Journal of Computational Physics 461 (2022) 111205

Contents lists available at ScienceDirect Fﬂ;"s':""““"""
CS,

Journal of Computational Physics

www.elsevier.com/locate/jcp

RotEgNet: Rotation-equivariant network for fluid systems n

Check for

with symmetric high-order tensors

Liyao Gao?, Yifan Du”', Hongshan Li“!, Guang Lin %-*

2 Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA

b Department of Mechanical Engineering, John Hopkins University, Baltimore, MD, USA

¢ Amazon, Santa Clara, CA, USA

d Department of Mathematics and School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA

ARTICLE INFO ABSTRACT
Article history: In the recent application of scientific modeling, machine learning models are largely
Received 11 May 2020 applied to facilitate computational simulations of fluid systems. Rotation symmetry is a

Received in revised form 20 February 2021
Accepted 4 April 2022
Available online 11 April 2022

general property for most symmetric fluid systems. However, in general, current machine
learning methods have no theoretical guarantee of Rotation symmetry. By observing
an important property of contraction and rotation operation on high order symmetric
tensors, we prove that the rotation operation is preserved via tensor contraction. Based

'ﬁfgﬁ;‘fieammg on this theoretical justification, in this paper, we introduce Rotation-Equivariant Network
Tensor analysis (RotEqNet) to guarantee the property of rotation-equivariance for high order tensors in
Rotation-equivariant fluid systems. We implement RotEqNet and evaluate our claims with four case studies on
Fluid systems various fluid systems. The property of error reduction and rotation-equivariance is verified

in these case studies. Results are showing the high superiority of RotEqNet compared to
traditional machine learning methods.
© 2022 Elsevier Inc. All rights reserved.

1. Introduction

With recent developments in data science and computational tools, machine learning algorithms have been increas-
ingly applied in different engineering and science areas to model physical phenomena. The data from physical experiments
and numerical simulations are a source of knowledge about the physical world, on which data-driven methods could be
performed to extract new physical laws [1-6]. For example, in turbulence RANS modeling in fluid mechanics, traditional
modeling methods have failed in many flow scenarios. A unified RANS model that can successfully describe complex flows,
including boundary layer, a strong rotation, separation still does not exist according to the author’s knowledge [7,8]. On
the other hand, advanced measurement and direct numerical simulations provide plenty of data that could be utilized to
establish and validate new models. With the above argument, data-driven methods are particularly suitable for turbulence
modeling and some other areas in physics and engineering. There have been many attempts to discover new turbulence
models using machine learning methods. Milano and Koumoutsakos [9] reconstruct near-wall flow applying neural net-
works and compared their results with linear methods (POD). Zhang and Duraisamy [10] used Gaussian process regression
combined with an artificial neural network to predict turbulent channel flow and bypass transition. Beck, Flad, and Munz

* Corresponding author,
E-mail addresses: marsgao@uw.edu (L. Gao), dyifan1@jhu.edu (Y. Du), lihongshan8128@gmail.com (H. Li), guanglin@purdue.edu (G. Lin).
1 Equal contribution.

https://doi.org/10.1016/j.jcp.2022.111205
0021-9991/© 2022 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2022.111205
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2022.111205&domain=pdf
mailto:marsgao@uw.edu
mailto:dyifan1@jhu.edu
mailto:lihongshan8128@gmail.com
mailto:guanglin@purdue.edu
https://doi.org/10.1016/j.jcp.2022.111205

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

[11] applied residual neural network for Large Eddy Simulation. Chen et al. proposed an ODE network to generally learn
differential equations [12].

The physical laws often appear in the form of tensorial equalities which inherently obey certain types of symmetry. For
example, the constitutive laws in fluid and solid mechanics should obey translation and rotation invariance [13]. Physical
symmetries mostly appear in the form of invariance under continuous group actions on the tensorial equalities. The preser-
vation of symmetries is essential for simulation algorithms to capture physical reality, and often difficult to achieve in both
traditional numerical methods and data-driven machine learning methods. For example, neural networks and most of the
deep learning methods do not naturally guarantee rotation equivariance when they are used as approximators between
the Cartesian components of tensors. Although the universal approximator theorem guarantees convergence to any com-
pact supported functions [14] including rotation equivariant functions, the symmetry is not generally preserved for training
results from finite sample points.

There have been different attempts to achieve rotation equivariance in deep learning of turbulence RANS models, which
also appear as local tensorial equality between mean velocity gradient and Reynolds stress. Data augmentation is one simple
way of improving symmetry preservation in deep learning methods of physical laws. In [15], an augmented dataset is
generated by rotating the existing sample points in arbitrarily different directions. The training cost increases significantly
while the prediction is still far from rotation equivariance. Data augmentation method achieves rotation equivariance at
infinite sample limit by universal approximation theorem, but normally fails on finite sample set.

Another method that has been explored in previous research requires the construction of integrity basis on first and
second-order tensors. In [15,16], Reynolds stress is expressed as a general expansion of nonlinear integrity basis multiplied
by scalar functions of invariants of strain rate and rotation rate tensors. Machine learning is performed to find these scalar
functions of tensor invariants of strain rate and rotation rate tensors. Mathematically this expansion comes from an ap-
plication of the Caylay-Hamilton theory. The special case used in [15,16] is derived by S.B. Pope in [17]. Although such
construction is general and possible for higher-order tensors and tensor tuples containing multiple tensors, the number of
this basis and the derivation complexity will grow exponentially and become prohibitive for real applications [18,19].

There have been previous works considering group-equivariance with convolutional neural networks (CNN) in image
recognition. A general method has been proposed using group convolution [20-22]. Based on the idea of using convolution,
several methods composed a steerable filter for rotation-equivariance in convolutional neural networks [23-27]. However,
these works cannot be applied directly to physical systems. One of the most important reasons is that the rotation operation
on the image is different from rotation operation on physical systems. The rotation on image is a global coordinate transfor-
mation, which is different from tensor rotation [28]. Additionally, these methods have a strong restriction that this model
must be built on CNNs. CNNs are not well suitable for the approximation of tensorial equations, which lack the spatial scale
similarity that is often explored in a natural image by CNNs.

In this paper, we establish Rotation-Equivariant Network (RotEqNet), a data-driven framework for learning equalities
from tensorial data which exactly satisfies rotation-equivariance with finite samples. We first establish a general method to
achieve rotation equivariance on the learning of equalities from 1st and 2nd order tensorial data using diagonalization. Then
through tensor contractions, the problem of preserving rotation equivariance for higher order tensorial data is reduced to
lower order problems, which have been established in previous step. In the realization of rotation equivariance, a rotation
matrix can be extracted from the sample data, which is applied to transform sample data to its standard position. Standard
position algorithm is proven to truncate infinite rotation group into a learnable finite group in Lemma 3.1. Therefore, the
learning rules based on standard position are forming a quotient space of the original rules in random rotated plural position
[23,29]. In this way, RotEqNet lowers the training difficulty of a randomly positioned dataset and leads to finite learnability
of RotEqNet in Theorem 1. Further, RotEqNet is also proven to be rotation-equivariant in Theorem 2. These advantages of
RotEqNet would result in an observable error reduction compared to previously introduced data-driven methods.

We applied RotEqNet into four different case studies ranging from second-order, third-order, and fourth-order. These case
studies are designed based on Newtonian fluids, Large-eddy simulations, and Electrostriction. Improved performances could
be observed for using RotEqNet. We show the rotation error could be reduced to machine precision, and the prediction
errors are reduced for 99.6%, 32.17%, and 54.63% for second, third, forth-order case studies respectively. The error from
random rotation reaches machine precision for RotEqNet in all tested cases. Our contribution in this paper is three-fold:

1. We design a position standardization algorithm that could find the standard position for arbitrarily rotated tensors. We
prove this algorithm would truncate infinite rotation group into finite groups for machine learning.

2. We propose and analyze RotEqNet which could obtain rotation-equivariance property with finite training samples. RotE-
qNet has the theoretical guarantee to improve generalization with lower testing errors.

3. We implement RotEqNet with various case studies to show its improvement to baseline methods with data augmenta-
tion. The generalization error on random rotations reaches machine precision.

2. Problem description
In this paper, we aim to build a Rotation-equivariant model with machine learning algorithms using finite samples. Firstly,

for a machine learning model, it is generally not built up with rotation-equivariance. As a typical solution, data augmentation
has been largely applied by increasing training data with random rotations. However, to guarantee the learnability from a

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

continuous rotation group, it will require infinite amount of samples. This would harm the performance of machine learning
model leading to a high generalization error. We formalize the above problems into the following parts.

2.1. Rotation-equivariant machine learning: idea and definition

Group equivariance is an important property for most physical systems. Typical cases of group equivariance could
be rotation group equivariance, scaling group equivariance, and translation group equivariance. Modeling rotation group
equivariance in fluid dynamics prediction is critical to real life applications like atmospheric air currents simulation. Math-
ematically, group equivariance is a property defined as follows.

Definition 2.1 (Rotation-equivariant functions). A mapping f : X — Y to commute from X to Y under rotation group actions.
Specifically, let R € SO (n) be a rotation action. f is rotation-equivariant if

f(Rx))=R(f(X)), YReSO(m), x€ X. 1)

Consider supervised learning models as functions, name a parametric machine learning model M : X — Y. For a rotation
operation R, we define this ML model to be rotation-equivariant as the following:

Definition 2.2 (Rotation-equivariant ML model). A model M is rotation-equivariant if
M(R(x)) = R(M(x)), YReSO0(n), xe X. (2)

Here, notice this property is generally not true as long as M is non-linear. Modern machine learning algorithms are
typically non-linear, which are not naturally Rotation-equivariant.

2.2. Learnability with finite samples

Machine learning could only be trustworthy if it is learnable within finite samples. Suppose we have a set of dataset
which is finite learnable. From probably approximately correct (PAC) learning [30] point of view, we can assume a hypothesis
class H which is learnable with finite samples D = {(x;, y;) : xj € X, y; € Y}?:l.

Finite learnable typically represents the data that can be shattered into finite sets. If an arbitrary large subset can be
shattered, since its VC dimension is oo, this would not be finite learnable. Building on a finite learnable 4, we further
define the extension of this hypothesis class with a group action by the following:

Definition 2.3 (Group action on hypothesis class). Suppose an unknown distribution function 9 can be learned by a realizable
hypothesis class H. G is a group. The G-extension of this hypothesis class of #H is G(#), which is realizable on the group
action G on D.

Since H is realizable on D, according to Realizability Assumption, we know there exists h* € H such that the training
loss Lp ¢(h*) = 0. For a realizable hypothesis class on G(D) = {(g(x), g(y)) : Vg € G}, it can be only true on a hypothesis
space with larger expressive power. We denote this extended hypothesis class by G(H).

We introduce a Lemma here to qualify when the cardinality of G is finite for G(#), we still have finite learnability.

Lemma 2.4 (Finite learnability). Suppose G is a group, and H is a finite learnable hypothesis class. If |G| is finite, G(H) is finite
learnable. If |G| is infinite, G(H) is not finite learnable.

We include the proof in Appendix B via VC dimension [31,30].
Remark 1. For a rotation group Gso3), in general, Gso3)(H) is not finite learnable.

