Also, we now show that if in addition f is smooth, the last iterate of FTRL-based momentum

with the global adaptive stepsize of Corollary 2 gives adaptive rates of convergence that interpolate

between O( 1√
T
) and O( lnT

T
).

Corollary 4 Assume (H1). Then, under the same assumption and parameter setting of Corollary 2,

Algorithm 1 guarantees

E [f(xT )]− f⋆ ≤ C

T

(
√

ǫ+ 4L2C2 ln2 T + 4LC
√
ǫ lnT +

2αG2

√
ǫ

+
αG2

√
ǫ

)

+

√
2Cσ√
T

.

where C ,

(

‖x1−x
⋆‖2

α
+ 2α

)

.

Observe that when σ = 0, namely when there is no noise on the gradients, the rate of O( lnT
T

) is

obtained. As far as we know, the above theorems are the first convergence guarantees for the last

iterate of momentum algorithms with adaptive learning rates in unconstrained convex optimization.

5.2. Convergence Rate in Interpolation Regime

Now we assume that F (x) = Eξ[f(x, ξ)] and that the stochastic gradient is calculated drawing one

function in each time step and calculating its gradient: gt = ∇f(xt, ξt). In this scenario, it makes

sense to consider the interpolation condition (Needell et al., 2015; Ma et al., 2018)

x⋆ ∈ argmin
x

F (x) ⇒ x⋆ ∈ argmin
x

f(x, ξ), ∀ξ . (8)

This condition says that the problem is “easy”, in the sense that all the functions in the expectation

share the same minimizer. This case morally corresponds to the case in which there is no noise on the

stochastic gradients. However, this condition seems weaker because it says that only in the optimum

the gradient is exact and noisy everywhere else. We will also assume that each function f(x, ξ) is

L-smooth in the first argument.

Theorem 5 Assume (H1) (H3’). Then, under the interpolation assumption in (8), Algorithm 1 with

γt =
α·1√

ǫ+
∑t

i=1
α2
i ‖gi‖2

, ǫ > 0 guarantees

E [F (xT )]− F (x⋆) ≤ C

T

(
√

ǫ+ 4L2C2 ln2 T + 4LC
√
ǫ lnT +

2αG2

√
ǫ

+
αG2

√
ǫ

)

.

where C ,

(

‖x1−x
⋆‖2

α
+ 2α

)

.

To the best of our knowledge, this is the first convergence rate for the last iterate of momentum

methods in the interpolation setting.
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Algorithm 2 Anytime Online-to-Batch (Cutkosky, 2019)

1: Input: Online learning algorithm A with convex domain D, α1, ..., αT , with α1 > 0.

2: Get Initial point w1 from A
3: for t = 1, . . . , T do

4: xt =
∑t

i=1
αiwi∑t

i=1
αi

5: Play xt, receive subgradient gt

6: Send ℓt(x) = 〈αtgt,x〉 to A as the tth loss

7: Get wt+1 from A
8: end for

Algorithm 3 Anytime Online-to-Batch with FTRL

1: Input: α1, ..., αT , with αt > 0. 0 < γt+1 ≤ γt.
2: Initialize w1

3: for t = 1, . . . , T do

4: xt =
∑t

i=1
αiwi∑t

i=1
αi

5: Play xt, receive subgradient gt

6: wt+1 = w1 − γt

∑t
i=1 αigi

7: end for

5.3. Proofs

Before presenting the proofs of our convergence rates, we revisit the Online-to-Batch algorithm

(Algorithm 2) by Cutkosky (2019), which introduce a modification to any online learning algorithm

to obtain a guarantee on the last iterate in the stochastic convex setting.

Lemma 6 (Cutkosky, 2019, Theorem 1) Assume (H2). Then, for all x⋆ ∈ D, Algorithm 2 guarantees

E[f(xT )]− f⋆ ≤ E

[

RT (x
⋆)

∑T
t=1 αt

]

.

Set ψt(x) = ‖ x1−x√
γt−1

‖2, 1 ≤ t ≤ T as the regularizers of FTRL, where γt+1 ≤ γt and γ0 > 0.

Then, we write FTRL with loss ℓt(w) = 〈αtgt,w〉 as

wt ∈ argmin
w∈Rd

ψt(w) +

t−1
∑

i=1

〈αigi,w〉 = w1 − γt−1

t−1
∑

i=1

αigi .

