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Abstract

For decades, uncertainty quantification techniques based on the spectral approach have been demonstrated
to be computationally more efficient than the Monte Carlo method for a wide variety of problems, partic-
ularly when the dimensionality of the probability space is relatively low. The time-dependent generalized
polynomial chaos (TD-gPC) is one such technique that uses an evolving orthogonal basis to better repre-
sent the stochastic part of the solution space in time. In this paper, we present a new numerical method
that uses the concept of enriched stochastic flow maps to track the evolution of the stochastic part of the
solution space in time. The computational cost of this proposed flow-driven stochastic chaos (FSC) method
is an order of magnitude lower than TD-gPC for comparable solution accuracy. This gain in computational
cost is realized because, unlike most existing methods, the number of basis vectors required to track the
stochastic part of the solution space, and consequently the computational cost associated with the solution
of the resulting system of equations, does not depend upon the dimensionality of the probability space. Four
representative numerical examples are presented to demonstrate the performance of the FSC method for
long-time integration of second-order stochastic dynamical systems in the context of stochastic dynamics of
structures.

Keywords: uncertainty quantification; long-time integration; stochastic flow map; stochastic dynamics of
structures; flow-driven spectral chaos (FSC); TD-gPC.

Highlights

• A novel and efficient numerical method that uses an enriched stochastic flow map to track the evolution
of the solution space is proposed for long-time integration of stochastic dynamics of structures.

• For the same level of accuracy, the computational cost associated with the proposed FSC method is an
order of magnitude lower than other time-dependent, spectral-based methods in the current literature.

• It is partially insensitive to the curse of dimensionality compared to other spectral-based methods such
as gPC and TD-gPC.

• It has the potential to be used in the context of large-scale structural engineering problems to quantify
uncertainties of long-time response with high fidelity.

• Exact response expressions for the mean and variance of a single-degree-of-freedom system under free
vibration and uniform stochastic stiffness are also provided.
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1. Introduction

In the past few decades, the area of uncertainty quantification has received increasing attention, primarily
in the fields of physics and engineering. This is not surprising since any mathematical description of a real-life
physical system is always subject to the effects of input randomness. In structural engineering, for example,
the randomness of a system may arise from different sources, such as variability of material properties,
imperfections in geometry, loading scenarios, boundary conditions, etc. Though these physical quantities
may be random, in most cases their stochastic characteristics can be identified and modeled mathematically
using one or more of the numerous distributions available in statistics.

Due to the inherent complexity of real-life systems, closed-form solutions are not always possible. As an
alternative, one uses accurate numerical methods that allow one to propagate and quantify the effects of input
uncertainties in the system response efficiently. Historically, the polynomial chaos (PC) method developed by
Wiener [1] and extended by Ghanem and Spanos [2] in the context of stochastic finite elements, has been used
for uncertainty quantification. Xiu and Karniadakis [3] further developed the generalized-PC (gPC) method
in which time-independent polynomials are used to decompose a stochastic process into deterministic and
non-deterministic parts using the orthogonality property of the basis in the random function space (RFS).
The benefit of using such orthogonal polynomials in the RFS is that when the underlying process (i.e. the
solution of the ODE) is represented with them, the method leads to exponential convergence to the solution
(provided the stochastic part of the solution space is not discretized).

The gPC method has undergone several modifications and extensions to improve its computational
efficiency, its effectiveness for long-time integration, and its ability to handle stochastic discontinuities. The
multi-element gPC and related methods, developed by Karniadakis and others [4–13], adaptively decompose
the probability space into elements until a pre-specified threshold for the relative error in variance is reached.
Then a stochastic spectral expansion on each element is used to advance the state of the system one-time step
forward, and this process is repeated every time the threshold is exceeded during the simulation. Another
approach is the dynamically orthogonal PC (DO-PC) method [14–18] where the time rate of change of the
spatio-temporal function space is ensured to be orthogonal to itself. This condition, called the dynamically
orthogonal (DO) condition, is enforced at every time step as the simulation proceeds. The DO-PC scheme
is essentially a generalization of the POD (Proper Orthogonal Decomposition) method [19, 20] and the gPC
method in the framework of continuous stochastic dynamical systems. An error analysis for the DO-PC
method can be found in [21].

For long-time dynamical simulations, when the stochasticity of the system has developed significantly,
the gPC method fails to capture the probability moments accurately because the probability distribution
of the solution changes significantly with time. The time-dependent gPC (TD-gPC) method was proposed
by Gerritsma et al. [22] to allow the basis to evolve in time so as to better represent the transient nature of
the probability distribution of the solution during the simulation. Heuveline and Schick [23] modified the
TD-gPC method (mTD-gPC) to account for systems governed by second-order ODEs and also improved
the accuracy of the method. Generally speaking, the mTD-gPC method relies on spanning the stochastic
part of the solution space, at certain time steps (aka reset times), by taking a full tensor product between
an evolving RFS (that depends upon the evolution of the state variables of the system) and the original
RFS. However, since a full tensor product is required to be conducted at the reset times, the method suffers
from the curse of dimensionality. A hybrid generalized polynomial chaos was also developed in [23] to help
alleviate the curse of dimensionality of mTD-gPC. This method, however, requires the use of an (h, p)-
discretization for the stochastic part of the solution space in contrast to mTD-gPC which solely requires the
use of a p-discretization.

More recently, a generalized PC method based on flow map composition was proposed by Luchtenburg
et al. [24] to address the long-time uncertainty propagation in dynamical systems more effectively. The
method fundamentally uses short-time flow maps based on spectral polynomial bases to account for the
stretching and folding effect caused by the evolution of the system’s state over time. As with mTD-gPC,
this method suffers from the curse of dimensionality, because a tensor product is needed to construct the
spectral polynomial bases during the simulation. Ozen and Bal [25] developed the dynamical gPC (DgPC)
method to address the long-time behavior of stochastic dynamical systems via a generalization of the PCE
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(Polynomial Chaos Expansion) framework. They demonstrated that results from DgPC match well with
those obtained from other standard methods such as Monte Carlo.

In this paper, a flow-driven spectral chaos (FSC) method is proposed which tracks the evolution of the
random basis via an enriched stochastic flow map of the state of the system.2 The enriched flow map consists
of the time derivatives of the solution up to a specified order. Unlike any gPC-based method, the number
of basis vectors needed in FSC to represent the stochastic part of the solution space does not grow with the
dimensionality of the probability space. However, as with any gPC-based method, the FSC method requires
the computation of inner products using quadrature points distributed over the entire random domain, and
the number of quadrature points can grow significantly with the dimensionality of the probability space.
Nevertheless, FSC presents a significant advantage over gPC-based methods as its computational cost, for
comparable accuracy, is an order of magnitude lower compared to existing TD-gPC methods. Conversely,
for comparable computational cost, FSC is able to achieve an order of magnitude of better accuracy than
TD-gPC.

This paper is organized as follows. Section 2 introduces the notation and definitions used in this paper
and Section 3 presents the precise problem statement. The spectral approach for solving this problem is
presented in Section 4 and Section 5 describes the proposed FSC method in detail. Three numerical examples
are presented in Section 6 to demonstrate and compare the accuracy of FSC to other existing methods, such
as mTD-gPC and Monte Carlo. The FSC method is then applied to quantify uncertainties in the structural
dynamics of a 3-story building subject to an earthquake excitation in Section 7. In Appendix A, we define the
random bases that we use to span the random function space of the problem in hand. Finally, in Appendix
B, we provide expressions for the mean and variance of the exact response of a single-degree-of-freedom
system under free vibration and uniformly-distributed stochastic stiffness, followed by a brief outline of the
standard Monte Carlo method in Appendix C.

2. Setting and notation

Definition 1 (Temporal space). Let (T,O) be a topological space, where T = [0, T ] is a closed interval
representing the temporal domain of the system, T is a positive real number symbolizing the duration of
the simulation, and O = OR ∩ T is the topology on T with OR denoting the standard topology over R. In
this paper, (T,O) is called the temporal space of the system.

Definition 2 (Random space). Let (Ω,Ω, λ) be a (complete) probability space, where Ω is the sample
space, Ω ⊂ 2Ω is the σ-algebra on Ω (aka the collection of events in probability theory), and λ : Ω→ [0, 1] is
the probability measure on Ω. Let ξ : (Ω,Ω) → (Rd,BRd) be a measurable function (aka random variable)
given by ξ = ξ(ω), with BRd denoting the Borel σ-algebra over Rd. In this work, the measure space (Ξ,Ξ, µ)
is called random space, where Ξ = ξ(Ω) ⊂ Rd is a set representing the random domain of the system, d
denotes the dimensionality of the random space, Ξ = BRd ∩ Ξ is the σ-algebra on Ξ, and µ : Ξ → [0, 1] is
the probability measure on Ξ defined by the pushforward of λ by ξ, that is µ = ξ∗(λ).