To guarantee M could learn Gso(3)(#), applying data augmentation requires infinite amount of training samples to
guarantee the learnability (Remark 1). In the practice of fluid dynamic modeling, we could only generate finite data for ML
models. The requirement of infinite samples would cause the trained ML model to be ill-conditioned. In our paper, we aim
to solve the problem of rotation-equivariant machine learning with finite number of samples. This would allow ML models
could be easily generalized on the testing set, with low training effort and high accuracy.

3

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

Rotation
Matrix

Even order
Standardization

Predictor —

Output

0dd order
Standardization

“\ Machine Learning Model
[
|

> «

Standard
Position

Fig. 1. Rotation-equivariant Network Architecture.

3. Rotation equivariant network

In this section, we propose a Rotation Equivariant Network (RotEqNet) architecture to learn constitutive laws of higher
tensors in fluid systems with rotation-equivariance. The general process of RotEqNet is described in Fig. 1 with 3 steps:

1. This step is position standardization. For an input data X, S(X) is the standard position of X. The algorithm treats input
tensors differently for even and odd orders.

2. Train a machine learning model based on (S(X), S(y)). The machine learning model in the middle of Fig. 1 only needs
to learn the standard positions of X, y.

3. Denote the kernel machine learning model in the middle of Fig. 1 as Mg. After Mg is trained, in the inference stage,
suppose for an input X, X = R(S(X)), the RotEqNet is defined as

Mg =R~ (Ma(R(S(X)))) (3)

as the prediction of X. Here, R is determined by position standardization algorithm S.
3.1. Position standardization algorithm for high order tensors

Let D denote as our data set. The first stage of RotEqNet is to find a good representative of randomly rotated tensors.
We will call this representative the sample in standard position (Xs,Ys). S is the position standardization algorithm. ®(T)
denotes a set generated by all standard positions of T.

The position standardization algorithm is defined as follows. For a tensor T, we aim to find a representative in the
orbit O(T), (where O(T) ={R-T|R € SO (n)}), as the standard position of T [32]. In our algorithm, we first perform tensor
contraction to higher-order tensors. Then, we use diagonalization and QR factorization to obtain rotation information R in
lower-dimension. Finally, R is used to rotate the tensor to its standard position. This final operation, using lower-dimension
R to find standard position in original dimension, is compatible as shown in Lemma A.3.

The purpose of position standardization algorithm is to perform data reduction on the rotation group. Instead of per-
forming machine learning on Gso3)(H), we wish to distill ancillary information and learn only on Go(H) where Go is
finite.

3.1.1. Position standardization: tensor of even-order
Given a symmetric tensor of even-order T" € "V (n is even). Let C denote a sequence of contraction along the first two
axes until we reach a second-order tensor (Fig. 2). Applying C to T" we get:

T2 =C(T" (4)

Then we find the orthonormal eigen-vectors of T2 and use them to form the orthonormal matrix R that diagonalize
T2. Technically, orthonormal eigen-vectors are not unique with random sign and permutation (see Appendix). We choose R
where the first row of R is positive and sort the order of eigen-vectors (ascending from left to right in rotation matrix R)
using the corresponding eigenvalues. This ensures this process is well-defined.

T2=R'xD xR (5)
Since R is an orthonormal matrix, we have

R'=RT (6)

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

T1l.
Contraction
"= 2
Contraction " i
| S(T™)
T v
Diagonalization i l

R—l

Fig. 2. Rotation-invariant extraction for even-order.

We will call D the standard position of T2. We write R(T%) = D to shorten the notation
Since contraction and rotation are compatible by Lemma A.3. We can apply R to T" before we apply contraction, and we
will have

C(R(T")=D (7)
For the even tensor T", we could obtain
S(T™)y=R™1(TM, (8)

as its standard position.

3.1.2. Position standardization: tensor of odd-order
Given a symmetric tensor of an odd-order tensor T" € ®"V (n is odd). Let C denote a sequence of contraction along the
first two axes until we reach a third-order tensor (Fig. 3). Applying C to T" we get:

T3 =c(Th (9)

After we obtain T3, we could obtain three different order-one tensors by contracting it along axes (2,3), (1,3) and (1,2).
Name the contracted results, which are first-order tensors i.e. vectors, V1, Va2, V3. We could get an second-order tensor by
concatenating them.

T2 = (Vy, V3, V3) (10)

Then, we perform QR factorization to obtain rotation matrix R. We can execute the QR decomposition via Gram-Schmidt
to ensure R is well-defined.

T? =R x U?, (11)

For odd tensor, we define:

S(T" =R~ (M (12)
The pseudocode of our proposed algorithm is documented in Algorithm 1.
3.2. Theoretical analysis of rotation-equivariant property
In our analysis, we aim to show the rotation-equivariant property is able to be obtained with finite samples for RotEqNet.

The first step is to analyze the property of standard positions of any T would form a finite set. Then, we construct rotation-
equivariant property based on our model’s algebraic structure.

3.2.1. Main theorems and proofs
Since we will perform machine learning on ®(T) instead of Gso3)(T), we wish to show that ®(T) is finite. We introduce
the following Lemma to show & is a finite group.

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

™"
Contraction
TTI—Z
’I%]'k > i
i i k n
Contraction j S(T)
A 4
7
==
i
1 1 il
T y T

\ 4
3
=

T2

v

-

Fig. 3. Rotation-invariant extraction for odd-order.

QR Factorization

Algorithm 1 Position standardization algorithm.
1: function POSITIONSTANDARDIZATION(T)

2: T"=T
3: if T is in even then
4: # For even cases
5: while order(T™) # 2 do
6: T"=2 = contraction(T" — T" 2,1, 2)
7: T =T7""2
8: end while
9: T2=T"
10: RotMat = leftEigenvector(T?)
11: Ts = tensorRotation(RotMat, T)
12: else
13: # For odd cases
14: while order(T™) # 3 do
15: T"=2 = contraction(T" — T"~2,1,2,3)
16: T =T""2
17: end while
18: 3=1"
19: V1, Va, V3 = contraction(T? — T1, 2, 3), contraction(T®> — T1, 1, 3), contraction(T> — T',1,2)
20: T2 = concat(Vy, Va, V3)
21: RotMat = Q R(T?)
22: T = tensorRotation(RotMat, T)
23: end if
return R, T

24: end function

Lemma 3.1. For all standard positions of T, let ®(T) = {S(R(T)) : VR € SO(3)} be the set of all standard positions (derived by
algorithm S) of randomly rotated T. We have

1. ® is a group.

2. ®(T) is a finite set and

|®(T)| =1, T is second-order or odd-order tensor,

13
|®(T)| =8, T is even-order (> 4) tensor. (13)

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

This lemma is purely technical by verifying different orders of tensors. We provide the proof in Appendix D. Using
Lemma 3.1, we can construct finite learnability of RotEqNet in the following theorem.

Theorem 1. Suppose H is realizable hypothesis class of D, G¢(H) is a realizable hypothesis class of G(D). If H is finite learnable,
Go (H) is finite learnable.

Theorem 1 is a direct application of Lemma 3.1. Using Theorem 1 we can obtain finite learnability of the kernel of
RotEqNet. Compare to infinite sample requirement for data augmentation, RotEqNet truncates the infinite rotation group
into finite groups, resulting in only finite sample requirement. We provide a proof in Appendix E.

Theorem 2 (Rotation-equivariant). Suppose a well-trained RotEqNet Mg is trained with dataset D = {X;, y;}}_, withloss Lp(Mg) =
0. This well-trained Mg is rotation-equivariant, i.e. for all rotation R € SO (n) and input tensor X;

Mg(R(Xi)) = ROMg(Xi)) (14)
Theorem 2 completes the proof of rotation-equivariant property of RotEqNet. We provide details in Appendix F.

3.2.2. Analysis on testing error improvements

Comparing the data augmentation, the design of RotEqNet improves the model by reducing the following three errors:
approximation, optimization, and generalization. We could define generalization error from testing loss decomposition. The
testing loss Leess(M?) can be decomposed into the following,

Leest (M?) = Lerain(M?) + Leest (M?) = Lrain(M?)
= ming Lerain(M?) (Approximation error)
+Lirain(M?) — ming Lirgin(M?) (Optimization error)
+Ltest (M®) — Lergin(M?) (Generalization error). (15)

For approximation errors, the truncation of the SO (3) group will relax the difficulty in approximation. The learning task
of RotEqNet only targets on a much smaller functional space with nearly R""/S0(3). This will lower the approximation
error. Further, the optimization error could also be controlled based on finite sample size. Different from data augmentation,
RotEqNet can achieve convergence within finite time. The generalization error is also proven to be smaller specifically on
the generalization on the entire SO (3) group. Applying RotEqNet, we expect to see loss reduction numerically compared to
data augmentation.

4. Case studies

In this section, we conduct cases studies to show the performance of RotEqNet. In the following subsections, we include
second-order, third-order, and fourth-order testing equations. The interpretation of experimental results is included in each
subsection separately.

4.1. Machine learning model and evaluation metrics

Model setup. The machine learning model we apply here is neural networks and random forests because of the ability of
these two models to approximate arbitrary functions. For Neural Networks, in our implementation, the logistic activation
function is used as an activation function for every neuron. The number of neurons for two layers is 512 and 4, respectively.
Adam optimizer [33] is applied as the algorithm for optimization, and the learning is set up to be 1 x 10~3. We also set the
batch size to be 64. For random forests, 100 estimators are set up with mean squared error as the criterion. The maximum
depth of random forests is 3 to lower the chance of overfitting. We used Sklearn for implementation [34]. The computation
environment of this experiment is CPU.

Prediction error in MSE. The effect of error reduction is evaluated for the first. A standard position predictor is trained by
standard positions derived from training data using Algorithm 2. Then, the prediction algorithm is applied to both training
and testing set to obtain the training and testing performances. The validation error Eys is defined as the Mean Squared
Loss using the formulation that:

YN i = M(X)?
o N

In Eqn. (16), N is the number of data in dataset D, M is the trained machine learning model, and (Xj, y;) € D describes the
input-output pair of the dataset. This evaluation Eys represents the MSE of model M with dataset D.

Ems (16)

7

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

Rotation-equivariance error. There are two metrics in this case study. The first metric, as defined in the following, describes
the error of rotation-equivariance for the model itself.

Er(M) = E [IM(R(X0)) = RMXo)I] (17)

R is a random variable with all possible rotations and Xy € X. Note here if a parameterized model M have &y =0, we
know from definition that M is rotation-equivariant.

To empirically evaluate &y, first, we randomly generate data (Xo, yo). Then we apply the rotation set {R;}/%%% with
10,000 random rotation matrices to (Xp, yo). To fully investigate the property of rotation-equivariant, there are two different
measurements of the rotation-equivariant property of a specific model.

Another error metric here is the standard L2 error defined as &p is the error of model with respect to data, which is
defined in the following:

Ep(M) =E [IMRX) — RWI],
R is a random variable with all possible rotations and (Xp, yo) is an input-output pair from the learning target.
4.2. Case study from Newtonian fluid: a second-order linear case

4.2.1. Problem statement and data generation

Newtonian fluid is a type of fluid such that its viscous stress changes based on its flow. In this experiment, we aim
to use simulation data to demonstrate this rule of Newtonian fluid. This would serve as a case study with second-order
linear equations. Let o € R3*3 be stress tensor, p € R pressure and S € R3*3 strain rate. The rule of Newtonian fluid is a
second-order physical equation which satisfies the following condition [35]:

o =—pl+pus (18)

Another definition of the equation for Newtonian fluid would use the velocity vector field, defined as Vv. Vv could be
expressed as a 3 x 3 matrix. Using this definition, the equation of Newtonian fluid could also be written as:

o =—pl+u(Vv+Vvh) (19)

This could also be considered as the definition of strain rate Based on this definition, we could observe that S = Vv +
vvT, and it is symmetric since S = ST. Since S is symmetric and I is an identity matrix, o is also symmetric. Therefore,
defining an arbitrary rotation matrix R, this system is equipped with the property of rotation-equivariant that R(o) =
R(—pl + uS).

