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Abstract. We introduce the theory of random tensors, which naturally extends the method of ran-

dom averaging operators in our earlier work [36], to study the propagation of randomness under non-

linear dispersive equations. By applying this theory we establish almost-sure local well-posedness

for semilinear Schrödinger equations in the full subcritical range relative to the probabilistic scal-

ing (Theorem 1.1). The solution we construct has an explicit expansion in terms of multilinear

Gaussians with adapted random tensor coefficients. As a byproduct we also obtain new results

concerning regular data and long-time solutions, in particular Theorem 1.6, which provides long-

time control for random homogeneous data, demonstrating the highly nontrivial fact that the first

energy cascade happens at a much later time than in the deterministic setting.

In the random setting, the probabilistic scaling is the natural scaling for dispersive equations,

and is different from the natural scaling for parabolic equations. Our theory of random tensors

can be viewed as the dispersive counterpart of the existing parabolic theories (regularity structures,

para-controlled calculus and renormalization group techniques).
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1. Introduction

The study of partial differential equations with randomness has become an important and in-

fluential subject in the last few decades. In this work we will be concerned with a major topic of

this subject, namely the local in time Cauchy problems with either random initial data or additive

stochastic forcing.

It is well known that in many situations, randomization or noise improves the behavior of so-

lutions to PDEs. Usually this can be interpreted as generic solutions being genuinely better than

pathological ones. This phenomenon, which has its roots in the various cancellation properties of

independent random variables (e.g. Central Limit Theorem or Khintchine’s inequality), has been

extensively studied since the 70–80’s. The key difficulty here is to analyze how the explicit ran-

domness (given for example by a Wiener measure or Gaussian noise) propagates under the flow of

nonlinear PDEs.

In the past few years, there has been significant progress in the setting of singular parabolic

stochastic equations (SPDEs): the development of the theory of regularity structures of Hairer and

the para-controlled calculus of Gubinelli-Imkeller-Perkowski has led to tremendous success in local

well-posedness theory, essentially completing the full picture in what is known as the subcritical

range. Unfortunately, both theories rely crucially on the parabolic nature of the equation, and
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have not achieved the same success in the other important class of PDEs, namely the dispersive

equations.

The purpose of this work is to develop a new theory, which we will call random tensors, to fill

this gap in the dispersive setting. This is a natural extension of the method of random averaging

operators in our earlier work [36], but is much more powerful. In fact, in the random setting

dispersive equations have a natural scaling, which we call the probabilistic scaling (see Section

1.2), that is different from the parabolic one1, and our method—just like the theory of regularity

structures and the para-controlled calculus in the parabolic setting—provides the complete picture

in the full subcritical range with respect to this natural scaling.

In this work we will focus on the random data problem2 for the semilinear Schrödinger equation,

which is the most common (and most studied) nonlinear dispersive equation. Our method is general

and can be applied to other dispersion relations (see Section 9.2).

The rest of this introduction is organized as follows. In Section 1.1 we describe the setup and

state the main theorems. In Section 1.2 we present a heuristic scaling argument from [36] to justify

the notion of criticality in this work. In Section 1.3 we briefly review the ideas in earlier works, and

in Sections 1.4 we discuss the method of random averaging operators in [36]. Finally in Section 1.5

we provide the motivation behind our theory of random tensors; the detailed explanation of this

theory is left to Section 2.

1.1. Setup and main results. Fix d ≥ 1 and p ≥ 3 odd, and assume (d, p) 6= (1, 3); in particular

d(p−1) ≥ 4. Consider the nonlinear Schrödinger (NLS) equation on Rt×Tdx, where Td = (R/2πZ)d:{
(i∂t + ∆)u = W p(u),

u(0) = f(ω).
(1.1)

Here f(ω) is some choice of random initial data defined on an ambient probability space (Θ,B,P),

ω ∈ Θ, and W p(u) is either |u|p−1u or its Wick ordering, which will be defined precisely below.

The Hamiltonian of (1.1) is linked to the Φp+1
d model in constructive quantum field theory.

1.1.1. Almost-sure local well-posedness. In the context of almost-sure local well-posedness, the ran-

dom initial data will be given by

f(ω) =
∑
k∈Zd

gk(ω)

〈k〉α
eik·x, (1.2)

where {gk(ω)}k∈Zd are i.i.d. centered normalized (complex) Gaussian random variables. Such initial

data was first considered by Bourgain [11, 12] and later by Burq-Tzvetkov [19]. In (1.2) we will fix

α = s+
d

2
, s > spr := − 1

p− 1
. (1.3)

This value spr is the critical exponent for the probabilistic scaling, which will be discussed in detail

in Section 1.2. It is always lower than scr := (d/2) − 2/(p − 1), which is the critical exponent for

the usual (deterministic) scaling. The random data f(ω) defined by (1.2) almost surely belongs to

Hs−(Td) := ∩s′<sHs′(Td), but not to Hs(Td).

1See Remark 1.12, and the explanation in Section 9.1.
2Random data is a natural setting for dispersive equations (parallel to additive noise for parabolic ones) in view of

the invariant measures. Of course one may also consider stochastic versions of (1.1), which are similar but correspond

to different randomizations, see Section 9.2.
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Our first main theorem, originally stated as Conjecture 1.7 in [36], proves that (1.1) is almost

surely locally well-posed with random initial data (1.2), in the sense that canonical smooth approx-

imations converge to a unique limit; here and throughout the paper, canonical smooth approxima-

tions always mean the ones described in Theorem 1.1 and Remark 1.4 below. This result can be

interpreted as almost sure local well-posedness in Hs−(Td) with respect to the canonical Gauss-

ian measure—the law of f(ω) defined by (1.2)—for any s > spr, i.e. in the full probabilistically

subcritical range.

To state the theorem, we need to define the canonical truncations and the associated Wick

orderings. Given a dyadic number N ≥ 11, define the truncation operators ΠN and ∆N by

(ΠNu)k = ΠNuk := 1〈k〉≤N · uk, ∆N = ΠN −ΠN
2
, (1.4)

where uk represents the Fourier coefficient. For notational simplicity, we will identify ΠN with the

multiplier ΠN (k) = 1〈k〉≤N , and similarly for ∆N . Define the expectation of truncated mass

σN := E
 
Td
|ΠNf(ω)|2 =

∑
〈k〉≤N

1

〈k〉2α
, (1.5)

and, for integers r ≥ 0, the Wick-ordered monomials

W 2r
N (u) =

r∑
j=0

(−1)r−j
(
r

j

)
σr−jN r!

j!
|u|2j , W 2r+1

N (u) =
r∑
j=0

(−1)r−j
(
r + 1

j + 1

)
σr−jN r!

j!
|u|2ju, (1.6)

where σN is as in (1.5). The first main theorem is then stated as follows.

Theorem 1.1. Fix s > spr and α as in (1.3), and let f(ω) be as in (1.2). Let uN be the solution

to the canonically truncated system{
(i∂t + ∆)uN = ΠNW

p
N (uN ),

uN (0) = ΠNf(ω).
(1.7)

Then, for 0 < τ � 1, there exists a set Z ⊂ Θ with P(Z) ≤ Cθe
−τ−θ , where θ is a small constant

(ultimately determined by (d, p, s), and independent of τ) and Cθ is a constant determined by θ, such

that when ω 6∈ Z, the sequence {uN} converges, as N →∞, to a unique limit u in C0
tH

s−
x [−τ, τ ].

Moreover, for this u, the nonlinearity W p(u) in (1.1), which is the Wick ordering of |u|p−1u, is

well-defined as

W p(u) = lim
N→∞

W p
N (ΠNu) = lim

N→∞
ΠNW

p
N (ΠNu) (1.8)

in the sense of spacetime distributions (where both limits exist and are equal), and u solves the

equation (1.1) in the distributional sense. Finally this solution u has an explicit expansion in terms

of multilinear Gaussians with adapted random tensor coefficients; see (8.5) for the precise form.

Remark 1.2. Theorem 1.1 (and Theorem 1.6 below) can be shown for any rectangular torus Tdβ :=

(R/2πβ1Z)× · · · × (R/2πβdZ), and for focusing nonlinearity, with almost the same proof.

When (d, p) = (1, 3), instead of (1.6) one should look at the completely non-resonant nonlinearity

(|u|2 − 2
ffl
|u|2)u, since in this case ‖ΠNu‖2L2 −E‖ΠNu‖2L2 does not converge as N →∞, see (5.5).

With this change, it is known, see [45], that (1.1) is deterministically locally well-posed in a Fourier-

Lebesgue space which the data (1.2) almost surely belongs to (as in this case spr = scr), so Theorem

1.1 remains true.

1We will assume N ≥ 1 throughout, and only “formally” need to replace N by 1/2 in a few places.
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Remark 1.3. The Wick ordering (1.6) is crucial in Theorem 1.1, as our solution has infinite mass

when spr < s < 0; in this case the Wick-ordered NLS, rather than the original one, is the right

equation to study. In fact, even in the simplest case (d, p) = (1, 3), the NLS without the renor-

malization as in Remark 1.2 will have no solution for any infinite mass initial data; see [51]. As

another example, for the dynamical Φ4
2 model (2D cubic heat equation with white noise forcing),

the canonical smooth approximations will converge to a nontrivial limit only with Wick ordering,

otherwise the limit would be identically zero for any initial condition (see [23, 56]).

Remark 1.4. Despite having low regularity C0
tH

s−
x , the local solution constructed in Theorem 1.1 is

a strong solution, as it is the unique limit of canonical smooth approximations. In fact, by slightly

modifying our proof (which will not be done here for simplicity of presentation), we can obtain

the following general convergence result (see [67] for some discussions regarding different choices of

approximations):

Let ϕ be a function on Rd, ϕ(0) = 1, and ϕ is either Schwartz or equals the characteristic function

1B of the unit ball B (the latter is the setting of Theorem 1.1). Let ϕ̃ be either 1 or 1B, in the

latter case we assume ϕ ≡ 0 outside B. Define Pλ(k) = ϕ(λ−1k) and P̃λ(k) = ϕ̃(λ−1k). Let W p
λ be

defined as in (1.6) with σN replaced by σλ, which is in turn defined as in (1.5) with ΠN replaced

by Pλ. Consider the solution uλ to the system{
(i∂t + ∆)uλ = P̃λW

p
λ (uλ),

uλ(0) = Pλf(ω).
(1.9)

Then Theorem 1.1 remains true with conclusion being the convergence of {uλ} as λ → ∞. Here

the exceptional set Z and the limit u do not depend on the choice of (ϕ, ϕ̃).

More precisely, there exists a random time T = T(ω) satisfying P(T < τ) ≤ Cθe
−τ−θ for any

τ > 0, and a random function u = u(t, x, ω) defined for |t| ≤ T(ω), such that almost surely in ω,

we have uλ → u in C0
tH

s−
x [−T, T], as λ→∞, for any choice of (ϕ, ϕ̃).

Remark 1.5. Although Theorem 1.1 concerns singular (i.e. low regularity) data and short-time

solutions, the fundamental issue here is to understand how the randomness structure1 propagates

under the nonlinear Schrödinger flow. With this understanding, we can easily obtain new results

for regular data and long-time solutions, such as Theorem 1.6 below.

1.1.2. Long-time control for random homogeneous data. Consider the random homogeneous data,

which is the random initial data given by

fho(ω) = N−α
∑
k∈Zd

φ
( k
N

)
gk(ω)eik·x; α = s+

d

2
, s > spr. (1.10)

Here φ is a fixed Schwartz function and N is a fixed large parameter. Compared to (1.2), which is

a superposition of multiple scales, in (1.10) we have only one scale N and the Fourier modes are

uniformly distributed in the ball 〈k〉 . N . Such random data in fact are, up to rescaling, the ones

appearing in the derivation of wave kinetic equation in weak turbulence problems [18, 28, 33]. Note

that with high probability, ‖fho(ω)‖Hs ∼ 1. The second main theorem is then stated as follows.

1Such structure lives on high frequencies and fine scales. It becomes more explicit when considering low regularity

solutions, and may be obscured by the dominant coarse scale profile in high regularity solutions.
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Theorem 1.6. Fix (s, α) and fho(ω) as in (1.10), and 0 < ν < (p − 1)(s − spr). Let uho be the

solution to the system {
(i∂T + ∆)uho = |uho|p−1uho,

uho(0) = fho(ω).
(1.11)

Then there exists a set Z ⊂ Θ with P(Z) ≤ Cθe
−Nθ

, where θ is a small constant (ultimately

determined by (d, p, s), and independent of N) and Cθ is a constant determined by θ, such that

when ω 6∈ Z, the solution uho exists up to time T = Nν . Moreover, for some real valued gauge

function B(T ), we have

sup
0≤T≤Nν

‖uho(T )− e−iB(T )eiT∆uho(0)‖Hs ≤ N−θ. (1.12)

Remark 1.7. When scr > 1, i.e. (1.1) is H1 supercritical in the usual (deterministic) sense, it is not

a priori known whether uho exists up to time Nν . Even in the H1 subcritical case where uho exists

for all time, Theorem 1.6 demonstrates the highly nontrivial fact that there is no energy cascade

in uho, (almost) until this very long time T = N (p−1)(s−spr).

In comparison, for deterministic data, say when gk(ω) in (1.10) are replaced by 1, one can describe

the asymptotic behavior of uho only up to time1 O(N (p−1)(s−scr)) provided s > scr; see [17, 38] for

the p = 3 case. Therefore, the randomization (1.10) effectively extends the time of perturbative

regime for the given homogeneous initial data. In essence, this is the same as Theorem 1.1, where

we keep the time of the perturbative regime constant (namely 1), and randomization allows us to

increase the size of the initial data at a given frequency (equivalent to reducing regularity).

Remark 1.8. Since we are on the square torus Td, the behavior of uho at long time is dominated by

exact resonances. If Td is replaced by a generic irrational torus, then we may expect Theorem 1.6

to hold on even longer time intervals, conjecturally up to N2(p−1)(s−spr), at least for some range of

s. This, after rescaling, would correspond to justifying the wave kinetic equation up to the kinetic

timescale in the context of weak turbulence, which is still open at this point2 (despite the recent

success in [33] of the first author with Z. Hani; see also [18, 28]).

Remark 1.9. Unlike Theorem 1.1, in Theorem 1.6 we do not need the Wick ordering (1.6). Indeed,

the worst contributions in the context of Theorem 1.1 (as well as the non-existence result of [51]),

which can only be rescued by Wick ordering, are the high-low interactions where the high frequencies

form a pairing and produce the mass term; for random homogeneous data there is no distinction

between high and low frequencies, so such terms will not be a concern.

Remark 1.10. Our Theorem 1.1 provides the short time theory, and Theorem 1.6 yields also long

time control for random homogeneous data. To pass from local to global (in time) results one needs

to combine the random tensor theory with other methods, as is also the case in all previous works

on parabolic and dispersive equations. See Section 9.2.4 for a discussion.

1In fact there is energy cascade in uho at time N (p−1)(s−scr), dictated by the continuous resonance (CR) equation;

see [17, 38]. Note that, the approximation leading to the CR equation does not work in our case as randomization

destroys the differentiability in rescaled Fourier space; in fact the solution uho in Theorem 1.6 has no energy cascade

at this time. It is currently unknown whether the solution uho in Theorem 1.6, or the corresponding ensemble average,

satisfies some effective equation at time N (p−1)(s−spr).
2 We remark that, after the submission of this manuscript, the justification of the wave kinetic equation has been

done by the first author and Z. Hani in [34] in certain regimes, including the case s = spr and ν = 0 (the case s > spr

still remains open). This is a probabilistically critical result and is not covered by Theorem 1.6.
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1.2. The probabilistic scaling. The probabilistic criticality threshold spr plays a key role in the

local theory of (1.1) with random initial data. In this section we recall a heuristic justification of

this fact, which originally appeared in [36].

Start with (1.1) on R × Td, for simplicity we will replace W p(u) by the artificial nonlinearity

Nnp, defined by

(Nnp(u))k :=
∑

k1−···+kp=k

uk1uk2 · · ·ukp , (1.13)

assuming there is no pairing (i.e. kj 6∈ {kj′ , k} for any odd j and even j′). Let the initial data

u(0) ∈ Hs, to prove local well-posedness in Hs, one would like to control

u(1)(t) :=

ˆ t

0
ei(t−t

′)∆Nnp(eit
′∆u(0)) dt′, (1.14)

namely the first nonlinear iteration, in Hs, at time |t| ∼ 1. In the deterministic setting, if

u(0) = N−α
∑
|k|∼N

eik·x, α = s+
d

2
, (1.15)

then ‖u(0)‖Hs ∼ 1. By (1.14) we can calculate the Fourier coefficients u
(1)
k (t) of u(1)(t), where

u
(1)
k (t) ∼ N−pα

∑
kj∈Zd,|kj |∼N
k1−···+kp=k

1

〈Ω〉
, Ω := |k|2 − |k1|2 + · · · − |kp|2 (1.16)

for |k| ∼ N and |t| ∼ 1. We may restrict to (say) Ω = 0 in (1.16), and a dimension counting

argument shows that the inner sum has size Npd−d−2, hence

‖u(1)(t)‖Hs ∼ N (p−1)( d
2
−s)−2; ‖u(1)(t)‖Hs . 1⇔ s ≥ d

2
− 2

p− 1
:= scr. (1.17)

Indeed in the deterministic setting, (1.1) is locally well-posed for s > scr, and ill-posed for s < scr.

Now we switch to the random setting, where instead of (1.15) we have

u(0) = N−α
∑
|k|∼N

gk(ω)eik·x, (1.18)

where gk(ω) are i.i.d. centered normalized Gaussians, and instead of (1.16) we have

u
(1)
k (t) ∼ N−pα

∑
kj∈Zd,|kj |∼N
k1−···+kp=k

1

〈Ω〉
gk1gk2 · · · gkp . (1.19)

Again we may restrict to Ω = 0; due to the square root cancellation in (1.19), now with high

probability the inner sum only has size N (pd−d−2)/2, hence instead of (1.17) we have

‖u(1)(t)‖Hs ∼ N−(p−1)s−1; ‖u(1)(t)‖Hs . 1⇔ s ≥ − 1

p− 1
:= spr. (1.20)

This justifies the role of spr in Theorem 1.1, and explains why almost-sure local well-posedness is

plausible, in the probabilistically subcritical range s > spr.

Remark 1.11. Theorem 1.1 establishes almost-sure local well-posedness when s > spr. In the

probabilistically supercritical range s < spr, we believe (1.1) is almost surely ill-posed, in the sense

that almost surely, the approximations uN defined in (1.7) do not converge in C0
tH

s−
x [−τ, τ ] for any
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τ > 0. This seems out of reach with the current methods, but some weaker results (for example

failure of convergence1 in CιtH
s−
x for any ι > 0) might be possible.

Remark 1.12. The notion of parabolic scaling (also known as the super-renormalizability scaling in

quantum field theory, see [22]) is central in the works on local theory of singular parabolic SPDEs,

see for example [52, 46]. For the analog of (1.1), namely

(∂t −∆)u = W̃ p(u) + ζ, ζ = spacetime white (or colored) noise (1.21)

(where W̃ p is some renormalization beyond Wick ordering, see (1.22) below), this scaling has critical

exponent spa := −2/(p− 1). Note that spa is strictly lower than spr, which reflects a fundamental

difference between Schrödinger and heat equations. See Section 9.1 for more detailed discussions.

1.3. Propagating randomness: Earlier works. The heuristics of Section 1.2 rely on the as-

sumption that the Fourier coefficients of u(0) are independent ; this is no longer satisfied by u(t),

as soon as t > 0. Therefore, the key to the proof of Theorem 1.1 is to propagate the randomness

of the initial data, for the anticipated amount of time, in such a way that the square cancellation

in Section 1.2 remains valid.

The idea of propagating randomness, interpreted in one way or another, has been central in all

previous works concerning local well-posedness in the random setting. In this section we briefly

review the existing approaches, especially those developed in the past few years.

1.3.1. The method of Bourgain and Da Prato-Debussche. The important early results in this direc-

tion are proved by Bourgain [11] (for random initial data) and later by Da Prato-Debussche [29]

(for additive noise). The idea is to propagate the random initial data (or the noise term) linearly,

which preserves all the independence properties, and treat the nonlinearity as a perturbation.

For example, the equation studied in [11] is (1.1) with (d, p) = (2, 3) and Gibbs measure initial

data (i.e. α = 1 in (1.2)), which is barely supercritical in the deterministic sense and subcriti-

cal in the probabilistic sense. In [11] Bourgain constructed the solution as u = ulin + w, where

ulin = eit∆u(0) is the linear evolution which enjoys the same randomness properties as the initial

data u(0) = f(ω), and the remainder w has improved regularity, say C0
tH

σ
x with σ > 0, thus

becoming subcritical in the deterministic sense. Then the classical fixed point analysis together

with large deviation estimates apply to control the hybrid nonlinearity—of the difference equation

that w satisfies—containing interactions of ulin with w. The situation in [29] is similar, except that

Schrödinger is replaced by Navier-Stokes, and ulin is replaced by the linear evolution of the noise

term.

Until recent years, the methods of Bourgain and of Da Prato-Debussche have been the dominant

strategy in the study of local well-posedness theory for random PDEs. The weakness of this

approach is that the improved regularity of the nonlinear contribution w may not be enough for

the deterministic theory to be applicable, especially when one gets close to probabilistic criticality.

One may try to enhance this by moving to higher-order variants and bringing in self-interactions

of ulin, see [9, 64], but in many situations (like in [9]), there is an upper bound for all the regularity

improvements obtained in this way, which may still fall short of the deterministic threshold.

1In comparison, when s > spr, the proof of Theorem 1.1 easily implies the convergence of uN (including the uλ

in Remark 1.4) in CιtH
s−
x for some ι > 0 ultimately determined by (d, p, s).
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1.3.2. The theory of regularity structures. The theory of regularity structures was developed by

Hairer [52, 53] in the context of singular parabolic SPDEs, to provide a natural and mathematically

rigorous notion of solutions to such equations and prove their local well-posedness. The theory is

based on the local-in-space properties of solutions at fine scales, hence it is well adapted to parabolic

equations. It builds a general theory of distributions by means of an abstract generalization of local

Taylor expansions of problem-dependent profiles (e.g. the spacetime white or colored noise, and self-

interactions and Duhamel iterations thereof), in order to make sense of the equation—in particular

the products of rough distributions emerging from the singular parabolic SPDE. Furthermore, the

solutions obtained can be approximated locally to arbitrarily high degree by linear combinations

of this fixed family of problem-dependent profiles. These expansions in the context of singular

parabolic SPDEs should be compared and contrasted to the ones that we obtain in Theorem 1.1

(more precisely (8.5)).

The theory of regularity structures establishes local well-posedness results in the sense of conver-

gence of canonical smooth approximations. When taking limits of such approximations, a suitable

renormalization in the form of divergent counterterms is usually needed. Sometimes (for example in

the dynamical Φ4
2 model, see Remark 1.3) this is just the Wick ordering, but for more sophisticated

equations further renormalizations become necessary. A nice feature of the regularity structures

theory is that these renormalization constants can always be calculated using the profiles defined

for the specific equation.

We illustrate this renormalization process following [52, 54, 55] where Hairer studies the dynam-

ical Φ4
3 model. Here the canonical smooth approximations uε satisfy the renormalized equations

with the spacetime white noise ζ replaced by its regularization ζε, namely

(∂t −∆)uε = 3(C1 − 3C2)uε − u3
ε + ζε, (1.22)

where C1 ∼ ε−1 corresponds to Wick ordering, and C2 ∼ log ε is an additional renormalization

constant. The problem-dependent profiles are in the following space

T = 〈•, , , , , , , xi ,1, , , · · · 〉, (1.23)

with symbols ordered in increasing order of regularity and 〈 · 〉 used to denote the linear span. The

symbol • represents the regularized noise ζε, xi represent the coordinates of x, and = (∂t−∆)−1•,
and represent the Wick renormalized1 powers ( )3 and ( )2, etc. The renormalization constants

are then calculated from these profiles, such as C1 = E( )2 ∼ ε−1, C2 = E( · ) ∼ log ε, and

convergence of uε as ε→ 0 is proved for initial data in Cα, −2
3 < α < −1

2 .

In a series of papers [15, 16, 21], the regularity structures theory has been extended to general

parabolic equations and now covers the whole subcritical range s > spa relative to the parabolic

scaling (as in Remark 1.12 above); for an example see the Φ4
4−δ model in [15].

Remark 1.13. We remark that, though in principle the regularity structures theory can cover the

whole subcritical range for singular parabolic SPDEs, in reality there is an additional obstacle that

sometimes requires slightly higher regularity when the noise is rougher than white. This obstacle

can be traced back to the rough path theory [40], and is linked to the high-high-to-low frequency

interactions. In the Schrödinger case, however, such obstacle is absent as these interactions can

be treated in the same way as the main term, hence our theorem covers the full subcritical range

1In particular, = ( )2 − E( )2 and = ( )3 − 3(E( )2) · .
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s > spr, which is in parallel with the full subcritical range s > spa in parabolic case, for all

dimensions d and powers p.

1.3.3. The para-controlled calculus and the renormalization group technique. The theory of para-

controlled calculus put forward by Gubinelli, Imkeller and Perkowski [46] (see also Catellier and

Chouk [20]) and the work of Kupiainen [58] based on renormalization group techniques provide

alternative approaches to proving local well-posedness for singular parabolic SPDEs. The theory of

para-controlled calculus, based on paradifferential calculus, leverages the key observation that the

lack of regularity for w in the approaches of Bourgain and of Da Prato-Debussche, as described at

the end of Section 1.3.1, is only due to the high-low interactions where the high frequencies come

from ulin (or self-interactions and Duhamel evolutions thereof) and the low frequencies come from w.