Note that more structure can be added to these spaces whenever they are needed in the analysis. However,
in order to keep the above definitions as elementary as possible, we singled out those mathematical objects
that did not play a crucial role in the development of this work, such as the definition of a metric, a norm
or an inner product for the underlying set.

Definition 3 (Temporal function space). Let T(n) = Cn(T,O;R) be a continuous n-differentiable function
space. This temporal function space is the space of all functions f : (T,O)→ (R,OR) that have continuous
first n derivatives on (T,O).

2A generalized version of this FSC method can already be found in [26]. In that work, the FSC scheme presented in Section
5.4 is simply denoted as FSC-1.
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Definition 4 (Random function space). Let Z = (L2(Ξ,Ξ, µ;R), 〈 · , · 〉) be a Lebesgue square-integrable
space equipped with its standard inner product

〈 · , · 〉 : L2(Ξ,Ξ, µ;R)× L2(Ξ,Ξ, µ;R)→ R :⇔ 〈f, g〉 =

∫
fg dµ.

This random function space (aka RFS in this paper) is the space of all measurable functions f : (Ξ,Ξ) →
(R,BR) that are square-integrable with respect to µ. (By f we actually mean an equivalence class of square-
integrable functions that are equal µ-almost everywhere; usually denoted by [f ] in the literature.) This
inner product space is known to form a Hilbert space because it is complete under the metric induced by
the inner product. Furthermore, we define {Ψj : (Ξ,Ξ) → (R,BR)}∞j=0 to be a complete orthogonal basis
in Z, such that Ψ0(ξ) = 1 for all ξ ∈ Ξ. It is worth noting that such a basis does not necessarily need to
consist of d-variate polynomials as in Refs. [3, 27], but may also consist of more general functions (including
non-elementary functions such as wavelets).

Therefore, any function f ∈ Z can be represented in a Fourier series of the form:

f =
∞∑
j=0

f jΨj ,

where f j denotes the j-th coefficient of the series with the superscript not symbolizing an exponentiation.
Moreover, the dual space of Z, which we denote by Z′, is simply the space spanned by the continuous

linear functionals {Ψi : Z→ R}∞i=0 defined by:

Ψi[f ] := [Ψi, f ] =
〈Ψi, f〉
〈Ψi,Ψi〉

≡ f i,

where [ · , · ] : Z′×Z→ R is the natural pairing map between Z and Z′. This continuous dual space is also
known to form a Hilbert space, thanks to the Riesz representation theorem [28].

We recall that the orthogonality property of the basis {Ψj ∈ Z}∞j=0 implies that:

〈Ψi,Ψj〉 :=

∫
ΨiΨj dµ = 〈Ψi,Ψi〉 δij ,

where δij is the Kronecker delta.

Definition 5 (Solution space and root space). Let U= T(2)⊗Z and V= T(0)⊗Z be, respectively, the
solution space and the root space of the system.

In what follows, we assume that the components of the d-tuple random variable ξ = (ξ1, . . . , ξd) are
mutually independent, and as sketched in Fig. 1 that the random domain Ξ is a hypercube of d dimensions
obtained by performing a d-fold Cartesian product of intervals Ξ̄i := ξi(Ω). It is for this reason that we
define the probability measure in Z hereafter as

µ =
d⊗
i=1

µi, or equivalently, dµ ≡ µ(dξ) =
d∏
i=1

µi(dξi) ≡ dµ1 · · · dµd,

where µi(dξi) =: dµi represents the probability measure of dξi in the vicinity of ξi ∈ Ξ̄i.

3. Problem statement

In this work, we are interested in solving the non-autonomous, second-order ODE described below.
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Figure 1: Relationship between probability space and random space for d = 2

Find the real-valued stochastic process u : T× Ξ→ R in U, such that (µ-a.e.):

mü+ F [u, u̇] = p on T× Ξ (1a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ, (1b)

where m,F [u, u̇], p : T × Ξ → R are elements of V such that m(t, ξ) 6= 0 for all (t, ξ) ∈ T × Ξ, and
u, v : Ξ→ R are elements of Z. Note that in (1), u̇ := ∂tu and ü := ∂2

t u denote, respectively, the first and
second partial derivatives of u with respect to time. Thus, u̇ : T × Ξ → R is an element of T(1) ⊗Z, and
ü : T× Ξ→ R is an element of T(0)⊗Z≡ V (the root space).

When (1) is specialized to study the (nonlinear) behavior of a single-degree-of-freedom system, mü
represents the inertial force of the system with m : T × Ξ → R+ symbolizing the mass of the system,
F [u, u̇] is the damping and resisting force of the system, and p is the external force acting on the system.
Furthermore, in this case u, u̇ and ü denote the displacement, the velocity and the acceleration response of
the system, respectively.

When (1) is written in modeling notation, it becomes

y = M[u][x] subject to initial condition I[u], (1*)

where M[u] : V3 → Vs represents the mathematical model of the system defined by (1a), x = (x1, x2, x3) :
T× Ξ→ R3 is the 3-tuple input of M[u], and y = (y1, . . . , ys) : T× Ξ→ Rs is the s-tuple output of M[u]
(aka the s-tuple observable in physics or the s-tuple response in engineering). In addition, I[u] represents
the initial condition for M[u] which is given by (1b). Thus, by comparing (1) to (1*), the components of x
can be identified in the following way: x1 = m, x2 = F [u, u̇] and x3 = p. The objective of this mathematical
model is to propagate and quantify the effects of input uncertainty x on system’s output y. Therefore,
besides seeking u in U as mentioned earlier, it is also important to compute the probability moments of y
as time progresses.

4. Solution based on the spectral approach

4.1. Discretization of random function space

Since by hypothesis u is an element of U, then it can be represented by the Fourier series

u(t, ξ) =
∞∑
j=0

uj(t) Ψj(ξ), (2)
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where uj is a temporal function in T(2) denoting the j-th random mode of u. This series, usually referred
to as stochastic spectral expansion in the literature [29, 30], has the remarkable property that when u is
sufficiently smooth in the solution space (and, of course, provided that the basis is orthogonal with respect
to the probability measure defined in Z), it leads to exponential convergence to the solution [3, 31].

For the purpose of this manuscript, let us simply consider a p-discretization of the random function space
as follows. Let Z[P ] = span{Ψj}Pj=0 be a finite subspace of Z with P + 1 ∈ N1 denoting the dimensionality

of the subspace. If we let u[P ](t, · ) be an element of Z[P ], then it is evident from (2) that3:

u(t, ξ) ≈ u[P ](t, ξ) =
P∑
j=0

uj(t) Ψj(ξ) ≡ uj(t) Ψj(ξ), (3)

where for notational convenience we have omitted the summation sign in the last equality (aka Einstein
summation convention). Therefore, unless otherwise noted hereinafter, a summation sign will always be
implied over the repeated index j ∈ {0, 1, . . . , P}.

Substituting (3) into (1) gives

müjΨj + F [ujΨj , u̇
jΨj ] = p on T× Ξ (4a){

uj(0) Ψj = u, u̇j(0) Ψj = v
}

on {0} × Ξ. (4b)

Projecting (4) onto Z[P ] yields a system of P + 1 ordinary differential equations of second order in the
variable t, where the unknowns are the random modes uj = uj(t) and u̇j = u̇j(t):

〈Ψi,mΨj〉 üj + 〈Ψi,F [ujΨj , u̇
jΨj ]〉 = 〈Ψi, p〉 on T (5a){

ui(0) = 〈Ψi, u〉/〈Ψi,Ψi〉, u̇i(0) = 〈Ψi, v〉/〈Ψi,Ψi〉
}

on {0} (5b)

with i, j ∈ {0, 1, . . . , P}. Note that in order to get (5), we simply applied on both sides of each equation
the linear functionals {Ψi ∈ Z′}Pi=0 one by one, and then we simplified the resulting expressions. It is also
worth noting that because the randomness of the stochastic system has effectively been absorbed by the
application of the aforementioned functionals, the system of equations that we are dealing with at this point
is no longer ‘stochastic’ but ‘deterministic’. In other words, the system now depends merely on the time
variable t rather than on the tuple (t, ξ).