We then plug FTRL into Algorithm 2 and it gives Algorithm 3. Hence, using the well-known

regret upper bound of FTRL (Lemma 9 in the Appendix B), we get the following Lemma.

Lemma 7 Under the same setting with Lemma 6, Algorithm 3 guarantees

E [f(xT )]− f⋆ ≤ 1
∑T

t=1 αt

E

[

∥

∥

∥

∥

u− x1√
γT−1

∥

∥

∥

∥

2

+
T
∑

t=1

〈γt−1, α
2
tg

2
t 〉
]

.

Now we prove the connection between the FTRL-based SGDM and Algorithm 3.
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Proof [Proof of Theorem 4] We prove that the updates of xt in Algorithm 1 can be one-to-one

mapped to the updates of xt Algorithm 3 when w1 = x1.

The update of xt in Algorithm 3 can be written as following:

xt+1 =

∑t
i=1 αi

∑t+1
i=1 αi

xt +
αt+1
∑t+1

i=1 αi

wt+1 =

∑t
i=1 αi

∑t+1
i=1 αi

xt +
αt+1
∑t+1

i=1 αi

(

w1 − γt

t
∑

i=1

αigi

)

.

It is enough to prove that for any t, ηtmt =
αt+1∑t+1

i=1
αi

(

γt

∑t
i=1 αigi

)

. We claim it is true and prove

it by induction.

When t = 1, it holds that η1m1 =
α2α1

α1+α2
γ1g1. Suppose it holds for t = k − 1, k ≥ 2. Then in

the case of t = k, we have

ηkmk

=

(

∑k−1
i=1 αi

∑k
i=1 αi

mk−1 +
αk

∑k
i=1 αi

gk

)

· αk+1
∑k

i=1 αi
∑k+1

i=1 αi

γk

=

(

∑k−1
i=1 αi

∑k
i=1 αi

(

1

ηk−1

αk
∑k

i=1 αi

γk−1

k−1
∑

i=1

αigi

)

+
αk

∑k
i=1 αi

gk

)

· αk+1
∑k

i=1 αi
∑k+1

i=1 αi

γk

=
αk+1

∑k
i=1 αi

∑k+1
i=1 αi

γk ·
(

∑k−1
i=1 αi

∑k
i=1 αi

(

∑k−1
i=1 αigi
∑k−1

i=1 αi

)

+
αk

∑k
i=1 αi

gk

)

=
αk+1
∑k+1

i=1 αi

γk

k
∑

i=1

αigi .

where in the first equation we used the definitions of ηk and mk and in the second equality we used

the induction step. So we proved the above claim. Thus, we can directly use Lemma 7.

The proof of Corollary 1 is immediate and we omit it, while the proofs of Corollaries 2-4 are

standard and they are presented in the Appendix C. Instead, here we show the proof of Theorem 5.

Proof [Proof of Theorem 5] By Theorem 4, we have

E [F (xT )]− F (x⋆) ≤ 2

T

(‖x1 − x⋆‖2
α

+ 2α

)

√

√

√

√

E

T
∑

t=1

‖∇f(xt, ξt)‖2 + ǫ+
αG2

√
ǫ
. (9)

Under the interpolation condition and L-smoothness of the functions f , it satisfies that

E

T
∑

t=1

‖∇f(xt, ξt)‖2 ≤ 2LE

[

T
∑

t=1

(f(xt, ξt)− f(x⋆, ξt))

]

≤ 2L
T
∑

t=1

E [F (xt)]− F (x⋆) .

Use (9) on each t to get

T
∑

t=1

E [F (xt)]− F (x⋆) ≤
T
∑

t=1

1

t





(‖x1 − x⋆‖2
α

+ 2α

)

√

√

√

√

E

t
∑

i=1

‖∇f(xi, ξi)‖2 + ǫ+
αG2

√
ǫ





≤
(‖x1 − x⋆‖2

α
+ 2α

)

·





√

√

√

√

E

T
∑

t=1

‖∇f(xt, ξt)‖2 + ǫ+
αG2

√
ǫ



 lnT .
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Synthetic Data For the first experiment, we generate synthetic data and test the algorithms follow-

ing the protocol in Vaswani et al. (2019). We generate a synthetic binary classification dataset with

n = 8000 and the dimension d = 100. We make the data linearly separable with a margin, in which

case the interpolation condition is satisfied. We train linear classifiers with the squared hinge loss:

f(w) =
∑n

i=1

(

max
(

0, 1− yiw
Txi

))2
. Note that the loss function is smooth and f(w⋆) = 0. In

this case, the optimal convergence rate is at least as fast as 1/T .