In this theory, such high-low interaction terms X are para-controlled by the high-frequency inputs

(for example ulin), in the sense that1 X = π>(ulin, Y ) + Z with Z being smoother than X. Such

terms, despite having insufficient regularity, are shown to enjoy similar randomness structures as

ulin itself, which allows for a fixed point argument, where X is constructed in some low regularity

space, and the remainder Z is constructed in a higher regularity space. We refer the reader to

[20, 48, 49, 50, 62, 6, 5, 47, 14] and references therein for nice expositions of these ideas and some

other recent developments as well as a higher order variant of this method.

1.4. Random averaging operators. In view of these breakthrough works described in Sections

1.3.2 and 1.3.3 that deal with parabolic equations, it would be natural to think that something

similar can be done in the context of dispersive equations. However, there are fundamental dif-

ferences between dispersive (say Schrödinger) and heat equations, preventing these methods from

being applicable (for more comparisons see Section 9.1):

(a) The heat equation is compatible with local-in-space analysis, as is clear from the maximum

principle or the off-diagonal exponential decay for the heat kernel. The Schrödinger equation

does not have these properties, which makes the application of the theory of regularity structures

impossible, as the latter is based on pointwise Taylor expansions in physical space.

(b) Likewise, the heat equation is compatible with Cα (Hölder) spaces; in fact both the regularity

structures theory and the para-controlled calculus rely heavily on such norms. On the other hand

the Schrödinger flow is unbounded on Cα, and is bounded only on Hs type spaces, which require

a lot more derivatives to reach the same scaling as Cα.

(c) The heat equation gains two spatial derivatives in terms of the fundamental solution (∂t−∆)−1

(wave gains one), while the Schrödinger equation gains none. The smoothing is seen only in terms

of twisted temporal regularity by using Xs,b type norms, which is clearly not compatible with either

the regularity structures theory or the para-controlled calculus.

In our previous work [36], which studies (1.1) with d = 2, arbitrary p ≥ 5 and Gibbs measure

initial data (α = 1), we introduced the method of random averaging operators. The idea is to take

the high-low interaction X described in Section 1.3.3, but instead of putting it in a low regularity

space (as is done in the para-controlled calculus), we write it as an operator applied to the high

frequency linear evolution ulin:

X =
∑
N

∑
L�N

PNL(∆Nulin), (1.24)

1Here π> is the standard Bony paraproduct.
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where N and L are the frequencies of the high and low inputs. The operator PNL, whose coefficients

are independent with the modes of ∆Nulin, contains all the randomness information of the low

frequency components of u, which is carried by two operator norm estimates

‖PNL‖OP ≤ L−δ0 , ‖PNL‖HS ≤ N
1
2

+δ1L−
1
2 , (1.25)

where δ1 � δ0 � 1. Here PNL is viewed as a linear operator between two Hilbert spaces that

can be L2 or Xs,b depending on the context, ‖ · ‖OP and ‖ · ‖HS are respectively operator and

Hilbert-Schmidt norms.

The method of random averaging operators, compared to the regularity structures theory and

the para-controlled calculus, has three advantages relative to the three difficulties listed above,

which makes it suitable for the study of Schrödinger equations:

(a) The operator PNL is a global-in-space object (in fact it is defined on the Fourier side), which

is consistent with the non-local setting of Schrödinger equations;

(b) The role of Cα norms is replaced by (essentially) the L2 → L2 operator norms, which is

compatible with the well-established L2 theory;

(c) The analysis for PNL is performed in the category of Xs,b spaces, which allows one to exploit

the smoothing of the Schrödinger fundamental solution.

By applying this method, we have been able to propagate the randomness of PNL in terms of

the above operator norm bounds, as well as control the remainder in a deterministically subcritical

space, leading to the full resolution of the Gibbs measure problem in 2D. See [36].

1.5. Random tensors. The core of this work is a broad extension of the method of random

averaging operators, which we call the theory of random tensors. A detailed introduction to this

theory will be given in Section 2, here we will restrict our attention to only the motivation.

Start by considering the random averaging operators; roughly speaking, the frequency N piece

of the high-low interaction X in (1.24) is given by ∆NX = PN (∆Nulin) where PN =
∑

L PNL. In

Fourier space it can be written as

(∆NX)k(t) = e−i|k|
2t
∑
〈k′〉∼N

hkk′(t)
gk′(ω)

〈k′〉
,

where subscripts denote Fourier coefficients, and hkk′(t) is essentially the kernel of the operator PN .

For fixed t this is a random matrix, or (1, 1) tensor, that depends on the low frequency components

of the solution.

Now, to prove Theorem 1.1 we will need higher order expansions. This naturally leads to the

multilinear expressions (here we denote (u+, u−) = (u, u) as usual)

Ψk =
∑

k1,··· ,kr

hkk1···kr

r∏
j=1

〈kj〉−αg±kj (ω), (1.26)

as well as the associated random (r, 1) tensors h = hkk1···kr , which depend on the low frequency

components of the solution. For simplicity, in (1.26) we have omitted the dependence on t. We

always assume there is no pairing, i.e. kj′ 6= kj if the corresponding ± signs are opposite.

Notice that, the product of Ψ with another expression

Ψ′k′ =
∑

k′1,··· ,k′s

h′k′k′1···k′s

s∏
j=1

〈k′j〉−αg±k′j (ω)
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can be written as a linear combination of similar multilinear expressions, depending on the possible

set of pairings between {k1, · · · , kr} and {k′1, · · · , k′s}. For example, if

Ψk =
∑
a,b,c,d

hkabcd · 〈a〉−αga · 〈b〉−αgb · 〈c〉−αgc · 〈d〉−αgd,

Ψ′k′ =
∑
u,v,w

h′k′uvw · 〈u〉−αgu · 〈v〉−αgv · 〈w〉−αgw,

and in the summation we assume a = u and b = w, then we have one representative component of

Ψ ·Ψ′ being

Φm =
∑
c,d,v

Hmcdv · 〈c〉−αgc · 〈d〉−αgd · 〈v〉−αgv,

Hmcdv ∼
∑

k+k′=m

∑
a,b

〈a〉−α〈b〉−αhkabcd · 〈a〉−α〈b〉−αh′k′avb,
(1.27)

where we have replaced |ga|2 and |gb|2 by 1. The process of going from (h, h′) to H as above will

be called merging, which gives the main algebraic structure of the tensors studied in this work.

For purposes related to independence of Fourier coefficients (which will be explained in Sec-

tion 2.2.3), we also need another process called trimming, which means contracting against free

Gaussians, namely going from h = hkk1···kr to

h′kk1···ks =
∑

ks+1,···kr

hkk1···kr

r∏
j=s+1

〈kj〉−αg±kj ,

where 1 ≤ s ≤ r. Note that Ψk defined by (1.26) is formally invariant under trimming.

Now, as in [36], the central objects in our work will be the tensors h (instead of the multilinear

expressions Ψ), as well as suitable L2 → L2 operator norms for these tensors. The theory of random

tensors then provides a natural framework for studying such tensors, in particular proving estimates

for such norms that are consistent with merging and trimming. In Section 2 below we provide a

more detailed discussion of this theory, and application to the proof of Theorem 1.1.

Remark 1.14. The reason for introducing the random tensor theory is that, as the problem gets

closer to probabilistic criticality, what is deemed a remainder term in the random averaging operator

method will no longer have enough regularity, thus a higher order expansion is needed. In fact, by

the arguments in Section 1.2, each iteration of the equation (1.1) gains regularity ∆s = (p− 1)(s−
spr), so the order of the expansion needed would be ∼ 1/∆s. This could be used as a measure for

the difficulty of the problem, which goes to infinity when p is fixed and s→ spr.

For example, for the problem studied in [36] one has d = 2 and (p, s, spr) = (2r + 1, 0,−1/(2r)),

hence ∆s = 1 for any r (note that in order for s−spr → 0 we need r →∞) so the random averaging

operator is always enough. However if d = 3, p = 3 and s→ spr = −1/2, then ∆s→ 0 and the use

of random tensors becomes necessary.

1.6. Acknowledgement. The authors would like to thank Hendrik Weber for helpful comments

regarding the regularity structures theory and the reference [22]. They would also like to thank the

referees for their useful comments and suggestions.
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2. Overview of the theory

This section contains an overview of the theory of random tensors in the context of the proof

of Theorem 1.1. We start with the definition and norms in Section 2.1, then develop the algebraic

structure and main tools in Section 2.2. In Section 2.3 we introduce a simplified model, which is

analyzed in Section 2.4 using tools from our theory. In Section 2.5 we explain the changes needed

when moving to full generality, and finally in Section 2.6 we list an outline for the rest of the paper.

2.1. Tensors and tensor norms. As discussed in Section 1.5, the central objects in this work

are tensors and their L2 → L2 operator norms. We therefore start with the following definition.

Definition 2.1. Let A be a finite index set, we will denote kA = (kj : j ∈ A). A tensor h = hkA
is a function (Zd)A → C, with kA being the input variables. The support of h is the set of kA such

that hkA 6= 0. These tensors are usually random (i.e. depend on ω which belongs to the ambient

probability space Θ, though we may omit this dependence), hence the name random tensors.

A partition of A is a pair of sets (B,C) such that B ∪ C = A and B ∩ C = ∅. For such (B,C)

define the norm ‖ · ‖kB→kC by

‖h‖2kB→kC = sup

{∑
kC

∣∣∣∣∑
kB

hkA · zkB

∣∣∣∣2 :
∑
kB

|zkB |
2 = 1

}
.

By duality we have that

‖h‖kB→kC = sup

{∣∣∣∣ ∑
kB ,kC

hkA · zkB · ykC

∣∣∣∣ :
∑
kB

|zkB |
2 =

∑
kC

|ykC |
2 = 1

}
, (2.1)

hence ‖h‖kB→kC = ‖h‖kC→kB = ‖h‖kB→kC . If B = ∅ or C = ∅ we get the norm ‖ · ‖kA defined by

‖h‖2kA =
∑
kA

|hkA |
2.

Note that trivially ‖h‖kB→kC ≤ ‖h‖kA .

Finally, we define a subpartition to be a pair (B,C) such that B ∪ C ⊂ A and B ∩ C = ∅. In

such case let E = A\(B ∪ C), then (B,C) is a partition of A\E so we can define

‖h‖kB→kC = sup
kE

‖h(kE ,·)‖kB→kC . (2.2)

Remark 2.2. In the main proof the tensors may depend on other parameters, such as t or (kF , λF ),

where λF = (λj : j ∈ F ), for some set F ; in such cases we will write respectively hkA = hkA(t) or

hkA = hkA(kF , λF ). Moreover, the norm (2.2) is designed only to treat some degenerate cases, so

it will not appear in the simplified model of this section.

2.2. Tensor algebra and basic tools. In this section we develop the algebra of random tensors

given by merging and trimming as described in Section 1.5, and some important estimates which

are the basic tools of our theory. The precise versions will be given in Sections 3.2 and 4.4 below.

First we record the definition of pairing.

Definition 2.3. Define uζ for ζ ∈ {±} by (u+, u−) = (u, u) (in doing algebra we may view such ζ

as ±1). Given ki, kj ∈ Zd with associated signs ζi, ζj ∈ {±}, we say (ki, kj) is a pairing if ζi+ζj = 0

and ki = kj . We say it is over-paired (or an over-pairing) if ki = kj = kl for some l 6∈ {i, j}.
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2.2.1. Semi-products and merging. As described in Section 1.5, our theory will focus on the analysis

of the tensors hkkA and associated multilinear expressions1

Ψk :=
∑
kA

hkkA
∏
j∈A
〈kj〉−αg±kj , (2.3)

where kA = (kj : j ∈ A) as in Definition 2.1 and kj′ 6= kj when the signs are the opposite, as well

as the merging and trimming operations loosely described in that section.

In fact the merging operation can be viewed as a special case of taking what we may call semi-

products for two or more tensors, which means taking tensor products and contracting over the

given set of repeated indices—note that, the repeated indices can be indices appearing in both

tensors, or the result of specific pairings between the tensors. For example, if habcde and h′uvawx are

two tensors, then their semi-product, under the assumptions b = u and c = w, will be2

Hdevx =
∑
a,b,c

habcdeh
′
bvacx.

In general, suppose hkA are h′kB are two tensors, and we have a particular set of repeated indices

(coming from A ∩B or pairings between kA and kB). We may then assume these repeated indices

belong to both A and B, and define the corresponding semi-product as

HkA∆B
=
∑
kA∩B

hkAh
′
kB
.

This can easily be generalized to semi-products of more than two tensors, for example the semi-

product of the three tensors habcd, h
′
aefg and h′′cuv under the assumptions b = f and g = v is

Hdeu =
∑
a,b,c,g

habcdh
′
aebgh

′′
cug.

Note that for simplicity we are not considering over-pairings where an index is repeated two or more

times, but such situations do appear in the actual definition of merging and need special treatment

(though they are only associated with degenerate situations which are always much easier). See

Definition 3.6 for details.

Now, with the notion of semi-products, we can define (in this simple case without over-pairing)

the merging of finitely many tensors h(1), · · · , h(r) via a base tensor h as follows:

Definition 2.4 (Merging: simple version). Let h(j) = h
(j)
kjkAj

be tensors, where 1 ≤ j ≤ r, Aj are

pairwise disjoint, and let h = hkk1···kr be the base tensor. Also fix a set of pairings among the sets

A1, · · · , Ar (which creates paired indices that will be viewed as repeated indices; as before, assume

there is no pairing within each Aj and no pairing involving more than two indices), then the merging

of h(1), · · ·h(r) via h, assuming the given choice of pairings, is defined to be the semi-product of

h̃(1), · · · , h̃(r) and h, where (i) each h̃(j) is h(j) multiplied by the product of 〈kl〉−α over all l ∈ Aj
that appear in some pairing, and (ii) in addition to the paired indices, each kj (1 ≤ j ≤ r) is also

viewed as a repeated index and is summed over, as it appears in both h(j) and h.

1In practice we will use ηk = |gk|−1gk, which is uniformly distributed on the unit circle, instead of gk.
2In practice we will also have a ± sign for each index of each tensor, for example a + sign for the index a in

habcde or a − sign for the index x in h′uvawx. When precisely defining the merging operations, see Definition 3.6, we

will restrict to the cases where for each repeated or paired index, its signs in the two tensors that it appears are the

opposite (for example if the sign of b in habcde is + then the sign of u in h′uvawx must be −, assuming b = u). In this

section (including the simple case Definition 2.4) we will ignore this issue for simplicity.
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For example, if h(1) = h
(1)
k1abcd

, h(2) = h
(2)
k2efg

, h(3) = h
(3)
k3uvw

and h = hkk1k2k3 , then the merging

of h(1), h(2) and h(3) via h, under the assumptions a = w, b = f and g = v, will be

Hkcdeu =
∑

k1,k2,k3,a,b,g

hkk1k2k3 · 〈a〉−α〈b〉−αh
(1)
k1abcd

· 〈b〉−α〈g〉−αh(2)
k2ebg

· 〈g〉−α〈a〉−αh(3)
k3uga

.

Similarly, the example (1.27) which gives a component of the product Ψ · Ψ′, is the merging of

hkabcd and h′k′uvw via h̃mkk′ = 1m=k+k′ , under the assumption a = u and b = w.

The general version of Definition 2.4, which includes the signs of indices, dependence on other

parameters and additional structures, as well as over-pairings, will be given in Definition 3.6.

2.2.2. Key bilinear and multilinear bounds. Our first basic tool is the following lemma (together

with the multilinear version thereof), where the ‖ · ‖kB→kC norms for semi-products of tensors, as

defined in Definition 2.1, are estimated by the ‖ · ‖kB→kC norms of the individual tensors.

Proposition 2.5 (A bilinear estimate). Let hkA and h′kB be two tensors, assume that all repeated

indices are already in A∩B. Then for any partition (X,Y ) of A∆B, the semi-product H of h and

h′ satisfies that

‖H‖kX→kY ≤ ‖h‖k(X∪B)∩A→kY ∩A · ‖h
′‖kX∩B→k(Y ∪A)∩B .

For example, we have

‖H‖dv→ex ≤ ‖h‖abcd→e · ‖h′‖v→xabc, where Hdevx =
∑
a,b,c

habcdeh
′
bvacx.

Note that in the setting b = u and c = w as in Section 2.2.1, we can identify h′bvacx with h′uvawx
and the norm ‖ · ‖v→xabc with ‖ · ‖v→xauw; the same comment applies to Lemma 2.6 below.

An equivalent form of Proposition 2.5 will be stated and proved in Proposition 4.11.

Proposition 2.6 (A multilinear estimate). Let h
(j)
kAj

(1 ≤ j ≤ m) be tensors, assume all repeated

indices coming from pairings between any Ai and Aj are already in Ai ∩ Aj. Let H = HA be the

semi-product of the h(j)’s, where A = A1∆ · · ·∆Am, then for any partition (X,Y ) of A we have

‖H‖kX→kY ≤
m∏
j=1

‖h(j)‖k(X∩Aj)∪Bj→k(Y ∩Aj)∪Cj
, (2.4)

where

Bj =
⋃
`>j

(Aj ∩A`), Cj =
⋃
`<j

(Aj ∩A`).

For example, we have

‖H‖e→ud ≤ ‖h‖abc→d‖h′‖eg→ab‖h′′‖cug, where Hdeu =
∑
a,b,c,g

habcdh
′
aebgh

′′
cug.

An equivalent form of Proposition 2.6 will be stated and proved in Proposition 4.12.
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2.2.3. Trimming. In the course the main proof, when considering the tensors hkkA and associated

multilinear expressions Ψk as in (2.3), we will always assume that the tensor h is independent with

the Gaussians gkj , in order for the large deviation estimates (such as Lemma 4.4) to be applicable.

In practice, this is guaranteed by requiring that 〈kj〉 ≥ R in the support of hkA for some R, and

that hkA is a Borel function of {gk : 〈k〉 < R}. A problem then occurs, say when merging two

tensors h = hkA and h′ = h′kB with cutoffs R1 and R2 as above, because the merged tensor H is

a Borel function of {gk : 〈k〉 < max(R1, R2)} and may not be independent with gkj for j ∈ A∆B.

Because of this, we will introduce the operation of trimming as follows:

Definition 2.7 (Trimming: simple version). Let h = hkkA be a tensor, assume for each j ∈ A

there is a dyadic Nj such that h is supported in Nj/2 < 〈kj〉 ≤ Nj . Then, for any R, the trimming

of h at frequency R is defined to be the contraction against free Gaussians, namely

h′kkA′ =
∑
kA\A′

hkkA
∏

j∈A\A′
〈kj〉−αg±kj ,

where A′ = {j ∈ A : Nj ≥ R}. Note that those gkj where j ∈ A′ are independent with those gkj
where j ∈ A\A′. In particular we recover the expression Ψk in (2.3) if A′ = ∅.

For example, if h = hkabcd, where N1/2 < 〈a〉 ≤ N1 etc., and assume N1 ≤ N3 < R ≤ N2 ≤ N4,

then the trimming of h at frequency R will be

h′kbd =
∑
a,c

hkabcd · 〈a〉−αg±a · 〈c〉−αg±c .

The general version of Definition 2.7, which includes the signs of indices, as well as dependence

on other parameters and additional structures, will be given in Definition 3.5.

2.2.4. Method of descent. Our second basic tool is the following lemma, where the ‖·‖kB→kC norms

for the contraction of a tensor against independent free Gaussians are estimated by the ‖ · ‖kB→kC
norms of this tensor. This inequality has an elegant form, and we believe it is of independent

interest in the study of random matrices.

Proposition 2.8. Let hkA be a tensor, A′ be a subset of A such that {gkj : j ∈ A\A′} is independent

with hkA. Let h′ = h′kA′
be the contraction of h against the free Gaussians {g±kj : j ∈ A\A′}, namely

h′kA′ =
∑
kA\A′

hkA
∏

j∈A\A′
g±kj ,

then for any partition (X ′, Y ′) of A′, with high probability we have1

‖h′‖kX′→kY ′ . sup
(X,Y )

‖h‖hX→hY ,

where (X,Y ) runs over all partitions of A such that X ′ ⊂ X and Y ′ ⊂ Y .

For example, under the independence assumption, with high probability we have

‖h′‖b→d . max(‖h‖abc→d, ‖h‖ab→cd, ‖h‖bc→ad, ‖h‖b→acd), where h′bd =
∑
a,c

habcdg
±
a g
±
c .

A more precise version of Proposition 2.8 will be stated and proved in Proposition 4.14. A

slightly different version due to technical reasons will be stated and proved in Proposition 4.15.

1In practice this will have a small power loss Mθ where θ is an arbitrary small number and M is the size of

kA ∈ (Zd)A; see Propositions 4.14–4.15.
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2.3. A simple model. We now turn to the proof of Theorem 1.1. In this section we introduce a

much simplified model for (1.1) and (1.7) that still preserves the main difficulties.

First, we will replace the nonlinearities by the Nnp defined in (1.13). This Nnp is essentially

the result of Wick ordering and a suitable gauge transform, but avoids the complications linked to

over-pairings and deviation of mass around its expected value.

Second, we will remove the time variable. Indeed, if we believe our solution is close to a linear

solution, and thus restrict to functions u whose spacetime Fourier transform looks like ûk(ξ) ∼
uk · ψ(ξ + |k|2) with some Schwartz function ψ and some function uk of k only, then by a formal

calculation using Duhamel’s formula, this uk will satisfy a fixed-point equation that essentially

looks like

uk =
gk
〈k〉α

− i
∑

k1−···+kp=k; Ω=0

uk1uk2 · · ·ukp , (2.5)

where Ω := |k|2 − |k1|2 + · · · − |kp|2, and in (2.5) we also assume no-pairing as in (1.13).

Third, consistent with the setting of Section 2.2, in analyzing (2.5) we will disregard any over-

pairings, and assume, when merging tensors, that no index is repeated more than once.

2.4. The core ansatz. We now start the analysis of (2.5). For simplicity we denote the terms on

the right hand side of (2.5) by

〈k〉−αgk =: fk, −i
∑

k1−···+kp=k; Ω=0

uk1uk2 · · ·ukp =:Mnp(u, · · · , u)k, (2.6)

where Mnp is an R-multilinear operator of degree p, so that (2.5) reads

uk = fk +Mnp(u, · · · , u)k, (2.7)

We also introduce the canonical truncations of (2.7), namely

(uN )k = ΠNfk +Mnp(uN , · · · , uN )k, (2.8)

and define yN by

yN = uN − uN/2; uN =
∑
N ′≤N

yN ′ . (2.9)

Note that we do not put ΠN before the nonlinearity in (2.8); however in this model we still assume

yN and uN are supported in 〈k〉 ≤ N . Under these assumptions, yN satisfies the equation

(yN )k = ∆Nfk +
∑

max(N1,··· ,Np)=N

Mnp(yN1 , · · · , yNp)k. (2.10)

The core ansatz for yN will be constructed by induction (assuming uN ′ and yN ′ are already

defined for N ′ < N). Recall that in [36] the analogue ansatz for yN contains three parts: ∆Nf which

corresponds to the linear evolution, the terms corresponding to the random averaging operators

PNL, and a remainder zN of higher regularity. We start by a description of this simple case in

Section 2.4.1. In order to prove Theorem 1.1 which covers the full subcritical range s > spr, in

Section 2.4.2, we will further unravel the propagation of randomness from the remainder and make

higher order expansions using the random tensors introduced in Sections 2.1–2.2.
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2.4.1. Random averaging operators. As stated in Section 1.4, the random averaging operator PNL
describes the high-low interaction, which in this simple model is defined by

PNL(y) =Mnp(y, uL, · · · , uL), (2.11)

where1 L = N δ for some small δ. Note that when we discuss the ansatz for yN , uL has already

been defined by the induction hypothesis. The ansatz for yN then includes the following term:

(1 + PNL + P2
NL + P3

NL + · · · ) ∆Nf = (1− PNL)−1∆Nf, (2.12)

where convergence is guaranteed by the operator bound (1.25) for PNL. In the case p = 3 for

example, we may represent the terms in (2.12) by means of the following iteration trees

• : ∆Nf, ◦ : uL, :Mnp(∆Nf, uL, uL) = PNL(∆Nf),

: P2
NL(∆Nf), : P3

NL(∆Nf), etc.
(2.13)

For each term in (2.13) we can define the associated random (1, 1) tensor (or equivalently random

matrix). For example the random (1, 1) tensor associated to • = ∆Nf is just the identity matrix,

while for the iteration tree , the associated random (1, 1) tensor h is such that

( )k =
∑
k1

hkk1
·∆Nfk1 , (2.14)

where fk1 is as in (2.6). By (2.6) and (2.11), we have the formula (where Ω = |k|2−|k1|2+|k2|2−|k3|2)

hkk1
= −i

∑
k1−k2+k3=k; Ω=0
〈k2〉,〈k3〉≤L, 〈k〉≤N

(uL)k2 · (uL)k3 . (2.15)

Similarly we can define the random (1, 1) tensors associated to other iteration trees in (2.13) such as

. Since uL (represented by ◦) has less importance in the estimates (in fact they will be trimmed

out, see the arguments below), all these random (1, 1) tensors can be treated in a similar way in

our proof. Hence for simplicity we will denote them by the single notation h .

2.4.2. Random tensors. With the random (1, 1) tensors h defined as above, we proceed to con-

struct the random (r, 1) tensors in the ansatz for yN by induction, with h being the base case.

These tensors arise from high order iterations of the equation (2.10). We start with a simple case,

namely the random (2, 1) tensor terms in the ansatz for yN , by using the following iteration trees

(assume p = 3):

:Mnp(∆Nl1
f,∆Nl2

f, uL), : PNL( ), : P2
NL( ),

:Mnp(Mnp(∆Nl1
f, uL, uL),∆Nl2

f, uL), etc.