System (5) can also be restated using multilinear and tensor algebra notation as follows:

mi
j ü
j + F i[uj , u̇j ] = pi on T (6a){

ui(0) = ui, u̇i(0) = vi
}

on {0}, (6b)

where i, j ∈ {0, 1, . . . , P} (summation sign implied over repeated index j), and:

mi
j(t) = 〈Ψi,m(t, · ) Ψj〉/〈Ψi,Ψi〉, F i[uj , u̇j ](t) = 〈Ψi,F [ujΨj , u̇

jΨj ](t, · )〉/〈Ψi,Ψi〉,
pi(t) = 〈Ψi, p(t, · )〉/〈Ψi,Ψi〉, ui = 〈Ψi, u〉/〈Ψi,Ψi〉 and vi = 〈Ψi, v〉/〈Ψi,Ψi〉,

whence mi
j ,F i[uj , u̇j ], pi ∈ T(0) and ui, vi ∈ R. To simplify notation, we have taken F i[uj , u̇j ] as the

short notation for F i[u0, . . . , uj , . . . , uP , u̇0, . . . , u̇j , . . . , u̇P ].
To evaluate the inner products approximately, any integration technique of one’s choice can be used,

including those addressed in [32–36]. If, for instance, a Gaussian quadrature rule is adopted, the inner
products are computed with:

〈f, g〉 :=

∫
fg dµ ≈ Q[Q][fg] :=

Q∑
i=1

f(ξi) g(ξi)wi,

where wi ∈ R+ denotes the quadrature weight associated with the Gaussian quadrature point ξi ∈ Ξ
(w.r.t. µ), and Q ∈ N1 represents the number of quadrature points involved in approximating the evaluation
of the inner product.

3As long as we assume that {Ψj}∞j=0 is well-graded to carry out the approximation of u this way.
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4.2. Discretization of temporal function space

Once Zhas been discretized, the temporal function space can be discretized using an (h, p)-discretization
for T(2). In the literature, there exists an extensive list of time integration techniques that one can employ
in order to solve the ODE system given by (6) numerically. For example, the Runge-Kutta method [37] of
fourth-order (aka RK4 method) or the Newmark-β method [38, 39].

4.3. Computation of probability moments

In this manuscript, the probability moments of interest are the mean and the variance of the system’s
response. For this reason, we define these objects below.

Suppose that z := yk is the k-th component of output y = M[u][x]. If z ∈ V, then it can approximately
be expanded with a truncated Fourier series similar to the one set forth in (3) to obtain:

z(t, ξ) ≈ z[P ](t, ξ) =
P∑
j=0

zj(t) Ψj(ξ) ≡ zj(t) Ψj(ξ), (7)

where the j-th random mode of z is given by

zj(t) =
〈Ψj , z(t, · )〉
〈Ψj ,Ψj〉

.

(Note that P in expression (7) does not necessarily need to be the same as in (3).)
The expectation of z, E[z] : T→ R, is simply given by the first random mode of z:

E[z](t) :=

∫
z(t, · ) dµ = z0(t), (8)

whereas the variance of z, Var[z] : T→ R+
0 , is defined by the partial sum:

Var[z](t) :=

∫
(z(t, · )−E[z](t))2 dµ =

P∑
j=1

〈Ψj ,Ψj〉 zj(t) zj(t). (9)

5. Flow-driven spectral chaos (FSC) method

5.1. Stochastic flow map

Observe that the stochastic system given by (1) can also be expressed as:

∂2
t u(t, ξ) := f(t, ξ, s(t, ξ)) =

(
p(t, ξ)−F [u, u̇](t, ξ)

)
/m(t, ξ) on T× Ξ (10a){

u(0, ξ) = u(ξ), u̇(0, ξ) = v(ξ)
}

on {0} × Ξ, (10b)

where s = (u, u̇) ∈
∏2
j=1 T(3−j)⊗Z is the configuration state of the system over T×Ξ, and f : T×Ξ×R2 →

R is a noisy, non-autonomous function defining the response ü = ∂2
t u.

Therefore, if the solution is analytic on T for all ξ ∈ Ξ, then it can be represented by the Taylor series:

u(ti + h, ξ) =
∞∑
j=0

hj

j!
∂jt u(ti, ξ) =

M∑
j=0

hj

j!
∂jt u(ti, ξ) +O(hM+1)(ξ), (11)

where h := t− ti is the time-step size used for the simulation around ti (once t is fixed), ti ∈ T is the time
instant of the simulation, and M ∈ N1 is the order of the flow map we are interested to implement.
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For this system, the stochastic flow map of order M , ϕ(M) : R×Z2 → Z2, can be defined as a random
map given by:

ϕ(M)(h, s(ti, · )) =: s(ti + h, · ) =
(
u(ti + h, · ), u̇(ti + h, · )

)
−O(hM+1)

=

( M∑
j=0

hj

j!
∂jt u(ti, · ),

M∑
j=0

hj

j!
∂j+1
t u(ti, · )

)
, (12)

where this s(ti + h, · ) is the same as in (10) if M → ∞. However, to avoid unnecessary complexity in
notation, no distinction between these definitions will be made in this work. That is, from now on we will
assume that there is an equivalence relation ∼ between s(ti + h, · ) − O(hM+1) and the s(ti + h, · ) defined

in (12). Notice that (12) now requires that s = (u, u̇) ∈
∏2
j=1 T(M − j + 2)⊗Z.

For the sake of illustration, suppose M = 4. Differentiating (10a) with respect to time three times
(i.e. M − 1 times) gives

∂3
t u := Dtf= ∂tf+ ∂uf∂tu+ ∂u̇f∂

2
t u (13a)

∂4
t u := D2

tf= ∂2
tf+ 2 ∂2

tuf∂tu+ (2 ∂2
tu̇f+ ∂uf) ∂2

t u+ ∂u̇f∂
3
t u (13b)

∂5
t u := D3

tf= ∂3
tf+ 3 ∂3

ttuf∂tu+ 3 (∂3
ttu̇f+ ∂2

tuf) ∂2
t u+ (3 ∂2

tu̇f+ ∂uf) ∂3
t u+ ∂u̇f∂

4
t u. (13c)

Hence, when M = 4, the stochastic flow map of the system, ϕ(4) = (ϕ1(4), ϕ2(4)), is given by:

ϕ(4)(h, s(ti, · )) =: s(ti + h, · ) =
(
u(ti + h, · ), u̇(ti + h, · )

)
−O(h5)

=

( 4∑
j=0

hj

j!
∂jt u(ti, · ),

4∑
j=0

hj

j!
∂j+1
t u(ti, · )

)
, (14)

where the second and higher time derivatives of u at t = ti are computed with (10a) and (13), respectively.
Note that if (10) is an autonomous ODE, the expressions prescribed by (13) reduce to:

∂3
t u = ∂uf∂tu+ ∂u̇f∂

2
t u, ∂4

t u = ∂uf∂
2
t u+ ∂u̇f∂

3
t u and ∂5

t u = ∂uf∂
3
t u+ ∂u̇f∂

4
t u. (13*)

5.2. Enriched stochastic flow map

In this work, we define the enriched stochastic flow map of order M , ϕ̂(M) : R×ZM+2 → ZM+2, such
that its k-th component is given by:

ϕ̂k(M)(h, ŝ(ti, · )) =: ŝk(ti + h, · ) =

{
ϕk(M)(h, s(ti, · )) for k ∈ {1, 2}
Dk−3
t f(ti + h, · , s(ti + h, · )) otherwise,

(15)

where ŝ = (u, u̇, . . . , ∂M+1
t u) ∈

∏M+2
j=1 T(M − j + 2) ⊗Z is called the enriched configuration state of the

system over T× Ξ, and k ∈ {1, 2, . . . ,M + 2}.
For instance, when M = 4, the components of the enriched stochastic flow map, ϕ̂(4), are

ϕ̂1(4)(h, s(ti, · )) := ϕ1(4)(h, s(ti, · )) = s1(ti + h, · ) = u(ti + h, · )−O(h5), (16a)

ϕ̂2(4)(h, s(ti, · )) := ϕ2(4)(h, s(ti, · )) = s2(ti + h, · ) = u̇(ti + h, · )−O(h5), (16b)

ϕ̂3(4) := f= ∂2
t u, ϕ̂4(4) := Dtf= ∂3

t u, ϕ̂5(4) := D2
tf= ∂4

t u and ϕ̂6(4) := D3
tf= ∂5

t u, (16c)

where ϕ̂1(4) and ϕ̂2(4) are computed with (14), ϕ̂3(4) with (10a), and {ϕ̂k(4)}6k=4 with (13).
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5.3. Derivation of the FSC method

According to Section 5.1, the state of a system driven by a stochastic flow map of order M is:

u(t, ξ) =
M∑
j=0

(t− ti)j

j!
∂jt u(ti, ξ) and u̇(t, ξ) =

M∑
j=0

(t− ti)j

j!
∂j+1
t u(ti, ξ), (17)

with the provision that the stochastic process u is analytic on the temporal domain.
From these two expressions, it can be seen that the state of the system has been decomposed effectively

into deterministic and non-deterministic parts. That is, the deterministic part (t − ti)j/j! consisting of a
temporal function in T, and the non-deterministic part ∂jt u(ti, ξ) consisting of a random function in Z. If
the set of functions associated with the non-deterministic part, i.e. {∂jt u(ti, · )}M+1

j=0 , is orthogonalized with
respect to the measure in Z, then (17) can also be written in the following way:

u(t, ξ) =
M+2∑
j=1

uj(t) Ψj(ξ) and u̇(t, ξ) =
M+2∑
j=1

u̇j(t) Ψj(ξ). (18)