To quantify the stress for Newtonian fluid simulation, it would be useful to be able to predict the Newtonian fluid stress,
given the simulation of pressure and velocity vector field. Based on this scenario, in this subsection, we provide a case study
for the machine learning model on inputting the shear of Newtonian fluid and prediction of the stress.

Based on Eqn. (19), we first generate random data to obtain Vv and p. The generation of random numbers in Vv follows
a normal distribution from range (0, 1). Derived from generated Vv and p, we could obtain o from Eqn. (19). We denote
the dataset as D = {x;, yi}f\’: ;- To form a proper dataset D with N elements for a machine learning model for Newtonian
fluid, the input x is set up to be a vector where x € R0, Specifically, x is composed by p and flattened S in Eqn. (18).
The output y € R? is a vector which is the flattened result of matrix o derived by p and S. The dataset D is set up as
the description above. To compare the difference of our method to the baseline method, we trained two models with the
same hyper-parameter using different amounts of training data, ranging from 10, 000, 20, 000, ..., 100, 000. 85% of generated
data is used for training and 15% of data is used for testing. A rotation set with 10,000 random rotation matrices is also
generated for evaluating the property of rotation-equivariant, denoted by {Ri}i]g?oo.

4.2.2. Results

Fig. 4(a) shows the error reduction property of RotEqNet. This plot consists of three groups of experimental groups. The
first experiment group focuses on the accuracy of the baseline model, a single feed-forward Neural Network, on raw data
with random rotated positions. As represented by blue curves in Fig. 4(a), the triangle curve represents training error and
the circle curve represents testing error. The second experiment group is RotEqNet with Neural Network as the standard
position predictor. As represented by red curves in Fig. 4(a), the triangle curve represents training error, and the circle
curve represents testing error. For 100,000 training samples, the testing error of RotEqNet is 0.0037, and the testing error
of the baseline method is 1.333. We could observe a huge error reduction 99.56% in training and 99.60% in testing. The
last experiment group, represented by a black curve in the figure, reports the performance of standard position predictor
with standard position only. This experiment would explain why RotEqNet would improve performance since training with
standard positions would be an easier task compared to raw data.

Further, Fig. 4(b) shows the error reduction effect of RotEqNet using Random Forest as a standard position predictor.
Similarly, as shown in Fig. 4(b) with blue curves, it represents the performance of the baseline method (Random Forests).

8

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

(E)
3

Error loss
Error loss (E)

—A— Kernel Predictor Training Loss
—6— Kernel Predictor Testing Loss
—A— Random position Training Loss
—6— Random position Testing Loss
—&A— RotEqNet Training Loss
—6— RotEqNet Testing Loss

10 L L L L L L L L 05 I I I I I I L L
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Number of training points x10% Number of training points %104

(@) Neural Networks (b) Random Forests

Fig. 4. Error of training with baseline model with random position, RotEqNet, and standard position predictor with the standard position for (a) Neural
Networks and (b) Random Forests in the case study of Newtonian Fluid. Different colors represent different experimental groups. The RotEqNet model is
trained with random positions and tested with random positions (red curves). Baseline models that trained and tested on raw data are shown as blue
curves. The performances of standard position predictors that trained and tested with only standard positions are also shown as black curves. Training
errors are shown with lines marked with triangles, testing errors are shown with lines marked with circles. (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

Table 1

Evaluation of Rotation-equivariant property between baseline model and RotEqNet.
Model Baseline (NN) RotEqNet (NN) Baseline (RF) RotEqNet (RF)
Em 0.6973 8.4594 x 10732 0.5177 0.0
&p 0.4872 0.0011 0.6243 0.0592

The second experiment group is RotEqNet with Random Forests as the standard position predictor. As shown in Fig. 4(b)
in red curves, the triangle curve represents training error and the circle curve represents testing error. We could observe
a huge error reduction, 99.56% in training and 99.72% in testing, for RotEqNet compared to the error of using only the
Random Forest predictor. The last experiment group (black curves in the figure) trains the standard position predictor with
standard position only. As stated before, this could also serve as a reason for the error reduction effect for RotEqNet on
random forests.

According to the reported results, RotEqNet has a good generalization result without overfitting. For cases training with
raw data for baseline models, the testing error is typically higher compared to training error. For example, the difference is
training and testing errors are 0.44 for Neural Networks, 1.01 for Random forests when N = 100, 000. This represents that
for both Neural Networks and Random Forests would be easy to overfit this task on Newtonian Fluid. By contrast, RotEqNet
would help to reduce this difference in training and testing error. As we could observe from the training and testing error
of RotEqNet, the errors are much lower. When N = 100, 000, there are only 0.0002 for Neural Networks and 0.0078 for
Random Forests. In the case of linear second-order equations, the application of RotEqNet would result in better-generalized
results in learning.

As shown in Table 1, for both baseline methods, using neural networks and random forests, there are large errors for
Em and Ep. The baseline methods have no theoretical guarantee that it has the property of rotation-equivariant. However,
there is error reduction for both machine learning models when applying with RotEqNet’s architecture. For RotEqNet with
Neural Networks as standard position predictor, we have &y = 8.4594 x 10732 and &p = 0.0011. For RotEqNet with Random
Forests as standard position predictor, we have &y = 0.0 and Ep = 0.0592. This very low error of &y could guarantee the
rotation-equivariant property of RotEqNet.

Fig. 5 is a visualization of our tested case with contour plot of RotEqNet and baseline models. The x-axis is p and y-axis
is So,0. The color map is representing the numerical result of og . RotEqNet is reaching lower error with similar contour
pattern compared to true data. We could observe that the plotting of RotEqNet (the top middle plotting) has nearly identical
trend and numerical range to true data. The plotting of baseline method (the bottom middle plotting) is mainly predicting
values in range [0.0, 1.0), which causes its color to be blue and white. Therefore, we could make a further conclusion that
RotEqNet has a better result in flow simulation for the second-order linear cases.

L. Gao, Y. Du, H. Li et al.

Journal of Computational Physics 461 (2022) 111205

200 10 200 10 0007
175 175
08 08 0005
150 150
0005
125 . 125 .
0004
100 . 100
075 04 075 - 0003
050 050 0.002
02 }
025 025 0001
000 00 000 ! . . :
00 02 04 06 08 10 00 02 04 06 08 10
10 200 10 200 10
175 175 09
08 08 08
150 150 -
125 125
06 06 06 ai
100 100
04 075 - 075 04 06
050 050 05
02 . 02
025 025
04
00 000 00 000 00
00 02 04 06 08 10 00 02 04 06 08 10 00 02 04 06 08 10

Fig. 5. Comparison of contour plot with RotEqNet and baseline method for the second-order linear case study. First row: RotEqNet, second row: baseline
(Neural Network). Left column: true data, middle column: predicted solution, right column: L1 difference between the true data and prediction.

4.3. Case study from large Eddy simulation: a second-order nonlinear case

4.3.1. Problem statement and data generation

In this case, we consider the subgrid model of large eddy simulation (LES) of turbulent flow by Kosovic [36]. In this case
study, as formulated previously in [37,38], we hope to obtain a learned model by simulation data from LES. This would
serve as a case study with second-order non-linear equations. LES is defined as:

Tij = —(CsA)? {2\/ 2SmnSmnSij + C1 <5ik5kj - %Smnsmnaij> + C2 (SiS2j — Qikskj)} (20)
Here 7;; is subgrid stress, which is a symmetric traceless 2nd order tensor. S;; and €;; are symmetric and anti-symmetric
parts of velocity gradient tensor G;j, where Tr(G) = 0. Further, Cs, A, Cy, C; are all constants. The configuration of constants
above is reported in the next subsection.

In order to qualify the subgrid stress for LES, this study aims to predict the subgrid stress, given the simulation of
velocity gradient tensor. This case study for the machine learning model on inputting the velocity gradient tensor.

Based on Eqn. (20), we first generate random data to obtain a simulated velocity gradient tensor G;j. The generation
of random numbers follows a normal distribution from range (0, 1), and G;; is obtained from a random matrix Gqw by
subtracting %Tr(GmW) from diagonal position. This would keep Tr(G) = 0. S;; and ;; could be obtained from G;; by getting
its symmetric and anti-symmetric parts. For the setup of constants, Cs =0.4, A =0.4, (1 = C; = 1.0. 7;; is computed from
the above setting with Eqn. (20). Denote the dataset as, D = {x;, yi}f\’: 1- To form a proper dataset D with N elements for a
machine learning model for Newtonian fluid, the input x is set up to be a vector where x € R?. Specifically, x is composed by
flattened Gjj. The output y € R? is a vector, which is the flattened result of matrix t derived by G and other constants. To
compare the difference of our method to the baseline method, we trained two models with the same hyper-parameter using
different amounts of training data, ranging from 10, 000, 20, 000, ..., 100, 000. 85% of generated data is used for training, and
15% of data is used for testing. A rotation set with 10,000 random rotation matrices is also generated for evaluating the
property of rotation-equivariant, denoted by {R;}}29%.

4.3.2. Results

The effect of error reduction is evaluated, which the validation error Eys is defined as the Mean Squared Loss using the
formulation in Eqn. (16). This evaluation &ys represents the expected error of model &y with dataset D.

Fig. 6(a) shows the error reduction effect of RotEqNet with Neural Network as a standard position predictor for second-
order nonlinear cases with three groups of experimental groups. The first experiment group focuses on the accuracy of the
baseline method on raw data with random rotated positions. As shown in Fig. 6 with blue curves, triangle curve represents
training error and the circle curve represents testing error. The second experiment group is RotEqNet, with Neural Network
as a standard position predictor. As shown in Fig. 6(a) in red curves. For 100,000 training samples, the testing error of
RotEqNet is 0.1391, and the testing error of the baseline method is 0.2946, with 52.77% of error reduction. The performances
of the last experiment group are marked as black curves in the figure, with only standard position trained for standard
position predictor.

L. Gao, Y. Du, H. Li et al.

Error loss (E)

Error loss (E)

Journal of Computational Physics 461 (2022) 111205

T T T
—A— Kernel Predictor Training Loss

0.45 —©— Kernel Predictor Testing Loss |
—A— Random position Training Loss
04F —6— Random position Testing Loss ||
—&A— RotEgNet Training Loss
—&— RotEqNet Testing Loss 1

?’-——e\e———e——e\—e———e—e——e———é

03 q

I

N

o
I

o
)
T

I

0.15 &
) —1 fw—e—ég
&
0 A A A
I I I I | I 0.1 I I I . I I I |
1 2 3 4 5 6 9 10 1 2 3 4 5 6 7 8 9 10
Number of training points x10% Number of training points 104

(@) Neural Networks

(b) Random Forests

Fig. 6. Error of training with baseline model with random position, RotEqNet, and standard position predictor with the standard position for (a) Neural
Networks and (b) Random Forests in the case study of large eddy simulation. Different colors represent different experimental groups. The RotEqNet model
is trained with random positions and tested with random positions (red curves). Baseline models that trained and tested on raw data are shown as blue
curves. The performances of standard position predictors that trained and tested with only standard positions are also shown as black curves. Training
errors are shown with lines marked with triangles, testing errors are shown with lines marked with circles.