(2.16)

where (l1, l2) is not a pairing (i.e. kl1 6= kl2 in (2.17) below, if the corresponding signs are the

opposite), Nl1 , Nl2 > L and max(Nl1 , Nl2) = N . These terms are similar to the high-low interactions

in (2.12) and hence will also be added to the ansatz for yN . We can define the random (2, 1) tensors

associated to terms in (2.16), proceeding similarly as in (2.14) and (2.15). Once again all these

1In [36] we used L = N1−δ; here we need a smaller value of L which works better in the general setting.
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random (2, 1) tensors can be treated in a similar way in our proof, hence for simplicity we also

denote them by the single notation h , such that the k-th mode of terms in (2.16) are given by∑
Nli

/2<〈kli 〉≤Nli
, i=1,2

hkkl1kl2
(∆Nl1

fkl1 )±(∆Nl2
fkl2 )±. (2.17)

Synthesizing the structures of these random (1, 1) and (2, 1) tensors, we describe the associated

(r, 1) tensors in general. To that effect we introduce the skeleton tree L containing all solid leaves1 •
in the iteration trees associated to the (r, 1) tensors. For each leaf l ∈ L we also attach a frequency

Nl (such as Nl1 and Nl2 in (2.16) above) and a sign ζl ∈ {±} (for simplicity we will not explicitly

write ζl below). Define also the frequency of the skeleton tree to be N , which always equals the

maximum of Nl; in particular if l is the only leaf then N = Nl. For example, the term in (2.16) that

has the iteration tree will correspond to the skeleton tree , or L = {l1, l2}, with two leaves, no

pairing, and max(Nl1 , Nl2) = N . In such terms we always assume Nl > L so that the tensor hL,

which is a Borel function of uL, is independent with the Gaussians ∆Nl
f .

Let us now show with an example how the inductive definition of the (r, 1) tensors associated

to the ansatz for yN proceeds using high order iterations, first in the no-pairing case. For p = 3,

consider the high order iteration term such as

=Mnp( , •, );

( )
k

=
∑

Nli
/2<〈kli 〉≤Nli

; 1≤i≤4

 ∑
k1,k2,k3

hkk1k2k3h
L1
k1kl1kl2

hL2
k2kl3

hL3
k3kl4

 4∏
i=1

(∆Nli
fkli )

±,
(2.18)

where L1 = {l1, l2} corresponds to the iteration tree and has frequency N1, L2 = {l3} corresponds

to • and has frequency N2, and L3 = {l4} corresponds to the iteration tree and has frequency

N3. Also note that N = max(N1, N2, N3) by (2.10). By the definition of Mnp in (2.6), the tensor

hkk1k2k3 in (2.18) is (with the no-pairing restrictions which we omit)

hkk1k2k3 = 1k=k1−k2+k3 · 1|k|2=|k1|2−|k2|2+|k3|2 . (2.19)

Consider the case when there is no pairing among {l1, l2, l3, l4} (note that (l1, l2) is already not a

pairing in (2.16)). By (2.18) and Definition 2.4, the random tensor hL associated to the iteration

tree is the merging of hL1 , hL2 , hL3 via h, assuming there is no pairing; it has skeleton tree

, or L = {l1, l2, l3, l4}.
It becomes unnecessarily complex to keep track of the iteration or skeleton trees such as

and , as we iterate further and increase the depth. It turns out, see Section 2.4.3, that the

desired estimates for the random (r, 1) tensors depend only on the set of solid leaves and their

corresponding frequencies, not on the tree structure, except for some minor corrections. Therefore

it will suffice to consider structures that we will refer to as flattened trees below, provided we keep

the necessary information of the trees in a memory set Y, which will yield the minor corrections

alluded above. The pair (L,Y), where L is viewed as a set, then plays the role of the trees (such

as and ). The process of viewing L as a set—forgetting its tree structure—and finding the

set Y associated to the trees, is then called the flattening of trees. More precisely, every time we

merge the tensors, the flattening of trees proceeds by putting an element p into Y and set Np to be

1In addition, we remove edges connecting a node to its only child; they correspond to the random averaging

operator in (2.11) and can be dealt with as in Section 2.4.1.



20 YU DENG, ANDREA R. NAHMOD, AND HAITIAN YUE

the second maximum among all frequencies of the trees of the merged tensors, so Y can be viewed

as a subset of selected nodes of the unflattened tree. For example, in the situation of (2.18), the

skeleton tree L = {l1, l2, l3, l4}, which corresponds to the iteration tree , comes from merging

hL1 , hL2 and hL3 , so we have p1 ∈ Y and Np1 equals the second maximum among {N1, N2, N3}.
Furthermore L1, which corresponds to the iteration tree , is constructed by merging the tensors

h• (from ∆Nl1
f), h• (from ∆Nl2

f) and1 h◦ (from uL), hence we have one more element p2 in Y, and

Np2 equals the second maximum among {Nl1 , Nl2}. Since hL2 and hL3 are (1, 1) tensors which are

defined directly without merging, we obtain the memory set Y associated to the skeleton tree ,

namely {p1, p2}. With this flattening process, we can forget the tree structures and , and

replace it by the flattened tree together with Y, so we may also denote hL = h( ,Y), where

Y = {p1, p2}.
We now need to trim2 the tensor h( ,Y) as above at frequency 2L, in order to maintain the

property Nl > L and the independence between the Gaussians ∆Nl
f and the tensor which contains

the low frequency components. When Nl > L for all l ∈ L, no trimming is needed and we get the

same random (4, 1) tensor h( ,Y), with the k-th mode of the corresponding term in the ansatz

being ∑
Nli

/2<〈kli 〉≤Nli
; 1≤i≤4

h
( ,Y)
kkl1kl2kl3kl4

·
4∏
i=1

(∆Nli
fkli )

±. (2.20)

Instead, if Nl4 ≤ L, then by Definition 2.7 the trimmed tensor is a (3, 1) tensor:

h
( ,Y)
kkl1kl2kl3

=
∑
kl4

h
( ,Y)
kkl1kl2kl3kl4

· (∆Nl4
fkl4 )± (2.21)

and the k-th mode of the corresponding term in the ansatz should be

∑
Nli

/2<〈kli 〉≤Nli
; 1≤i≤3

h
( ,Y)
kkl1kl2kl3

·
3∏
i=1

(∆Nli
fkli )

± (2.22)

which in fact is the same as (2.20). This means that the trimming process only changes the point

of view by which we regard the terms in the ansatz, but not the terms themselves.

Finally, we consider the case when pairings (see Definition 2.3) occur in the merging process. In

the above example, if we have a pairing (l2, l4) in the merging process (2.18), then instead of the

flattened tree we will have a flattened tree with pairing, namely

;

for simplicity we also assume Nli > L for 1 ≤ i ≤ 4, i.e. no trimming is needed. The set of paired

leaves is denoted by P = {l2, l4}, and the set of unpaired leaves is denoted by U = {l1, l3}. In this

case we still merge hL1 , hL2 and hL3 via h using Definition 2.4 as above, but assume now (l2, l4)

is a pairing, i.e. restricting kl2 = kl4 in the sum (2.18). The merged tensor, denoted by h
( ,Y)

,

1Here h◦k = (uL)k can be understood as a (0, 1) tensor which has no input variable.
2This corresponds to removing ◦’s and low-frequency •’s from the iteration trees, or removing low-frequency

leaves from the skeleton and flattened trees. In the main proof, in addition to this trimming after merging, we also

need to trim the tensors before merging; see (5.23) and (5.24).
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is in fact a random (2, 1) tensor as only kl for unpaired leaves l ∈ U are input variables. The k-th

mode of the corresponding term in the ansatz is then∑
Nli

/2<|kli |≤Nli
, i∈{1,3}

h
( ,Y)

kkl1kl3
· (∆Nl1

fkl1 )±(∆Nl3
fkl3 )±. (2.23)

In summary, in order to construct a random (r, 1) tensor, we start with a high order iteration

which can be understood as the process of merging several lower order tensors as in (2.18), and

then trim the merged tensor at a given frequency 2L. This trimmed tensor is the (r, 1) tensor that

we seek for the ansatz for yN .

2.4.3. The core ansatz. Given a large parameter D, based on the above random (r, 1) tensors, we

construct the ansatz for yN as follows:

(yN )k =
∑

(L,Y)

h
(L,Y)
kkU

·
∏
l∈U

(∆Nl
fkl)

± + (zN )k, (2.24)

where zN is a smooth remainder, and the sum is taken over all flattened trees L with frequency N

and cardinality |L| ≤ D, and all possibilities of Y that arise from the above inductive process. In

(2.24), U is the set of unpaired leaves in L, and denote by P = L\U the set of paired leaves in L.

The main a priori estimates contain the bounds for various operator norms for the tensors hL (as

well as a high-regularity bound for the remainder zN , which we omit). Here we look at a simplified

example1: for any partition (B,C) of U , we would like to show∥∥∥h(L,Y)
kkU

∥∥∥
kkB→kC

≤
∏
l∈U

Nβ
l ·
(

max
l∈C

Nl

)−β ·∏
l∈P

N−ε1l

∏
p∈Y

N−δ1p , (2.25)

where β is a constant which is a little bit smaller than α, and ε1 � 1 and δ1 is small compared

to ε1. In particular, the factor
∏

p∈Y N
−δ1
p shows the decay we gain from the tree structures (e.g.

), hence we only need to keep the flattened trees (e.g. ) and the memory set Y abstracted

from the full tree structures.

We will prove (2.25) by induction. The key step here is to show that if (2.25) is true for some

tensors h(Lj ,Yj) = h
(Lj ,Yj)
kjkUj

where 1 ≤ j ≤ p, then it also holds for the tensor h(L,Y) = h
(L,Y)
kkU

which

is obtained by merging and trimming those tensors as in Section 2.4.2. This argument, which is

the center of the whole paper, contains three main ingredients:

(1) The inequalities associated with the algebra of tensors, namely Propositions 2.6 and 2.8

(and their precise versions in Section 4). Note that these are problem non-specific and are not

limited to Schrödinger equations.

(2) The operator norm bounds for the base tensor h that appears in the merging process. The

form of h is similar to (2.19), and operator norm bounds for h follow from various counting

estimates and Schur’s Lemma. This is proved in Proposition 4.9.

(3) A particular selection algorithm. This is crucial when we apply Proposition 2.6, since even

though H on the left hand side of (2.4) does not depend on the order of the tensors h(j), the right

hand side does. Therefore we have to follow a particular algorithm in order to go from bounds of

h(Lj ,Yj) to bounds of h(L,Y). This algorithm is described in the proof of Proposition 6.2.

1See Proposition 5.1 for the full detailed version. In particular there are distinctions between h(∗,0) and h(∗,1)

tensors, which we omit here.



22 YU DENG, ANDREA R. NAHMOD, AND HAITIAN YUE

Nl1
2 Nl1 2Nl1

Nl1
2

Nl1

2Nl1

kl1

k
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Figure 1. Localization hyperplanes of random (1, 1) and (2, 1) tensors

Finally, in addition to the operator norms, we need to control one more localization norm for

the tensor h(L,Y), which localizes it around the hyperplane k =
∑

l∈U ζlkl, where ζl ∈ {±} is the

sign of l. This norm is essentially a weighted L2 or Hilbert-Schmidt norm, and the corresponding

estimates roughly look like∥∥∥∥(1 +
1

L2

∣∣k −∑
l∈U

ζlkl
∣∣)κh(L,Y)

kkU

∥∥∥∥
kkU

≤
∏
l∈U

Nβ
l

∏
l∈P

N−ε1l

∏
p∈Y

N−δ1p , (2.26)

where β, ε1 and δ1 are the same as in (2.25) and κ is a large enough constant. Such localizations

can be understood as our tensor hL being close to a multilinear Fourier multiplier. See Figure 1

for an illustration of the regions around which the (1, 1) and (2, 1) tensors are localized.

2.5. The extended ansatz, and general case. The ansatz (2.24) in Section 2.4 exhibits the

main idea, however the full ansatz has extra layers of complexity. Some of them come from passing

from the model (2.5) to the full equation, such as the possibility of over-pairing (leading to the

norms in (2.2) and the full Definition 3.6 of merging) and the role of time Fourier or modulation

variables (leading to the spacetime norms defined in Section 3.3 and allowing Ω 6= 0 in (2.5)). The

main one, however, arises already in the model (2.5).

To demonstrate, suppose we plug the ansatz (2.24) into (2.10). Consider the nonlinear term

where one (or more) of the inputs is the remainder term zN ′ with N ′ ≤ N/2, which is a part of

yN ′ in (2.24). If N1/2 � N ′ � N δ, then this N ′ is not high enough for the resulting term to have

enough regularity to be put in the remainder zN , and not low enough for the tensor arising from

the resulting term to be independent with the Gaussians.

To remedy this, we go back to the iteration trees in Section 2.4.2 and introduce more random

tensor terms by considering all possible configurations of iteration trees where we replace at least

one ◦ (meaning uL) by a diamond � (meaning zN ′ with N ′ ≤ N/2). For example consider the term

:Mnp(∆Nf, zN ′ , uL), (2.27)
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where N ′ ≤ N/2, whose k-th mode is given by

( )k =
∑
kl,kf

hkkl(kf) · (∆Nfkl) · (zN ′)kf , (2.28)

where

hkkl(kf) = −i
∑

kl−kf+k3=k; Ω=0
〈kf〉≤N ′,〈k3〉≤L, 〈k〉≤N

(uL)k3 (2.29)

with Ω = |k|2 − |kl|2 + |kf|2 − |k3|2 and uk3 is the Fourier mode of uL in (2.27). The iteration term

in (2.27) can be viewed, via (2.28)–(2.29), as a linear combination of the tensor terms in Section

2.4.2 with coefficients being the Fourier coefficients of zN ′ , which are summable since the norm of

zN ′ will be a large negative power of N ′ (see part (4) of Proposition 5.1), Moreover the tensors

hkkl(kf) in (2.29) do not involve zN ′ and thus retain independence.

Then we flatten these new iteration trees and repeat what we did in Sections 2.4.2–2.4.3, except

that the pair (L,Y) alone is not sufficient to represent the new random tensor terms, and we need

to introduce one more set V which contains all the �’s in the new iteration trees. Hence in the full

ansatz, the sum in (2.24) should be taken over all triples (L,V,Y), which will be defined as plants,

see Definition 3.2.

2.6. Outline of the paper. Sections 3–4 are mainly preparations, with definitions listed in Section

3 and lemmas proved in Section 4. In Section 5 we introduce the main random tensor ansatz, thereby

reducing Theorem 1.1 to Proposition 5.1, which is then proved in Sections 6–7. In Section 8 we

finish the proof of Theorem 1.1, as well as the proof of Theorem 1.6, which is a simplified version of

the former. Finally in Section 9 we make a few comments, including a comparison with parabolic

equations. The structure of the proof is presented in Figure 2.

3. Preliminaries I: Definitions

In this section we list the main definitions used in this work. In Section 3.1 we fix and collect the

various notations and parameters, in Section 3.2 we define the plant structure, associated tensors,

and their operations. In Section 3.3 we define the norms used in the main proofs.

3.1. Choice of parameters and notations. We use C to denote a generic large constant de-

pending on (d, p). Let α be fixed as in (1.3). Define

α0 :=
d

2
− 1

p− 1
; ε := (103dp)−1(α− α0) > 0, β :=

α+ α0

2
, β1 :=

β + α0

2
. (3.1)

We assume 0 < ε �C 1 and fix it throughout. We will use Cε to denote a generic large constant

depending on ε; similarly Cδ etc. will depend on the small parameters δ etc. defined below. These

constants, including C and (θ, Cθ) defined below, may be varying from line to line.

Fix (δ,D, κ) such that1

0 < δ �Cε 1; D �Cδ 1, κ�D 1. (3.2)

Define also

D1 := δ5D, b :=
1

2
+ 8κ−1, b+ :=

1

2
+ 16κ−1, b0 =

1

2
+ 4κ−1. (3.3)

Let θ denote a generic positive constant that is sufficiently small depending on κ, and (as above)

Cθ a generic large constant depending on θ. We also fix θ0 to be a specific positive constant that is

1Roughly speaking δ = ε50, D = δ−50, κ = D50 and θ ∼ κ−50 should suffice.
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Prop 4.11

Prop 4.12Lem 4.4

Lem 4.5–4.8

Prop 4.9

Prop 6.2–6.3Prop 4.14 (4.15)

Random tensor theory Counting estimates

Selection algorithm

Prop 6.1 Prop 6.4–6.6

Prop 7.1–7.4

Prop 5.1

Thm 1.1

Thm 1.6

Main theorems

Figure 2. Structure of the proof

sufficiently small depending on κ. Unless otherwise stated, the implicit constants in the . symbols

will depend on Cθ. We fix 0 < τ �Cθ 1, and let J = [−τ, τ ]. If an event on the ambient probability

space (Θ,B,P) happens with probability ≥ 1−Cθe−A
θ

for some quantity A > 0, we say this event

is A-certain. In the proof below many quantities will depend on ω ∈ Θ; we may include ω in the

expressions for emphasis, or omit it for simplicity. We use 1E to denote the characteristic function

of a statement E.

In the proof, the capital letters N,M,L etc. will denote dyadic numbers ≥ 1; when they (for-

mally) take the value of 1/2, we will understand that the corresponding quantities are 0 (or the

trivial case depending on the context). Define N [δ] := max{L : L < N δ}. The lower case letters

k,m etc. will denote integer vectors in Zd or Cartesian powers of Zd. The letters t, t′ etc. will

denote the time variable, and the letters λ, λ′, λj etc. will denote the Fourier dual of time (we call

these modulation variables). For k ∈ Zd, let ρk := |gk| and ηk := ρ−1
k gk, which are independent

random variables, such that each ηk is uniformly distributed on the unit circle. We also define

γk = 〈k〉−αρk. For dyadic N , let BN ⊂ B be the σ-algebra generated by the random variables

{ηk : 〈k〉 ≤ N}. The cardinality of a finite set S is denoted by |S| or #S. Recall the notion of

partition and subpartition in Definition 2.1, as well as the abbreviation kA = (kj : j ∈ A); similarly

we use λA to denote (λj : j ∈ A) and dλA to denote
∏
j∈A dλj . Also recall the notion of uζ , pairing

and over-pairing in Definition 2.3.

We will use uk to denote the spatial Fourier coefficients of u, and the notation û represents the

time Fourier transform only (maybe in multiple time dimensions, see (3.4)–(3.5) below). We will

be loose about powers of 2π, and may write formulas like

v̂(λ) =

ˆ
R
e−iλtv(t) dt, v(t) =

ˆ
R
eitλv̂(λ) dλ.
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If L is an R-linear operator acting on spacetime functions, we can uniquely decompose it into the

sum of a C-linear operator, L +, and a C-conjugate linear operator, L −. We will denote the kernel

of L ζ , where ζ ∈ {±}, by (L ζ)kk′(t, t
′), so that

(L ζw)k(t) =
∑
k′

ˆ
dt′ · (L ζ)kk′(t, t

′)wζk′(t
′), (3.4)

then on the time Fourier side we have

(L̂ ζw)k(λ) =
∑
k′

ˆ
R

(L̂ ζ)kk′(λ,−ζλ′)(ŵ)ζk′(λ
′) dλ′. (3.5)

Fix a smooth cutoff function χ(t) which equals 1 for |t| ≤ 1 and equals 0 for |t| ≥ 2. For 0 < τ . 1

define χτ (t) := χ(τ−1t). Define the standard and truncated Duhamel operators

Iv(t) =

ˆ t

0
v(t′) dt′, Iχv(t) = χ(t)

ˆ t

0
χ(t′)v(t′) dt′. (3.6)

Note that these are not coming from the original Schrödinger equation (1.1), but a variant of it

after conjugating by the linear Schrödinger flow (namely v = e−it∆u). Finally we introduce the

notion of simplicity for real polynomials and R-multilinear operators; in practice the Wick-ordered

and suitably gauged power nonlinearities will be simple.

Definition 3.1. Consider a real polynomial (or R-multilinear operator) N of degree r, given by

N (u)k =
∑

ζ1k1+···+ζrkr=k
ckk1···kru

ζ1
k1
· · ·uζrkr . (3.7)

We say it is simple if the coefficients ckk1···kr depend only on the set of pairings1 in (k, k1, · · · , kr),
and ckk1···kr = 0 unless each such pairing is over-paired.

3.2. Plants and plant tensors. In this section we introduce the main structure—namely plants—

and the associated tensors, as well as two basic operations (Trim and Merge) of these objects.

Definition 3.2 (Plants). A plant S consists of the following objects:

(1) Three disjoint finite sets L (called the tree), V (called the blossom set), and Y (called the

memory set); elements of L, V and Y are called leaves, blossoms and pasts, and are denoted

by l, f and p. An arbitrary element of L ∪ V ∪ Y is denoted by n.

(2) A collection of pairwise disjoint 2-element subsets of L, which we refer to as pairings; the

set of paired leaves is denoted by P, and the set of unpaired leaves is denoted by U := L\P.

(3) A dyadic number N = N(S) (called the frequency of S), a sign ζn ∈ {±} for each n ∈ L∪V
(note that signs are not defined for pasts), and a dyadic frequency Nn for each n ∈ L∪V∪Y.

We require that Nl′ = Nl and ζl′ = −ζl for any pairing (l, l′) in L; that Nn ≤ N for n ∈ L∪Y;

and that Nf ≤ N/2 for f ∈ V.

We will denote a plant by S = (L,V,Y), and define |S| = |L| + |V| + |Y| to be the size of the

plant. Two plants will be identified if there is a bijection between them that preserves all these

objects. We say a plant S is regular if Nn ≥ N δ for any n ∈ L ∪ V ∪ Y, and plain if V = ∅ and∑
l∈L ζl = 1 (so in particular |L| is odd). We also define the mini plant SζN , where ζ ∈ {±}, to be

the plant where V = Y = ∅, L has only one element l with sign ζ and frequency N , and N(S) = N .

1Here a pairing (k, kj) means k = kj and ζj = +.
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This is regular, and is plain if ζ = +. Finally we define the conjugate of a plant S to be S, which

is the same as S except that the signs of all elements in S are the opposite to the signs in S.

Remark 3.3. Note that the sets U , L, V etc. are associated with a plant S. We will keep this

correspondence throughout; for example whenever there is a plant Sj in some context, the set Uj
will always be the one coming from Sj . We may encounter sets Uj that do not come from any

plant; in such case there will simply be no plant called Sj that appears in the same context.

Definition 3.4 (Plant tensors). Given a plant S = (L,V,Y), let U be as in Definition 3.2. We say

a tensor1 h = hkkU (kV , λV) is an S-tensor, if k and each kn (n ∈ U ∪ V) are vectors in Zd, and in

the support of h we have that

(1) 〈k〉 ≤ N , 〈kf〉 ≤ Nf and |λf| ≤ 2Nκ2
for each f ∈ V, and Nl/2 < 〈kl〉 ≤ Nl for each l ∈ U ;

(2) there is no pairing in kU , i.e. if l, l′ ∈ U and ζl′ = −ζl then kl′ 6= kl.

Here h may depend on other parameters like t, in which case we may write h = hkkU (t, kV , λV).

Suppose we have defined functions fN ′ = (fN ′)k′ for any N ′, and zN ′ = (zN ′)k(t) for any N ′ < N .

Define Ψk = Ψk[S, h] by

Ψk =
∑
kU ,kV

ˆ
dλV · hkkU (kV , λV) ·

∏
l∈U

(fNl
)ζlkl

∏
f∈V

(ẑNf
)
ζf
kf

(λf), (3.8)

which is an expression determined by the tensor h. Note also that an S tensor h is also an S tensor,

and Ψk[S, h] = Ψk[S, h].

Definition 3.5 (Trimming). Given a plant S = (L,V,Y) and R ≥ 1, we can trim S at frequency

R to get S ′ = (L′,V ′,Y ′), such that L′ = {l ∈ L : Nl ≥ R} and (V ′,Y ′) are defined in the same way.

The other objects (i.e. the frequency of S ′, the signs and frequencies of elements, and the pairings

in L′) are inherited from S. Obviously, S ′ is regular if either S is regular or R ≥ N δ.

Now suppose we have defined functions fN ′ = (fN ′)k′ for any N ′, and zN ′ = (zN ′)k(t) for any

N ′ < R. Then, given an S-tensor h = hkkU (kV , λV), we can trim it at frequency R to get an

S ′-tensor h′ = (h′)kkU′ (kV ′ , λV ′), which is defined by

(h′)kkU′ (kV ′ , λV ′) =
∑
kU\U′

∑
kV\V′

ˆ
dλV\V ′ · hkkU (kV , λV) ·

∏
l∈U\U ′

(fNl
)ζlkl

∏
f∈V\V ′

(ẑNf
)
ζf
kf

(λf). (3.9)

We shall write the above definitions as S ′ = Trim(S, R) and h′ = Trim(h,R). Note that the

definition of h′ actually depends on the choices of (fN ′) and (zN ′)N ′<R, but in practice these

will be uniquely fixed whenever we apply Trim functions, so we will omit them from the list of

parameters. If Nn < R for all n ∈ U ∪ V then U ′ = V ′ = ∅, and h′ = (h′)k is just the Ψk defined in

(3.8).

Definition 3.6 (Merging). First, for any finite set A with a sign for each element, we will fix

a maximal collection of pairwise disjoint two-element subsets of A, such that each such subset

contains two elements of opposite sign (i.e. pairings). Let P(A) be this collection, and Q(A) be

the union of the two-element subsets in P(A).