We plot the suboptimality gap versus the number of epochs with different margin values in

Figure 1, in loglog plots. Also, we add a line to fit the curves, where the slopes represent the power

of t. From Figure 1, we observe that two adaptive algorithms AdaGrad and AdaFTRL-M bring

faster convergence and AdaFTRL-M has the biggest slope in all the cases. Also, the performance of

FTRL-M is on par with SGDM and SGDM-AVG.

Real Data We also test the algorithms on real datasets. We use classification datasets from the

LIBSVM website (Chang and Lin, 2011); real-sim, w8a, and phishing. The details of the datasets

are in Appendix D.

We train linear classifiers with the hinge loss and no regularization: f(w) =
∑n

i=1(max(0, 1−
yiw

Txi)). The stochastic gradients are obtained evaluating the subgradient on one example at the

time. We repeat the experiments for 5 times for each algorithm and report the average of 5 repetitions.

We show the objective value versus the number of epochs in Figure 2.

The results show that the algorithms with non-adaptive stepsizes tend to perform worse than the

ones with adaptive stepsizes. Moreover, the performance of AdaFTRL-M is close to the last iterate

of AdaGrad and sometimes outperforms all the other algorithms, especially in the last iterations.

7. Conclusion

We have presented an analysis of the convergence of the last iterate of SGDM in the convex setting.

We prove for the first time through a lower bound the suboptimal convergence rate for the last iterate

of SGDM with constant momentum after T iterations. Moreover, we study a class of FTRL-based

SGDM algorithms with increasing momentum and shrinking updates, of which the last iterate has

optimal convergence rate without projections onto bounded domain nor knowledge of T . Furthermore,

we present empirical results showing that FTRL-based SGDM with adaptive stepsize matches or

outperforms the other similar algorithms in the last iterations.

In the future, we plan on studying the convergence in high probability of FTRL-based SGDM,

similarly to the analysis in Li and Orabona (2020).
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Appendix A. Lemma for the Proof of Theorem 1

Lemma 8 For any 1 ≤ j ≤ t ≤ T and 0 < α ≤ 1
2 , we have 1

T−j+1

∑t
k=j+1

1
jα

≤ 2
Tα .

Proof First, we observe that

t
∑

k=j+1

1

kα
≤
∫ t

j

1

xα
dx =

t1−α − j1−α

1− α
=

1

1− α

t2−2α − j2−2α

t1−α + j1−α

≤ 1

1− α

(2− 2α)t1−2α(t− j)

t1−α + j1−α
≤ 2(t− j)

tα
,

where in the second inequality we used the convexity of f(x) = x2−2α, 0 < α ≤ 1
2 .

Then, we claim 1
T−j+1

t−j
tα

≤ 1
Tα .

Let g(x) = x−j
xα . The derivative g′(x) =

1−α+ j

αx

xα is positive for all x > 0 and j ≥ 0. So it

satisfies that t−j
tα

≤ T−j
Tα , which implies the claim.

Appendix B. Lemma for the Proof of Theorem 4

Algorithm 4 Follow-the-Regularized-Leader on Linearized Losses

1: Input: Regularizers ψ1, . . . , ψT : Rd → (−∞,∞].
2: for t = 1, . . . , T do

3: wt ∈ argmin
w∈Rd ψt(w) +

∑t−1
i=1〈gi,w〉

4: Receive ℓt : R
d → (−∞,∞] and pay ℓt(wt)

5: Set gt ∈ ∂ℓt(wt)
6: end for

The following lemma is a well-known result for FTRL (see, e.g., Orabona, 2019).

Lemma 9 Let ℓt a sequence of convex loss functions. Set the sequence of regularizers as ψt(x) =
∥

∥

∥

x1−u√
γt−1

∥

∥

∥

2
, where γt+1 ≤ γt, t = 1, . . . , T . Then, FTRL (Algorithm 4) guarantees

T
∑

t=1

ℓt(xt)− ℓt(u) ≤
∥

∥

∥

∥

u− x1√
γT−1

∥

∥

∥

∥

2

+
1

2

T
∑

t=1

〈γt−1, g
2
t 〉 .
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Appendix C. Proofs of Corollaries 2-4

First, we state some technical lemmas.