Hence, if the space associated with the stochastic part of the solution space were to be spanned with
{Ψj}M+2

j=1 , then u(t, · ) and u̇(t, · ) would be elements of that space around t = ti. However, since one cannot
always guarantee that the constant functions are in such a space construction, we prefer to write (18) in the
following final form instead:

u(t, ξ) =
M+2∑
j=0

uj(t) Ψj(ξ) and u̇(t, ξ) =
M+2∑
j=0

u̇j(t) Ψj(ξ), (19)

where Ψ0 ≡ 1 is the identically-equal-to-one function as per Definition 4.
Therefore, for a system driven by a stochastic flow map of order M , the maximum number of basis vectors

to use in a simulation with FSC is bounded from above by M + 3. Hence, regardless of the dimensionality
of the random space, the probability information of the system’s state can be completely captured in Z[P ]

if P = M + 2. It is for this reason that our FSC scheme is superior in terms of efficiency in comparison
to mTD-gPC which uses a combination of full and total-order tensor products to construct a suitable basis
for Z[P ] around t = ti. We emphasize, however, that the FSC scheme does not address by itself the curse
of dimensionality at the random-space level, since we still have the issue that the bigger the random space
is (d � 1), the more difficult it is to compute the inner products accurately in (6) and (9). This is still an
open area of research and there are several approaches available in the literature for dealing with this issue
[32–36].

Moreover, to reduce the computational cost associated with orthogonalizing M + 2 basis vectors, it is
sometimes convenient to start the FSC analysis with the smallest value for M (i.e. M = 1), and then to
progressively increment it if more accurate results are desired for the simulation. Therefore, the minimum
number of basis vectors to use in a simulation with FSC is bounded from below by 4.

5.4. FSC scheme

Suppose that a stochastic system such as (1) has been given. Let {Ti}N−1
i=0 be a partition of the temporal

domain, where Ti 6= ∅ represents the i-th interval of the partition, and define s.i = s|cl(Ti)×Ξ to be the
restriction of s to Ri := cl(Ti)× Ξ. (Recall that s = (u, u̇) represents the configuration state of the system
over T×Ξ.) Then, if the system is driven by a stochastic flow map of order M (Fig. 2), proceed as follows:

1. Loop across the temporal domain from i = 0 to i = N − 1.

(a) Define a solution representation for the configuration state s.i in the following way.

• Take {Φj.i := ϕ̂j(M)(0, ŝ(ti, · ))}Pj=1 to be an ordered set of linearly independent functions in
Z with 3 ≤ P ≤ M + 2, and define Φ0.i ≡ 1. Observe that ϕ̂(M)(0, ŝ(ti, · )) ≡ ŝ.i(ti, · ) =
ŝ.i−1(ti, · ) for i ≥ 1. However, if i = 0, then ϕ̂(M)(0, ŝ(t0, · )) ≡ ŝ(0, · ). (Note: When the
initial conditions are deterministic or linearly dependent, please see Remark 1.)
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Figure 2: Evolution of a dynamical system via a stochastic flow map of order M , provided that hi is taken sufficiently small and
M sufficiently large so as to have s(tN , · ) ≈ s.N−1(tN , · ) at the end of the simulation. Then, as a means to avoid complexity
in notation, we take s(ti + h, · ) ∼ s.i(ti + h, · ) for h ≥ 0, and s(ti + h, · ) ∼ s.i−1(ti + h, · ) for h ≤ 0

• Orthogonalize the set {Φj.i}Pj=0 using the Gram-Schmidt process [40], so that the resulting

set {Ψj.i}Pj=0 is an orthogonal basis in Z. That is, for j ∈ {0, 1, . . . , P}:

Ψj.i := Φj.i −
j−1∑
k=0

〈Φj.i,Ψk.i〉
〈Ψk.i,Ψk.i〉

Ψk.i. (20)

• Define Z
[P ]
i = span{Ψj.i}Pj=0 to be a p-discretization of Z over the region Ri. Since Z

[P ]
i is

an evolving function space, expansion (3) is now to be read as:

u.i(t, ξ) ≈ u[P ]
.i (t, ξ) =

P∑
j=0

uj.i(t) Ψj.i(ξ) ≡ uj.i(t) Ψj.i(ξ). (3*)

Hence, u̇.i = ∂tu.i.

(b) Transfer the random modes of s.i−1 = (u.i−1, u̇.i−1) to s.i = (u.i, u̇.i) at t = ti, given that i ≥ 1.

One way to achieve this is to ensure that the probability information of the system’s state is
transferred in the mean-square sense. Put differently, we wish to make sure that the equalities
shown below hold in the mean-square sense (summation sign implied only over repeated index
k):

u.i(ti, ξ) = u.i−1(ti, ξ) ⇐⇒ uk.i(ti) Ψk.i(ξ) = uk.i−1(ti) Ψk.i−1(ξ) (21a)

u̇.i(ti, ξ) = u̇.i−1(ti, ξ) ⇐⇒ u̇k.i(ti) Ψk.i(ξ) = u̇k.i−1(ti) Ψk.i−1(ξ). (21b)

Projecting (21) onto Z
[P ]
i gives:

uk.i(ti) 〈Ψj.i,Ψk.i〉 = uk.i−1(ti) 〈Ψj.i,Ψk.i−1〉 (22a)

u̇k.i(ti) 〈Ψj.i,Ψk.i〉 = u̇k.i−1(ti) 〈Ψj.i,Ψk.i−1〉. (22b)
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Thus, upon simplification yields the random modes of s.i = (u.i, u̇.i) at t = ti:

uj.i(ti) =
〈Ψj.i,Ψk.i−1〉
〈Ψj.i,Ψj.i〉

uk.i−1(ti) and u̇j.i(ti) =
〈Ψj.i,Ψk.i−1〉
〈Ψj.i,Ψj.i〉

u̇k.i−1(ti), (6b*)

where j ∈ {0, 1, . . . , P} (summation sign implied over repeated index k). These are to be inter-
preted as the initial conditions of the system over the region Ri.

If i = 0, the initial conditions are computed with (6b) directly.

(c) Substitute (3*) into (1) to obtain (4).

(d) Project (4a) onto Z
[P ]
i to obtain (6a) subject to (6b*). Note that if i = 0, (6a) is subject to (6b).

(e) Integrate (6) over time, as long as a suitable time integration method has been selected for solving
the resulting system of equations. This step requires to find the random modes {uj.i(ti+1)}Pj=0

and {u̇j.i(ti+1)}Pj=0.

(f) Compute both the mean and the variance of each of the components of output y = M[u][x] over
Ri, by recurring to the formulas prescribed by (8) and (9).

2. Post-process results.

Remark 1. Any of the following two approaches can be carried out at the start of the simulation (i = 0) to
address the case when the initial conditions are deterministic or, more generally, linearly dependent:

• When the initial conditions are deterministic, the first two vectors are required to be removed from the
set {Φj.i := ϕ̂j(M)(0, ŝ(ti, · ))}Pj=1 for they are constant, and when the initial conditions are stochastic
but linearly dependent, only one of them needs to be removed from the set.

• When the initial conditions are deterministic or linearly dependent, the gPC method [3, 27] can be
employed instead to advance the state of the system one-time step forward; that is, from s(t0 = 0, · )
to s(t1, · ). After this, the gPC method can be switched over FSC to continue pushing the system’s
state forward in time.

Remark 2. Compared to the standard TD-gPC by Gerritsma et al. [22], in our FSC scheme we update the
stochastic part of the solution space at every time step to minimize the error propagation over time. We
do this without loss of generality since the scheme can conveniently be modified to incorporate a stopping
criterion of one’s choice and update the random basis only when the criterion is met.