Now let 3 ≤ q ≤ p be odd and 0 ≤ r ≤ q. Given dyadic numbers N and Nj and signs ζj ∈ {±}
for 1 ≤ j ≤ q, so that Nj ≤ N for 1 ≤ j ≤ r and Nj ≤ N/2 for r + 1 ≤ j ≤ q, and

∑q
j=1 ζj = 1,

denote the collection of these parameters by B. Given pairwise disjoint plants Sj = (Lj ,Vj ,Yj)
1In this tensor kV and λV appear as parameters. Note also that the definition does not involve P or Y.
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with frequency Nj for 1 ≤ j ≤ r, let Uj etc. be as in Definition 3.2. Let L := L1 ∪ · · · ∪ Lr and1

V := V1 ∪ · · · ∪ Vr ∪ {r + 1, · · · , q}, and for each n ∈ Lj ∪ Vj let the (new) sign of n be ζ∗n = ζjζn,

where ζn is the sign of n in Sj . Let O = {A1, · · · ,Am} be an arbitrary collection of disjoint subsets

of W := U1 ∪ · · · ∪ Ur, such that:

(1) each Ai contains two elements of opposite ζ∗l sign, but does not contain two elements of

opposite ζ∗l sign that belongs to the same Uj ;
(2) the frequencies of l ∈ Ai are the same for each 1 ≤ i ≤ m.

For each possible O, let

P := P(A1) ∪ · · · ∪P(Am) and Q := Q(A1) ∪ · · · ∪ Q(Am) (3.10)

with P(·) and Q(·) defined as above. We then merge Sj (1 ≤ j ≤ r) via B and O, to get a plant

S = (L,V,Y) as follows. First N(S) = N , L and V are as above, and the set of pairings in L is the

union of the sets of pairings in each Lj , together with P (the new pairings; in particular we have

U = W\Q). Second, the sign and frequency of j are given by ζj and Nj for r + 1 ≤ j ≤ q, and

the sign and frequency of any n ∈ Lj ∪ Vj (1 ≤ j ≤ r) is given by ζ∗n and the frequency of n in Sj .
Finally, Y = Y1 ∪ · · · ∪ Yr ∪ {0}, with N0 given by the second maximum of all the Nj (1 ≤ j ≤ q);

for any p ∈ Yj (1 ≤ j ≤ r) the frequency of p in S equals the frequency of p in Sj .
Now suppose we have defined a tensor h = hkk1···kq(λr+1, · · · , λq), where k, k1, · · · , kq are input

variables and λr+1, · · · , λq are parameters; assume in the support of h that 〈k〉 ≤ N and 〈kj〉 ≤ Nj

for 1 ≤ j ≤ q, and that |λj | ≤ 2Nκ2
for r+1 ≤ j ≤ q. Then, given Sj-tensors h(j) = h

(j)
kjkUj

(kVj , λVj ),

where 1 ≤ j ≤ r, we shall merge these h(j) via h, B and O, to form a new tensor H = HkkU (kV , λV),

namely (recall also γk = 〈k〉−αρk)

HkkU (kV , λV) =

(1)∏
l,l′

1kl=kl′

(2)∏
l,l′

1kl 6=kl′ ·
∑

(k1,··· ,kr)

hkk1···kq(λr+1, · · · , λq)

×
(3)∑
kQ

∏
l∈Q

∆Nl
γkl

r∏
j=1

[
h

(j)
kjkUj

(kVj , λVj )
]ζj . (3.11)

In the above expression, the product
∏(1)

l,l′ is taken over all leaves l, l′ ∈ U such that they belong to

the same Ai (in particular ζ∗l′ = ζ∗l ), the product
∏(2)

l,l′ is taken over all leaves l, l′ ∈ U such that2

ζ∗l′ = −ζ∗l (so they do not belong to the same Ai), and the summation
∑(3)

kQ
is taken over all possible

kQ (with Q defined above) such that for each i, all the kl for l ∈ Q ∩Ai are equal, and they equal

kl′ for l′ ∈ U ∩ Ai (if such l′ exists). We can verify that H is an S-tensor.

We shall write the above definitions as

S = Merge(S1, · · · ,Sr,B,O), H = Merge(h(1), · · · , h(r), h,B,O). (3.12)

Proposition 3.7. Assume we have fixed the choices of fN ′ and zN ′ as in Definitions 3.4 and 3.5,

and h = hkk1···kq(λr+1, · · · , λq), B, Sj and Sj-tensors h(j) for 1 ≤ j ≤ r as in Definition 3.6.

In applying the Merge function below we will omit the parameters h and B. Then the following

statements hold:

1If necessary we may replace the unions ∪ by the disjoint unions t to avoid repetition of elements.
2Here we may also require Nl = Nl′ ; whether we do so will not affect the result of this product.
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(1) Recall the definition of Ψk = Ψk[·, ·] as in (3.8). Then for any R we have Ψk[Sj , h(j)] =

Ψk[Trim(Sj , R), Trim(h(j), R)]. Similarly, trimming at frequency R1 and then R2 is equivalent to

trimming once at max(R1, R2).

(2) Let Ψ
(j)
kj

= Ψkj [Sj , h(j)] be defined as in (3.8) from the Sj-tensor h(j) for 1 ≤ j ≤ r. Then

the quantity

Φk :=
∑

(k1,··· ,kq)

ˆ
dλr+1 · · · dλq · hkk1···kq(λr+1, · · · , λq) ·

r∏
j=1

(Ψ
(j)
kj

)ζj
q∏

j=r+1

(ẑNj )
ζj
kj

(λj) (3.13)

can be written as a linear combination1 of Ψk = Ψk[S, H] (for different choices of O as in Definition

3.6), where

S = Merge(S1, · · · ,Sr,O), H = Merge(h(1), · · · , h(r),O).

(3) Let S ′j = (L′j ,V ′j ,Y ′j) = Trim(Sj , N δ) and (h(j))′ = Trim(h(j), N δ) for 1 ≤ j ≤ r. For any O

as in Definition 3.6, let O ′ be the sub-collection of O consisting of subsets that are contained in the

union of U ′j for 1 ≤ j ≤ r. Let

S = (L,V,Y) = Merge(S1, · · · ,Sr,O), S ′ = (L′,V ′,Y ′) = Trim(Merge(S ′1, · · · ,S ′r,O ′), N δ),

H = Merge(h(1), · · · , h(r),O), H ′ = Trim(Merge((h′)(1), · · · , (h′)(r),O ′), N δ),

then we have S ′ = Trim(S, N δ)). Moreover, given any such O ′, the tensor H ′ can be written as

a linear combination of tensors Trim(H,N δ) (for different choices of O that are related to O ′ as

above).

(4) Assume that some Nj = N , Sj is regular, and Nj′ ≥ N δ for some j′ 6= j. Then for the plant

S = Trim(Merge(Trim(S1, N
δ), · · · , Trim(Sr, N δ),O), N δ) where O is as in Definition 3.6, we have

|S| > |Sj |.
(5) Assume that each Sj is plain, and r = q, then the plant S = Merge(S1, · · · ,Sr,O), where O

is as in Definition 3.6, is also plain.

Proof. First, (1) is obvious once we expand the Ψk expressions using (3.8) and (3.9); also (5) directly

follows from definition, noticing also that

q∑
j=1

∑
l∈Lj

ζ∗l =

q∑
j=1

∑
l∈Lj

ζjζl =

q∑
j=1

ζj = 1.

Next, (4) is true because if Nj = N and Sj is regular, then Trim(Sj , N δ) = Sj , so by definition, if

S = (L,V,Y) we have L ⊃ Lj etc.; moreover as the second maximum of N1, · · · , Nq is ≥ N δ, by

definition Y will have at least one more element than Yj , so |S| ≥ |Sj |+ 1.

Next consider (2). RecallW = U1∪· · ·∪Ur, using (3.8) and (3.13), we can expand the expression

Φk as a sum over the variables kW and (k1, · · · , kq) and kVj for 1 ≤ j ≤ r, and an integration over

the variables (λr+1, · · · , λq) and λVj for 1 ≤ j ≤ r, of the quantity

hkk1···kq(λr+1, · · · , λq) ·
r∏
j=1

[
h

(j)
kjkUj

(kVj , λVj )
]ζj · r∏

j=1

∏
l∈Uj

(fNl
)
ζ∗l
kl
·
r∏
j=1

∏
f∈Vj

(ẑNf
)
ζ∗f
kf

(λf)

q∏
j=r+1

(ẑNj )
ζj
kj

(λj),

(3.14)

1Here and below the phrase “linear combination” will refer to a linear combination with a fixed number of terms

and fixed constant coefficients.
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where in the summation we do not impose any pairing or no-pairing condition (with respect to the

ζ∗l signs, same below) for the variables kW (of course if there is a pairing within kUj then h(j) = 0

so the quantity (3.14) is zero).

On the other hand, using (3.8) and (3.11), and noticing that (fN )k(fN )k = ∆N (γk)
2, we can

write Ψk[S, H], corresponding to a certain choice of O = {A1, · · · ,Am} as in Definition 3.6, as a

sum and integration of the same quantity (3.14) over the same set of variables as in Φk, but with

a set of additional pairing and no-pairing conditions on kW . Precisely, the extra conditions are (i)

the kl are the same for l in each Ai; (ii) there is no pairing in kW\Q where Q is defined in Definition

3.6. We denote this set of extra conditions by (O, 1). With these observations, it suffices to show

that the sum
∑

kW
can be written as a linear combination of sums

∑
(O,1) for different O. Now, by

identifying the exact set of pairings among kW , we can write
∑

kW
as a linear combination of sums∑

(O,2) for different O’s , where (O, 2) represents a different set of extra conditions, namely (i) the

kl are the same for l in each Ai; (ii) the kl for different Ai are different, and are different from any

kl for l not in any Ai; (iii) there is no pairing among the kl where l is not in any Ai. Note that we

may assume these O’s are as in Definition 3.6, i.e. each Ai contains two elements of opposite sign

but does not contain two elements of opposite sign that belong to the same Uj , and Nl for l in each

Ai are all the same, since otherwise the summand (3.14) would be zero by Definition 3.4.

Clearly the condition (O, 2) is stronger than (O, 1), and the difference
∑

(O,1)−
∑

(O,2) can be

written as a linear combination of sums
∑

(W ,2) for different W ’s, where W has the same form as O,

such that the condition (W , 2) gives strictly more pairings than (O, 2). Thus, we can inductively

write
∑

kW
as a linear combination of sums

∑
(O,1) for different O. In this way we have written Φk

as a linear combination of Ψk = Ψk[S, H] for different choices of O, which proves (2).

Finally look at (3). As O ′ consists of those subsets in O that are contained in the union of U ′j
(note that any Ai is either contained in the union of U ′j , or contained in the union of Uj\U ′j), we

know that P ′ (defined from O ′ as in Definition 3.6) also consists of those subsets in P that are

contained in the union of U ′j . Then the equality S ′ = Trim(S, N δ) follows from Definitions 3.5 and

3.6, and straightforward verification. Note that if Nj ≥ N δ for r + 1 ≤ j ≤ s, and Nj < N δ for

s+ 1 ≤ j ≤ q (which we may assume), then {r + 1, · · · , s} ⊂ V ′ and {s+ 1, · · · , q} ⊂ V\V ′.
Now look at the tensor H ′. Let R be the union of all the Uj\U ′j and Z be the union of all the

Vj\V ′j , and let Q′ be defined as in Definition 3.6, which occurs in the process of merging S ′1, · · · ,S ′r
via O ′, then using (3.9) and (3.11), we can expand (H ′)kkU′ (kV ′ , λV ′) as a sum over the variables

(ks+1, · · · , kq) and kQ′ and kR and kZ , and integration over the variables (λs+1, · · · , λq) and λZ ,

of the quantity

(1)∏
l,l′

1kl=kl′

(2)∏
l,l′

1kl 6=kl′ ·
∑

(k1,··· ,kr)

hkk1···kq(λr+1, · · · , λq)

×
(3)∑
kQ′

∏
l∈Q′

∆Nl
γkl

r∏
j=1

[
h

(j)
kjkUj

(kVj , λVj )
]ζj ∏

l∈R
(fNl

)
ζ∗l
kl

∏
f∈Z

(ẑNf
)
ζ∗f
kf

(λf)

q∏
j=s+1

(ẑNj )
ζj
kj

(λj), (3.15)

where the sums and products
∏(1)

l,l′ ,
∏(2)

l,l′ and
∑(3)

kQ′
are defined as in Definition 3.6 in the process

of merging S ′1, · · · ,S ′r via O ′, and in this summation we do not impose any pairing or no-pairing

condition for the variables kR. The signs ζ∗n are also defined as in Definition 3.6.
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On the other hand, if O = O ′ ∪W , then using (3.9) and (3.11) again, we can expand the tensor

(Trim(H,N δ))kkU′ (kV ′ , λV ′) as a sum and integration of the same quantity (3.15) over the same set

of variables as in (H ′)kkU′ (kV ′ , λV ′), but with the kR variables satisfying a set of additional pairing

and no-pairing conditions, given exactly by (W , 1). Therefore, the same arguments as in the proof

of part (2) above also imply that H ′ can be written as a linear combination of Trim(H,N δ) for

different choices of O. This completes the proof. �

3.3. Working norms. Based on the tensor norms of Definition 2.1, we can define the norms

involving the modulation variables λ, λ′, etc., as well as some other parameters; these will be the

norms used in the main proof.

Suppose b1, b2 ∈ [0, 1], h = hkA(t) depends on t, and let ĥ be the Fourier transform of h in t. Let

(B,C) be a subpartition of A, we define

‖h‖2
Xb1 [kB→kC ]

=

ˆ
R
〈λ〉2b1‖ĥkA(λ)‖2kB→kC dλ. (3.16)

If h = hkA(kF , λF ) depends on some parameters (kF , λF ), we define

‖h‖2
X
−b2
F [kB→kC ]

=
∑
kF

ˆ
dλF ·

∏
j∈F
〈λj〉−2b2‖hkA(kF , λF )‖2kB→kC . (3.17)

If h = hkA(t, kF , λF ) depends on both t and (kF , λF ), we define

‖h‖2
X
b1,−b2
F [kB→kC ]

=

ˆ
R
〈λ〉2b1

∑
kF

ˆ
dλF ·

∏
j∈F
〈λj〉−2b2‖ĥkA(λ, kF , λF )‖2kB→kC dλ, (3.18)

where ĥ is the Fourier transform of h in t only; note that

‖h‖2
X
b1,−b2
F [kB→kC ]

=

ˆ
R
〈λ〉2b1‖ĥkA(λ, ·, ·)‖2

X
−b2
F [kB→kC ]

dλ

=
∑
kF

ˆ
dλF ·

∏
j∈F
〈λj〉−2b2‖hkA(·, kF , λF )‖2

Xb1 [kB→kC ]
. (3.19)

Now, given a tensor h = hkA(t, t′), a subpartition (B,C), and b1, b2 ∈ [0, 1], we can similarly

define

‖h‖2
Xb1,−b2 [kB→kC ]

=

ˆ
R2

〈λ〉2b1〈λ′〉−2b2‖ĥkA(λ, λ′)‖2kB→kC dλdλ′, (3.20)

where ĥ is the Fourier transform of h in (t, t′). Finally, if s1 ∈ R, the Xs1,b1 norm for a function

f = fk(t) is defined by

‖f‖2
Xs1,b1

=

ˆ
R
〈λ〉2b1‖〈k〉s1 f̂k(λ)‖2`2k dλ. (3.21)

When s1 = 0 we simplify write Xb1 .

4. Preliminaries II: Estimates

In this section we collect the important core estimates. Sections 4.1–4.2 contain the basic lin-

ear and large deviation estimates. Section 4.3 contains counting estimates ultimately leading to

Proposition 4.9, and Section 4.4 contains the main tensor norm estimates, Propositions 4.11–4.12

and 4.14–4.15.
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4.1. Linear estimates. We record two estimates for Duhamel and time localization operators

(recall from (3.6) the definition of Iχ), and another weighted estimate. For the proofs see [35, 36].

Lemma 4.1. We have the formula

Îχv(λ) =

ˆ
R
I(λ, λ′)v̂(λ′) dλ′, (4.1)

where the kernel I satisfies that

|I|+ |∂λ,λ′I| .
(

1

〈λ〉3
+

1

〈λ− λ′〉3

)
1

〈λ′〉
.

1

〈λ〉〈λ− λ′〉
. (4.2)

Proof. See [35], Lemma 3.1 whence by a similar proof, one can see that (4.2) also holds for |∂λ,λ′I|.
�

Lemma 4.2. Let v = v(t) be a function on R valued in some Banach function space. For b1 ∈ [0, 1]

define the Y b1 norm by

‖v‖2
Y b1

=

ˆ
R
〈λ〉2b1‖v̂(λ)‖2 dλ, (4.3)

where v̂ is the (vector-valued) Fourier transform of u. For τ . 1 let χτ (t) = χ(τ−1t) be as in

Section 3.1, then for any 0 < b1 ≤ b2 < 1/2 and for any v, or for any 1/2 < b1 ≤ b2 < 1 and for

any v satisfying1 v(0) = 0, we have

‖χτ · v‖Y b1 . τ
b2−b1‖v‖Y b2 . (4.4)

Proof. See [36], Proposition 2.7 (which proves the scalar case, but the proof directly carries over to

vector valued cases). �

Lemma 4.3. Fix κ1 > 0. Let M = Mkk′(λ, λ
′) be the kernel of an operator M , namely

(Mw)k(λ) =
∑
k′

ˆ
R

Mkk′(λ, λ
′)wk′(λ

′) dλ′,

and assume that M is supported in |k− k′| ≤ R for some dyadic R. Then uniformly in any R and

any k0 ∈ Zd, we have

‖(1 +R−1|k− k0|)κ1(Mw)k(λ)‖`2kL2
λ
. ‖M ‖`2

k′L
2
λ′→`

2
kL

2
λ
· ‖(1 +R−1|k′− k0|)κ1wk′(λ

′)‖`2
k′L

2
λ′
. (4.5)

Proof. See [36], Proposition 2.5. �

4.2. Large deviation inequalities. We state a large deviation estimate that works for uniform

distributions on the unit circle, see [36].

Lemma 4.4. Let E ⊂ Zd be a finite set, a = ak1···kr(ω) be a random tensor such that the collection

{ak1···kr} is independent with the collection {ηk(ω) : k ∈ E}. Let ζj ∈ {±} and assume that in the

support of ak1···kr there is no pairing in (k1, · · · , kr) associated with the signs ζj. Let the random

variable

X(ω) :=
∑

k1,··· ,kr

ak1···kr(ω)
r∏
j=1

ηj(ω)ζj , (4.6)

then for any A > 0, we have A-certainly that

|X(ω)|2 ≤ Aθ ·
∑

k1,··· ,kr

|ak1···kr(ω)|2. (4.7)

1In practice, the factor χτ will always come with a v which has the form Iχ(· · · ), so we always have v(0) = 0.
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Proof. This is a special case (i.e. no pairing) of [36], Lemma 4.1. �

4.3. Lattice point counting bounds. Here we state and prove the various counting bounds that

eventually lead to Proposition 4.9.

Lemma 4.5. Consider the set

S(3) =
{

(k1, k2, k3) ∈ (Zd)3 : ζ1k1 + ζ2k2 + ζ3k3 = m, ζ1|k1|2 + ζ2|k2|2 + ζ3|k3|2 = Γ,

|k1 −m1| ≤M1, |k2 −m2| ≤M2, and there is no pairing in (k1, k2, k3)
}
, (4.8)

where ζj ∈ {±}, (m,Γ) ∈ Zd × Z, mj ∈ Zd and Mj dyadic are given. Then we have, uniformly in

all parameters, that

#S(3) . (M1M2)d−1+θ. (4.9)

Proof. We may assume M1 ≤M2. If d = 1, by simple algebra, we can reduce to a divisor counting

problem in Z[e2πi/3] (if ζ1 = ζ2 = ζ3) or Z (otherwise). Since each kj belongs to an interval of

length O(M2), the estimate (4.9) follows from Lemma 3.4 of [35].

Consider d ≥ 2. Without loss of generality, we may assume (due to no-pairing) that either

the first coordinates of (k1, k2, k3) do not contain a pairing, or the j-th coordinates of (k1, k2, k3)

contain a pairing for each j, and this pairing is not from (k2, k3) for j = 1. In the former case the

j-th coordinates of (k1, k2, k3) have at most M1M2 choices for each 2 ≤ j ≤ d, and then at most

(M1M2)θ choices for j = 1 thanks to the d = 1 case. In the latter case the j-th coordinates of

(k1, k2, k3) have at most M2 choices for 2 ≤ j ≤ d, and at most M1 choices for j = 1. In either case

we get

#S(3) . max((M1M2)d−1(M1M2)θ,Md−1
2 M1) . (M1M2)d−1+θ. �

Lemma 4.6. Recall that p ≥ 3 is odd. For 1 ≤ p1 ≤ p, consider a partition of a set A ⊂ {1, · · · , p},
|A| = p1, into pairwise disjoint nonempty subsets B1, · · · , Bt, say Bu = {iu(1), · · · , iu(bu)} (1 ≤
u ≤ t). Given mj ∈ Zd, Mj dyadic, ζj ∈ {±} (j ∈ A) and Γ ∈ Z, consider the set S consisting of

vectors kA (where each kj ∈ Zd) that satisfy∑
j∈A

ζj |kj |2 = Γ;

∣∣∣∣ y∑
z=1

ζiu(z)kiu(z) −miu(y)

∣∣∣∣ ≤Miu(y), ∀1 ≤ u ≤ t, 1 ≤ y ≤ bu = |Bu|. (4.10)

Assume Miu(bu) = 1 for 1 ≤ u ≤ t, and that there is no pairing in kA. Then we have, uniformly in

all parameters, that

#S .
∏
j∈A

(Mj)
2α0+θ, (4.11)

where α0 is as in (3.1).

Proof. We may assume p1 = p, since if p1 < p we can add some elements to the sets Bu and reduce

to the p1 = p case. We will prove (4.11) by induction. Suppose (4.11) is true for p − 2, we will

prove it for p. For simplicity we define

wiu(y) :=

y∑
z=1

ζiu(z)kiu(z), 1 ≤ u ≤ t, 1 ≤ y ≤ bu.

Since p is odd, at least one of |Bu| (say |B1|) must be odd. If |B1| = 1 then the value of ki1(1) is

fixed, so we only need to count the vector kA\B1
. If |B2| = 1 also then we may reduce to counting

kA\(B1∪B2) and apply the induction hypothesis; otherwise |B2| ≥ 2 and we may add an element to
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B2 at no cost and reduce to the case |B2| ≥ 3. Therefore in any case we may assume some |Bj | ≥ 3,

say |B1| = b1 ≥ 3.

Let (i1(b1), i1(b1 − 1), i1(b1 − 2)) = (n, n′, n′′). Since by (4.10), each wiu(y) belongs to a ball of

radius Miu(y), and kiu(y) = ±wiu(y)±wiu(y−1) for some independent choices of ± (same below), the

number of choices for the vector kB1\{n,n′,n′′} is at most

Md
i1(1) · · ·M

d
i1(b1−3) = (Mn′Mn′′)

−d
∏
j∈B1

Md
j ,

noticing that Mn = 1. Similarly for 2 ≤ u ≤ t, the number of choices for the vector kBu is at most∏
j∈BuM

d
j . Once kA\{n,n′,n′′} is fixed, kn′′ = ±wn′′ ±wi1(b1−3) belongs to a ball of radius Mn′′ , and

kn = ±wn ± wn′ belongs to a ball of radius Mn′ . Then the number of choices for (kn, kn′ , kn′′) can

be bounded by (Mn′Mn′′)
d−1+θ by Lemma 4.5, thus

#S . (Mn′Mn′′)
d−1+θ

∏
j∈A\{n,n′,n′′}

Md
j . (4.12)

Note that this also settles the base case p = 3.

On the other hand, for p ≥ 5, since Mn = 1, by (4.10) we know that kn = ±wn ±wn′ belongs to

a ball of radius Mn′ , and when kn is fixed, kn′ = ±wn ± kn ± wn′′ belongs to a ball of radius Mn′′ .

Thus the number of choices for (kn, kn′) is at most (Mn′Mn′′)
d. When (kn, kn′) is fixed, we only

need to count the vectors kA\{n,n′}. Now wi1(y) belongs to a ball of radius Mi1(y) if y ≤ b1 − 3, and

to a ball of radius 1 if y = b1 − 2, so by the induction hypothesis we conclude that

#S . (Mn′Mn′′)
d

∏
j∈A\{n,n′,n′′}

M
d− 2

p−3
+θ

j . (4.13)

Interpolating (4.12) and (4.13) we get

#S .
∏

j∈A\{n}

M
d− 2

p−1
+θ

j ,

which is just (4.11). �

Lemma 4.7. For 1 ≤ p1 ≤ p, consider a partition of a set A ⊂ {1, · · · , p}, |A| = p1, into pairwise

disjoint nonempty subsets A1, · · · , As and B1, · · · , Bt, say Av = {`v(1), · · · , `v(av)} (1 ≤ v ≤ s)

and Bu = {iu(1), · · · , iu(bu)} (1 ≤ u ≤ t). Given mj ∈ Zd, Mj dyadic, ζj ∈ {±} (j ∈ A) and

Γ,Γv ∈ Z (1 ≤ v ≤ s), consider the set S consisting of vectors kA (where each kj ∈ Zd) that satisfy∑
j∈A

ζj |kj |2 = Γ,

∣∣∣∣ y∑
z=1

ζiu(z)kiu(z) −miu(y)

∣∣∣∣ ≤Miu(y), ∀1 ≤ u ≤ t, 1 ≤ y ≤ bu = |Bu|, (4.14)

∑
j∈Av

ζj |kj |2 = Γv,

∣∣∣∣ y∑
z=1

ζ`v(z)k`v(z) −m`v(y)

∣∣∣∣ ≤M`u(y), ∀1 ≤ v ≤ s, 1 ≤ y ≤ av = |Av|. (4.15)

Assume that M`v(av) = 1 and |Av| ≤ p− 2 for each 1 ≤ v ≤ s, that Miu(bu) = 1 for each 1 ≤ u ≤ t,
and that there is no pairing in kA. Then we have, uniformly in all parameters, that

#S .
∏
j∈A

(Mj)
2α0+θ

s∏
v=1

( min
1≤y<av

M`v(y))
2α0−d. (4.16)
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Proof. This essentially follows from Lemma 4.6. Let B = B1 ∪ · · · ∪ Bt, by (4.14) and (4.15) we

may count kB and each kAv (1 ≤ v ≤ s) separately. By Lemma 4.6, the number of choices for kB
is at most ∏

j∈B
(Mj)

2α0+θ;

thus it suffices to prove that the number of choices for kAv is at most

av−1∏
j=1

(M`v(y))
2α0+θ · ( min

1≤y<av
M`v(y))

2α0−d.