Table 2
Evaluation of Rotation-equivariant property between baseline model and RotEqNet.

Model Baseline (NN) RotEqNet (NN) Baseline (RF) RotEqNet (RF)
Em 0.2804 1.8895 x 10716 0.3264 0.0
&p 0.2029 0.005 0.4799 0.2090

Based on the experimental results, firstly, RotEqNet could reach a better learning performance compared to simply apply-
ing Neural Networks (baseline method). Training with standard positions could lower the training difficulty, and therefore
RotEqNet could obtain better performance. Further, Fig. 6(b) shows the error reduction effect of RotEqNet using Random
Forest as a standard position predictor. The general performance of using Random Forests as a standard position predictor
is relatively worse compared to using Neural Networks as a standard position predictor. In Fig. 6(b), blue curves represent
the performance of training with raw data by Random Forests (baseline method); red curves represent the performance of
RotEqNet; black curves represent the performance of standard position predictor trained with standard positions. We could
observe an error reduction for 36.63% in training and 57.58% in testing for RotEqNet with Random Forests.

Moreover, RotEqNet has a good generalization result without overfitting. Applying raw data in learning directly on base-
line models, the testing error is much higher compared to the training error. For example, the difference is training and
testing errors are 0.0068 for Neural Networks, 0.1068 for Random forests when N = 100, 000. It is also observable in
Fig. 6(a) that the training error of the baseline model with raw data is the lowest, while the testing error of the baseline
model is the highest. In this case study, Neural Networks are worse for the sake of overfitting compared to Random Forests.
By contrast, introducing the architecture RotEqNet would help to reduce this difference in training and testing error. As we
could observe from the training and testing error of RotEqNet, the errors are much lower. When N = 100, 000, there are
only 0.0046 for Neural Networks and 0.0022 for Random Forests. In this case study of LES, the application of RotEqNet
would result in better-generalized results in learning.

As shown in Table 2, for both baseline methods, using neural networks and random forests, there are large error for
&Em and Ep. The baseline methods have no theoretical guarantee that it has the property of rotation-equivariant. However,
there is an error reduction for both machine learning models when applying with RotEqNet’s architecture. For RotEqNet
with Neural Networks as standard position predictor, the errors are &y = 1.8895 x 10716 and &p = 0.005; for RotEqNet
with Random Forests as standard position predictor, the errors are &y = 0.0 and Ep = 0.2090. This very low error of Ey
for RotEqNet could guarantee the rotation-equivariant property for nonlinear second-order cases.

Fig. 7 is a visualization of our tested case with contour plot of RotEqNet and baseline models. These contour plots are
resulted from changing Go,o using range (0, 1). The color map is representing the numerical result of 7p . RotEqNet is
reaching lower error with similar contour pattern compared to true data. We could observe that the plotting of RotEqNet
(the top middle plotting) has identical trend and numerical range to true data. The plotting of baseline method (the bottom
middle plotting) is mainly predicting values in range [10, 15), which causes its color to be blue. We could make a further
conclusion that RotEqNet is performing better in this case of second-order non-linear flow simulation.

11

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

30.0 30.0
215 215
07
2.0 2.0
25 25 06
20.0 20.0
05
175 175
15.0 15.0 04
25 25
03
10.0 10.0
06 08 10 06 08 10 10
10 30.0 10 30.0 10
18
215 215
08 08 08
2.0 2.0 1
1
06 25 06 25 06
20.0 20.0 12
04 175 04 175 04 10
15.0 15.0 8
02 02 02
25 25 6
00 10.0 00 10.0 0.0 "
00 02 04 06 08 10 00 02 04 06 08 10 0.0 02 04 06 08 10

Fig. 7. Comparison of contour plot with RotEqNet and baseline method for the second-order nonlinear case study. First row: RotEqNet, second row: baseline
(Neural Network). Left column: true data, middle column: predicted solution, right column: L1 difference between the true data and prediction.

4.4. Case study from testing Newtonian fluid equation: a third-order case

4.4.1. Problem statement and data generation

In this section, we study the performance of RotEqNet for tensor with odd-order. In this case, we specifically set a
third-order test equation. We used a test equation here revised from Newtonian fluid equation from Eqn. (19). We name
this testing equation as ‘testing Newtonian fluid equation’ for simplicity. The testing equation revised from Newtonian fluid
equation can be described as:

o=—pl+u(Vv+vvh, (21)

where o € R3*3%3 s testing stress, p € R is testing pressure, and v € R3*3*3 is testing velocity field. I € R3*3*3 is the
identity third-order tensor.

Based on this testing equation, we could observe that (Vv + VvT)T = Vv 4+ VvT. Since Vv 4+ VvT is symmetric, and I
is symmetric, we have o is also symmetric. Therefore, defining an arbitrary rotation matrix R, this system is equipped with
the property of rotation-equivariant that R(c') = R(—pI + (Vv + VvT)).

In order to qualify stress for testing the Newtonian fluid equation, this study aims to predict the stress, given the sim-
ulation of pressure and velocity gradient tensor. This case study for the machine learning model on inputting the pressure
and velocity gradient tensor.

Based on Eqn. (21), we first generate random data to obtain Vv and p. The generation of random numbers in Vv follows
a normal distribution from range (0, 1). o could be obtained using the Eqn. (21), derived from generated Vv and p. Denote
the dataset as, D = {x;, y,-}lN: ;- To form a proper dataset D with N elements for a machine learning model for Newtonian
fluid, the input x is set up to be a vector where x € R?8. Specifically, x is composed by p and flattened (Vv 4+ VvT) in
Eqn. (21). The output y € R%7 is a vector which is the flattened result of matrix o. The dataset D would set up in the
description above. To compare the difference of our method to the baseline method, we trained two models with the same
hyper-parameter using different amounts of training data, ranging from 10, 000, 20, 000, ..., 100, 000. 85% of generated data
is used for training and 15% of data is used for testing. A rotation set with 10,000 random rotation matrices is also generated
for evaluating the property of rotation-equivariant, denoted by {R;}/%9%.

4.4.2. Results

Fig. 8(a) shows the error reduction effect of RotEqNet with Neural Network as a standard position predictor for third-
order cases with three groups of experimental groups. The first experiment group focuses on the accuracy of the baseline
model (Neural Network) on raw data with random rotated positions as shown in Fig. 8(a) with blue curves. The second
experiment group is RotEqNet, with Neural Network as standard position predictor as shown in Fig. 8(a) in red curves. For
100,000 training samples, the testing error of RotEqNet is 1.6770 and the testing error of baseline method is 2.4723 with
32.17% of error reduction. The performances of the last experiment group are marked as black curves in the figure, with
only standard position trained for standard position predictor.

Based on the experimental results, for the third-order testing equation, RotEqNet could reach a better learning perfor-
mance compared to the baseline method. Training with RotEqNet could lower the training difficulty, and therefore RotEqNet

12

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

3 2.7 T T T T T T T T
26 —&A— Kemel Predictor Training Loss |
—6— Kernel Predictor Testing Loss

—A— Random position Training Loss
2.5 —&— Random position Testing Loss

—4A— RotEqNet Training Loss
25 < oal —6— RotEqNet Testing Loss 1

)
©
T

I

N
T
|
Error loss (E)
N
LN
?
I
B

Error loss (E)

21 —

1 2 3 4 5 6 7 8 9 10
Number of training points x10% Number of training points x10%
(@) Neural Networks (b) Random Forests

Fig. 8. Error of training with baseline model with random position, RotEqNet, and standard position predictor with the standard position for (a) Neural
Networks and (b) Random Forests in the case study of testing Newtonian Fluid equation. Different colors represent different experimental groups. The
RotEqNet model is trained with random positions and tested with random positions (red curves). Baseline models that were trained and tested on raw data
are shown as blue curves. The performances of standard position predictors that trained and tested with only standard positions are also shown as black
curves. Training errors are shown with lines marked with triangles, testing errors are shown with lines marked with circles.

Table 3

Evaluation of Rotation-equivariant property between baseline model and RotEqNet.
Model Baseline (NN) RotEqNet (NN) Baseline (RF) RotEqNet (RF)
Em 1.0526 7.9563 x 10730 01410 3.2561 x 10730
Ep 2.8454 2.6992 3.0788 0.4085

could obtain better performance. Moreover, RotEqNet has good generalization capability without overfitting. As shown in
the blue curves of Fig. 8, if we apply raw data in learning directly on baseline models, the testing error is much higher
compared to the training error. In this case study, introducing the architecture RotEqNet would help to reduce this differ-
ence in training and testing error. As we could observe from the difference of training and testing error of RotEqNet, the
errors are much lower. When N = 100, 000, the differences of RotEqNet for training and testing errors are only 0.0033 for
Neural Networks and 0.0002 for Random Forests. In this case study of testing the Newtonian fluid equation, the application
of RotEqNet would result in better-generalized results in learning.

Further, Fig. 8(b) shows the error reduction effect of RotEqNet using Random Forest as a standard position predictor.
The general performance of using Random Forests as a standard position predictor is relatively worse compared to using
Neural Networks as a standard position predictor. In Fig. 6(b), blue curves represent the performance of training with raw
data by Random Forests (baseline method); red curves represent the performance of RotEqNet; black curves represent the
performance of Random Forest trained with standard positions. For the first point, we could observe an error reduction for
0.90% in training and 6.84% in testing for RotEqNet with Random Forests. As another point, RotEqNet is also obtaining a
better-learned model for the model’s capability in generalization. The testing error of the baseline method is observably
higher than testing error, while the training and testing performance of RotEqNet is approximately the same. As suggested
in Fig. 8(a), in second-order nonlinear cases, RotEqNet could reach a generalized learning result with remarkably lower error
compared to baseline methods.

As shown in Table 3, for both baseline methods, using neural networks and random forests, there are large error for
Eum and &p. The baseline methods have no theoretical guarantee that it has the property of rotation-equivariant. However,
there is an error reduction for both machine learning models when applying with RotEqNet’s architecture. For RotEqNet
with Neural Networks as standard position predictor, the errors are y = 7.9563 x 10730 and &p = 2.6992; for RotEqNet
with Random Forests as standard position predictor, the errors are &y = 3.2561 x 10730 and &p = 0.4085. This very low
error of &y for RotEqNet could guarantee the rotation-equivariant property for third-order linear cases.