6. Numerical results

We demonstrate and compare the performance of the FSC scheme to the mTD-gPC scheme using two
numerical examples for the dynamical system described in Section 3. We also define the local error, ε : T→
T, and the global error, εG : T→ R, with the following expressions:

ε[f ](t) = |f(t)− fexact(t)| (23a)

εG[f ] =
1

T

∫
T

|f(t)− fexact(t)| dt ≈
∆t

T

N∑
i=0

|f(ti)− fexact(ti)|, (23b)

where ∆t is the time-step size used for the simulation, ti ∈ T is the time instant of the simulation, and N
denotes the number of time steps employed in the simulation (with t0 = 0 and tN = N ∆t = T ).
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Table 1: Case studies considered for a single-degree-of-freedom system under free vibration and stochastic stiffness

Case Probability distribution∗ Probability moments Quadrature rule

1 Uniform ∼ ξ ∈ Ξ = [a, b] E[ξ] = 400 N/m Gauss-Legendre (100 points)
a = 340 N/m, b = 460 N/m Var[ξ] = 1 200 N2/m2

2 Beta(α, β) ∼ ξ ∈ Ξ = [a, b] E[ξ] ≈ 374.3 N/m Gauss-Jacobi (95 points)
α = 2, β = 5 Var[ξ] ≈ 367.3 N2/m2 αJ := β − 1 = 4
a = 340 N/m, b = 460 N/m βJ := α− 1 = 1

3 Gamma(α, β) ∼ ξ ∈ Ξ = [a,∞) E[ξ] = 440 N/m Gauss-Laguerre (135 points)
α = 10, β = 1/10 Var[ξ] = 1 000 N2/m2 αL := α− 1 = 9
a = 340 N/m

∗Probability density function, f : Ξ→ R+
0 :

Uniform ∼ f(ξ) =
1

b− a
, Beta ∼ f(ξ) =

(ξ − a)α−1 (b− ξ)β−1

(b− a)α+β−1 B(α, β)
and Gamma ∼ f(ξ) =

βα

Γ(α)
(ξ − a)α−1 exp(−β (ξ − a)).
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Figure 3: Evolution of E[u] and Var[u] for the case when the p-discretization level of RFS is Z[6] and µ ∼ Uniform

6.1. Single-degree-of-freedom system under free vibration

We consider an undamped single-degree-of-freedom system governed by mü+ku = 0 with mass m = 100
kg and stochastic stiffness k(ξ) = ξ subjected to free vibration. Three different cases of stochasticity are
considered as listed in Table 1. The system has an initial displacement of u(0, · ) ≡ 0.05 m, and an initial
velocity of u̇(0, · ) ≡ 0.20 m/s. The duration of the simulation is set to T = 150 s. To minimize the errors
coming from the discretization of T(2), the time-step size is taken as ∆t = 0.005 s, meaning that a total of
N = 30 000 time steps are employed in the simulation. To integrate (6) over time4, we use the RK4 method,
and as described in Section 5.4, the stochastic part of the solution space is updated at every time step in
order to obtain accurate results. Lastly, because the initial conditions of the system are deterministic, we
opt to employ the gPC method (with P = 6) [3] for the first 5 seconds of the simulation, in an effort to
ensure that the stochasticity of the system’s state is well developed for the analysis with FSC or mTD-gPC.

Figs. 3 and 4 show the evolution of the mean and variance of the system’s state. From these figures,
it is observed that the response obtained with FSC using only 7 basis vectors has the ability to reproduce

4In this problem we have taken F [u, u̇] = ku, and thus F i[uj , u̇j ](t) = kij u
j(t) with kij = 〈Ψi, kΨj〉/〈Ψi,Ψi〉.
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Figure 4: Evolution of E[u̇] and Var[u̇] for the case when the p-discretization level of RFS is Z[6] and µ ∼ Uniform

the exact response (from Appendix B) with high fidelity. This is the reason why the two plots appear to be
indistinguishable from each other. The figures also show the limit values for each response computed using
the exact expressions given by (30) and (32).

Fig. 5 presents the local errors in mean and variance of the system’s state using different choices of
number of basis vectors ranging from 3 to 7. Note that even though the FSC scheme requires P to be
greater than or equal to 3, here we also study the case when P = 2 for sake of comparison. Fig. 5 shows that
as the number of basis vectors increases, so does the accuracy of the results. In particular, by increasing
the number of basis vectors from 3 to 5, the accuracy of the results improves significantly by an order
of magnitude of 6 (approximately from 10−1 to 10−7 for the mean), whereas when the number of basis
vectors is increased from 5 to 7, the improvement in error is more moderate (to approximately 10−8 for the
mean). However, for the 7-basis-vector case we do see an improvement in the accuracy of the solution as
time progresses due to the increase in the number of basis vectors used. Fig. 6 presents the convergence
of global errors as a function of the number of basis vectors and the different distributions used to define
the stochasticity of k. The FSC scheme achieves exponential convergence when 3, 4 and 5 basis vectors are
used, but adding more basis vectors does not improve the accuracy of the response. The primary reason for
this slow-down in convergence is that the accuracy of the solution is limited by machine precision and the
fact that the probability information is being transferred in the mean-square sense at every time step (for
P is finite). In fact, these plots indicate that there is no reason to implement more than 5 basis vectors into
the simulation as it does not improve the accuracy of the results significantly. It is also apparent from this
figure that when k is assumed gamma-distributed, the results are not as accurate as those obtained from
the uniform and beta distributions. The reason behind this outcome is that when k is gamma-distributed
its support is unbounded, which from a numerical viewpoint leads to the dreaded case of unbounded basis
vectors.

Fig. 7 plots the global errors as a function of computational cost5 of the FSC and mTD-gPC schemes
expressed in terms of the wall-clock time taken to complete the computation. The implementation of both
schemes was optimized as much as reasonably possible, and the labels P2Q0, P2Q1 and P2Q2 are defined
in Ref. [23] (Pg. 45). The comparison of computational cost is shown here only for Case 1 of Table 1 (for
sake of brevity), but similar trends are observed for cases 2 and 3 as well. Note that FSC is much faster

5All problems in this work were run in MATLAB R2016b [41] on a 2017 MacBook Pro with quad-core 3.1 GHz Intel Core
i7 processor (hyper-threading technology enabled), 16 GB 2133 MHz LPDDR3 memory and 1 TB PCI-Express SSD storage
(APFS-formatted), running macOS Mojave (version 10.14.6).
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(c) Mean error for Z[4]
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(d) Variance error for Z[4]
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(e) Mean error for Z[6]
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Figure 5: Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization levels of RFS and for µ ∼ Uniform
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Figure 6: Global error of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization levels of RFS
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Figure 7: Global error versus computational cost for µ ∼ Uniform
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Figure 8: Evolution of E[u] and Var[u] for the case when the p-discretization level of RFS is Z[6] and µ ∼ Uniform⊗ Beta

in comparison to mTD-gPC for a similar level of error. For instance, in order to attain a global error of
approximately 10−8, FSC runs about 3.5 times faster than mTD-gPC. This is because, in general, FSC
requires much fewer basis vectors than mTD-gPC—to achieve an error of about 10−8, FSC requires only 6
basis vectors in comparison to 12 for mTD-gPC. Another reason for the superior efficiency of FSC is that,
for mTD-gPC, the orthogonalization process needs to be conducted three times when the random basis is
demanded to be updated during the simulation (one time for the monomials of u, another time for the
monomials of u̇, and one more time after performing the tensor product)6. This also explains why using
6 basis vectors in both methods, FSC runs slightly faster than mTD-gPC. Furthermore, we see that the
probability information is better encoded in FSC because it uses a fewer number of basis vectors to achieve
the same level of accuracy. Fig. 7 also reveals that increasing the number of basis vectors from 6 to 7 for
FSC and 12 to 18 for mTD-gPC does not improve the accuracy of the results significantly. This, again,
is because of the limited precision of the machine and the fact that the probability information is being
transferred in the mean-square sense.

6.2. Single-degree-of-freedom system under forced vibration

In this example, we show that the number of basis vectors needed in the simulation does not increase
when the dimensionality of the random space increases. For this, we consider the same system described in
the Example 6.1 (including the same deterministic initial conditions), with the only difference being that
the system is subjected to a stochastic external force given by p(t, · ) = q sin(t). That is, the system is
now governed by mü + ku = p. Here the stiffness k(ξ) = ξ1 is taken to be the same as Case 1 of Table
1 with Ξ̄1 = [340, 460] N/m. The amplitude of the external force q(ξ) = ξ2 is assumed beta-distributed
with parameters α = 2 and β = 5 in Ξ̄2 = [51, 69] N, giving thereby probability moments: E[ξ2] ≈ 56.14 N
and Var[ξ2] ≈ 8.265 N2. Because two random variables are present in the mathematical model, the random
domain of the system is 2-dimensional, and thus, it is defined by Ξ = Ξ̄1 × Ξ̄2 with µ ∼ Uniform ⊗ Beta.
For this example, the inner products are computed using a quadrature rule constructed by performing a
cartesian product between 100 Gauss-Legendre points distributed along the ξ1-axis and 95 Gauss-Jacobi
points distributed along the ξ2-axis. Finally, the gPC method (with P = 8) is used for the first 0.5 seconds
of the simulation to allow the stochasticity of the system to develop sufficiently before using the FSC scheme.