Let |Av| = av = n, clearly we may assume n ≥ 2. Lemma 4.6 then implies that the number of

choices for kAv is at most
n−1∏
y=1

(M`v(y))
d− 2

n′+θ,

where n′ = n if n is even, and n′ = n− 1 if n is odd. Now the desired estimate follows, since

n−1∏
y=1

(M`v(y))
d− 2

n′ ≤
n−1∏
y=1

(M`v(y))
2α0 · ( min

1≤y<av
M`v(y))

2α0−d,

due to the elementary inequality

(n− 1)
(
2α0 − d+

2

n′
)
≥ d− 2α0

which can be verified for 2 ≤ n ≤ p− 2. �

Lemma 4.8. Consider the same setting and set S as in Lemma 4.7, but instead of no pairing in

kA we assume that (1) any pairing in kA must be over-paired, and (2) d(p−1) ≥ 8. Then the bound

(4.16) remains true.

Proof. As in the proof of Lemma 4.6, we define

wiu(y) =

y∑
z=1

ζiu(z)kiu(z), 1 ≤ u ≤ t, 1 ≤ y ≤ bu;

w`v(y) =

y∑
z=1

ζ`v(z)k`v(z), 1 ≤ v ≤ s, 1 ≤ y ≤ av.

We also understand Miu(y) = M`v(y) = 1 when y = 0. It suffices to bound #S by

N =

s∏
v=1

Nv

t∏
u=1

N∗u, (4.17)

where for 1 ≤ v ≤ s and 1 ≤ u ≤ t,

Nv =
∏

1≤y<av

(M`v(y))
2α0+θ · ( min

1≤y<av
M`v(y))

2α0−d, and N∗u =
∏

1≤y<bu

(Miu(y))
2α0+θ. (4.18)

We proceed by induction. The no-pairing case is already known by Lemma 4.7. Now suppose there

is some over-pairing in kA; we list all the different j’s in A (there are at least three of them) such

that kj are the same, and let this common value be k. We will fix k, count the remaining variables,
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and then sum in k. With k fixed, by using induction hypothesis, the number of choices for the

remaining variables will be bounded by some product

N(k) =
s∏

v=1

Nv(k)
t∏

u=1

N∗u(k),

and we need to bound the quotients Nv(k)/Nv and N∗u(k)/N∗u. We only need to consider those v

and u such that at least one kj (j ∈ Av or Bu) equals k (otherwise the quotient is 1). There will

be several cases depending on how many kj equal k, and their positions. First, if |Av| = 1 (or

|Bu| = 1), then the value of k will be uniquely determined, so there is no summation in k, and the

result follows from the induction hypothesis. From now on we will assume |Av| ≥ 2 and |Bu| ≥ 2.

Similarly, if |Av| = 3 or |Bu| = 3 then the elements in {kj : j ∈ Av} (or {kj : j ∈ Bu}) cannot all

equal k, since otherwise k would also be uniquely determined.

(1) If all (or all but one) elements in {kj : j ∈ Av} (or in {kj : j ∈ Bu}) equal k, then Nv(k) (or

N∗u(k)) will be equal to 1. Considering Bu, since kiu(y) = ±wiu(y) ± wiu(y−1), by (4.14) we see that

if kiu(y) = k, then there exists a vector m∗ not depending on k, such that max(Miu(y),Miu(y−1)) &
|k −m∗|. This implies that

N∗u(k)

N∗u
.

{
|k −m∗|−2α0−θ, if |Bu| ≤ 3;

|k −m∗|−2α0−θ|k −m∗∗|−2α0−θ, if |Bu| ≥ 4,
(4.19)

where m∗∗ is another vector not depending on k.

Similarly considering Av, in view of the extra factor in (4.18), the estimates will be

Nv(k)

Nv
.


|k −m∗|d−4α0−θ, if |Av| = 2;

|k −m∗|−2α0−θ, if |Av| ≥ 3;

|k −m∗|−2α0−θ|k −m∗∗|d−4α0−θ, if |Av| ≥ 4.

(4.20)

(2) If at least two elements in {kj : j ∈ Av} (or {kj : j ∈ Bu}) do not equal k, then in particular

|Av| ≥ 3 (or |Bu| ≥ 3). In this case we only need to consider Bu, and the bounds for Av will be the

same (if not better) due to the negative power of minyM`v(y) in (4.18). If we fix kiu(y) = k, then

wiu(y−1) belongs to a ball of radius min(Miu(y),Miu(y−1)), so we get

N∗u(k)

N∗u
. max(Miu(y),Miu(y−1))

−2α0−θ, (4.21)

which is bounded by |k −m∗|−2α0−θ, in the same way as in (1).

(3) By similar arguments as in (2), we know that if two non-adjacent elements in Bu equal k (sim-

ilarly for Av), say kiu(y) = kiu(y′) = k, then wiu(y−1) belongs to a ball of radius min(Miu(y),Miu(y−1))

and wiu(y′−1) belongs to a ball of radius min(Miu(y′),Miu(y′−1)), so we have

N∗u(k)

N∗u
. max(Miu(y),Miu(y−1))

−2α0−θ max(Miu(y′),Miu(y′−1))
−2α0−θ . |k−m∗|−2α0−θ|k−m∗∗|−2α0−θ.

In summary, since at least three elements in all the Av’s and Bu’s equal k, we conclude that

N(k)

N
=

s∏
v=1

Nv(k)

Nv

t∏
u=1

N∗u(k)

N∗u
. |k −m∗|d−4α0−θ|k −m∗∗|d−4α0−θ.
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Since 2(4α0 − d+ θ) > d because d(p− 1) ≥ 8, we conclude that∑
k∈Zd
|k −m∗|d−4α0−θ|k −m∗∗|d−4α0−θ ≤ O(1)⇒

∑
k∈Zd

N(k) . N,

which completes the proof. �

Proposition 4.9. Partition {1, · · · , p} into disjoint nonempty subsets A1, · · · , As, B1, · · · , Bt and

C. Assume Av = {`v(1), · · · , `v(av)}, Bu = {iu(1), · · · , iu(bu)}, and C = {n1, · · · , nc = 1}. Given

mj ∈ Zd, Mj dyadic, ζj ∈ {±} (1 ≤ j ≤ p) and Γ,Γv ∈ Z (1 ≤ v ≤ s), consider a tensor

h = hkk1···kp, where each k, kj ∈ Zd, which satisfies |hkk1···kp | . 1, and in the support of h we have∑
j∈Av

ζj |kj |2 = Γv,

∣∣∣∣ y∑
z=1

ζ`v(z)k`v(z) −m`v(y)

∣∣∣∣ ≤M`u(y), ∀1 ≤ v ≤ s, 1 ≤ y ≤ av = |Av|. (4.22)

p∑
j=1

ζj |kj |2 − |k|2 = Γ,

∣∣∣∣ y∑
z=1

ζiu(z)kiu(z) −miu(y)

∣∣∣∣ ≤Miu(y), ∀1 ≤ u ≤ t, 1 ≤ y ≤ bu = |Bu|, (4.23)

∣∣∣∣ y∑
z=1

ζnzknz −mny

∣∣∣∣ ≤Mny , ∀1 ≤ y ≤ c− 1 = |C| − 1. (4.24)

We assume that M`v(av) = Miu(bu) = Mnc = 1, and that∑
j∈Av

ζj = 0 (∀1 ≤ v ≤ s),
p∑
j=1

ζj = 1;

p∑
j=1

ζjkj − k =
∑
j∈Av

ζjkj = 0. (4.25)

We also assume that any pairing in (k, k1, · · · , kp) is over-paired. Then, for any subset P0 satisfying

P0 ⊂ C\{1}, let {1, · · · , p}\P0 = Q0, then we have

‖h‖kkP0
→kQ0

.
p∏
j=2

(Mj)
α0+θ

s∏
v=1

( min
1≤y<av

M`v(y))
α0− d2 , (4.26)

unless (d, p) = (1, 7), and (up to permutation) that |A1| = |A2| = 2, k`1(1) = k`2(1).

Furthermore, if we do not assume that h is supported in the set
∑p

j=1 ζj |kj |2 − |k|2 = Γ as in

(4.23), but instead assume

|hk1···kp | .
1

〈Ω + Γ〉
, Ω := |k|2 −

p∑
j=1

ζj |kj |2, (4.27)

then the same result holds. Finally, all the above results remain true if we replace p by any odd

3 ≤ q ≤ p (without changing the value of α0).

Proof. First assume d(p− 1) ≥ 8. If there is some pairing between (k, kP0) and kQ0 , then using the

simple fact that

‖hk1kAk2kB · 1k1=k2‖k1kA→k2kB ≤ sup
k
‖hkkAkkB‖kA→kB

(this is proved in the same way as Lemma 4.10 below), we may fix the value k of these paired

variables with no summation (hence no cost of powers) and reduce to a problem involving a smaller

set1. Therefore we may assume there is no pairing between (k, kP0) and kQ0 . We may also assume

1Strictly speaking this reduction may not preserve (4.25), but (4.25) is only used to guarantee |Av| ≤ p−2 in order

to apply Lemma 4.8; after this (4.25) can be replaced by the more general versions where the linear combinations of

kj and k are fixed Zd vectors instead of 0, which is preserved under the reduction.
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|Av| ≤ p − 2 for each v, since otherwise (k, k1) will be a pairing due to (4.25), which has to be

over-paired with an element in Av, and after removing these over-paired variables1, the remaining

set will satisfy |Av| ≤ p− 2.

At this point we are ready to apply Lemma 4.8. By Schur’s Lemma, we have

‖h‖kkP0
→kQ0

.

(
sup
kQ0

∑
k,kP0

1

)1/2(
sup
k,kP0

∑
kQ0

1

)1/2

,

so we just need to count (k, kP0) with kQ0 given, and also count kQ0 with (k, kP0) given. Now

Lemma 4.8 implies that

sup
kQ0

∑
k,kP0

1 .
∏
j∈P0

(Mj)
2α0+θ, (4.28)

sup
k,kP0

∑
kQ0

1 .
∏
j∈Q0

(Mj)
2α0+θ ·

s∏
v=1

( min
1≤y<av

M`v(y))
2α0−d. (4.29)

This is because, for example, once (k, kP0) is fixed, for any ny ∈ C ∩Q0 we have∑
1≤z≤y;nz∈Q0

ζnzknz =

y∑
z=1

ζnzknz + (constant vector),

so the left hand side sum belongs to a ball of radius Mny . Using also (4.22) and (4.23), and noticing

that any pairing in kQ0 must be over-paired, we can deduce (4.29) from Lemma 4.8, and similarly

(4.28). Combining (4.28) and (4.29) then gives (4.26).

Now consider the exceptional cases d(p− 1) ≤ 6. If p = 3, then either there is no pairing at all

and (4.26) follows from (4.28) and (4.29), which in turns follow from Lemma 4.7, or there is an

over-pairing and each kj (1 ≤ j ≤ 3) is uniquely fixed, in which case (4.26) is immediate.

In the remaining cases we must have d = 1, and p ∈ {5, 7}. Again we may assume there is an

over-pairing (otherwise (4.26) follows from Lemma 4.7, which does require any condition on (d, p));

if p = 5, then an over-pairing takes at least 3 variables while there are 6 in total (k and each kj),

so there are only 3 variables remaining. By using Schur’s Lemma and the one-dimensional version

of Lemma 4.5, one can show that in such cases we always have ‖h‖kkQ0
→kP0

. (M2 · · ·M5)θ, which

also implies (4.26). Finally if p = 7, then we have

2(2α0 + θ) > (2α0 + θ) + (4α0 − d+ θ) > d,

so we can apply the same arguments in the proof of Lemma 4.8 and get the same result, unless

we are in the worst case, namely the first line of (4.20), which implies that (up to permutation)

|A1| = |A2| = 2, and k`1(1) = k`2(1).

Finally, we look at the case where (4.27) is assumed instead of the support condition (the result

for 3 ≤ q ≤ p follows from the same arguments, which we will not repeat). Here again we can

reduce to the case where Lemma 4.8 is applicable, and by Schur’s Lemma and (4.27) we have

‖h‖kkP0
→kQ0

.

(
sup
kQ0

∑
k,kP0

1

〈Ω + Γ〉

)1/2(
sup
k,kP0

∑
kQ0

1

〈Ω + Γ〉

)1/2

,

1These over-paired variables include a pairing between (k, kP0) and kQ0 as 1 ∈ Q0, and thus can be treated using

the argument in the beginning of the proof.



38 YU DENG, ANDREA R. NAHMOD, AND HAITIAN YUE

so we just need to bound the sums on the right hand side. The idea is that, when kQ0 (or (k, kP0))

is fixed, the number of choices for (k, kP0) (or kQ0) is at most (M2 · · ·Mp)
d due to (4.22)–(4.25)

(without using the equality for Ω), so by Hölder

sup
kQ0

∑
k,kP0

1

〈Ω + Γ〉
. (M2 · · ·Mp)

θ

(
sup
kQ0

∑
k,kP0

1

〈Ω + Γ〉1+θ

)1/(1+θ)

.

Upon fixing the value of Ω + Γ, the latter sum can be bounded by (4.28); similarly the sum in kQ0

can be bounded by (4.29) with a loss of (M2 · · ·Mp)
θ, which can always be incorporated into (4.26).

This completes the proof. �

4.4. Tensor norm estimates. Here we prove the main estimates for tensor norms. Start with

the following simple lemma.

Lemma 4.10. Let (B,C) be a subpartition of A, and let E = A\(B∪C). Then the norm ‖h‖kB→kC
increases by at most a constant multiple, under multiplication by:

(1) Any function f(kB, kE), or any function g(kC , kE), that is bounded;

(2) Any function of form ϕ(L−1[f(kB, kE) − g(kC , kE)]), where L > 0 is a real number, ϕ is

defined on some Rm such that ϕ̂ ∈ L1, and f, g are arbitrary Rm-valued functions;

(3) Any function of form 1ki=kj or 1ki 6=kj , regardless whether i or j belong to B, C or E.

Proof. (1) is obvious by definition, and (2) follows from (1) by writing

ϕ(L−1[f(kB, kE)− g(kC , kE)]) = Lm
ˆ
Rm

ϕ̂(Lξ)eiξ·f(kB ,kE)e−iξ·f(kC ,kE) dξ.

To prove (3), we may assume i ∈ B and j ∈ C (otherwise i, j ∈ B or i, j ∈ C or one of them belongs

to E, and the proof will be easier), and also assume E = ∅. Let kB\{i} = m and kC\{j} = n, and

let ki = kj = k after multiplying by 1ki=kj , then it suffices to prove that

∑
k,n

∣∣∣∣∑
m

hkmkn · zkm
∣∣∣∣2 ≤ ‖hkimkjn‖2kim→kjn ·∑

k,m

|zkm|2.

Clearly we may fix k, and consider the tensor hkmkn, so the desired bound follows from the inequality

sup
k
‖hkmkn‖m→n ≤ ‖hkimkjn‖kim→kjn,

which is obvious by definition. The result for 1ki 6=kj then follows, since 1ki 6=kj = 1− 1ki=kj . �

Next we state and prove the bilinear semi-product estimate, equivalent to Proposition 2.5.

Proposition 4.11 (Restatement of Proposition 2.5). Consider two tensors h
(1)
kA1

and h
(2)
kA2

, where

A1 ∩A2 = C. Let A1∆A2 = A, define the semi-product

HkA =
∑
kC

h
(1)
kA1

h
(2)
kA2

. (4.30)

Then, for any partition (X,Y ) of A, let X ∩A1 = X1, Y ∩A1 = Y1 etc., we have

‖H‖kX→kY ≤ ‖h
(1)‖kX1∪C→kY1

· ‖h(2)‖kX2
→kC∪Y2

. (4.31)
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Proof. Note that X1, X2, Y1, Y2 and C are five pairwise disjoint sets; let the vectors x := kX1 ,

y := kY1 , z = kC , u := kX2 and v := kY2 , then we can write

h(1) = h(1)
xyz, h(2) = h(2)

uvz; H = Hxyuv =
∑
z

h(1)
xyzh

(2)
uvz.

Now for any α = αxu, we can bound∑
y,v

∣∣∣∣∑
x,u

Hxyuvαxu

∣∣∣∣2 =
∑
y,v

∣∣∣∣ ∑
x,u,z

h(1)
xyzh

(2)
uvzαxu

∣∣∣∣2 =
∑
v

∑
y

∣∣∣∣∑
x,z

h(1)
xyz

(∑
u

h(2)
uvzαxu

)∣∣∣∣2
≤ ‖h(1)‖2xz→y ·

∑
x,z,v

∣∣∣∣∑
u

h(2)
uvzαxu

∣∣∣∣2 = ‖h(1)‖2xz→y ·
∑
x

∑
v,z

∣∣∣∣∑
u

h(2)
uvzαxu

∣∣∣∣2
≤ ‖h(1)‖2xz→y · ‖h(2)‖2u→vz ·

∑
x,u

|αxu|2,

so by definition, ‖H‖xu→yv ≤ ‖h(1)‖xz→y · ‖h(2)‖u→vz, as desired. �

A corollary is the following multilinear semi-product estimate, equivalent to Proposition 2.6.

Proposition 4.12 (Restatement of Proposition 2.6). Let Aj (1 ≤ j ≤ m) be index sets, such that

any index appears in at most two Aj’s, and let h(j) = h
(j)
kAj

be tensors. Let A = A1∆ · · ·∆Am be

the set of indices that belong to only one Aj, and C = (A1 ∪ · · · ∪Am)\A be the set of indices that

belong to two different Aj’s. Define the semi-product

HkA =
∑
kC

m∏
j=1

h
(j)
kAj

. (4.32)

Let (X,Y ) be a partition of A. For 1 ≤ j ≤ m let Xj = X ∩Aj and Yj = Y ∩Aj, and define

Bj :=
⋃
`>j

(Aj ∩A`), Cj =
⋃
`<j

(Aj ∩A`), (4.33)

then we have

‖H‖kX→kY ≤
m∏
j=1

‖h(j)‖kXj∪Bj→kYj∪Cj . (4.34)

Proof. We induct in m. When m = 2, (4.34) is just (4.31); suppose (4.34) holds for m− 1. Then,

define F = A2∆ · · ·∆Am, E = (A2 ∪ · · · ∪Am)\F and

YkF :=
∑
kE

m∏
j=2

h
(j)
kAj

,

then we have A = A1∆F , and

HkA =
∑
kG

h
(1)
kA1

YkF , G := A1 ∩ F =
⋃
`>1

(A1 ∩A`) = B1.

Applying (4.31) we get

‖H‖kX→kY ≤ ‖h
(1)‖kX1∪B1

→kY1
· ‖Y ‖kX∩F→k(Y ∩F )∪B1

.
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Note that X ′ := X ∩ F and Y ′ := (Y ∩ F ) ∪B1 form a partition of F , by induction hypothesis we

have

‖Y ‖kX′→kY ′ ≤
m∏
j=2

‖h(j)‖k(X′∩Aj)∪Bj
→k(Y ′∩Aj)∪(Cj\B1)

.

Finally, note that (X ′ ∩Aj)∪Bj = Xj ∪Bj and (Y ′ ∩Aj)∪ (Cj\B1) = Yj ∪Cj , this completes the

inductive proof. �

Remark 4.13. Note that, if we fix (X,Y ) and rearrange the tensors h(j), then the expression (4.32)

will not change, but the norms appearing on the right hand side of (4.34) will. We may take

advantage of this and arrange these tensors in some order using a particular algorithm so that

(4.34) gives the desired bound. This will be the key to the proof of Proposition 6.2 below.

Finally we state and prove the precise form of Proposition 2.8, and a similar variant. The proofs

rely on higher order versions of Bourgain’s G G ∗ argument in [11].

Proposition 4.14 (Precise form of Proposition 2.8). Let A be a finite set and hbckA = hbckA(ω) be

a tensor, where each kj ∈ Zd and (b, c) ∈ (Zd)q for some integer q ≥ 2. Given signs ζj ∈ {±}, we

also assume that 〈b〉, 〈c〉 . M and 〈kj〉 . M for all j ∈ A, where M is a dyadic number, and that

in the support of hbckA there is no pairing in kA. Define the tensor

Hbc =
∑
kA

hbckA
∏
j∈A

η
ζj
kj
, (4.35)

where we restrict kj ∈ E in (4.35), E being a finite set such that {hbckA} is independent with

{ηk : k ∈ E}. Then τ−1M -certainly, we have

‖Hbc‖b→c . τ−θM θ · max
(B,C)

‖h‖bkB→ckC , (4.36)

where (B,C) runs over all partitions of A.

Proof. By conditioning on {hbckA(ω)}, we may assume hbckA are constant tensors. View H as a

linear operator that maps functions of c to functions of b, and consider the kernel of (HH∗)m for

a large positive integer m.

Define Rn = (HH∗)m if n = 2m, and Rn = (HH∗)mH if n = 2m+ 1. By induction in n, we will

prove that the kernel of Rn can be written as a linear combination of terms Rn which has the form
(Rn)bb′ =

∑
kZ

ybb′kZ
∏
j∈Z

η
ζj
kj
, n even;

(Rn)bc =
∑
kZ

ybckZ
∏
j∈Z

η
ζj
kj
, n odd,

(4.37)

where Z is a finite set, ζj ∈ {±}, ybb′kZ (or ybckZ ) is a tensor such that in its support, there is no

pairing in kZ , and satisfies the bound

‖y‖bb′kZ (or ‖y‖bckZ ) .
(

sup
(B,C)

‖h‖bkB→ckC
)n−1‖h‖bckA . (4.38)

In fact, when n = 1 this is obvious (with Z = A). Suppose (4.37) and (4.38) are true for n − 1,

where n is odd, then since Rn = Rn−1H it suffices to consider the kernel (note that by relabeling

we may assume Z ∩A = ∅)

(Rn)bc =
∑
b′

(Rn−1)bb′Hb′c =
∑
b′

∑
kZ ,kA

ybb′kZhb′ckA
∏
j∈Z

η
ζj
kj

∏
j∈A

η
ζj
kj
. (4.39)
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Now, by repeating the arguments in the proof of Proposition 3.7, we can write (4.39) as a linear

combination of sums (for different choices of O), which have the same summand as (4.39) and are

taken over the same set of variables (b′ and kZ∪A), but with a set of additional pairing and no-

pairing conditions for the variables kZ∪A given by (O, 1). More precisely, here O = {A1, · · · ,Am}
where Ai are pairwise disjoint subsets of Z ∪ A such that each subset contains two elements of

Z ∪ A with opposite ζj sign, but does not contain two elements of Z or two elements of A with

opposite ζj sign, and the set of conditions (O, 1) is defined by (i) the kj are the same for j in each

Ai, and (ii) there is no pairing in k(Z∪A)\Q where Q = Q(A1) ∪ · · ·Q(Am) (see (3.10)), as in the

proof of Proposition 3.7.

Since |ηj |2 ≡ 1, we may recast the sum corresponding to P defined above as

Rbc =
∑
kY

wbckY
∏
j∈Y

η
ζj
kj
, wbckY =

(1)∏
(j,j′)

1kj 6=kj′ ·
∑
b′

(2)∑
kQ

ỹbb′kZ h̃b′ckA . (4.40)

Here Y = (Z ∪ A)\Q, the product
∏(1)

(j,j′) is taken over all j, j′ ∈ Y such that ζj′ = −ζj , the sum∑(2)
kQ

is taken over the variables kQ such that kj = kj′ whenever {j, j′} is one of the opposite-sign

2-element subsets (pairings) selected when obtaining Q as in Definition 3.6, and

ỹbb′kZ := ybb′kZ ·
(3)∏

(j,j′)

1kj=kj′ , h̃b′ckA := hb′ckA ·
(3)∏

(j,j′)

1kj=kj′ , (4.41)

where the products
∏(3)

(j,j′) are taken over all j, j′ ∈ Z (for y, or j, j′ ∈ A for h) such that they

belong to the same Ai. We shall apply Proposition 4.11 to estimate ‖wbckY ‖bckY ; in order to do so

we need to make an adjustment in notations. Namely, for any pairing {j, j′}, as we always require

kj = kj′ in the sum
∑(2)

kQ
, we may combine them into a single element and include this element in

both Z and A. In this way we are changing pairings between Z and A to intersections of Z and A,

which is the setting of Proposition 4.11.

With (4.40), (4.41) and these adjustments, by Lemma 4.10 and Proposition 4.11, we conclude

that

‖wbckY ‖bckY . ‖ybb′kZ‖bb′kZ · ‖hb′ckA‖ckC→b′kB ,
where B = Q ∩A, and C = A\Q. This completes the inductive proof of (4.37) and (4.38) when n

is odd. When n is even noticing that Rn = Rn−1H
∗, we have

(Rn)bb′ =
∑
c

(Rn−1)bcHb′c =
∑
c

∑
kZ ,kA

ybckZhb′ckA
∏
j∈Z

η
ζj
kj

∏
j∈A

η
−ζj
kj

(4.42)

instead of (4.39), and the rest of proof goes analogously.