4.5. Case study from electrostriction: a fourth-order case

4.5.1. Problem statement and data generation
This case study focuses on a linear relationship of fourth-order tensor. Nye [39] has introduced a fourth-order tensor in
modeling elastic compliances and stiffnesses, which has been investigated using machine learning methods [40,41]. Gen-

13

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

6.5 8.5 T T T
—&A— Kernel Predictor Training Loss
6] sal —©— Kernel Predictor Testing Loss | 1
—#A— Random position Training Loss
55 1 —6— Random position Testing Loss
83l —A— RotEqNet Training Loss
5L 1 —6— RotEgNet Testing Loss

Error loss (E)
Error loss (E)

2 I I I I I I I I 75 I I I I I I I I

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Number of training points x10% Number of training points x10%
(@) Neural Networks (b) Random Forests

Fig. 9. Error of training with baseline model with random position, RotEqNet, and standard position predictor with the standard position for (a) Neural
Networks and (b) Random Forests in the case study of Electrostriction. Different colors represent different experimental groups. The RotEqNet model is
trained with random positions and tested with random positions (red curves). Baseline models that trained and tested on raw data are shown as blue
curves. The performances of standard position predictors that trained and tested with only standard positions are also shown as black curves. Training
errors are shown with lines marked with triangles, testing errors are shown with lines marked with circles.

erally, in the study of the properties of a crystalline and anisotropic elastic medium, a fourth-order tensor coefficient will
typically be applied to model the relationship between two symmetric second-order tensors [42]. In this case, we study
Electrostriction, a property causing all electrical non-conductors to change their shape under the application of an electric
field. The relationship is described as:

Tij = SijiVi (22)

Here Tjj € R3*3 is a symmetric traceless second-order strain tensor. Sy € R3*3, §;y = S.S; where V and V; are first-order
electric polarization density. Note here Vj; is symmetric. Vjjq € R3*3*3*3 is the electrostriction coefficient.

Based on the formulation above, this system is symmetric. Since S;; is symmetric, Tg = (Vijk,SU-)T = Sy Vij = Tjj. This
could guarantee that T;; is also symmetric. Due to the face that the system is symmetric, applying a random rotation matrix
R, R(T) =R(VS).

In order to qualify strain for study on Electrostriction, we aim to predict the strain, given the simulation of electrostriction
coefficient and electric polarization density.

Based on Eqn. (22), we first generate random data to obtain simulated electrostriction coefficient tensor Vjji; and electric
polarization density tensor S;;. The generation of random numbers follows a normal distribution. T;; is computed from
above setting using Vjji and S;j. Denote the dataset as, D = {x;, y,-}f\’=1. To form a proper dataset D with N elements for a
machine learning model for the study on Electrostriction, the input x is set up to be a vector where x € R%. Specifically,
T;; is composed by flattened Vij and S;;. The output y € R? is a vector, which is the flattened result of second-order
tensor T. To compare the difference of our method to the baseline method, we trained two models with the same hyper-
parameter using different amounts of training data, ranging from 10, 000, 20, 000, ..., 100, 000. 85% of generated data is used
for training, and 15% of data is used for testing. A rotation set with 10,000 random rotation matrices is also generated for
evaluating the property of rotation-equivariant, denoted by {R,-}g(l)oo. We use Numpy to generate this simulated dataset by
generating a random symmetric fourth-order tensor V, and second-order tensor S. T is computed from generated V and S
by Eqn. (22).

4.5.2. Results

The effect of error reduction is evaluated for the first. The validation error Eys is defined as the Mean Squared Loss using
the formulation in Eqn. (16). This evaluation Eys represents the expected error of model M with dataset D. Fig. 9 shows
the performance of Neural Networks and Random Forests as standard position predictor separately. It is observable that in
high-order cases, Neural Networks outperform Random Forests. Details will be demonstrated in the following paragraphs.

We are starting with Neural Networks, Fig. 9(a) shows the error reduction effect of RotEqNet with Neural Network as
a standard position predictor. As shown in blue curves, the first experiment group focuses on the accuracy of the baseline
model on raw data with random rotated positions. The second experiment group is RotEqNet marked with red curves. As
shown in black curves, it shows the performance of the standard position predictor trained by standard position. For 10,000
training samples, the testing error of RotEqNet is 4.0106 and the testing error of baseline model is 8.6458 with 53.61% of

14

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

Table 4

Evaluation of Rotation-equivariant property between baseline model and RotEqNet.
Model Baseline (NN) RotEqNet (NN) Baseline (RF) RotEqNet (RF)
Em 0.0324 3.5723 x 10~ 0.1410 2.9985 x 10734
&Ep 0.0951 0.0202 0.4241 0.0004

error reduction. The testing performance of the standard position predictor is only evaluated on the testing set with only
standard positions. It will be helpful to explain the reason for the improved performance of RotEqNet.

To interpret the experimental results, firstly, RotEqNet could reach a better learning performance compared to simply
applying Neural Networks (baseline method). A dataset with only standard positions has lower training difficulty compared
to random positions. This claim is supported by black curves in Fig. 9(a), the performance of the standard position predictor
is much better than the baseline model. RotEqNet could obtain better performance for utilizing rotation symmetry as a prior,
and training standard position predictor with only standard positions. Moreover, RotEqNet has a good generalization result
without clear overfitting. The training error and testing error of RotEqNet is considerably close to each other, and sometimes,
the testing error of RotEqNet is even slightly better than its training error. By contrast, applying raw data in learning
directly on Mpgserine Would result in an overfitted model. The testing error is much higher compared to the training error.
To demonstrate the improved learning result in generalization, for example, when N = 100, 000, the difference between
training and testing errors for RotEqNet is only 0.0024 while the difference of the baseline method is 2.1118. As a quick
conclusion, for Neural Networks as a standard position predictor, the application of RotEqNet would be better compared to
the baseline method.

Further, Fig. 9(b) shows the error reduction effect of RotEqNet using Random Forest as a standard position predictor. At
first glance, we could find that the curves for Random Forests are quite messy without certain patterns like Fig. 9(a). The
general performance of using Random Forests as a standard position predictor is worse in both aspects of performance and
generalization. We could observe a training error reduction for 0.58% and testing error reduction of 2.96%. Even if we could
still see the general error of RotEqNet seems to be slightly lower than the baseline method. This result is not comparable to
the error reduction performance with setting Neural Networks as a standard position predictor. As another point, selecting
Random Forests as a standard position predictor fails to extract learning rules with the standard position. As we could
observe the black curves in Fig. 9(b) is not showing an improved performance as good as using Neural Networks. Finally,
the learned model of RotEqNet is also not getting a model with better generalization capability. There is no significant
reduction of overfitting error compared to the baseline method.

As shown in Table 4, for both baseline methods, using neural networks and random forests, there are large error for
Em and Ep. The baseline methods have no theoretical guarantee that it has the property of rotation-equivariant. However,
there is an error reduction for both machine learning models when applying with RotEqNet’s architecture. For RotEqNet
with Neural Networks as standard position predictor, the errors are Ey = 3.5723 x 1073% and &p = 0.0202; for RotEqNet
with Random Forests as standard position predictor, the errors are Ey = 2.9985 x 10734 and &p = 0.0004. This very low
error of &y for RotEqNet could guarantee the rotation-equivariant property for fourth-order linear cases.

5. Discussion and conclusion

The large error reduction observed in case studies raises new opportunities in solving the problem of the physical system
with rotation symmetry. Most physical systems have the property of rotation symmetry, and currently, there exist few works
that could provide a theoretical guarantee to this property for machine learning methods. A key point in this problem is
to design a properly defined algorithm to obtain rotation invariant for high-order tensors. This paper has demonstrated
RotEqNet with theoretical and experimental results aiming to solve the problem of rotation symmetry for high-order fluid
systems.

In our work, we define the position standardization algorithm to extract rotation-invariants, which is compatible for high-
order tensors. It allows us to utilize the rotation-invariants of high-order tensors using contraction with diagonalization, and
QR factorization. The theoretical guarantee is shown in Theorem 1, and the algorithm is shown in Algorithm 1. RotEqNet is
built on Algorithm 1 with a standard position predictor which only deals with rotation-invariants. By setting kernel predictor
with Neural Networks and Random Forests, these two methods are compared with baseline methods in four different case
studies focusing on second-order linear, second-order nonlinear, third-order linear, and fourth-order linear cases.

There are three conclusions to address from the observation of case studies.

First, the design of the position standardization algorithm is trustworthy. We aim to define a position standardization
algorithm to extract standard position, simplifying the learning task to a smaller function space. In our case, the position
standardization algorithm can truncate infinite rotation group into a finite group. We could observe in most of the cases,
training kernel predictors with only standard positions could reach lower error in the MSE sense.

Second, RotEqNet is guaranteed to have the property of Rotation-equivariant with finite samples. As we could observe
from the results of case studies, the rotation error &y of RotEqNet could reach machine precision. The perseverance of
the property of Rotation-equivariant shows proves Theorem 2. Further, RotEqNet will have a lower test error. Under this
situation, adding with the property of Rotation-equivariant, this would cause RotEqNet could generalize this system with
any rotation.

15

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

The two conclusions above are causing the error reduction for RotEqNet. Since we may have a random sign group U for
high-order even tensors, Neural Networks is the best model because of its flexibility to approximate arbitrary functions. We
only reported the performance of Neural Networks and Random Forests following previous work of Ling [15]. As described in
Sec. 4.5.2, the performance of Random Forests is limited compared to Neural Networks. Also, as a general trend in previous
experiments, Neural Networks are usually reaching better performance compared to Random Forests. In conclusion, we
believe the application of Neural Networks as a kernel predictor has a series of advantages than other machine learning
models.

We would like to mention that we only apply relatively small machine learning models and shallow neural networks.
Since applying deeper models could also help to have better performances considering rotation-equivariance. In accordance
to our main focus, we only use small models to avoid possible lurking effects by deep models. The application of deeper
models will certainly help to allow the flow simulation to reach the state-of-the-art, which is a feasible extension for future
applications.

For future work, there are mainly three directions to contribute: a better definition of standard position, application to
other groups, and generalization to non-symmetric systems. For the first direction, for the current definition, the rotation
invariant of odd-order tensors is not reaching equivalent performance as even-order tensors. It would be a good work for
revising the definition of standard position for odd tensors. Second, besides rotation symmetries, there are also physical
systems with other group-equivariant properties such as scaling and transaction. This work could provide a method in
solving problems with other groups, but the detailed design of an algorithm should differ from case to case. Third, current
work could only deal with the symmetric system. However, for a general case, if the system is not symmetric, there are
certain methods to use RotEqNet in a symmetric system for solving a non-symmetric system. One of the possible approaches
is to deal with PPT. This is a good intuition to extend our current work into non-symmetric physical systems.

CRediT authorship contribution statement

Liyao Gao, Yifan Du and Hongshan Li conceived the mathematical models, implemented the methods, designed the
numerical experiments, interpreted the results, and wrote the paper. Guang Lin supported this study and reviewed the final
manuscript. All authors gave final approval for publication.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

G. Lin gratefully acknowledges the support of the National Science Foundation (DMS-1555072, DMS-1736364, DMS-
2053746, and DMS-2134209), and Brookhaven National Laboratory Subcontract 382247, and U.S. Department of Energy
(DOE) Office of Science Advanced Scientific Computing Research program DE-SC0021142.

Appendix A. Preliminaries
A.1. Tensor and its operations

In this section, we first introduce an abstract way in defining tensor. One reason for us to introduce the more abstract
way to think about tensors is that it provides a convenient formalism for the operations we will be doing on the tonsorial
data discussed in the previous section. The operations are

e Linear transformation
o Contraction

It will also help us proving that these two operations commute, which will be made precise in the subsequent sections.
The commutativity of these operations will be used to define and compute a representative among tensorial data that are
obtained by rotation.

A.1.1. Abstract definition of tensors

Following [43], fix a vector space V of dimension n over R. A tensor product V ® V is a vector space with the property
that R-bilinear maps V x V — R are in natural one-to-one correspondence with R-linear maps V @ V — R.