6We tested the method by orthogonalizing only once—namely, after performing the tensor product between the monomials
of u and u̇—, and found that the accuracy of the results degrades noticeably.
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Figure 9: Evolution of E[u̇] and Var[u̇] for the case when the p-discretization level of RFS is Z[6] and µ ∼ Uniform⊗ Beta

Figs. 8 and 9 show the evolution of the mean and variance of the system’s state. As in the previous
example, the numerical solution obtained using FSC with 7 basis vectors is indistinguishable from the exact
response7. Figs. 10 and 11 depict the local and global errors in mean and variance of the system’s state.
Here we also notice the same trend found in Figs. 5 and 6. That is, as the number of basis vectors increases,
so does the accuracy of the results. Moreover, when the number of basis vectors increases from 3 to 5,
the error for the mean drops down from approximately 10−1 to 10−7, whereas increasing the number of
basis vectors from 5 to 7 does not result in a noticeable improvement in the computation of the probability
moments. Note that using the same number of basis vectors as in Example 6.1 led to similar levels of error,
even though the dimensionality of the random space in this example is twice that of Example 6.1. However,
despite the number of basis vectors being the same, the computational cost of this example is much higher
than that of Example 6.1 (as per Fig. 12) because of the increase in the number of quadrature points needed
to compute the inner products accurately.

6.3. Nonlinear single-degree-of-freedom system under free vibration

In this last example, we explore the nonlinear behavior of a single-degree-of-freedom system in order to
test the ability of the FSC method to solve nonlinear problems. The governing differential equation for this
system is set to be given by

mü+ (1 + ρu2)ku = 0, (24)

where m = 100 kg is the mass of the system, k(ξ) = ξ1 is a beta-distributed random variable representing
the strength of the stiffness which is given by Case 2 of Table 1 with Ξ̄1 = [340, 460] N/m, and ρ(ξ) = ξ2 is a
uniformly-distributed random variable denoting the contributing factor to the nonlinearity of the system in
Ξ̄2 = [−20,−30] m−2. The probability moments for ξ2 are thus: E[ξ2] = −25 m−2 and Var[ξ2] ≈ 8.333 m−4.
The system has an initial displacement of u(0, · ) ≡ 0.05 m and an initial velocity of u̇(0, · ) ≡ 0.20 m/s. As
in the previous example, the random domain of the system is two-dimensional and defined by Ξ = Ξ̄1 × Ξ̄2

with µ ∼ Beta ⊗ Uniform. The inner products are again computed with a Gaussian quadrature rule using
the same number of points indicated in the previous section, and the gPC method (with P = 8) is used
for the first second of the simulation. The system is integrated over time using the RK4 method with a
time-step size of ∆t = 0.005 s, and the simulation is set to last T = 150 s.

7To obtain the ‘exact’ solution for E[u], Var[u], E[u̇] and Var[u̇], the corresponding values for E[u(ti, · )], Var[u(ti, · )],
E[u̇(ti, · )] and Var[u̇(ti, · )] were computed at each instant of time ti ∈ T using the vpaintegral command (provided in the
MATLAB’s Symbolic Math Toolbox [41]) with RelTol set equal to 10−14. The exact displacement response, u, is well known
and can be found in any structural dynamics textbook, e.g. [39, 42].
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(b) Variance error for Z[2]
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(c) Mean error for Z[4]
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(d) Variance error for Z[4]
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(e) Mean error for Z[6]
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Figure 10: Local error evolution of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization levels of RFS and for µ ∼
Uniform⊗ Beta
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Figure 11: Global error of E[u], Var[u], E[u̇] and Var[u̇] for different p-discretization levels of RFS
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Figure 12: Global error versus computational cost for µ ∼ Uniform⊗ Beta
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Figure 13: Evolution of E[u] and Var[u] for the case when the p-discretization level of RFS is Z[5] and µ ∼ Beta⊗Uniform

Remark 3. According to (6), the temporal function F i[uj , u̇j ] associated with F [u, u̇] = (1 +ρu2)ku is given
by:

F i[uj , u̇j ](t) =
〈Ψi, kΨj〉
〈Ψi,Ψi〉

uj(t) +
〈Ψi, ρkΨjΨkΨl〉
〈Ψi,Ψi〉

uj(t)uk(t)ul(t).

Note that a summation sign is implied over every repeated index j, k and l.

Since a closed-form solution for (24) does not exist, we use the standard Monte Carlo method described
in Appendix C to compare the accuracy of the FSC results against it. To this end, one million realizations
are randomly sampled from the random domain to conduct the Monte Carlo simulation. The evolution of
the mean and variance of the system’s displacement is depicted in Figs. 13 and 14. These figures show that
by using only 5 basis vectors, the FSC results can effectively reproduce the Monte Carlo results. In fact,
Figs. 15 and 16 further indicate that when P = 4, 5, the FSC results are 4-order-of-magnitude accurate for
the mean and about 5-order-of-magnitude accurate for the variance. However, this is not the case for P = 3,
which overall is one order of magnitude less accurate and displays a nearly linear drift after 50 s. Moreover,
it can be seen that the FSC results with P = 4 and P = 5 are indistinguishable from each other, chiefly
because the one-million Monte Carlo simulation used as the reference solution is an approximate version
of the solution. This explains why the accuracy of the results did not increase when P was set equal to 5.
Therefore, comparable results are achievable for this nonlinear problem if FSC is run with P = 4.

7. Application to structural dynamics

In structural dynamics, real-life systems are commonly modeled as multiple-degree-of-freedom systems.
In order to demonstrate how FSC can be utilized in a more general setting, in this section we quantify the
response uncertainties of a 3-story building (Fig. 17a) excited by the effects of a ground motion. The ground
motion is taken here to be one of the ground accelerations recorded from the 1940 El Centro Earthquake8

event. A plot of this ground motion is depicted in Fig. 17b for sake of reference.
The governing differential equation of motion for this system is:

Mü + Cu̇ + Ku = −Mιüg (=: p), (25)

8This ground acceleration was obtained from the PEER Ground Motion Database [43].
Website: https://ngawest2.berkeley.edu.
Event’s name: Imperial Valley-02. Station’s name: El Centro Array #9. File’s name: RSN6 IMPVALL.I I-ELC180.AT2.
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Figure 14: Evolution of E[u̇] and Var[u̇] for the case when the p-discretization level of RFS is Z[5] and µ ∼ Beta⊗Uniform
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Figure 15: Local error evolution of E[u] and Var[u] for different p-discretization levels of RFS with respect to the 1-million
Monte Carlo simulation (µ ∼ Beta⊗Uniform)
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Figure 16: Local error evolution of E[u̇] and Var[u̇] for different p-discretization levels of RFS with respect to the 1-million
Monte Carlo simulation (µ ∼ Beta⊗Uniform)

(a) Surrogate model of a 3-story building for lateral-load analysis
in one direction
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(b) Ground acceleration of 1940 El Centro Earthquake

Figure 17: Surrogate model of a 3-story building to investigate its lateral behavior under an earthquake scenario
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where M ∈ L(R3,R3) is the mass matrix, C : Ξ → L(R3,R3) is the damping matrix, K : Ξ → L(R3,R3) is
the stiffness matrix, ι ∈ R3 is the influence vector, and üg : T→ R is the ground acceleration characterized
by a real-valued function of time. The vectors u, u̇ := ∂tu, ü := ∂2

t u : T × Ξ → R3 represent, respectively,
the displacement, the velocity and the acceleration of the system, where uT = [u1, u2, u3] is the unknown
vector sought, and u3 denotes the roof displacement of the 3-story building (our response of interest here).

The parameters of this system are defined as

M = m

1
1

1

 , K(ξ) =

k1(ξ) + k2(ξ) −k2(ξ)
−k2(ξ) k2(ξ) + k3(ξ) −k3(ξ)

−k3(ξ) k3(ξ)

 ,
and C(ξ) = α(ξ) M+β(ξ) K(ξ), where m = 500 Mg, k1(ξ) = ξ1 ∼ Beta(2, 5) in [850×103, 1 150×103] kN/m,
k2(ξ) = ξ2 ∼ Beta(2, 5) in [680 × 103, 920 × 103] kN/m, k3(ξ) = ξ3 ∼ Beta(2, 5) in [680 × 103, 920 × 103]
kN/m, α(ξ) = ξ4 ∼ Uniform in [0.4, 0.7] s−1, and β(ξ) = ξ5 ∼ Uniform in [0.4 × 10−3, 0.7 × 10−3] s.
Furthermore, ιT = [1, 1, 1], and üg is defined according to Fig. 17b. The random domain for this system is
thus 5-dimensional:

Ξ =
5∏
i=1

Ξ̄i ≡ [850× 103, 1 150× 103]× [680× 103, 920× 103]2 × [0.4, 0.7]× [0.4× 10−3, 0.7× 10−3],

and we assume that the initial state of the system is at rest, i.e. u(0) = u̇(0) = 0. Note that when
the expected values of k1, k2 and k3 are utilized to define K, the fundamental period of the system is
approximately 0.33 s, which is consistent with a typical 3-story building found in practice featuring a
damping ratio of about 2% for the first two modal frequencies.