Now consider the product (HH∗)m with n = 2m. Using (4.38), Lemma 4.4 and noticing that

the number of choices for (b, b′) is at most MO(1), we conclude that τ−1M -certainly, we have

‖Hbc‖4mb→c = ‖(HH∗)m‖2OP .
∑
b,b′

|(Rn)bb′ |2 . (τ−1M)θ‖y‖2bb′kZ

. (τ−1M)θ
(

sup
(B,C)

‖h‖bkB→ckC
)4m−2‖h‖2bckA ,

and hence

‖Hbc‖b→c . (τ−1M)θ
(

sup
(B,C)

‖h‖bkB→ckC
)1− 1

2m ‖h‖
1

2m
bckA

.
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Fixing m large enough, and noticing that by the support condition,

‖h‖bckA .M
q+|A|

2 sup
b,c,kA

|hbckA | .M
q+|A|

2 sup
(B,C)

‖h‖bkB→ckC ,

we deduce (4.36). �

Proposition 4.15 (A variant of Proposition 4.14). Consider the same setting as in Proposition

4.14, with the following differences: (1) we only restrict 〈kj〉 .M but do not impose any condition

on 〈b〉 or 〈c〉; (2) we assume b, c ∈ Zd also, and assume that in the support of hbckA we have

|b − ζc| . M where ζ ∈ {±}; (3) the tensor hbckA only depends on b − ζc, |b|2 − ζ|c|2 and kA,

and is supported in the set where ||b|2 − ζ|c|2| ≤Mκ3
. The other assumptions are the same. Then

τ−1M -certainly we have

‖Hbc‖b→c . τ−θM θ · sup
(B,C)

‖h‖bkB→ckC .

Proof. We may assume ζ = +, since the other case is much easier. Since hbckA is supported in the

set where |b− c| .M , by an orthogonality argument we may modify h by restricting it to the set

where |b − f | . M and |c − f | . M , and to bound ‖Hbc‖b→c it suffices to bound these restricted

operators uniformly in f ∈ Zd.
For any f , let x = b− f and y = c− f , then x and y are both assumed to have size .M , and it

suffices to estimate the norm

‖H̃f ;xy‖x→y, where H̃f ;xy =
∑
kA

h̃f ;xykA

∏
j∈A

η
ζj
kj
, and h̃f ;xykA := hx+f,y+f,kA · 1|x|,|y|.M .

For any fixed value of f , we may apply Proposition 4.14 to conclude that τ−1M -certainly we have

‖H̃f ;xy‖x→y . τ−θM θ · sup
(B,C)

‖h̃f ;xykA‖xkB→ykC ≤ τ
−θM θ · sup

(B,C)
‖h‖bkB→ckC , (4.43)

so it suffices to establish (4.43) uniformly in f . Note that by assumption, h̃f ;xykA is in fact a

function of (x, y, kA) and |x+f |2−|y+f |2 = 2f · (x−y)+(|x|2−|y|2). The desired uniform bound

(4.43), and hence the proof of Proposition 4.15, will follow from the following statement:

Claim 4.16. There exist finitely many integer-valued functions gj(z) (defined on a subset Ej ⊂
{z : 〈z〉 . M}), where 1 ≤ j ≤ K ≤ Mκ4

, such that for any integer vector f ∈ Zd, there exists

1 ≤ j ≤ A, such that for any z satisfying 〈z〉 . M , we have |f · z| ≤ M2κ3
if and only if z ∈ Ej,

and in such case we have f · z = gj(z).

Proof of claim 4.16. The proof is a slight modification of (a special case of) the proof of [33], Claim

3.7, so we refer the reader to that paper. �

5. The random tensor ansatz

In this section we begin the main proof. We make several reductions to the equation (1.7) in

Section 5.1, write down the central random tensor ansatz in Section 5.2, and state the key a priori

estimates, Proposition 5.1, in Section 5.3.

5.1. First reductions. We start by analyzing (1.7). The first step is to reduce it to a more suitable

form. This is done by using a gauge transform, conditioning on the norms of Fourier modes of (1.2),

and conjugating by the linear Schrödinger flow.
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5.1.1. The gauge transform. Define the gauge transform

ũN (t) = uN (t) · exp

(
(p+ 1)i

2

ˆ t

0

 
Td
W p−1
N (uN ) dt′

)
, (5.1)

which has inverse

uN (t) = ũN (t) · exp

(
−(p+ 1)i

2

ˆ t

0

 
Td
W p−1
N (ũN ) dt′

)
, (5.2)

then uN satisfies (1.7) if and only if ũN satisfies the gauged equation (i∂t + ∆)ũN = ΠN

(
W p
N (ũN )− p+ 1

2

 
Td
W p−1
N (ũN ) · ũN

)
,

ũN (0) = ΠNf(ω).

(5.3)

The nonlinearity in the big parenthesis of (5.3) can be recast in the following form:

W p
N (ũN )− p+ 1

2

 
Td
W p−1
N (ũN ) · ũN =

∑
3≤q≤p

apq(mN − σN )(p−q)/2Nq(ũN ), (5.4)

where q runs over odd integers, apq are constants, mN denotes the conserved mass of ũN (and uN ),

mN =

 
Td
|ũN |2 =

∑
〈k〉≤N

|gk|2

〈k〉2α
,

σN is as in (1.5), and Nq is a degree q real polynomial (regarded also as a R-multilinear expression

of degree q) that is simple in the sense of Definition 3.1. For the derivation of (5.4), see [36],

Proposition 2.2.

5.1.2. Conditioning and conjugating. Note that each mN is a function of the norms ρk = |gk|,
moreover let m∗N := mN − σN , then by standard large deviation estimates,

∣∣m∗N −m∗N
2

∣∣2 =

∣∣∣∣ ∑
N/2<〈k〉≤N

ρ2
k − 1

〈k〉2α

∣∣∣∣2 ≤ τ−θN θ
∑

N/2<〈k〉≤N

1

〈k〉4α
≤ τ−θNd−4α+θ ≤ τ−θN−40ε (5.5)

holds τ−1N -certainly, as 4α− d > 80ε by our assumptions.

Now, by excluding a set of probability ≤ Cθe
−τ−θ and conditioning on {ρk}, we may fix the

values of ρk and hence m∗N , so that ũN solves the equation
(i∂t + ∆)ũN =

∑
3≤q≤p

apq(m
∗
N )(p−q)/2 ·ΠNNq(ũN ),

ũN (0) =
∑
k∈Zd

ΠNγk · ηk(ω)eik·x,
(5.6)

where recall γk = 〈k〉−αρk; they and the m∗N are constants that satisfy

|γk| ≤ τ−θ〈k〉−α+θ, |m∗N | ≤ τ−θ,
∣∣m∗N −m∗N

2

∣∣ ≤ τ−θN−40ε. (5.7)

We may also assume, due to (5.5), that∑
N/2<〈k〉≤N

γ2
k ≤ τ−θNd−2α. (5.8)
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Finally, define vN by (vN )k(t) := eit|k|
2
(ũN )k(t), then vN satisfies the following equation

(vN )k(t) = (FN )k − i
∑

3≤q≤p
apq(m

∗
N )(p−q)/2

ˆ t

0
ΠNMq(vN , · · · , vN )k(t

′) dt′, (5.9)

where the initial data FN is defined by

(FN )k := ΠNγk · ηk(ω) =
∑
N ′≤N

(fN ′)k, where (fN )k := ∆Nγk · ηk(ω) (5.10)

(this fN will be the one appearing in Definitions 3.4 and 3.5 and in particular the Trim functions),

Mq is a conjugated version of Nq, and is given by

Mq(v
(1), · · · , v(q))k(t

′) =
∑

ζ1k1+···+ζqkq=k
ckk1···kq · eit

′Ω
q∏
j=1

(v(j))
ζj
kj

(t′). (5.11)

In (5.11), the signs (ζ1, · · · , ζq) = (+,−, · · · ,+), and the coefficients ckk1···kq satisfy the simplicity

condition in the sense of Definition 3.1. Finally Ω is defined by

Ω = |k|2 − |k1|2 + · · · − |kq|2 = |k|2 −
q∑
j=1

ζj |kj |2. (5.12)

Below we will focus on the system (5.9)–(5.11) on J = [−τ, τ ], with the parameters satisfying

(5.7)–(5.8). Using (3.6), (5.9) can be rewritten as

(vN )k(t) = (FN )k(t)− i
∑

3≤q≤p
apq(m

∗
N )(p−q)/2 · IΠNMq(vN , · · · , vN )k(t), (5.13)

where I is as in (3.6). In order to use the global-in-time norms defined in Section 3.3, we need to

construct functions v†N that are well-controlled for all time, and agree with vN on J . The strategy

is to construct v†N by the time truncated system

(v†N )k(t) = χ(t) · (FN )k − i
∑

3≤q≤p
apq(m

∗
N )(p−q)/2χτ (t) · IχΠNMq(vN , · · · , vN )k(t), (5.14)

where Iχ is as in (3.6). Clearly if v†N solves (5.14) then they must agree with the solution vN to

(5.13) on J . Unlike vN , which always solve (5.13), the v†N we construct are solutions to (5.14) only

τ−1-certainly, i.e. apart from a set of probability ≤ Cθe−τ
−θ

.

5.2. Construction of tensors. In this section we present the random tensor ansatz. The reader

may recall that the core idea of this ansatz was presented for a simpler model in Section 2.4.

Suppose v†N solves (5.14), and let yN be defined by

yN = v†N − v
†
N
2

; v†N =
∑
N ′≤N

yN ′ , (5.15)

then yN solves the system

(yN )k(t) = χ(t) · (fN )k − i
∑

3≤q≤p
apq(m

∗
N )(p−q)/2χτ (t) · Iχ∆NMq(v

†
N
2

, · · · v†N
2

)k(t)

− i
∑

3≤q≤p
apq(m

∗
N )(p−q)/2χτ (t) · IχΠN

[
Mq(v

†
N , · · · , v

†
N )−Mq(v

†
N
2

, · · · v†N
2

)
]
k
(t)

− i
∑

3≤q≤p
apq
[
(m∗N )(p−q)/2 − (m∗N

2

)(p−q)/2]χτ (t) · IχΠN
2
Mq(vN

2

† , · · · v†N
2

)k(t),

(5.16)
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whereMq is as in (5.11). Conversely if yN solves (5.16), then v†N solves (5.14) where we understand

that v†1/2 = 0. So it suffices to construct yN .

We shall construct yN by an ansatz which involves S-tensors h(S,n) = h
(S,n)
kkU

(t, kV , λV) for n ∈
{0, 1} and regular plants S having frequency N(S) = N and size |S| ≤ D, as well as a remainder

term zN . Here D is as in (3.2). This construction will be inductive, first in N and then in |S| with

fixed N . As the base case we understand that all these quantities are 0 when (formally) N is 1/2.

Step 1: the induction hypothesis. Now, given dyadic M ≥ 1, assume that we have already defined

the S-tensors h(S,n) for all n ∈ {0, 1}, all regular plants S with N(S) < M and |S| ≤ D, as well as

zN ′ = (zN ′)k(t) for N ′ < M . For N < M , define

(yN )k(t) =
∑

n∈{0,1}

∑
S:N(S)=N
|S|≤D

∑
kU ,kV

ˆ
dλVh

(S,n)
kkU

(t, kV , λV)

×
∏
l∈U

(fNl
)ζlkl

∏
f∈V

(ẑNf
)
ζf
kf

(λf) + (zN )k(t),

(v†N )k(t) =
∑
N ′≤N

(yN ′)k(t).

(5.17)

Note that the first equation in (5.17) can also be written as

(yN )k(t) =
∑

n∈{0,1}

∑
S:N(S)=N
|S|≤D

Ψk[S, h(S,n)(t)] + (zN )k(t) (5.18)

in view of (3.8). Here and throughout the proof, the fN ′ in (3.8) will be fixed as in (5.10), and

(zN ′)N ′<M will be fixed as above. Moreover, define the R-linear operator (which plays the role of

PNL in Section 2.4.1)

(LMw)k(t) = −i
∑

3≤q≤p
apq(m

∗
M )(p−q)/2χτ (t) · IχΠM

∑
sym

Mq(w, v
†
M [δ] , · · · , v

†
M [δ])k(t), (5.19)

where
∑

sym represents the sum over all possible permutations, for example∑
sym

M(w, v, v) :=M(w, v, v) +M(v, w, v) +M(v, v, w).

Let the components LM,ζ , as well as the kernels (LM,ζ)kk′(t, t
′), be defined as in Section 3.1. Let

the R-linear operator RM = (1−LM )−1, which is bounded from Xb0 to itself, if ‖LM‖Xb0→Xb0 <

1/2 (with b0 in (3.3)); otherwise let RM = Id. Define also V M = RM − 1. The goal is to define

the S-tensors h(S,n) for n ∈ {0, 1} and regular plants S having N(S) = M and |S| ≤ D, and the

remainder term zM , such that yM defined by (5.17) with N replaced by M solves (5.16) with high

probability.

Step 2: paralinearization. If we assume RM = (1 −LM )−1, then using the operator LM , we

can paralinearize (5.16) and rewrite it as

(yM )k(t) = χ(t) · (fM )k + (LMyM )k(t) +
∑

3≤q≤p

∑
N1,··· ,Nq≤M

Υ · χτ (t)
[
IχΠMq(yN1 , · · · yNq)

]
k
(t).

(5.20)

In the above summation q is odd, Π is one of the projections ΠM , ∆M or ΠM
2

, and we require that

if Nj = M for some j, then there must be another j′ 6= j such that Nj′ ≥M δ (otherwise the term
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is contained in the second term (LMyM )k(t)). The coefficient Υ depends only on q and the Nj ’s,

and satisfies |Υ| ≤ τ−θ; moreover if Nj ≤ (50dp)−1M for each 1 ≤ j ≤ q, we have the stronger

bound |Υ| ≤ τ−θM−40dpε.

Using the operators RM , V M and their kernels defined by (3.4)–(3.5), we can solve (5.20) by

(yM )k(t) = χ(t) · (fM )k +
∑
ζ∈{±}

∑
k′

ˆ
dt′ · (V M,ζ)kk′(t, t

′)χ(t′) · (fM )ζk′

+
∑
ζ∈{±}

∑
k′

ˆ
dt′ · (RM,ζ)kk′(t, t

′)
∑

3≤q≤p

∑
N1,··· ,Nq≤M

Υ · χτ (t′)
[
IχΠMq(yN1 , · · · yNq)

]ζ
k′

(t′).

(5.21)

The strategy is to construct the tensors h(S,n) with N(S) = M inductively in |S|, such that when we

plug (5.17) into (5.21) allowing N = M , the terms on the left and right sides cancel to sufficiently

high order so that the remainders can be put in zM .

Step 3: definition of h(S,n). Expanding the right hand side of (5.21) using (5.17) and allowing

N = M , we obtain a sum of terms of the form (omitting RM,ζ and other factors for the moment)∑
sym

Mq(Ψ
(S1,n1)
k1

, · · · ,Ψ(Sr,nr)
kr

, zNr+1 , · · · , zNq)k′(t′), (5.22)

where Ψ
(Sj ,nj)
kj

= Ψ
(Sj ,nj)
kj

(t′) = Ψkj [Sj , h(Sj ,nj)(t′)].

Let B = (M, q, r, ζ1, · · · , ζq, N1, · · · , Nq), note that
∑q

j=1 ζj = 1. By Proposition 3.7 (1) and (2),

if Nj ≤M/2 for each r+1 ≤ j ≤ q, and each zNj in (5.22) is replaced by its low-modulation cutoff1

zlo
Nj

defined by

(ẑlo
Nj

)kj (λj) = (ẑNj )kj (λj) · χ(M−κ
2
λj)

(see Section 3.1 for the definition of χ), then (5.22) can be recast as a linear combination of

Ψ̃
(S)
k = Ψ̃

(S)
k (t′) = Ψk[S, H] (for different choices of O as in Definition 3.6), where

S = Trim(Merge(Trim(S1,M
δ), · · · , Trim(Sr,M δ),B,O),M δ) (5.23)

H = Trim(Merge(Trim(h(S1,n1),M δ), · · · , Trim(h(Sr,nr),M δ), h,B,O),M δ). (5.24)

In (5.24) the tensor h = hkk1···kq(t
′, λr+1, · · · , λq) is given by

hkk1···kq(t
′, λr+1, · · · , λq) = 1k=ζ1k1+···+ζqkq · 1〈k〉≤M

q∏
j=1

1〈kj〉≤Nj

×
q∏

j=r+1

χ(M−κ
2
λj)ckk1···kqe

it′(Ω+ζr+1λr+1+···+ζqλq) (5.25)

with ckk1···kq as in (5.11) and Ω as in (5.12). Here and throughout the proof, when applying Trim

functions, we always fix fN ′ as in (5.10), and (zN ′)N ′<M as in the beginning of Step 1.

We will define two types of tensors, h(S,0) and h(S,1). The former are constant tensors without

randomness, while the latter may depend on low-frequency random variables, which are however

independent with the inputs of the tensor. Define h(S,n) inductively in |S|, by the equations

h
(S,0)
kkU

(t, kV , λV) = χ(t)1S=S+
M
· 1k=kl1M/2<〈k〉≤M +

∑
sym

∑
(a)

Υ · χτ (t)
[
IχΠHkkU

]
(t, kV , λV), (5.26)

1This matches Definition 3.4.
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h
(S,1)
kkU

(t, kV , λV) =
∑
ζ∈{±}

1S=SζM

ˆ
dt′ · 1M/2<〈kl〉≤M · V

M,ζ
kkl

(t, t′)χ(t′)

+
∑
sym

∑
(b)

Υ · χτ (t)
[
IχΠHkkU

]
(t, kV , λV)

+
∑
ζ∈{±}

∑
k′

ˆ
dt′ · (V M,ζ)kk′(t, t

′)
∑
sym

∑
(c[ζ])

Υ · χτ (t′)
[
IχΠHk′kU

]
(t′, kV , λV)ζ .

(5.27)

Here SζM are the mini plants defined in Definition 3.2. The summation
∑

(c[ζ]) is taken over B,

nj ∈ {0, 1} and regular plants Sj with frequency Nj ≤M and size |Sj | ≤ D for 1 ≤ j ≤ r, and1 O,

such that

(i) if Nj = M for some 1 ≤ j ≤ q then there is q ≥ j′ 6= j with Nj′ ≥M δ;

(ii) Nj ≤M/2 for r + 1 ≤ j ≤ q;
(iii) if ζ = + then (5.23) is true with the given S, and if ζ = − then (5.23) is true with the left

hand side replaced by S.

The term Hk′kU (t′, kV , λV) that appears in the summand is defined in (5.24) with h(Sj ,nj) given by

the induction hypothesis. The summation
∑

(a) is taken over the same set of variables as
∑

(c[+])

but with the restrictions (in addition to those in
∑

(c[ζ])) that q = r, nj = 0 and Nl ≥M δ for each

j and each l ∈ Lj (where Lj is the set of leaves of Sj , see Remark 3.3), and
∑

(b) =
∑

(c[+])−
∑

(a).

The above is a valid inductive definition, i.e. the tensors h(Sj ,nj) in (5.24) are already defined

when we use them to define h(S,n) via (5.26)–(5.27), thanks to Proposition 3.7 (4). Note that the

first term on the right hand side of (5.26) and the first line in (5.27) are precisely the random (1, 1)

tensors described in Section 2.4.1; the rest come from higher order iterations in Section 2.4.2.

Step 4: definition of zM . Now we have finished the inductive definition of S-tensors h(S,n) for

n ∈ {0, 1} and regular plants S of frequency N(S) ≤ M and |S| ≤ D. Using (3.8) this gives

definition to terms Ψ
(S,n)
k = Ψ

(S,n)
k (t′) = Ψk[S, h(S,n)] for such n and S. Finally we shall construct

zM to complete the inductive definition; this is simply defined to be the solution to the equation

(zM )k(t) =
∑
ζ∈{±}

∑
k′

ˆ
dt′ · (RM,ζ)kk′(t, t

′)
∑
sym

∑
(d)

Υ · χτ (t′)

×
[
IχΠMq(Ψ

(S1,n1)
k1

, · · · ,Ψ(Sr,nr)
kr

, z∗Nr+1
, · · · , z∗Nq)

]ζ
k′

(t′), (5.28)

where z∗Nj (r+ 1 ≤ j ≤ q) is either zNj or zlo
Nj

or the high-modulation cutoff zhi
Nj

:= zNj − zlo
Nj

. Here

in (5.28), the sum
∑

(d) is taken over B, nj ∈ {0, 1}, regular plants Sj with frequency Nj and size

|Sj | ≤ D for 1 ≤ j ≤ r, and choices of z∗Nj , under the restrictions that (i) if Nj = M for some

1 ≤ j ≤ q then there is q ≥ j′ 6= j with Nj′ ≥M δ, (ii) either Nj = M for at least one r+ 1 ≤ j ≤ q
and z∗Nj = zNj for all r + 1 ≤ j ≤ q, or Nj ≤ M/2 for all r + 1 ≤ j ≤ q and z∗Nj = zhi

Nj
for at least

one r + 1 ≤ j ≤ q, or (Nj ≤M/2) ∧ (z∗Nj = zlo
Nj

) for all r + 1 ≤ j ≤ q and the plant

S = Trim(Merge(Trim(S1,M
δ), · · · , Trim(Sr,M δ),B,O),M δ) (5.29)

1Strictly speaking the sum over O should carry the coefficients in the linear combination of Ψ̃
(S)
k that gives (5.22)

as above; these are constants, and for simplicity we will treat them as 1.
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has size1 |S| > D.

Note that in (5.28), all terms Ψ
(Sj ,nj)
kj

= Ψkj [Sj , h(Sj ,nj)] are already defined for nj ∈ {0, 1} and

regular plants Sj with N(Sj) ≤ M and |Sj | ≤ D, so (5.28) can be viewed as an equation for the

function zM = (zM )k(t). If the mapping defined by the right hand side of (5.28) is a contraction

mapping from the set {zM : ‖zM‖Xb0 ≤M−D1} to itself, we define zM to be the unique fixed point

of this mapping; otherwise define zM = 0.

This finishes the inductive definition of the tensors h(S,n) and the remainder zN , which give the

definition of yN by the ansatz (5.17).

5.3. The a priori estimates. With the complete definition of h(S,n) tensors and zN , we can now

state the main a priori estimates for these terms. First notice that they satisfy the following simple

properties, which are easily verified (using Definitions 3.5 and 3.6, and Proposition 3.7) during the

construction process:

• The tensors h(S,0) are constant (i.e. do not depend on ω) and are nonzero only when S is

plain, the tensors h(S,1) are BN [δ] measurable (recall Section 3.1 for definition) for any S
with N(S) = N and |S| ≤ D, and the remainder zN is BN measurable;

• All these terms are supported in |t| ≤ 1, and (zN )k(t) is supported in 〈k〉 ≤ N . In the

support of h
(S,n)
kkU

(t, kV , λV) we have 〈k〉 ≤ N , that Nl/2 < 〈kl〉 ≤ Nl for each l ∈ U ,

〈kf〉 ≤ Nf and |λf| ≤ 2Nκ2
for each f ∈ V, and that there is no pairing in kU .

The main a priori estimates are listed in the following proposition.

Proposition 5.1. Given a dyadic M , consider the following set of statements (viewed as an event

for ω), which we shall refer to as Local(M) below:

(1) For any plain regular plant S = (L,∅,Y) with N(S) = N < M and |S| ≤ D, we have that

h(S,0) = h
(S,0)
kkU

(t) is supported in the set where k =
∑
l∈U

ζlkl. (5.30)

For any Γ ∈ Z, let h(S,0,Γ) be the restriction of h(S,0) to the set where

|k|2 −
∑
l∈U

ζl|kl|2 = Γ, (5.31)

obtained by multiplying by the indicator function of this set. Let (B,C) be a subpartition of U and

let E = U\(B ∪ C). Then we have
ˆ
R
〈λ〉2b

(∑
Γ∈Z
‖ĥ(S,0,Γ)

kkU
(λ)‖kkB→kC

)2

dλ ≤
( ∏

l∈B∪C
Nβ1

l

∏
l∈P

N−8ε
l

∏
l∈E

N4ε
l

∏
p∈Y

N−δ
3

p ·X0X1

)2

, (5.32)

with the quantities

X0 =



(
max
l∈C

Nl

)−β1 , if C 6= ∅;(
min
l∈L

Nl

) d
2
−β1 , if C = E = ∅;

N−εδ, if B = C = ∅;

1, otherwise,

X1 =


1, if max

l∈L
Nl ≥ (103dp)−|L|N ;

N−4ε, if max
l∈L

Nl < (103dp)−|L|N.
(5.33)

1Note that O actually does not appear in the summation (5.28). But this is fine, since it can easily be checked

that the size of S defined by (5.29) does not depend on O.
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(2) For any regular plant S = (L,V,Y) with N(S) = N < M and |S| ≤ D, consider the tensor

h(S,1) = h
(S,1)
kkU

(t, kV , λV). Let (B,C) be a subpartition of U and let E = U\(B ∪ C). Then, recall

the norms defined in (3.17)–(3.18), for C 6= ∅ we have

‖h(S,1)
kkU

(t, kV , λV)‖
X

1−b,−b0
V [kkB→kC ]

≤
∏

l∈B∪C
Nβ

l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f ·
(

max
l∈C

Nl

)−β
,

(5.34)

while for C = ∅ we have

‖h(S,1)
kkU

(t, kV , λV)‖
X
b̃,−b0
V [kkB ]

≤
∏
l∈B

Nβ
l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f ·N−ε, (5.35)

where b̃ equals 1−b if E 6= ∅ and equals b if E = ∅. We also have a localization bound (for C = ∅)∥∥∥∥(1+
1

N2δ

∣∣k−∑
l∈U

ζlkl−`
∣∣)κh(S,1)

kkU
(t, kV , λV)

∥∥∥∥
X
b̃,−b0
V [kkB ]

≤
∏
l∈B

Nβ
l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f ,

(5.36)

where ` =
∑

f∈V ζfkf, and b̃ is the one in (5.35).