The tensor product V ® V can be constructed as the quotient vector space V x V/C, where C is generated by vectors of
the following types

N &x+y,2)— %2 —(y,2) ()X y+2)— &y — X2 (i) (ax,y) —ax, y) (iv) (x,ay) —ax,y) (A1)

16

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

where x and y are vectors in V and a is a scalar in R. This means any element in C can be written as a linear combination
of vectors of the above form. C is not necessarily a vector space of finite dimension. But the quotient space V ® V is. Let
g:V xV — V ®YV be the natural projection map, then we use x x y to denote the image of (x, y) under g.

Let (eq,---,e,) be a basis of V, then e;®e; fori=1,...,nand j=1,...,n form a basis of V ® V. This means any vector
p €V ®V can be written as
Zaijei Kej (A.2)
ij

for some a;; € R.
Here are some relations of tensors which come directly as a consequence of the relations generating C:

alei®ej) =ae; Qej=e; @ae; (A.3)
(aje; +ajej) ® (ager) = ajax(e; @ ej) + ajag(e; ® ex) (A4)

The representation of a tensor in V ® V is similar to the representation of a linear map V — V, i.e. a matrix. In fact,
there is a natural way to think of a tensor as a linear map:

For each element e; ® e; in the basis of V ® V, we can think of it as a linear map V — V by defining e; @ e;(v) =e; <
ej, v >, where <, > is the natural inner product on V. Extend the definition linearly to every element in V ® V, we obtain
a way to identify V ® V as the space of linear map V — V. In fact, the tensor Zz@j a; je; ® ej corresponds to the linear map
represented by the matrix [a;;].

k

———

We have defined the tensor product V ® V over V. The definition/construction of order k tensor V ® --- ® V follows the
same course. We will denote order k tensor by ®V.

The basis of ®*V is given by ej; ® --- ® ejx, where ij=1,....,n and j =1, ..., k. With respect to this basis, any order k
tensor can be written as Zil,---,ik ai1.._ikei1 ® - - - ® ejx. Analogous to the order 2 case, we can think of an order k tensor as
a k-dimensional matrix, the typical way a tensor in physical experiments are represented.

We will use T* to denote a tensor of order k, i.e. a vector in ®*V. k is called the rank of the tensor.

A.1.2. Rotation on tensors: a linear transformation

A linear transformation on higher-order tensor is a generalization of a linear transformation on first-order tensor, i.e.
a vector. Rotation is a special kind of linear transformation where R € SO (n). An important connection in our paper is to
under rotation operation on tensors in matrix form.

Let g:V — V be a linear transformation. Use the basis (e, ---,ep) of V, we can represent by
n
g(e) :Zaijej (A.5)
j=1
Let M(g) denote the matrix representation of g with respect to the basis (eq,---,e;). Then
M(g) = [a;]' (A.6)

i.e. the transpose of the matrix [a;;]
The map g naturally induces a map ®*g on ®*V. On the basis element e;; ® - -- ® ejx, the action of ®*g is defined as

ei1 ® - ®ejt— gei) ® - @ gleik) (A7)

For any tensor T € @V, we will use g(T) to denote the extension of g on ¥V
There is a convenient way to represent linear transformation of 2-tensor as matrix multiplication.
For a 2-tensor T = Zi’jb,’jei ®ej, use M(T) be the matrix whose (i, j) term is bj;.

Lemma A.1. Rotation operation by matrix R on second-order tensor (matrix) is a change of basis operation.

M(R(T)) = M(R) x M(T) x M(R)t, (A.8)
where x here means the usual matrix multiplication.
Proof. We will use column vector convention to represent vectors in V. Let v{ and vy be vectors in V. Then

M(vi ® v2) = M(vq) x M(v2)" (A9)

17

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

Then,

M(R(v1 ® v2)) = M(R(v1) ® R(v2)) (A10)
=M(R(v1)) x M(R(v2))" (A1)
=M(R) x M(v1) x M(v2)" x M(R)" (A12)
=M(R) x M(v1 ® v2) x M(R)! (A13)

Therefore,
M(R(T)) = M(R) x M(T) x M(R)" O (A14)

Remark A.2. Rotation operation by matrix R on first-order tensor (vectors) T could be viewed as

M(R(T)) = M(R) x M(T). (A15)

Proof. We will use column vector convention to represent vectors in V. Let v{ be vector in V. Then

M(R(v1)) = M(R) x M(v1) (A.16)
Therefore,
M(R(T)) =M(R) x M(T) O (A17)

As we have shown in this subsection, one could use matrix form of rotation operation with certain rules of matrix
multiplication to perform a rotation on tensor. In the following proofs of this paper, we applied this idea to perform rotation
operation on tensors via matrix multiplication.

A.1.3. Contraction on tensors: reduction of order

Let (,) be the standard inner product on V. Using this inner product, we can define the contraction of a tensor. It
“merges” vectors on the specified axes using the inner product and reduces the rank of the tensor by 2. Formally, let C(a, b)
denote the contraction along axis-a and axis-b. Here, the axis means the ordinal of V in ®*V. For example, axis-1 refers to
the first copy of V in ®*V.

On the element ®’J‘.:1v,~j, C(a, b) acts on it by pairing v;; and v;;, via the inner product {,), i.e.

C@,b)(vi1 ® -+ ® Vin) = (Vig, Vip) Vi1 ® - - Vig- - Vip - @ Vin (A18)

where v means v is not present.
We can then define C(a, b) on @V by extending linearly. When k = 2, contraction is nothing other than taking the trace
of the corresponding matrix.

LemmaA.3.Let R: V — V be arotation. Let T € @V, then

C(a, b)(R(T)) = R(C(a, b)(T)) (A19)

Proof. Since both C(a, b) and g are linear, we may assume that T is of the form vij; ® --- ® Vjp.

C(a,b)(g(T)) =C(a,b)(g(vi1) ® --- ® &(Vin)) (A.20)
= (g(ia), §Vip))8(Vi1) ® - §(Via) -+ 8 (Vip) -~ ® §(Vin) (A21)
Since g is a rotation, it preserves the inner product i.e.
(8(Via), 8(Vip)) = (Via, Vip) (A22)
So
C(a,b)(g(T)) =C(a,b)(g(vi1) ® - ® g(Vin)) (A.23)
= (Via, Vib) (Vi1) ® - 8(Via) -+ (Vi) - ® &(Vin) (A24)
=g(C(a,b)(T)) O (A.25)

Lemma A.3 shows an interesting connection between rotation operation and contraction. To understand this lemma, it
represents that contraction of tensor is compatible with a linear transformation if this linear transformation is a rotation.
This is an important lemma which is the foundation of entire analysis in this paper. We would further utilize this lemma
for extracting its rotation operation from higher (arbitrary) orders.

18

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

A.2. Supervised learning setup

In our problem, given data set D = {X;; y;}i=1...~. The data set contains N input-output pairs (X;; ;). The input here is
a tensor tuple:

Xi=[X1, X2, ..., XN,] (A.26)

Ny, is the length of X;. Normally, we only have one output.
Generally speaking, following the definition of [44,45], parametric supervised learning can be viewed as a type of a
model composed from two parts. The first part is a predictor. Given a model M, we have:

= MX) (A.27)

where ¥ is the prediction output of learning model M. As stated, it predicts value based on input X;.
The second part is an optimizer, which updates the model based on a loss function. A typical loss function would be
defined as:

N
1
LM = le lyi — M(X)I12, (A.28)
1=
where | - || represents 2-norm.

We hope to minimize this loss function. It is formulated by:
min L(M). (A.29)
MeH
In our work, we applied Neural Networks from parametric family [46] and Random Forests from nonparametric family [47].
A.3. Modeling symmetric fluid systems via supervised learning

The machine learning approach to the fluid dynamics modeling is to train a supervised learning model M using X; as
features and Y as label.

In our case, the physical model F is complete with respect to rotation. This means for all rotation R : R" — R", R(p) €
F for all p € F. In this case, we can study the tensor fields on F that are rotation equivariant. Those are tensor fields
(X1, -+, Xy, Y) such that

X1(R(p), -+, Xn(R(P)), Y(R(p)) = R(X1(5)), -+, R(Xu(s)), R(Y (5)) (A30)

Then underlying physics law relating X’s to Y is rotation-equivariant, because

FR(X)) = R(Y) = R(f(X)), (A.31)
X as a short-hand for Xy, ---, Xj.

Appendix B. Proof of Lemma 2.4

Proof. We can always construct two steps of learning by first learning and then learning the group action G.

By construction, we know that # is learnable with finite samples.

If group G, has finite cardinality that |G| = n, we know the VC dimension of G, is at most n since it could be shattered
by log(n) subsets in maximal [31].

From this construction, using Theorem 2 in [48], we further know this group transformation G is (€, §)-learnable with
sample size N upper bounded by

1
N:()(w), (B1)

€

where €, § are constants to control the error.

As long as |G| < oo, since G, and H are both learnable with finite samples, we know their combination G, () is still
learnable with finite samples.

If group G, has infinite cardinality that |G| = oo, we know that G cannot always be learned with finite sample from
the same derivation above. This will result in G () not learnable with finite sample. O

19

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

Appendix C. Note of eigenvectors are nonunique

Consider an eigenvector v of matrix A. By definition, we have

Av=cv, ceR. (C1)
For —v,

A(—=v)=c(—V) <= Av=cv. (C.2)

We know both v and —v is an eigenvectos of A. Therefore, for A € R3*3, consider a eigen-decomposition that A= RDRT,
there will be 23 ways of eigenvectors R, with random sign applied. In our implementation, we always fix the first row of R
to be positive. This process guarantees algorithm S is well-defined.

Appendix D. Proof of Lemma 3.1

Proof. We discuss two situations separately in this proof: second-order and odd orders and even orders (> 4).

odd-order tensors. In position standardization algorithm S, the derivation of odd-order tensors are via QR factorization
with sorting eigenvalues. In the following, we will show why the standard position of T through the entire orbit R(T) is
unique, equivalently as |®(T)| =1.

Suppose T has odd order. Let C be the sequence of contraction along the first two axes such that C(T) = T3, where T3 is a
third-order tensor as described in the algorithm.

T3 =c((D.1)
Let V4, V3, V3 be vectors of contraction operation on T3 via different axes, i.e.,
Vi=C(@2.3)(T? Vo =C(1,3)(T?) V3 =C(1,2)(T?) (D.2)

Based on S, we have

[Vi V2 V3]=R1 x Uy (D.3)
In this case,
S(T™) = R71(T™) (D4)

Consider any rotation operation P acting on T". We have,

P(T?) = P(C(T") (D.5)
Using QR-factorization,

[PxVi PxVy PxV3]=RyxU; (D.6)
The standard position of P(T") will be defined as:

S(P(T™) =Ry ' (P(T™) (D.7)
Using Remark A.2, we could obtain

C2,3)(P(T>) =P xC2,3)(T>)=P x V4 (D.8)
Considering V, and V3, for the same reason, we could know that

[PxVy PxVy PxV3]=Px[V] Vy V3] (D.9)
By reorganizing (D.3), (D.6), and (D.9),

[Vi Vo V3]=R; xU; =P~ ! xRy x Up (D.10)

The QR factorization is not unique with random permutations. We could follow Gram-Schmidt process to remove the per-
mutation group. After this step, QR-factorization is unique. Therefore, we have U = U,. Then,

Ry=P x Ry (D.11)

20

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

Plugging (D.11) into (D.7), comparing the result of (D.4) we have:
S(P(T™) =Ry ' (P(T™) = (R x P71 x P)(T™) = RT1(T™) = S(T™) (D.12)
At this point, with a random rotation P, we will still have S(P(T™)) = S(T™"). This means that

O(T") =Ry (TN} — |&(T)| =1. (D13)

This part shows Lemma 3.1 when T has odd-orders.