Lemma 10 (Li and Orabona, 2019, Lemma 4) Let f : Rd → R be M -smooth and bounded from

below, then for all x ∈ R
d

‖∇f(x)‖2 ≤ 2M(f(x)− inf
y∈R

f(y)) .

Lemma 11 (Gaillard et al., 2014, Lemma 14) Let a0 > 0 and a1, . . . , am ∈ [0, A] be real numbers

and let f : (0,+∞) → [0,+∞) nonincreasing function. Then

m
∑

i=1

aif(a0 + · · ·+ ai−1) ≤
∫

∑m
i=0

ai

a0

f(u)du+Af(a0) .

Proof Denote by st =
∑t

i=0 ai.

m
∑

i=1

aif(si−1) =
m
∑

i=1

aif(si) +
m
∑

i=1

ai(f(si−1)− f(si))

≤
m
∑

i=1

aif(si) +A
m
∑

i=1

(f(si−1)− f(si))

≤
m
∑

i=1

∫ si

si−1

f(x)dx+A

m
∑

i=1

(f(si−1)− f(si))

≤
∫

∑m
i=0

ai

a0

f(u)du+Af(a0) ,

where the first inequality holds because f(xi−1) ≥ f(si) and ai ≤ A, while the second inequality

uses the fact that f is nonincreasing together with si − si−1 = ai.

We can now present the proofs of the Corollaries 2-4.

Proof [Proof of Corollary 2 and Corollary 3] By Lemma 11, for adaptive stepsize γt =
α·1√

ǫ+
∑t

i=1
α2
i ‖gi‖2

,

we have

T
∑

t=1

γt−1‖gt‖2 =
T
∑

t=1

α‖gt‖2
√

ǫ+
∑t−1

i=1 ‖gi‖2
≤ 2α

√

√

√

√

T
∑

t=1

‖gt‖2 +
αG2

√
ǫ
.

Similarly for γt =
α√

ǫ+
∑t

i=1
α2
i g

2
i

, we have

T
∑

t=1

〈γt−1, g
2
t 〉 =

d
∑

j=1

T
∑

t=1

αg2
t,j

√

ǫ+
∑t−1

i=1 g
2
i,j

≤ 2α

d
∑

j=1

√

√

√

√

T
∑

t=1

g2
t,j +

αdG2
∞√
ǫ

.
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Proof [Proof of Corollary 4] By Corollary 2, we have

E [f(xT )]− f⋆ ≤ 1

T





(‖x1 − x⋆‖2
α

+ 2α

)

√

√

√

√ǫ+ E

T
∑

t=1

‖gt‖2 +
αG2

√
ǫ



 . (10)

From the unbiasedness of the gradients, we have

E

T
∑

t=1

‖gt‖2 ≤ E

T
∑

t=1

‖∇f(xt)‖2 + Tσ2,

and

E

T
∑

t=1

‖∇f(xt)‖2 ≤ 2L
T
∑

t=1

E [f(xt)]− f⋆

≤ 2L

(‖x1 − x⋆‖2
α

+ 2α

) T
∑

t=1

√

ǫ+ E
∑t

i=1 ‖gi‖2

t

≤ 2L

(‖x1 − x⋆‖2
α

+ 2α

)

·





√

√

√

√

E

T
∑

t=1

‖gt‖2 + ǫ+
αG2

√
ǫ



 lnT,

where in the second inequality we used Lemma 10 and Holder’s and Jensen’s inequalities in the third

inequality.

Solve for E
∑T

t=1 ‖gt‖2 to have

E

T
∑

t=1

‖gt‖2

≤ 4L2

(‖x1 − x⋆‖2
α

+ 2α

)2

ln2 T + 4L
√
ǫ

(‖x1 − x⋆‖2
α

+ 2α

)

lnT +
2αG2

√
ǫ

+ 2Tσ2 .

Putting it back to (10), we get the stated bound.

Appendix D. Details of Experiments

Table 2: Real datasets
Name # of Samples # of Features

real-sim 72,309 20,958

w8a 49,749 300

phishing 11,055 68
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