Finally, we have an auxiliary bound for the λV-derivative1 of h
(S,1)
kkU

(t, kV , λV) (for C = E = ∅),

‖∂λVh
(S,1)
kkU

(t, kV , λV)‖
X
b,−b0
V [kkU ]

≤ exp[(logN)5 + |S|(logN)3]. (5.37)

(3) For n ∈ {0, 1} and regular plant S with N(S) = N < M and |S| ≤ D, let the expression

Ψ
(S,n)
k = Ψk[S, h(S,n)] be defined as in (3.8), then we have

‖Ψ(S,n)‖Xs′,b0 ≤ τ
−θ0N s′−s

∏
n∈L∪V∪Y

N−δ
3

n (5.38)

for any s− δ2 < s′ < s, where (s, b0, θ0) are defined in (1.3) and Section 3.1.

(4) For all N < M , the mapping that defines zN (namely the right hand side of (5.28) but with

M replaced by N and then zN replaced by an independent variable z) is a contraction mapping from

{z : ‖z‖Xb0 ≤ N−D1} to itself with D1 as in (3.3). In particular, we have ‖zN‖Xb0 ≤ N−D1 for all

N < M .

(5) Let yN and v†N be defined as in (5.17) for N < M , then they solve the system (5.16) for

N < M . Moreover, for any N2, · · · , Nq < M and any N (which may be ≥ M), consider the

operator L ζ (which is complex linear if ζ = +, and conjugate complex linear if ζ = −) defined by

(L ζw)k(t) = χτ (t) · IχΠNMq(y
∗
N2
, · · · , w, · · · , y∗Nq)k(t), (5.39)

and the corresponding kernel (L ζ)kk′(t, t
′), where each y∗Nj is either yNj or one of its components,

namely zNj (possibly with Fourier truncations similar to the ones in zhi
N and zlo

N defined in Section

5.2) or Ψ[Sj , h(Sj ,nj)] for some nj ∈ {0, 1} and regular plant Sj with N(Sj) = Nj and |Sj | ≤ D (see

(3.8) and (5.17)), then they satisfy

‖L ζ‖X1−b,−b[k→k′] ≤ τ (5κ)−1(
max

2≤j≤q
Nj

)−4εδ
. (5.40)

Now, with the above definition of Local(M), we have that the probability that Local(M) holds

but Local(2M) does not hold is ≤ Cθe−(τ−1M)θ . In particular, τ−1-certainly, Local(M) holds for

all M .

1Note that, once we have (5.37), we automatically have the same bound for the norm with the weight in (5.36),

with the right hand side multiplied by Nκ, which is negligible as the right hand side is super-polynomial.
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6. Trimming and merging estimates

In this and in the next section we prove Proposition 5.1. This section is devoted to the proof of

some important estimates on trimming and merging of tensors, which will be crucial to the proof we

will give in Section 7. These are: trimming bounds in Section 6.1, no-over-pairing merging bounds

in Section 6.2 and general merging bounds in Section 6.3. Throughout this and the next section

we will fix a dyadic M (we may always assume M �Cθ 1, since otherwise the relevant bounds

become trivial as τ �Cθ 1), and assume that the statement Local(M), defined in Proposition 5.1,

is already true. If results in this and the next section rely on more assumptions (such as parts of

Local(2M) that have been established in preceding proofs), we will explicitly point this out.

All the quantities (functions, tensors, etc.) in this and the next section that depend on t (or t′

etc.) will be supported in |t| ≤ 1 (or |t′| ≤ 1 etc.). This implies that their derivatives in the time-

Fourier variables (λ, λj etc.) automatically satisfy the same bounds as they do; these derivative

bounds will be useful in applications of meshing arguments (see the proof of Proposition 6.1 for

details) below. Moreover due to Local(M) part (4), the functions zN ′ = (zN ′)k(t) for N ′ < M

are already defined and satisfy that ‖zN ′‖Xb0 ≤ (N ′)−D1 . When applying Trim functions below we

always fix these zN ′ , and the fN ′ defined in (5.10).

6.1. Trimming estimates. We first prove the trimming estimates.

Proposition 6.1 (Trimmed tensor bounds). Let S be a regular plant, N(S) = N ≤M and |S| ≤ D.

Let h = hkkU (kV , λV) be an S-tensor which is BN [δ] measurable. For N δ ≤ R ≤ M δ, consider the

trimmed plant S ′ = (L′,V ′,Y ′) = Trim(S, R) and the trimmed tensor h′ = (h′)kkU′ (kV ′ , λV ′) =

Trim(h,R). Let (B,C) be a subpartition of U with E = U\(B ∪ C) and (B′, C ′) be a subpartition

of U ′ with E′ = U ′\(B′ ∪ C ′).
(1) Assume h satisfies that, for any (B,C) with C 6= ∅,

‖hkkU (kV , λV)‖
X
−b0
V [kkB→kC ]

. X ·
∏

l∈B∪C
Nβ

l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f ·
(

max
l∈C

Nl

)−β
, (6.1)

and for C = ∅,

‖hkkU (kV , λV)‖
X
−b0
V [kkB ]

. X ·
∏
l∈B

Nβ
l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f ·N−ε, (6.2)

∥∥∥∥(1+
1

N2δ

∣∣k−∑
l∈U

ζlkl− `
∣∣)κhkkU (kV , λV)

∥∥∥∥
X
−b0
V [kkB ]

. X ·
∏
l∈B

Nβ
l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f ,

(6.3)

where ` =
∑

f∈V ζfkf, and also the auxiliary bound for C = E = ∅,

‖∂λVhkkU (kV , λV)‖
X
−b0
V [kkU ]

≤ X · exp[(logN)5 + |S|(logN)3]. (6.4)

Then, τ−1M -certainly, the estimates (6.1)–(6.3) hold for h = hkkU (kV , λV) replaced by h′ =

h′kkU′
(kV ′ , λV ′), the sets B,C,E,P,V etc. replaced by B′, C ′, E′,P ′,V ′ etc., the fraction 1/N2δ

in (6.3) replaced by 1/max(N2δ, R), and the factor X replaced by X · τ−θM θ.

(2) Assume V = ∅, h is supported in the set k =
∑

l∈U ζlkl and satisfies that, for any (B,C),

‖hkkU‖kkB→kC ≤ X ·
∏

l∈B∪C
Nβ1

l

∏
l∈P

N−8ε
l

∏
l∈E

N4ε
l

∏
p∈Y

N−δ
3

p · X0X1, (6.5)
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where X0 and X1 are defined as in (5.33). Assume also that either C ′ ∪ E′ 6= ∅, or L 6= L′ (i.e.

Nl < R for at least one l ∈ L), then τ−1M -certainly, the estimates (6.1)–(6.3) hold for h′ = h′kkU′
,

with the sets B,C,E,P etc. replaced by B′, C ′, E′,P ′ etc., the fraction 1/N2δ in (6.3) replaced by

1/R, and the factor X replaced by X · τ−θM θ for (6.1), and by X · τ−θM θ(1 + N−3εRd/2−β1) for

(6.2)–(6.3).

Proof. (1) By definition we have

h′ = h′kkU′ (kV
′ , λV ′) =

∑
kV\V′

ˆ
dλV\V ′ · h̃kkU′ (kV , λV)

∏
f∈V\V ′

(ẑNf
)
ζf
kf

(λf),

h̃kkU′ (kV , λV) :=
∑
kU\U′

hkkU (kV , λV)
∏

l∈U\U ′
(fNl

)ζlkl .
(6.6)

By Cauchy-Schwartz we have

‖h′‖
X
−b0
V′ [··· ] . ‖h̃‖X−b0V [··· ] ·

∏
f∈V\V ′

‖zNf
‖Xb0 . ‖h̃‖X−b0V [··· ] ·

∏
f∈V\V ′

N−D1
f , (6.7)

where [· · · ] represents any kkB′ → kC′ or kkB′ or weighted norm as in (6.1)–(6.3).

It thus suffices to bound the corresponding norms for h̃. Note that if we fix the values of kV and

λV , the tensor h̃kkU′ (kV , λV) can be estimated τ−1M -certainly, using Proposition 4.14; in order to

transform this into a bound for the X−b0V [· · · ] norms, we need to make this bound uniform in all

choices of kV and λV . There is no problem in doing so for kV since1 the number of choices for kV
is at most Mκ. To deal with λV , we will employ the following argument, which will be referred

to as the meshing argument (see the proof of Lemma 4.2 in [36]), and will be used frequently

in the proofs below. First note that |λf| . Nκ2
for each f ∈ V, then we divide the big box

{λV : |λf| . Nκ2
, ∀ f ∈ V} into small boxes B of size ν := exp(−(logN)6). Now by taking averages

on these small boxes and using Poincaré inequality, there exists a tensor havg = (havg)kkU (kV , λV)

such that havg satisfies the same measurability condition as h, that havg is supported in the big box

and constant when λV moves within each small box (and other parameters are fixed), and that

‖h− havg‖X−b0V [kkU ]
. ν · (‖h‖

X
−b0
V [kkU ]

+ ‖∂λVh‖X−b0V [kkU ]
). (6.8)

Let h̃avg be defined from havg, in the same way as h̃ is defined from h, then for fixed values of

λV , the tensor (h̃avg)kk′U (kV , λV) can be estimated τ−1M -certainly, using Proposition 4.14, in the

same way that h̃ is bounded in terms of h. Since λV has at most exp(κ(logN)6) different choices

in studying havg, and N ≤M , we know that the estimate for h̃avg is uniform in all choices of λV ,

after removing an exceptional set whose probability is still ≤ Cθe−(τ−1M)θ . This gives the X−b0V [· · · ]
norm bounds for h̃avg; but by (6.4), (6.8) and our choice for ν, the X−b0V [· · · ] norm of the difference

h̃− h̃avg is negligible, so we get the desired X−b0V [· · · ] norm bounds for h̃.

Armed with the meshing argument, we can now apply Proposition 4.14 to control the X−b0V [· · · ]
norms of h̃. Given any subpartition (B′, C ′) of U ′, C ′ 6= ∅, let E = E′ = U ′\(B′ ∪ C ′); since

h is BN [δ] measurable and Nl > N [δ] for all l ∈ U , we can apply Proposition 4.14 (note that

(fNl
)kl = ∆Nl

γkl · ηkl(ω), where ∆Nl
γkl can be replaced by τ−θN−α+θ

l due to (5.7) and Lemma

1The same applies to the kE variables when measuring kkB → kC norms, where E = U\(B ∪ C).



52 YU DENG, ANDREA R. NAHMOD, AND HAITIAN YUE

4.10) to get

‖h̃kkU′ (kV , λV)‖
X
−b0
V [kkB′→kC′ ]

. τ−θM θ
∏

l∈U\U ′
N−α+θ

l · sup
(F,G)

‖hkkU (kV , λV)‖
X
−b0
V [kkB→kC ]

,

where (F,G) is any partition of U\U ′, and B = B′ ∪ F , C = C ′ ∪ G. The conclusion about the

X−b0V ′ [kkB′ → kC′ ] norms then follows by combining (6.1) and (6.7), and noticing that P ′ ⊂ P,

Y ′ ⊂ Y, and maxl∈C′ Nl = maxl∈C Nl. When C ′ = ∅, the proofs for the Xb
V ′ [kkB′ ] norms are

completely analogous (simply choose G = ∅ so C = ∅), and so is the weighted norm bound, where

for the latter we notice that

1 +
1

max(N2δ, R)

∣∣∣∣k −∑
l∈U ′

ζlkl − `′
∣∣∣∣ . 1 +

1

N2δ

∣∣∣∣k −∑
l∈U

ζlkl − `
∣∣∣∣

with `′ =
∑

f∈V ′ ζfkf and ` =
∑

f∈V ζfkf, since 〈kf〉 ≤ R for any f ∈ V\V ′ (hence |` − `′| . R) and

〈kl〉 ≤ R for any l ∈ U\U ′.
(2) The proof is similar to (1) but much easier since there is no blossom f ∈ V (hence no meshing

argument) involved. Since |k−
∑

l∈U ′ ζlkl| . R because k−
∑

l∈U ζlkl = 0 and 〈kl〉 ≤ R for l ∈ U\U ′,
we know that the weighted norm bound (6.3) follows from the unweighted norm bound (6.2). For

the kkB′ → kC′ norms in (6.1)–(6.2), we simply apply Proposition 4.14; when C ′ 6= ∅ we readily

get (6.1) with the indicated changes. When C ′ = ∅ (and C = ∅) we make two observations.

First, when E = E′ = ∅ there is an extra factor X0 in (6.5), but since minl∈LNl ≤ R due to

the assumption L 6= L′, we have X0 . Rd/2−β1 by definition (5.33), which gives rise to the factor

Rd/2−β1 in the desired estimate. Second, thanks to the different powers between (6.1)–(6.3) and

(6.5), in the process of using (6.5) for h to deduce (6.1)–(6.2) for h′, we will be gaining a factor∏
l∈U\E′

Nβ1−β
l

∏
l∈E′∪P

N−4ε
l ≤

(
max
l∈L

Nl

)−4ε
,

which is at most N−4ε if maxl∈LNl ≥ (103dp)−|L|N . If maxl∈LNl < (103dp)−|L|N we gain exactly

the same N−4ε from the factor X1 in (5.33). In any case, this gain will contribute the N−3ε in the

desired estimate, after providing the N−ε factor for (6.2). �

6.2. No-over-pairing merging estimates. Next we will prove two merging estimates in the

no-over-pairing case by introducing a selection algorithm. Note that in Propositions 6.2 and 6.3

below, the sets Uj are just sets by themselves and are not coming from any plant; nevertheless in

applications, they do occur as suitable subsets of the sets coming from some plants, see the proof

of Propositions 6.4 and 6.5.

Proposition 6.2 (Selection algorithm: Case I). Let U2, · · · ,Up be pairwise disjoint finite index

sets (could be empty), |Uj | ≤ D. Given ζj ∈ {±} for 1 ≤ j ≤ p and ζl ∈ {±} for any l ∈ Uj, and

Nj for 2 ≤ j ≤ p and Nl for any l ∈ Uj, let N∗ = max(N2, · · · , Np), and define ζ∗l = ζlζj for l ∈ Uj.
Assume that

p∑
j=1

ζj = 1, N δ
j ≤ Nl ≤ Nj (∀l ∈ Uj , 2 ≤ j ≤ p).

Assume there are some pairings in W := U2 ∪ · · · ∪ Up (i.e. a collection of pairwise disjoint two-

element subsets of W, each containing two elements from two different Uj), such that for any pair

(l, l′) we have ζ∗l′ = −ζ∗l and Nl′ = Nl. Let h(j) = h
(j)
kjkUj

, where 2 ≤ j ≤ p, be tensors, and



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 53

h = hkk1···kp be a tensor supported in 〈kj〉 ≤ Nj for 2 ≤ j ≤ p. Let the set of paired elements in W
be Q and the set of unpaired elements be U , define the semi-product

H = Hkk1kU =
∑

k2,··· ,kp

∑
kQ

hkk1···kp

p∏
j=2

(
h

(j)
kjkUj

)ζj , (6.9)

where the sum is taken over all (k2, · · · , kp) and kQ that satisfy kl′ = kl for any pairing (l, l′).

For each 2 ≤ j ≤ p, in the support of h(j) we assume that kl ∈ Zd, 〈kj〉 ≤ Nj and Nl/2 < 〈kl〉 ≤ Nl

for each l ∈ Uj. Moreover, h(j) has one of the following three types:

(1) Type R0: where we assume, in the support of h(j), that∑
l∈Uj

ζl = 1, kj =
∑
l∈Uj

ζlkl, |kj |2 −
∑
l∈Uj

ζl|kl|2 = Γj . (6.10)

Moreover, for any partition (Pj , Qj) of Uj, we assume

‖h(j)‖kjkPj→kQj ≤ Xj ·
∏
l∈Uj

Nβ1

l · Z0,jZ1,j , (6.11)

where Z0,j and Z1,j are defined similarly as in (5.33) but with the following modifications,

Z0,j =


(

max
l∈Qj

Nl

)−β1 , if Qj 6= ∅;(
min
l∈Uj

Nl

) d
2
−β1 , if Qj = ∅,

Z1,j =


1, if max

l∈Uj
Nl ≥ (103dp)−DNj ;

N−4ε
j , if max

l∈Uj
Nl < (103dp)−DNj .

(6.12)

(2) Type R0+: similar to type R0, but instead of (6.10), in the support of h(j) we only assume

that

kj −
∑
l∈Uj

ζlkl = mj (6.13)

for some given mj ∈ Zd. Moreover the bounds (6.11)–(6.12) also hold (in particular Z1,j =

N−4ε
j if Uj = ∅), except that in (6.12), when Qj = ∅, we have Z0,j = 1 instead of

(minl∈Uj Nl)
d/2−β1.

(3) Type R1: where we assume, in the support of h(j), that∣∣∣∣kj −∑
l∈Uj

ζlkl −mj

∣∣∣∣ ≤ (N∗)
3δ (6.14)

for some given mj ∈ Zd. Moreover, for any partition (Pj , Qj) of Uj we have

‖h(j)‖kjkPj→kQj ≤


Xj ·

∏
l∈Uj

Nβ
l ·
(

max
l∈Qj

Nl

)−β
, Qj 6= ∅;

Xj ·
∏
l∈Uj

Nβ
l ·N

−ε
j , Qj = ∅.

(6.15)

Regarding the tensor h, we assume that |hkk1···kp | . 1, and that h = hkk1···kp is supported in the set

k =

p∑
j=1

ζjkj , |k|2 −
p∑
j=1

ζj |kj |2 = Γ, (6.16)

and that any pairing in (k, k1, · · · , kp) must be over-paired.
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Figure 3. Classification of Uj , j ∈ {2, · · · , p}

Then, for any partition (P,Q) of U , we have the bound

∏
l∈Q

N−α+4ε+θ
l · ‖H‖kkP→k1kQ .

p∏
j=2

Xj ·
∏
l∈U

Nβ
l ·

(0,0+)∏
j

N−2ε
j · (N∗)−ε

3
, (6.17)

where the product
∏(0,0+)
j is taken over all 2 ≤ j ≤ p such that h(j) is of type R0 or type R0+.

The result is uniform in all parameters Γ,Γj ,mj etc., and remains true if we replace p by an odd

3 ≤ q ≤ p. It also remains true if instead of the second equation in the support condition in (6.16),

we assume that h satisfies (4.27).

Proof. The two key ingredients in the proof are Proposition 4.12 and Proposition 4.9.

Step 1: first reductions. We start by making an adjustment in notation, just like the one in the

proof of Proposition 4.14, which will allow us to apply Proposition 4.12 below. For each pairing

(l, l′), where l ∈ Uj and l′ ∈ Uj′ , since in the sum (6.9) we are always assuming kl = kl′ , we may

combine them into a single element and include this element in both Uj and Uj′ . In this way we

are changing pairings between different Uj ’s to intersections of different Uj ’s, which is the setting

of Proposition 4.12. Then U will be the set of elements that occurs once in all the Uj ’s, and Q is

the set of elements that occur twice.

Next, we will identify all subsets A ⊂ {2, · · · , p} such that each and every element in the union

of Uj (j ∈ A) occurs twice in these sets Uj (j ∈ A). We only need to consider minimal subsets A

that satisfy this, which will be pairwise disjoint. Let them be Av (1 ≤ v ≤ s) and Bu (1 ≤ u ≤ t),

where for each v, the tensor h(j) is of type R0 for each j ∈ Av, while for each u, there is at least

one j ∈ Bu such that the tensor h(j) is of type R0+ or R1. Let E be the union of all these sets Av
and Bu and D = {2, · · · , p}\E ; See Figure 3 for an illustration of the above subsets of {2, · · · , p}.
We know that Uj ⊂ Q for j ∈ E . Let R ⊂ Q be the set of elements that occur twice in the sets
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Uj(j ∈ D). Then we have

H = Hkk1kU =
∑

(kA1
,···kAs ,kB1

,···kBt )

s∏
v=1

H
[v]
kAv

t∏
u=1

R
[u]
kBu
·Hsg

kk1kEkU
, (6.18)

where

H
[v]
kAv

:=
∑

(kUj :j∈Av)

∏
j∈Av

h
(j)
kjkUj

, R
[u]
kBu

:=
∑

(kUj :j∈Bu)

∏
j∈Bu

h
(j)
kjkUj

, (6.19)

Hsg
kk1kEkU

:=
∑

(kD,kR)

hkk1···kp ·
∏
j∈D

h
(j)
kjkUj

. (6.20)

By (6.18) and Proposition 4.12 we have

‖H‖kkP→k1kQ ≤
s∏
q=1

‖H [v]‖kAv
t∏

u=1

‖R[u]‖kBu · ‖H
sg‖kkP→k1kEkQ , (6.21)

so it suffices to bound the norm ‖Hsg‖kkP→k1kEkQ and the other norms ‖H [v]‖kAv and ‖R[u]‖kBu .

By (6.20), the tensor Hsg is a semi-product the tensors h and h(j) (j ∈ D) in the sense of (4.32)

in Proposition 4.12, so our strategy is to select these tensors in some particular order and apply

Proposition 4.12. The selection algorithm is described as follows.

Step 2: the selection algorithm for Hsg. First, by our choice of the set D, there will be at least one

element in the union of the sets Uj (j ∈ D) that appears only once in these sets. Consider such an

element l with Nl being the biggest. Denote this l by lc−1 and the j ∈ D such that lc−1 ∈ Uj by nc−1,

where c−1 = |C|−1 = |D| and C = D∪{1}. Next, there will be at least one element in the union of

the sets Uj (j ∈ D\{nc−1}) that appears only once in these sets. Consider such an element l = lc−2

such that Nl is the biggest, and suppose such lc−2 ∈ Uj′ , where j′ ∈ D\{nc−1}; we shall denote

nc−2 = j′. Next there will be at least one element in the union of the sets Uj (j ∈ D\{nc−1, nc−2})
that appears only once in these sets, and so on. Repeating this process, we can label the elements

of D as n1, n2, · · · , nc−1. Notice that by (6.10) and (6.14) and our selection algorithm, for each

1 ≤ y ≤ c− 1 we must have∣∣∣∣ y∑
z=1

ζnzknz −m′ny

∣∣∣∣ . max((N∗)
3δ, Nly) := Mny , (6.22)

where m′ny ∈ Zd is some fixed vector, otherwise the product in (6.20) will be zero. Let us provide

some details to explain (6.22). When y = 1, l1 ∈ Un1 and Nl1 is the biggest among all l that appear

only once in Un1 (here these l’s are just all elements l ∈ Un1). By (6.10), (6.13) and (6.14), setting

m′n1
= ζn1mn1 , we then have

|ζn1kn1 −m′n1
| ≤ |Un1 |Nl1 + (N∗)

3δ, (6.23)

where we understand that mn1 = 0 if h(n1) has type R0 (same below), which implies (6.22) since

|Un1 | ≤ D. When y = 2, l2 ∈ Un2 and Nl2 is the biggest among all l that appear only once in

Un1∪Un2 (i.e. all l ∈ Un1∆Un2), then by (6.10), (6.13) and (6.14), we have |ζn1kn1 +ζn2kn2−m′n2
| .

max((N∗)
3δ, Nl2) with m′n2

= ζn1mn1 + ζn2mn2 , since the kl terms for l ∈ Un1 ∩ Un2 always cancel

themselves thanks to our assumption about signs of paired elements. For the other y’s, (6.22) is

obtained similarly. The above selection for nc−1, · · · , n1 is designed to fit the hypothesis (4.24) in

Proposition 4.9 via (6.22). Proposition 4.9 will be applied to h later in Step 4.
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Next, we divide these ny into two classes: first nc−1 will be class P (or Q) if lc−1 which belongs

to U , is in P (or Q). Next, if lc−2 ∈ U , then nc−2 will be class P (or Q) if lc−2 is in P (or Q); if

lc−2 ∈ Q, then lc−2 also belongs to Uj for some previously selected j (here j = nc−1), then nc−2

will be same class as j. Then consider lc−3, and so on. Repeating this process we can assign a

class P or Q to each ny (1 ≤ y ≤ c − 1). Now we can apply Proposition 4.12 by arranging the

tensors h and h(j) (j ∈ D) in a particular order (which will correspond to the superscripts in the

tensors in Proposition 4.12): first list all the h(ny), where ny has class Q, in the decreasing order

for y, then list h, then list all the h(ny), where ny has class P , in the increasing order for y. By

applying Proposition 4.12 to (6.20) with (kA, kC , kX , kY ) = (kk1kEkU , kDkR, kkP , k1kEkQ) in the

above order we then have

‖Hsg‖kkP→k1kEkQ . ‖h‖kkP0
→kQ0

∏
j of classQ

‖h(j)‖kjkPj→kQj
∏

j of classP

‖h(j)‖kQj→kjkPj , (6.24)

where (P0, Q0) and (Pj , Qj) (j ∈ D) are sets defined according to Proposition 4.12, which are

explained next. Next we analyze the individual factors on the right hand side of (6.24).

(1) For j = ny of class Q, by Proposition 4.12 and our algorithm, the set Qj will consist of all

l ∈ Uny such that either l ∈ Q, or l belongs to Uny′ for some y′ > y with ny′ of class Q. Furthermore

Pj = Uj\Qj . By the definition of classes, this implies that ly ∈ Qj . By (6.11) and (6.15) we then

have

‖h(j)‖kjkPj→kQj . Xj ·
∏
l∈Uj

Nβ
l ·N

−β
ly
. Xj ·

∏
l∈Uj

Nβ
l · (N∗)

CδM−βny ; (6.25)

moreover if h(j) has type R0 or R0+, we gain an extra factor namely Z1,j from (6.12).

(2) Similarly, for j = ny of class P , by Proposition 4.12 and our algorithm, the set Qj will

consist of all l ∈ Uny such that either l ∈ P , or l belongs to Uny′ for some y′ > y with ny′ of class P .