Even-order tensors. Then we show the even-order cases. Notice that position standardization algorithm relies on eigen-
decomposition. Like QR factorization, eigen-decomposition is also not naturally unique. Specifically, consider the decomposi-
tion of an arbitrary symmetric matrix A = RDR. There are various options for R with permutation and random sign. In the
following analysis, we wish to show the algorithm S is still able to obtain a finite set with |®(T)| = 8. Here, ® is equivalent
as a group action U: a random column sign group which determines the sign of each column of R.

Suppose T has even order. Let C be the sequence of contraction along the first two axes such that C(T) = T2, where T2 is a
second-order tensor as described in the algorithm.
Given arbitrary even high order tensor T, we could perform contraction to a second order tensor T2 via first two indices:

T2 =C(Th (D.14)
For T2, using Lemma A.1, there exists a rotation R such that:

T2 = R(T?). (D.15)

Here, R is not unique. We see this from the process of eigen-decomposition. The non-uniqueness is caused by two
parts. First, the order of eigenvalues could be random. We can select any order of eigenvalues which will result in different
permutations of eigenvectors. Second, the sign of each eigenvector is not specified. A eigenvector only need to satisfy
Av =av for matrix A and scalar a. If v is an eigenvector, —v is also an eigenvector. A random sign could be added to each
eigenvector.

In position standardization algorithm, we remove the permutation group action by making the eigenvalues ordered. This
operation commutes for higher orders.

The second source of non-uniqueness, random sign group, will bring non-uniqueness of standard position for high-order
even tensors. Before the proof of the second part, we define this sign group U as

1 00 1 0 O 1 0 O -1 0 O -1 0 O
U= 010},{01 0¢},{0 -1 0},....,4 0 -1 0}, 0 -1 O . (D.16)
0 0 1 00 —1 0 0 1 0o 0 1 0o 0 -1

There are 8 elements in U and let Uy = I3x3, ..., Ug = —I3x3. U is a group.

Suppose a tensor Ro(T) rotated from T with rotation Rg. Using eigen-decomposition, we cannot know the sign of Rp. In
the position standardization algorithm, we fix R to be positive in the first row to make the algorithm well-defined. However,
we can only guarantee the rotation obtained from this algorithm to be one element in set U(Rg) = {U1Rg, U2Ry, ..., UgRo}.
This is troublesome since we may mistakenly set the standard position to U;(T) (which should be T instead).

Part 1. Second-order tensors will not be affected by random sign group.
Consider a symmetric second-order tensor T2 which is a matrix. Applying random sign operation YU; on T2, we have

Uij(T?>)=U; x T> x U; = T?. (D.17)

In second-order cases, the standard position will not be affected since applying U; two times to T2 will cancel the sign
flipping effect.
Based on S the standard position S(T) is defined as

S(T*) =Ui(R™'(T?*) =R 1(T?) (D.18)
For its standard position S(P(T?)) we have:

S(P(T?) =R x P~ x P)(T?) =R™1(T?) = S(T?) (D.19)
To simplify, for a rotation operation P acting on an even high order tensor T,

S(P(T))=5(T). (D.20)
Therefore, we know that

O(T?) ={S(T)}, |®(T?)|=1. (D21)

21

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

Part 2. Higher even-order tensors will be affected by random sign group.
For higher order tensors, we know

Ui(T" T (D.22)
Suppose the real standard position, T = R~1(T™), based on S the standard position from algorithm S(T) is
S(T™) = Ui(R™(T") = (Ui x R™H(T™), (D.23)

where U; is a sign matrix.
Consider a rotation operation P acting on T. For this new tensor, applying contraction we could have:

C(P(T™) = P(T?) = Ui((P x R)(T?)) (D.24)
For its standard position S(P(T)), since U; commutes, we know there exist U € U such that

S(P(T) =Uj(R™" x P~! x P)(T) = U;(R™'(T)) = U;(S(T)). (D.25)
To simplify, for a rotation operation P acting on an even high order tensor T,

S(P(T)) =U;(S(T)). (D.26)
Therefore, the entire orbit after position standardization will form a set ®(T") such that

O(T") = {U1(T"), Ua(T™), Us(T")..., Us(TM)}, |P(T")| =8. (D.27)

Finally, we show & is a group. When T is second or odd-order tensor, we know ® = {I} which is a trivial group with
identity. When T is a higher even-order tensor, the sign group U = ®. We know & is a group in both cases.
By summarizing all situations above, we complete the proof of this Lemma. 0O

Appendix E. Proof of Theorem 1

Proof. By definition of realizable assumption, we know there exists h* € H such that Lp s(h*) = 0. Since Go extend the
distribution functional with additional structure with group actions, we also have to increase the space of hypothesis class
Go(H) to guarantee realizable. Since @ is a finite group, using Lemma 2.4, we know G¢(H) is finite learnable. O

Appendix F. Proof of Theorem 2

Proof. Name RotEqNet as Mg, kernel classifier as Mg. Consider an input pair (Xj, y;).

If X; has order two or odd-order, suppose the result of standardize position algorithm S would have S(X) = P{(X),
where P1 denote a rotation operation.

First, based on the definition of Mg,

Mr(Xi) = P71 (Mo (S(X0))) = PT (Mo (P1(Xi))). (F1)
Consider another rotation operation P, in the matrix form acting on X, using Lemma 3.1 we know that:

S(P2(Xi)) = S(Xi) = P1(Xi) = (P1D(Xi) = (P1 - P;)(P2(Xi)). (F2)
Then, consider Mg (P2(X)) the process of RotEqNet is defined as:

Mg(P2(X)) = (P1P5)™ (Mo (S(P2(X)))) = (P2PT) (Mo (S(P2(X)))) (E3)

We know that S(P,(X)) = S(X) from Eqn. (F.2). Therefore, we have Mg(S(X)) = Mg(S(P2(X))). Substitute Mg(X) back
into previous equation,

Mg(P2(X)) = P2P7" (Mo (S(X))) = Pa(Mr(X)) (F.4)

We know if X; has order two or odd-order, RotEqNet is rotation-equivariant.

If X; has even-order > 4, we need to show previous property still holds under an additional sign flipping group U.

Suppose the result of standardize position algorithm S would have S(X) = Vq - P1(X), where P; is solved via position-
standardization algorithm and V1 € U is a sign matrix.

First, based on the definition of Mg,

Mg(Xi) = (V1 P1) " (Mo (S(X)) = (V1 - P1)~ (Mo (V1 P1(X)). (E5)

22

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

Consider another rotation operation P; in the matrix form acting on X, using Lemma 3.1 we know that:
S(P2(Xi)) = Va(S(Xp) = Vo V1 P1(Xi) = (V1 P1VaD)(X;) = (V1 P4 Vsz_l)(Vsz(Xi)), (E.6)
where V; € U is an element of the sign flipping group. By Theorem 2 and realizable assumption, we further know
Mo (V2(S(Xi))) = V2S(¥i) = V2 (Mo (S(X1))). (E7)
Then, consider Mgz (P2 (X)) the process of RotEqNet:
MR(P2(X)) = (V1 P1)(V2P2) ™) 1 (Mo (S(P2(X)))) = (V2P2)(V1P1)™H (Mo (S(P2(X)))) (E8)

We know that S(Py(X)) = V,S(X) from Eqn. (E.7). Therefore, we have Vo Mg(S(X)) = Mgr(V25(X)) = Mg(S(P2(X))).
Substitute Mg (X) back into previous equation,

Mg(P2(X)) = P2(V1P1) "1 (Mo (S(X))) = P2(Mg(X)) (F9)
We know if X; has even-order > 4, RotEqNet is rotation-equivariant. O
Appendix G. Training and prediction algorithm of RotEqNet
The training of RotEqNet would first normalize the entire dataset into the standard position, including the input tensor

T and output tensor y. This would allow RotEqNet to obtain Ts and ys. After this step, we would train a neural network
using (Ts, ys). This process is described as Algorithm 2.

Algorithm 2 RotEqNet training algorithm.

1: function TRAIN(T, y)

2: R, Ts = GetRotInvariant(T)
R, ys = GetRotInvariant(y)
Net = NeuralNetwork()
Net.train(Ts, ys) return Net
6: end function

AN

After the training process, we would obtain a trained neural network focusing on standard position. For a new incoming
tensor data with random rotation R, we could use the following process to predict its position.

Algorithm 3 RotEqNet prediction algorithm.

1: function PREDICT(T)

2: R, Ts = GetRotInvariant(T)
3: ys = Net.predict(Ts)

4: y=R"!.ys return y

5: end function

References

[1] Z. Huang, Y. Tian, C. Li, G. Lin, L. Wu, Y. Wang, H. Jiang, Data-driven automated discovery of variational laws hidden in physical systems,]J. Mech. Phys.
Solids (2020) 103871.
[2] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part i): data-driven solutions of nonlinear partial differential equations, arXiv
preprint, arXiv:1711.10561, 2017.
[3] G. Carleo, 1. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby, L. Vogt-Maranto, L. Zdeborov4, Machine learning and the physical sciences, Rev. Mod.
Phys. 91 (2019) 045002.
[4] J.N. Kutz, Deep learning in fluid dynamics, J. Fluid Mech. 814 (2017) 1-4.
[5] J.-X. Wang, J.-L. Wu, H. Xiao, Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on dns
data, Phys. Rev. Fluids 2 (2017) 034603.
[6] Y. Li, T. Zhang, S. Sun, X. Gao, Accelerating flash calculation through deep learning methods,]J. Comput. Phys. 394 (2019) 153-165.
[7] P.A. Durbin, Some recent developments in turbulence closure modeling, Annu. Rev. Fluid Mech. 50 (2018) 77-103.
[8] J. Ling, J. Templeton, Evaluation of machine learning algorithms for prediction of regions of high Reynolds averaged Navier Stokes uncertainty, Phys.
Fluids 27 (2015) 085103.
[9] M. Milano, P. Koumoutsakos, Neural network modeling for near wall turbulent flow, J. Comput. Phys. 182 (2002) 1-26.
[10] ZJ. Zhang, K. Duraisamy, Machine learning methods for data-driven turbulence modeling, in: 22nd AIAA Computational Fluid Dynamics Conference,
2015, p. 2460.
[11] A. Beck, D. Flad, C.-D. Munz, Deep neural networks for data-driven les closure models, J. Comput. Phys. 398 (2019) 108910.
[12] T.Q. Chen, Y. Rubanova, J. Bettencourt, D.K. Duvenaud, Neural ordinary differential equations, in: Advances in Neural Information Processing Systems,
2018, pp. 6571-6583.
[13] G.T. Mase, R.E. Smelser, G.E. Mase, Continuum Mechanics for Engineers, CRC Press, 2009.
[14] K. Hornik, M. Stinchcombe, H. White, et al., Multilayer feedforward networks are universal approximators, Neural Netw. 2 (1989) 359-366.
[15] J. Ling, R. Jones,]. Templeton, Machine learning strategies for systems with invariance properties, J. Comput. Phys. 318 (2016) 22-35.