Following the formulation presented in Section 4, the system of equations (6) takes the form:

Mi
jü

j + Ci
ju̇

j + Ki
ju

j = pi on T = [0, 50] s (26a){
ui(0) = 0, u̇i(0) = 0

}
on {0}, (26b)

where a summation sign is implied over the repeated index j, Mi
j = Mδij , pi(t) = −Mι üg(t) δ

i
0 ,

Ci
j = m

1
1

1

 〈Ψi, αΨj〉
〈Ψi,Ψi〉

+

1
0

0

 〈Ψi, βk1Ψj〉
〈Ψi,Ψi〉

+

 1 −1
−1 1

0

 〈Ψi, βk2Ψj〉
〈Ψi,Ψi〉

+

0
1 −1
−1 1

 〈Ψi, βk3Ψj〉
〈Ψi,Ψi〉

,

and

Ki
j =

1
0

0

 〈Ψi, k1Ψj〉
〈Ψi,Ψi〉

+

 1 −1
−1 1

0

 〈Ψi, k2Ψj〉
〈Ψi,Ψi〉

+

0
1 −1
−1 1

 〈Ψi, k3Ψj〉
〈Ψi,Ψi〉

with i, j ∈ {0, 1, . . . , P}, and δij denoting the Kronecker delta.

For this problem, we take P = 9 for the set of linearly independent functions {Φj.i := ϕ̂j(0, ŝ(ti, · ))}Pj=1,

where ϕ̂ : R×Z9 → Z9 is given by

ϕ̂(h, ŝ(ti, · )) =: ŝ(ti + h, · ) = (u(ti + h, · ), u̇(ti + h, · ), ü(ti + h, · )),

and ŝ = (u, u̇, ü) ≡ (u1, u2, u3, u̇1, u̇2, u̇3, ü1, ü2, ü3).

Remark 4. Notice that this P is the smallest value we can choose for a problem featuring three degrees of
freedom and whose governing stochastic differential equation is of second-order in time. This is because for
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Figure 18: Evolution of E[u3] and Var[u3] for the case when the p-discretization level of RFS is Z[9] and µ ∼ Beta⊗3⊗Uniform⊗2

each degree of freedom, the smallest RFS that one can construct using the FSC method is one whose P is
equal to 3. However, we emphasize that this issue is not particular to the FSC method. It is well recognized
that the more degrees of freedom a dynamical system has, the more basis vectors needed to construct a
suitable random function space for the system’s state at any given time. For example, in TD-gPC-based
methods, this would be equivalent to perform a full tensor product between all the RFS’s generated at each
degree of freedom.

To integrate (26) numerically, we employ the RK4 method with a time-step size of ∆t = 0.01 s (which
is concordant with the sample frequency of the ground acceleration record). To evaluate the inner products
approximately, we use 15 Gaussian quadrature points on each random axis, resulting in 155 = 759 375
quadrature points distributed across the entire random domain.

The results in Figs. 18 and 19 depict the solutions obtained from employing FSC and the standard Monte
Carlo method (as described in Appendix C) to quantify the uncertainties of the response. One million
realizations were randomly sampled from the random domain to conduct the Monte Carlo simulation. Once
again, it is apparent that FSC is able to capture the system’s uncertainties with high fidelity and its solution
is indistinguishable from that of the Monte Carlo method. For clarity, only the first 25 s of the solution are
presented in Figs. 18 and 19, however, the conclusion drawn above applies to the last 25 s of the solution as
well.

8. Conclusion

A novel numerical method, called the flow-driven spectral chaos (FSC) method, is presented for capturing
uncertainties in structural dynamics using the spectral approach. The FSC method uses the concept of
enriched stochastic flow maps to track the evolution of the system’s state efficiently in an augmented random
phase space. The method is not only computationally more efficient than the TD-gPC approach but also
easy to implement, since the flow map that we use in the scheme is nothing but the time derivatives of the
solution up to a specific order. Moreover, since the random basis is defined with these time derivatives, the
number of basis vectors required to characterize the stochastic part of the solution space does not depend
upon the dimensionality of the probability space. This remarkable property opens up the possibility of
investigating systems with high-dimensional probability spaces at low computational cost—an issue that
has plagued the spectral approach since the introduction of the PC method.

The three numerical examples presented in Section 6 show that the FSC scheme is able to capture the
response of the system with high accuracy using a small number of basis vectors and at a relatively low
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Figure 19: Evolution of E[u̇3] and Var[u̇3] for the case when the p-discretization level of RFS is Z[9] and µ ∼ Beta⊗3⊗Uniform⊗2

computational cost. The illustrative problem described in Section 7 also shows that the FSC method can be
readily applied to real-world structures involving multiple degrees of freedom. As a result, the FSC method
has the potential to be used in the context of large-scale structural engineering problems to quantify the
uncertainties of long-time response with high fidelity.

A. Random bases for illustrative examples

Table 2 presents the non-orthogonalized version of the random bases that we use in this manuscript to
solve the examples described in Section 6.

B. Undamped single-degree-of-freedom system under free vibration

The objective of this section is to provide the exact response expressions of an undamped single-degree-
of-freedom system subjected to free vibration for the case when the stiffness is assumed uniformly distributed
with parameters ka and kb. The problem is stated formally as follows.

Problem statement. Consider a stochastic, undamped single-degree-of-freedom system with mass m ∈ R+,
and stiffness k : Ξ → R+ given by k(ξ) = ξ ∼ Uniform in [ka, kb], subjected to free vibration. Note that:
kb > ka > 0.

The first problem is to find the displacement of the system u : T× Ξ→ R in U, such that:

mü+ ku = 0 on T× Ξ (27a){
u(0, · ) = u, u̇(0, · ) = v

}
on {0} × Ξ (27b)

where u, v ∈ R, and u̇ := ∂tu and ü := ∂2
t u are the velocity and acceleration of the system, respectively.

The second problem is to find the expectation and variance of u, u̇ and ü as a function of time.

Exact solution. The solution of (27) is well-known [39, 42], and it is given by

u(t, ξ) = ucos
(
(ω ◦ k)(ξ) t

)
+

v

(ω ◦ k)(ξ)
sin
(
(ω ◦ k)(ξ) t

)
, (28)
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Table 2: Non-orthogonalized version of the random bases used in Section 6

Single-degree-of-freedom system under free vibration (Section 6.1)∗:

Φ0.i(ξ) := 1

Φ1.i(ξ) := ϕ̂1(M)(0, ŝ(ti, ξ)) = u.i(ti, ξ) = u.i−1(ti, ξ)

Φ2.i(ξ) := ϕ̂2(M)(0, ŝ(ti, ξ)) = u̇.i(ti, ξ) = u̇.i−1(ti, ξ)

Φ3.i(ξ) := ϕ̂3(M)(0, ŝ(ti, ξ)) = ∂2
t u.i(ti, ξ) = −k(ξ)

m
u.i(ti, ξ)

Φ4.i(ξ) := ϕ̂4(M)(0, ŝ(ti, ξ)) = ∂3
t u.i(ti, ξ) = −k(ξ)

m
u̇.i(ti, ξ)

Φ5.i(ξ) := ϕ̂5(M)(0, ŝ(ti, ξ)) = ∂4
t u.i(ti, ξ) = −k(ξ)

m
∂2
t u.i(ti, ξ)

Φ6.i(ξ) := ϕ̂6(M)(0, ŝ(ti, ξ)) = ∂5
t u.i(ti, ξ) = −k(ξ)

m
∂3
t u.i(ti, ξ)

... (until P = M + 2 if needed)

Single-degree-of-freedom system under forced vibration (Section 6.2)∗:

Φ0.i(ξ) := 1

Φ1.i(ξ) := ϕ̂1(M)(0, ŝ(ti, ξ)) = u.i(ti, ξ) = u.i−1(ti, ξ)

Φ2.i(ξ) := ϕ̂2(M)(0, ŝ(ti, ξ)) = u̇.i(ti, ξ) = u̇.i−1(ti, ξ)

Φ3.i(ξ) := ϕ̂3(M)(0, ŝ(ti, ξ)) = ∂2
t u.i(ti, ξ) =

1

m

(
q(ξ) sin(ti)− k(ξ)u.i(ti, ξ)

)
Φ4.i(ξ) := ϕ̂4(M)(0, ŝ(ti, ξ)) = ∂3

t u.i(ti, ξ) =
1

m

(
q(ξ) cos(ti)− k(ξ) u̇.i(ti, ξ)