23

http://refhub.elsevier.com/S0021-9991(22)00267-4/bibCC13570A9C7D4E615BEB77FB98DCE800s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibCC13570A9C7D4E615BEB77FB98DCE800s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib622B96F911A6F17FDFC4125DEE49FD2As1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib622B96F911A6F17FDFC4125DEE49FD2As1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib1CCB7DB0CDAA35CEC00252E4A9415E34s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib1CCB7DB0CDAA35CEC00252E4A9415E34s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibE0E1C9A317D125FCEF7CD1B5E34396D4s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibF33E0666586303C71F0BA06AEE788D80s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibF33E0666586303C71F0BA06AEE788D80s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB4CC4441B55E975231784F1E9A35983Fs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib42B944D7C818CE7B6B57C9CBEEA6A657s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8CA2BC24B98C835176A24E6903B40234s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8CA2BC24B98C835176A24E6903B40234s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibE20225872ABD00F827E2D0D619114CA6s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib0878B86D92FC29ADCE1E414E32DA8B35s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib0878B86D92FC29ADCE1E414E32DA8B35s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibC770EC711369CB002331A43A10C60680s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib75044DCECA97FD1B79C00596D122B9FBs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB192FD4DD4299520561CB77D65AE78E7s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB552F98C7E0C024B25FE654A214EE2E1s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibCE598F5E16326540F9DA7E29183602C6s1

L. Gao, Y. Du, H. Li et al. Journal of Computational Physics 461 (2022) 111205

[16] J. Ling, A. Kurzawski,]. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech. 807
(2016) 155-166.

[17] S. Pope, A more general effective-viscosity hypothesis, J. Fluid Mech. 72 (1975) 331-340.

[18] R.W. Johnson, Handbook of Fluid Dynamics, CRC Press, 2016.

[19] G. Smith, On isotropic integrity bases, Arch. Ration. Mech. Anal. 18 (1965) 282-292.

[20] T. Cohen, M. Welling, Group equivariant convolutional networks, in: International Conference on Machine Learning, 2016, pp. 2990-2999.

[21] C. Esteves, Theoretical aspects of group equivariant neural networks, arXiv preprint, arXiv:2004.05154, 2020.

[22] C. Esteves, Y. Xu, C. Allen-Blanchette, K. Daniilidis, Equivariant multi-view networks, in: Proceedings of the IEEE International Conference on Computer
Vision, 2019, pp. 1568-1577.

[23] M. Weiler, FA. Hamprecht, M. Storath, Learning steerable filters for rotation equivariant cnns, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 849-858.

[24] X. Cheng, Q. Qiu, R. Calderbank, G. Sapiro, Rotdcf: decomposition of convolutional filters for rotation-equivariant deep networks, arXiv preprint, arXiv:
1805.06846, 2018.

[25] M. Finzi, S. Stanton, P. Izmailov, A.G. Wilson, Generalizing convolutional neural networks for equivariance to Lie groups on arbitrary continuous data,
arXiv preprint, arXiv:2002.12880, 2020.

[26] L. Gao, H. Li, Z. Lu, G. Lin, Rotation-equivariant convolutional neural network ensembles in image processing, in: Adjunct Proceedings of the 2019
ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable
Computers, 2019, pp. 551-557.

[27] L. Gao, G. Lin, W. Zhu, Deformation robust roto-scale-translation equivariant cnns, arXiv preprint, arXiv:2111.10978, 2021.

[28]].D. Foley, ED. Van, A. Van Dam, S.K. Feiner,].F. Hughes, J. Hughes, E. Angel, Computer Graphics: Principles and Practice, vol. 12110, Addison-Wesley
Professional, 1996.

[29] Y. Zhou, C. Barnes, J. Lu, J. Yang, H. Li, On the continuity of rotation representations in neural networks, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019, pp. 5745-5753.

[30] A. Blumer, A. Ehrenfeucht, D. Haussler, M.K. Warmuth, Learnability and the Vapnik-Chervonenkis dimension, J. ACM 36 (1989) 929-965.

[31] L.G. Valiant, A theory of the learnable, Commun. ACM 27 (1984) 1134-1142.

[32] C.C. Pinter, A Book of Abstract Algebra, Courier Corporation, 2010.

[33] D.P. Kingma,]J. Ba, Adam: a method for stochastic optimization, arXiv preprint, arXiv:1412.6980, 2014.

[34] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: machine
learning in python, J. Mach. Learn. Res. 12 (2011) 2825-2830.

[35] CK. Batchelor, G. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, 2000.

[36] B. Kosovi¢, Subgrid-scale modelling for the large-Eddy simulation of high-Reynolds-number boundary layers, J. Fluid Mech. 336 (1997) 151-182.

[37] H. Pitsch, Large-Eddy simulation of turbulent combustion, Annu. Rev. Fluid Mech. 38 (2006) 453-482.

[38] R. Matai, Les of Flow over Bumps and Machine Learning Augmented Turbulence Modeling, 2018.

[39] J.E. Nye, et al., Physical Properties of Crystals: Their Representation by Tensors and Matrices, Oxford University Press, 1985.

[40] K. Yang, X. Xu, B. Yang, B. Cook, H. Ramos, N.A. Krishnan, M.M. Smedskjaer, C. Hoover, M. Bauchy, Predicting the Young’s modulus of silicate glasses
using high-throughput molecular dynamics simulations and machine learning, Sci. Rep. 9 (2019) 1-11.

[41] Z. Liu, C. Wu, M. Koishi, A deep material network for multiscale topology learning and accelerated nonlinear modeling of heterogeneous materials,
Comput. Methods Appl. Mech. Eng. 345 (2019) 1138-1168.

[42] L. Walpole, Fourth-rank tensors of the thirty-two crystal classes: multiplication tables, Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 391 (1984) 149-179.

[43] M.L. Curtis, Abstract Linear Algebra, Springer Science & Business Media, 2012.

[44] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006.

[45] D. Tao, X. Li, W. Hu, S. Maybank, X. Wu, Supervised tensor learning, in: Fifth IEEE International Conference on Data Mining (ICDM'05), IEEE, 2005.

[46] D.E. Specht, et al., A general regression neural network, IEEE Trans. Neural Netw. 2 (1991) 568-576.

[47] A. Liaw, M. Wiener, et al., Classification and regression by randomforest, R News 2 (2002) 18-22.

[48] S. Hanneke, The optimal sample complexity of pac learning, J. Mach. Learn. Res. 17 (2016) 1319-1333.

24

http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB82FB3F474F621F7E02F32E2A3B4A7B0s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB82FB3F474F621F7E02F32E2A3B4A7B0s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib291DFAB416AA8B964EBB2088506DFF0Fs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib34E5DD840230BF1BBCEB0C1EC16DB417s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8A446EC3863AAD51E931DB9C697ECE05s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibEEB529D21AD90A3BB254152D209D0998s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8F1550A6C6323ECE2518F900564E0E47s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibA107CD2195EE9178CE4162BDA77DF869s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibA107CD2195EE9178CE4162BDA77DF869s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibACB5D94A6E317AFF3AAD87BE226F1A13s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibACB5D94A6E317AFF3AAD87BE226F1A13s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib95F76E34A8104A5769521BA7BE03D44Cs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib95F76E34A8104A5769521BA7BE03D44Cs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8991998249C2EBAD94E1B7DA37877FFFs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8991998249C2EBAD94E1B7DA37877FFFs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB6BC8E8600DF56AF2E8056EB6987F9AAs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB6BC8E8600DF56AF2E8056EB6987F9AAs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB6BC8E8600DF56AF2E8056EB6987F9AAs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibDACBF5A08F6F348180F848CDE98B1C51s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib9D0F476071D834BFBCB937749C38DB16s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib9D0F476071D834BFBCB937749C38DB16s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib2F2B6D92DF978D6E0B22BFAEBA2DBF84s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib2F2B6D92DF978D6E0B22BFAEBA2DBF84s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib29561405C1FDF96CF3D6CC7D8A45185Bs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8C1BE11C00A1E16D699F9C8FC716EEEDs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibAB35B1B058919EB4C698D7563CC725D5s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibB88B8F9E9C5AF9DF750A673227029C8Fs1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib1E37FE8AE148BF9CF67410C5AC97BB84s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib9CEC3416684B18B2E5BBE32FA0108FB8s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8A32A62D55B116D726B8ACBD33BB68A6s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib5865B626A15DC0A7770914BE07859A75s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib9FB5968041A23EE8687767579519FAF2s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib8E80F5E0358252C866E4FD83AF479E5As1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibAE4DB11EDD831799947FF7A36022BA22s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibAE4DB11EDD831799947FF7A36022BA22s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibF4D57373BB45D44F59BF718BB2EAC472s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibF4D57373BB45D44F59BF718BB2EAC472s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib2FC03BB5F6EBD6327D66774A7404A76As1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib134816E745EA5607F78053162C7DBF6Es1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibFA1CABCA5F42FCE421FFB108D3F60EC4s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib830EEBADFB00F7CEEA2C9E309CBB0E3Es1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib4B7F8A3BC7FEAE020230B24809309111s1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bib3EF40378D5DA3AC81F897D0338AC139Ds1
http://refhub.elsevier.com/S0021-9991(22)00267-4/bibF5E468D26AD55F60750BE67088F27C7Fs1

	with symmetric high-order tensors
	1 Introduction
	2 Problem description
	2.1 Rotation-equivariant machine learning: idea and definition
	2.2 Learnability with finite samples

	3 Rotation equivariant network
	3.1 Position standardization algorithm for high order tensors
	3.1.1 Position standardization: tensor of even-order
	3.1.2 Position standardization: tensor of odd-order

	3.2 Theoretical analysis of rotation-equivariant property
	3.2.1 Main theorems and proofs
	3.2.2 Analysis on testing error improvements

	4 Case studies
	4.1 Machine learning model and evaluation metrics
	4.2 Case study from Newtonian fluid: a second-order linear case
	4.2.1 Problem statement and data generation
	4.2.2 Results

	4.3 Case study from large Eddy simulation: a second-order nonlinear case
	4.3.1 Problem statement and data generation
	4.3.2 Results

	4.4 Case study from testing Newtonian fluid equation: a third-order case
	4.4.1 Problem statement and data generation
	4.4.2 Results

	4.5 Case study from electrostriction: a fourth-order case
	4.5.1 Problem statement and data generation
	4.5.2 Results

	5 Discussion and conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Preliminaries
	A.1 Tensor and its operations
	A.1.1 Abstract definition of tensors
	A.1.2 Rotation on tensors: a linear transformation
	A.1.3 Contraction on tensors: reduction of order

	A.2 Supervised learning setup
	A.3 Modeling symmetric fluid systems via supervised learning

	Appendix B Proof of Lemma 2.4
	Appendix C Note of eigenvectors are nonunique
	Appendix D Proof of Lemma 3.1
	Appendix E Proof of Theorem 1
	Appendix F Proof of Theorem 2
	Appendix G Training and prediction algorithm of RotEqNet
	References