)
Φ5.i(ξ) := ϕ̂5(M)(0, ŝ(ti, ξ)) = ∂4

t u.i(ti, ξ) =
1

m

(
−q(ξ) sin(ti)− k(ξ) ∂2

t u.i(ti, ξ)
)

Φ6.i(ξ) := ϕ̂6(M)(0, ŝ(ti, ξ)) = ∂5
t u.i(ti, ξ) =

1

m

(
−q(ξ) cos(ti)− k(ξ) ∂3

t u.i(ti, ξ)
)

... (until P = M + 2 if needed)

Nonlinear single-degree-of-freedom system under free vibration (Section 6.3)∗:

Φ0.i(ξ) := 1

Φ1.i(ξ) := ϕ̂1(M)(0, ŝ(ti, ξ)) = u.i(ti, ξ) = u.i−1(ti, ξ)

Φ2.i(ξ) := ϕ̂2(M)(0, ŝ(ti, ξ)) = u̇.i(ti, ξ) = u̇.i−1(ti, ξ)

Φ3.i(ξ) := ϕ̂3(M)(0, ŝ(ti, ξ)) = ∂2
t u.i(ti, ξ) = −k(ξ)

m
(1 + ρ(ξ)u2

.i(ti, ξ))u.i(ti, ξ)

Φ4.i(ξ) := ϕ̂4(M)(0, ŝ(ti, ξ)) = ∂3
t u.i(ti, ξ) = −k(ξ)

m
(1 + 3 ρ(ξ)u2

.i(ti, ξ)) u̇.i(ti, ξ)

Φ5.i(ξ) := ϕ̂5(M)(0, ŝ(ti, ξ)) = ∂4
t u.i(ti, ξ) = −k(ξ)

m
(1 + 3 ρ(ξ)u2

.i(ti, ξ)) ∂
2
t u.i(ti, ξ)−

6 ρ(ξ) k(ξ)

m
u̇2
.i(ti, ξ)u.i(ti, ξ)

... (until P = M + 2 if needed)

∗The random basis is defined over the region Ri = cl(Ti)× Ξ.
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Table 3: Definition of τ -functions for a single-degree-of-freedom system subjected to free vibration with k ∼ Uniform in [ka, kb]

τu(t, k) =
{
ω(k) t sin(ω(k) t) + cos(ω(k) t)

}
u− cos(ω(k) t) vt

τv(t, k) = −
{

2ω(k) t sin(ω(k) t) + (2− ω2(k) t2) cos(ω(k) t)
}
ut−1 +

{
ω(k) t sin(ω(k) t) + cos(ω(k) t)

}
v

τa(t, k) = −
{

(ω3(k) t3 − 6ω(k) t) sin(ω(k) t) + 3(ω2(k) t2 − 2) cos(ω(k) t)
}
ut−2

−
{

2ω(k) t sin(ω(k) t) + (2− ω2(k) t2) cos(ω(k) t)
}
vt−1

where the natural circular frequency of the system, ω : R+ → R+, is defined by

ω(k) =

√
k

m
.

Then, the following exact expressions can be derived for the expectation and variance of u, u̇ and ü.

Exact expectation. The expectation of u, u̇ and ü are given by:

E[u](t) = κ(t) (τu(t, kb)− τu(t, ka)) (29a)

E[u̇](t) = κ(t) (τv(t, kb)− τv(t, ka)) (29b)

E[ü](t) = κ(t) (τa(t, kb)− τa(t, ka)), (29c)

where κ : T→ R+ is given by κ(t) = 2m/((kb − ka)t2), and τu, τv, τa : T× R+ → R are defined in Table 3.
A closer look at the above expressions indicates that in the long term the absolute mean of the response

is dominated by κ = κ(t) which is a function that tends to zero as time goes to infinity. For this reason,

E[u],E[u̇],E[ü]→ 0 as t→∞. (30)

Exact variance. The variance of u, u̇ and ü are given by:

Var[u](t) = κ(t)
(
%u(t, kb)− %u(t, ka)

)
−E[u]2(t) (31a)

Var[u̇](t) = κ(t)
(
%v(t, kb)− %v(t, ka)

)
−E[u̇]2(t) (31b)

Var[ü](t) = κ(t)
(
%a(t, kb)− %a(t, ka)

)
−E[ü]2(t), (31c)

where %u, %v, %a : T×R+ → R are defined in Table 4. In the expression for %u, the function Ci : R+ → R is
the cosine integral given by

Ci(x) = −
∫ ∞
x

cos y

y
dy.

We see that not only the variance of the response is bounded for all t ∈ T, but also as t goes to infinity:

lim
t→∞

Var[u](t) =
1

2
u2 +

1

2
ln

(
kb
ka

)(
m

kb − ka

)
v2 (32a)

lim
t→∞

Var[u̇](t) =
1

4

(
ka + kb
m

)
u2 +

1

2
v2 (32b)

lim
t→∞

Var[ü](t) =
1

6

(
k2
a + kakb + k2

b

m2

)
u2 +

1

4

(
ka + kb
m

)
v2. (32c)

Therefore, the underlying process u is naturally of second-order.
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Table 4: Definition of %-functions for a single-degree-of-freedom system subjected to free vibration with k ∼ Uniform in [ka, kb]

%u(t, k) = − 1
4

{
sin2(ω(k) t)− ω(k) t sin(2ω(k) t)− ω2(k) t2

}
u

2 − 1
2

cos(2ω(k) t) uvt

+ 1
4

{
ln(k)− 2 Ci(2ω(k) t)

}
v
2t2

%v(t, k) = 1
16

{
2 (3ω(k) t− 2ω3(k) t3) sin(2ω(k) t) + 3 (1− 2ω2(k) t2) cos(2ω(k) t) + 2ω4(k) t4

}
u

2t−2

− 1
4

{
2ω(k) t sin(2ω(k) t) + (1− 2ω2(k) t2) cos(2ω(k) t)

}
uvt−1

− 1
4

{
sin2(ω(k) t)− ω(k) t sin(2ω(k) t)− ω2(k) t2

}
v
2

%a(t, k) = 1
48

{
6 (2ω5(k) t5 − 10ω3(k) t3 + 15ω(k) t) sin(2ω(k) t)

+ 15 (2ω4(k) t4 − 6ω2(k) t2 + 3) cos(2ω(k) t) + 4ω6(k) t6
}
u

2t−4

+ 1
8

{
4 (2ω3(k) t3 − 3ω(k) t) sin(2ω(k) t)− 2 (2ω4(k) t4 − 6ω2(k) t2 + 3) cos(2ω(k) t)

}
uvt−3

− 1
16

{
2 (2ω3(k) t3 − 3ω(k) t) sin(2ω(k) t) + 3 (2ω2(k) t2 − 1) cos(2ω(k) t)− 2ω4(k) t4

}
v
2t−2

C. Overview of standard Monte Carlo method

The Monte Carlo method is the most popular numerical technique used in stochastic modeling to quantify
the effects of input uncertainty on system’s outputs. It is basically a ‘brute-force’ method of attack that
typically involves sampling a large number of realizations from the random space to estimate the statistics
of the output. It is well-known that when N realizations are considered, the mean converges asymptotically
as the square root of N−1, and thus, it is remarkably independent of the dimensionality of the random space
[44]. In this paper we use standard Monte Carlo to validate the FSC method in Sections 6.3 and 7.

The general procedure for conducting a standard Monte Carlo simulation is simple. Consider the stochas-
tic system given by (1*):

y(t, ξ) = M[u][x](t, ξ) subject to initial condition I[u](ξ). (1**)

Then:

1. Generate N realizations of the d-tuple random variable ξ in order to obtain the random set {ξi}Ni=1.
These N realizations are based on randomly sampling N points from the random domain Ξ according
to the cumulative distribution function F : Ξ→ [0, 1] given by

F (ξ) =
d∏
j=1

µj
(
(−∞, ξj ]

)
, or equivalently, F (ξ) =

∫ ξ1

−∞
· · ·
∫ ξd

−∞
dµ1 · · · dµd. (33)

This way we can also obtain the input set {x(t, ξi)}Ni=1 for reference purposes.

2. Solve (1**) for each random point ξi to obtain the output set {y(t, ξi)}Ni=1.

3. Aggregate results to estimate the statistics of output y as a function of time. For instance, if we let z
denote the k-th component of y = (y1, . . . , ys), then its statistical mean E∗[z] : T→ R and statistical
variance Var∗[z] : T→ R+

0 are given by:

E∗[z](t) =
1

N

N∑
i=1

z(t, ξi) and Var∗[z](t) =
1

N − 1

N∑
i=1

(
z(t, ξi)−E∗[z](t)

)2
. (34)
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