Furthermore Pj = Uj\Qj . By the definition of class, we also have ly ∈ Qj . Now by (6.11), (6.15),

and using the duality of the operator norm ‖h(j)‖kQj→kjkPj = ‖h(j)‖kjkPj→kQj , we know that (6.25)

is true (with the gain Z1,j for types R0 and R0+) also in this case.

(3) For the tensor h, by our algorithm we have that P0 consists of all j ∈ D of class P , and Q0

consists of all j ∈ D of class Q, as well as 1 and all j ∈ E .

We illustrate the above algorithm with an explicit example. Suppose p = 7, D = {2, 3, 4, 5},
E = {6, 7} and U2 = {a, b}, U3 = {c, d, e}, U4 = {e, f, g}, U5 = {a, f, h} with Na ≥ Nb ≥ Nc ≥ Nd ≥
Ne ≥ Nf ≥ Ng ≥ Nh, then U = {b, c, d, g, h}, R = {a, e, f} and

Hsg
kk1k6k7kU

=
∑

(k2,··· ,k5)

∑
(ka,ke,kf)

hkk1···k7 · h
(2)
k2kakb

· h(3)
k3kckdke

· h(4)
k4kekfkg

· h(5)
k5kakfkh

.

Suppose P = {b, d} and Q = {c, g, h} is a partition of all unpaired leaves. Then, by our algorithm

we have n4 = 2 since Nb = maxl∈{b,c,d,g,h}(Nl) and b ∈ U2. Then n3 = 5 since Na = maxl∈{a,c,d,g,h}Nl

and a ∈ U5. Similarly we have n2 = 3 and n1 = 4. Next, by definition n4 = 2 and n3 = 5 will have

class P , while n2 = 3 and n1 = 4 will have class Q. Then we can apply Proposition 4.12 to (6.20)

in the following order: h(3) → h(4) → h→ h(5) → h(2) and obtain that

‖Hsg‖kkbkd→k1k6k7kckgkh . ‖h
(3)‖k3kdke→kc · ‖h(4)‖k4kf→kekg

× ‖h‖kk2k5→k1k3k4k6k7 · ‖h(5)‖ka→k5kfkh · ‖h
(2)‖kb→k2ka .
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Moreover we have the following inequalities (assume mj = 0, and up to error (N∗)
3δ):

|k2 ± k3 ± k4 ± k5| . Nb, |k3 ± k4 ± k5| . Na, |k3 ± k4| . Nc, |k4| . Ne.

Step 3: the selection algorithms for H [v] and R[u]. Now we discuss the estimates for the norms

‖H [v]‖kAv and ‖R[u]‖kBu . The basic idea is the same as before, but as each element in the sets

Uj (j ∈ Av or Bu) occurs twice in these sets, we have to make some small adjustments. Let us first

look at Av. Let av = |Av|, and first choose l = lav in the sets Uj (j ∈ Av) such that Nl is the

smallest over all l in the sets Uj (j ∈ Av). We denote the j such that lav ∈ Uj by `v(av). Next,

as in Step 2 there will be at least one element in the union of the sets Uj (j ∈ Av\{`v(av)}) that

appears only once in these sets. Consider such an element l with Nl being the biggest. We shall

denote this l by lav−1 and the j ∈ Av\{`v(av)} such that lav−1 ∈ Uj by `v(av − 1). Then we can

repeat the process in Step 2 and label the elements of Av as `v(1), · · · , `v(av). Recall that h(j) has

type R0 for all j ∈ Av. By (6.10), in the same way as in Step 2, for 1 ≤ y ≤ av − 1 we have∣∣∣∣ y∑
z=1

ζ`v(z)k`v(z)

∣∣∣∣ . Nly := M`v(y), (6.26)

as well as
av∑
z=1

ζ`v(z)k`v(z) = 0,

av∑
z=1

ζ`v(z)|k`v(z)|2 = Γ̃, (6.27)

where Γ̃ =
∑av

z=1 ζ`v(z)Γ`v(z). Now we apply Proposition 4.12 to H [v] in (6.19) with (A,C,X, Y ) =

(Av,
⋃
{Uj : j ∈ Av}, Av,∅) by arranging the tensors h(`v(y)) in the decreasing order for y, hence

‖H [v]‖kAv .
∏
j∈Av

‖h(j)‖kjkPj→kQj , (6.28)

where Qj = ∅ for j = `v(av), and for j = `v(y) with y < av, Qj consists of all l ∈ U`v(y) that

belongs to U`v(y′) for some y′ > y, so in particular ly ∈ Qj . Furthermore Pj = Uj\Qj for all j ∈ Av.
By (6.11) and (6.12) we then get

‖h(j)‖kjkPj→kQj . Xj ·
∏
l∈Uj

Nβ1

l ·M
−β1

`v(y) · Z1,j , if j = `v(y) (y < av), (6.29)

‖h(j)‖kjkPj→kQj . Xj ·
∏
l∈Uj

Nβ1

l · (Nlav )
d
2
−β1 · Z1,j , if j = `v(av), (6.30)

noticing also that Nlav ≤M`v(y) for any 1 ≤ y ≤ av − 1 by our choice.

As for Bu, the argument is essentially the same as above. We choose iu(bu) such that h(j) has

type R0+ or R1 for j = iu(bu); then iu(y) for y < bu are chosen in the same manner as `v(y)

above. In this case, (6.26) holds after translating by some fixed vector m′iu(y), and with a loss

of (N∗)
Cδ due to the weaker bound (6.14). For (6.27) in this case we don’t have the equation for∑

z≤bu ζiu(z)|kiu(z)|2, and the sum
∑

z≤bu ζiu(z)kiu(z) only belongs to a ball of radius (N∗)
3δ. However

by losing a factor (N∗)
Cδ in the operator bound for the tensor h we may assume

∑
z≤bu ζiu(z)kiu(z)

is constant. Therefore, for the norms appearing in (6.28), instead of (6.29) and (6.30), we now have

‖h(j)‖kjkPj→kQj . Xj · (N∗)Cδ
∏
l∈Uj

Nβ
l ·M

−β
iu(y), if j = iu(y) (y < bu), (6.31)

‖h(j)‖kjkPj→kQj . Xj · (N∗)Cδ
∏
l∈Uj

Nβ
l , if j = iu(bu); (6.32)
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moreover we gain an extra factor Z1,j in (6.31) and (6.32) if h(j) has type R0+.

Step 4: putting together. We now come back to the estimate for ‖h‖kkP0
→kQ0

that appears in

(6.24). By all the previous discussions, we may assume that in the support of h = hkk1···kp we have

the equalities and inequalities (6.16), (6.22), (6.26), (6.27), as well as the variants of (6.26) and

(6.27) for Bu (see Step 3 ), and that any pairing in (k, k1, · · · , kp) must be over-paired. All these

allow us to apply Proposition 4.9 (unless we are in the exceptional case, namely (d, p) = (1, 7), and

up to permutation |Av| = 2 for v = 1, 2, k`1(1) = k`2(1)) to obtain the bound

‖h‖kkP0
→kQ0

. (N∗)
θ

p∏
j=2

Mα0
j

s∏
v=1

( min
1≤y<av

M`v(y))
α0− d2 . (6.33)

Now combining (6.21), (6.24), (6.25) and (6.28)–(6.33), we conclude that

∏
l∈Q

N−α+4ε+θ
l ·‖H‖kkP→k1kQ .

p∏
j=2

Xj
∏
l∈U

Nβ
l ·(N∗)

Cδ(max
l∈Q

Nl)
−4pε( max

2≤j≤p
Mj)

−4pε

(0,0+)∏
j

Z1,j , (6.34)

where
∏(0,0+)
j is defined as in (6.17). By definition of Mj we have

max
2≤j≤p

Mj ≥ max
l∈U

Nl;

using also (6.34) and the fact that U ∪ Q = U2 ∪ · · · ∪ Up, we then have

∏
l∈Q

N−α+4ε+θ
l · ‖H‖kkP→k1kQ .

p∏
j=2

Xj
∏
l∈U

Nβ
l · (N∗)

Cδ( max
l∈Uj ,2≤j≤p

Nl)
−4pε

(0,0+)∏
j

Z1,j . (6.35)

The factor
∏(0,0+)
j N−2ε

j in (6.17) will be provided by separating a square root of the last two factors

in the right hand side of (6.35). To gain the other factor (N∗)
−ε3 in (6.17), we consider two cases.

If max{Nl : l ∈ Uj , 2 ≤ j ≤ p} ≥ (N∗)
ε2 , then the factor (maxl∈Uj ,2≤j≤pNl)

−2pε in the other square

root is bounded by (N∗)
−Cδ−ε3 , hence (6.17) is proved. Otherwise, let 2 ≤ j ≤ p be such that

Nj = N∗, then Nl � N ε2
j for all l ∈ Uj . If h(j) has type R0 or R0+, the factor Z1/2

1,j = N−2ε
j in the

other square root is bounded by (N∗)
−Cδ−ε3 . If h(j) has type R1, by using the bound of ‖h(j)‖kjkUj

(the second bound in (6.15)) and that N
−ε/2
j ≤ (maxl∈Qj Nl)

−β, we have

‖h(j)‖kjkPj→kQj ≤ Xj ·N−ε/2j

∏
l∈Uj

Nβ
l ·
(

max
l∈Qj

Nl

)−β
(6.36)

for any partition (Pj , Qj) of Uj . Then we gain an extra factor N
−ε/2
j (which is less than (N∗)

−Cδ−ε3)

by using (6.36) instead of (6.15) in (6.25), (6.31) or (6.32), and hence (6.17) is proved.

Finally, in the exceptional case mentioned above, we may assume (up to permutation) that

A1 = {2, 3} and A2 = {4, 5}, so (d, p) = (1, 7) and k2 = k3 = k4 = k5 := k∗ by the setting of Av in

Step 1. Here we may fix and sum in k∗, while for fixed k∗ the corresponding part of the tensor H

can be bounded as above, with h(j) (2 ≤ j ≤ 5) measured in the norm

sup
kj

‖h(j)‖kUj ≤ ‖h
(j)‖kj→kUj .

One can check that the power gain coming from using these norms is enough to cancel the sum-

mation in k, and the rest of the proof goes just like above. The cases when p is replaced by odd
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3 ≤ q ≤ p, or when h satisfies (4.27) can be proved in the same way, since Proposition 4.9 works

equally well. �

Proposition 6.3 (Selection algorithm: Case II). Consider the same setting as in Proposition 6.2.

Here we assume that each h(j) has type R0 or R0+ (in the sense of Proposition 6.2), but in both

cases the factor Z1,j in (6.11) is replaced by 1 (the factor Z0,j remains the same). Then we have∏
l∈Q

N−α+8ε+θ
l · ‖H‖kkP→k1kQ .

p∏
j=2

Xj ·
∏
l∈U

Nβ1

l ·
(

max
2≤j≤p

max
l∈Uj

Nl

)−4pε
. (6.37)

The same holds if p is replaced by odd 3 ≤ q ≤ p, without changing the power 4pε in (6.37).

Proof. The proof is the same as Proposition 6.2, with the following adjustments. First due to the

absence of type R1 tensors, we will not lose any (N∗)
Cδ factor in the proof process; second, we

do not gain any extra factor as in the proof of Proposition 6.2, since Z1,j has been replaced by 1.

With these, we are still able to gain a factor(
max
l∈Q

Nl

)−4pε(
max

2≤j≤p
Mj

)−4pε

as in (6.34), which implies (6.37) in the same way as in the proof of Proposition 6.2. �

6.3. Merging estimates. Finally we prove the general merging bounds, Propositions 6.4–6.6.

Proposition 6.4 (Merged tensor bounds: Case I). Let 3 ≤ q ≤ p be odd, 0 ≤ r ≤ q, and let

Sj (1 ≤ j ≤ r) be regular plants with frequency N(Sj) = Nj ≤ M and |Sj | ≤ D. Fix Nj ≤ M/2

for r + 1 ≤ j ≤ q and ζj ∈ {±} for 1 ≤ j ≤ q, and assume that
∑q

j=1 ζj = 1. Denote B =

(M, q, r, ζ1, · · · , ζq, N1, · · · , Nq). Let h = hkk1···kq(λr+1, · · · , λq) be a constant tensor1 supported in

the set
〈k〉 ≤M, 〈kj〉 ≤ Nj (1 ≤ j ≤ q), 〈λj〉 ≤ 2Mκ2

(r + 1 ≤ j ≤ q),

k =

q∑
j=1

ζjkj ,

∣∣∣∣|k|2 − q∑
j=1

ζj |kj |2 +

q∑
j=r+1

ζjλj + Γ̃

∣∣∣∣ . 1,
(6.38)

where Γ̃ ∈ Z is fixed. Assume that

|h|+ |∂λjh| . τ
−θ, r + 1 ≤ j ≤ q, (6.39)

and that any pairing in (k, k1, · · · , kq) must be over-paired. Now let h(j) = h
(j)
kjkUj

(kVj , λVj ) be an

Sj-tensor for 1 ≤ j ≤ r, O be as in Definition 3.6, and let

S = (L,V,Y) = Trim(Merge(S1, · · · ,Sr,B,O),M δ),

H = Trim(Merge(h(1), · · · , h(r), h,B,O),M δ).
(6.40)

Let N∗ := max(N2, · · · , Nq), assume N∗ ≥M δ, and Υ be a factor such that

Υ ≤ τ−θ; Υ ≤ τ−θM−40dpε if max
1≤j≤q

Nj ≤ (50dp)−1M. (6.41)

We assume that the tensor h(1) is BM [δ] measurable, and Nl ≥ M δ for l ∈ L1; for 2 ≤ j ≤ r, the

tensor h(j) is B(N∗)[δ] measurable, and Nl ≥ (N∗)
δ for l ∈ Lj. Furthermore we assume that for

1 ≤ j ≤ r, Sj and h(j) have one of the following two types:

1i.e. which does not depend on ω.
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(1) Type 0: where Vj = ∅, and in the support of h(j) we have∑
l∈Uj

ζl = 1, kj =
∑
l∈Uj

ζlkl, |kj |2 −
∑
l∈Uj

ζl|kl|2 = Γj , (6.42)

where Γj ∈ Z is fixed, and h(j) satisfies the bound

‖h(j)‖kjkBj→kCj . Xj · τ−θ
∏

l∈Bj∪Cj

Nβ1

l

∏
l∈Pj

N−8ε
l

∏
l∈Ej

N4ε
l

∏
p∈Yj

N−δ
3

p · X0,jX1,j , (6.43)

for any subpartition (Bj , Cj) of Uj, where Ej = Uj\(Bj ∪ Cj), and X0,j and X1,j are defined as in

(5.33) but are associated with Sj and (Bj , Cj) instead.

(2) Type 1: where h(j) satisfies the bounds (with Bj , Cj , Ej same as (1))

‖h(j)‖
X
−b0
Vj

[kjkBj→kCj ]
. Xj ·τ−θ

∏
l∈Bj∪Cj

Nβ
l

∏
l∈Pj

N−4ε
l

∏
l∈Ej

N8ε
l

∏
p∈Yj

N−δ
3

p

∏
f∈Vj

Nd
f ·
(

max
l∈Cj

Nl

)−β
, if Cj 6= ∅,

(6.44)

‖h(j)‖
X
−b0
Vj

[kjkBj ]
. Xj · τ−θ

∏
l∈Bj

Nβ
l

∏
l∈Pj

N−4ε
l

∏
l∈Ej

N8ε
l

∏
p∈Yj

N−δ
3

p

∏
f∈Vj

Nd
f ·N−εj , if Cj = ∅; (6.45)

and we also assume for Cj = ∅ the localization bound∥∥∥∥(1+
1

Rj

∣∣kj−∑
l∈Uj

ζlkl−`j
∣∣)κh(j)

∥∥∥∥
X
−b0
Vj

[kjkBj ]

. Xj ·τ−θ
∏
l∈Bj

Nβ
l

∏
l∈Pj

N−4ε
l

∏
l∈Ej

N8ε
l

∏
p∈Yj

N−δ
3

p

∏
f∈Vj

Nd
f ,

(6.46)

where R1 = M2δ, Rj = (N∗)
2δ for j ≥ 2 and `j =

∑
f∈Vj ζfkf, and the λVj -derivative bound (for

Cj = Ej = ∅),

‖∂λVjh
(j)‖

X
−b0
Vj

[kjkUj ]
. Xj · τ−θ exp[(logNj)

5 + |Sj |(logNj)
3]. (6.47)

Finally fix a subpartition (B,C) of U , and let E = U\(B ∪ C). Then, under all of the above

assumptions, we have the following results, where we denote

Y =
r∏
j=1

Xj · τ−θM θ(N∗)
−2ε4 : (6.48)

(i) If C 6= ∅, and assume that max{Nl : l ∈ C ∩ U1} ∼ max{Nl : l ∈ C}, then τ−1M -certainly,

the tensor H = HkkU (kV , λV) satisfies the bounds
√

Υ · ‖H‖
X
−b0
V [kkB→kC ]

. Y · τ−θ
∏

l∈B∪C
Nβ

l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f ·
(

max
l∈C

Nl

)−β
. (6.49)

(ii) If C = ∅, and assume that h(1) has type 1, and N1 & Nj for all 1 ≤ j ≤ r such that h(j) has

type 1, then τ−1M -certainly we have
√

Υ · ‖H‖
X
−b0
V [kkB ]

. Y · τ−θ
∏
l∈B

Nβ
l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f ·M−ε. (6.50)

(iii) If C = ∅, and assume that h(1) has type 1. Moreover, assume we restrict the tensors

HkkU (kV , λV) and h
(1)
k1kU1

(kV1 , λV1) to the sets

1 +
1

M2δ

∣∣∣∣k −∑
l∈U

ζ∗l kl − `
∣∣∣∣ ∼ K, 1 +

1

M2δ

∣∣∣∣k1 −
∑
l∈U1

ζlkl − `1
∣∣∣∣ ∼ K1, (6.51)
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where K . K1 are two dyadic numbers, ζ∗n represents the sign of n in S, ` =
∑

f∈V ζ
∗
f kf, and

`1 =
∑

f∈V1
ζfkf as above. Then τ−1M -certainly we have

√
Υ ·
∥∥∥∥(1 +

1

M2δ

∣∣k−∑
l∈U

ζ∗l kl− `
∣∣)κH∥∥∥∥

X
−b0
V [kkB ]

. Y · τ−θ
∏
l∈B

Nβ
l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Y

N−δ
3

p

∏
f∈V

Nd
f .

(6.52)

Proof. We would like to apply Proposition 6.2. The technical difficulty before doing so is two-

folded. On the one hand, we must separate the tensor h(1) from the tensor H defined in (6.40).

On the other hand, since there are no over-pairings in the statement of Proposition 6.2 we must

remove these from H. Once we have dealt with this technical difficulty, the heart of the matter lies

in implementing Proposition 6.2 to obtain the desired bounds above.

In the proof below we will mainly focus on (6.49). The proof of (6.50) will be analogous, and we

will only point out the necessary changes in the course of the proof. Moreover, in proving (6.50)

we will only use the bound (6.45) for the tensor h(1), so (6.52) will follow from the same arguments

as (6.50) once we use (6.46) instead of (6.45), in view of (6.51) and K . K1, N1 ≤M .

The proof will proceed in four steps. In Step 1, we reduce the desired estimates for the tensor

H to those for the tensor H◦ defined in (6.53) below. In Step 2, we remove and estimate the

over-pairings, and reduce the desired estimates for H◦ to those for (H◦)† defined in (6.63). In Step

3, we first single out h(1) in (H◦)† and in turn apply Propositions 4.11 and 4.14, then remove and

estimate the over-pairings as in Step 2, to reduce the desired estimates for (H◦)† to those for H†

defined in (6.72). Finally in Step 4, we implement Proposition 6.2 and conclude the proof.

Step 1: pre-processing. Define

S̃ = (L̃, Ṽ, Ỹ) = Merge(S1, · · · ,Sr,B,O),

H̃ = H̃kkŨ
(kṼ , λṼ) = Merge(h(1), · · · , h(r), h,B,O),

noticing that Ṽ = V1 ∪ · · · ∪ Vr ∪ {r + 1, · · · , q}, and define

H◦ = (H◦)kkU (kṼ , λṼ) =
∑
kŨ\U

H̃kkŨ
(kṼ , λṼ)

∏
l∈Ũ\U

(fNl
)
ζ∗l
kl
, (6.53)

then we have

HkkU (kV , λV) =
∑
kṼ\V

ˆ
dλṼ\V · (H

◦)kkU (kṼ , λṼ)
∏

f∈Ṽ\V

(ẑNf
)
ζ∗f
kf

(λf).

By the same proof as part (1) of Proposition 6.1, for any X−b0V [· · · ] norm we have

‖H‖
X
−b0
V [··· ] . ‖H

◦‖
X
−b0
Ṽ

[··· ] ·
∏

f∈Ṽ\V

N−D1
f , (6.54)

as well as for the weighted norm in (6.52). Therefore, it suffices to estimate the X−b0
Ṽ

[· · · ] norms

(as well as the weighted ones) for H◦.

For each 1 ≤ j ≤ r, if h(j) has type 1, we can define X∗j = X∗j (kVj , λVj ) to be the smallest

positive number such that the bounds (6.44)–(6.47) are true for this choice of (kVj , λVj ) with X−b0Vj
in the norms removed (for example X−b0Vj [kjkBj → kCj ] replaced by kjkBj → kCj ), and with Xj
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replaced by X∗j (kVj , λVj ); for example one of the inequalities satisfied by X∗j = X∗j (kVj , λVj ), which

corresponds to (6.44), would be

‖h(j)‖kjkBj→kCj . X∗j · τ−θ
∏

l∈Bj∪Cj

Nβ
l

∏
l∈Pj

N−4ε
l

∏
l∈Ej

N8ε
l

∏
p∈Yj

N−δ
3

p

∏
f∈Vj

Nd
f ·
(

max
l∈Cj

Nl

)−β
(6.55)

with Cj 6= ∅, for fixed (kVj , λVj ). If h(j) has type 0, we simply define X∗j = Xj . Then we have∑
kVj

ˆ
dλVj ·

∏
f∈Vj

〈λf〉−2b0 · X∗j (kVj , λVj )2 . X2
j (6.56)

for type 1 tensors. When (kṼ , λṼ) is fixed, which means (kVj , λVj ) are fixed for 1 ≤ j ≤ r and (kj , λj)

are fixed for r + 1 ≤ j ≤ q, we shall view h = hkk1···kr as a tensor depending on (k, k1, · · · , kr); for

1 ≤ j ≤ r we shall view h(j) = h
(j)
kjkUj

as a tensor depending on (kj , kUj ).

With these reductions, we can view H̃ = H̃kkŨ
as a tensor depending on (k, kŨ ) and H◦ = H◦kkU

depending on (k, kU ), namely

H̃kkŨ
=

(1)∏
l,l′

1kl=kl′

(2)∏
l,l′

1kl 6=kl′ ·
∑

(k1,··· ,kr)

hkk1···kr

(3)∑
kQ

∏
l∈Q

∆Nl
γkl

r∏
j=1

[
h

(j)
kjkUj

]ζj , (6.57)

(H◦)kkU =
∑
kŨ\U

H̃kkŨ

∏
l∈Ũ\U

(fNl
)
ζ∗l
kl
, (6.58)

where in (6.57), the sum and products are taken in the same way as (3.11) when merging the

tensors (h(1), · · · , h(r)) via (h,B,O). Similarly Q is defined as in Definition 3.6. Also note that

U = {l ∈ Ũ : Nl ≥M δ}.
Our goal is to prove that, for fixed values of (kṼ , λṼ) defined in (6.53), the tensor H◦ = H◦kkU

satisfies (6.49), (6.50) and (6.52) τ−1M -certainly, but with the following three adjustments: (a)

we remove the X−b0V parts in the norms (for example X−b0V [kkB → kC ] is replaced by kkB → kC),

and multiply the left hand sides by the extra factor
∏q
j=r+1N

−d/2
j ; (b) the set V in the factors∏

f∈V N
d
f on the right hand sides is replaced by V1 ∪ · · · ∪Vr and Y is replaced by Ỹ; and (c) the Xj

in the definition (6.48) of Y is replaced by X∗j . For example, the analogue of (6.49) with the above

adjustments (a)–(c) amounts to showing:

√
Υ ·

q∏
j=r+1

N
−d/2
j ‖H◦‖kkB→kC .τ

−θ
∏

l∈B∪C
Nβ

l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

(
max
l∈C

Nl

)−β
×
∏
p∈Ỹ

N−δ
3

p

∏
f∈V1∪···∪Vr

Nd
f ·

 r∏
j=1

X∗j · τ−θM θ(N∗)
−2ε4

 ,

(6.59)

where
∏r
j=1 X

∗
j · τ−θM θ(N∗)

−2ε4 is Y in (6.48) with replacements of Xj by X∗j . The corresponding

analogues of (6.50) and (6.52) with the adjustments (a)–(c) are similar.

If we can prove (6.59) for a fixed choice of (kṼ , λṼ) in H◦, then by applying the meshing argument

in the same way as we did in the proof of Proposition 6.1, using (6.39) and (6.47), we can reduce

to the case of at most exp(κ(logM)6) choices for (kṼ , λṼ), hence τ−1M -certainly we may assume

that (6.59) holds for H◦kkU for all choices of (kṼ , λṼ). Since Ṽ = V1 ∪ · · · ∪ Vr ∪ {r + 1, · · · , q} and
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the definition of X−b0
Ṽ

[· · · ] involves summing and integrating over (kṼ , λṼ), then τ−1M -certainly

we have the following estimate
√

Υ · ‖H◦‖
X
−b0
Ṽ

[kkB→kC ]
. Y · τ−θ

∏
l∈B∪C

Nβ
l

∏
l∈P

N−4ε
l

∏
l∈E

N8ε
l

∏
p∈Ỹ

N−δ
3

p

∏
f∈Ṽ

Nd
f ·
(

max
l∈C

Nl

)−β
, (6.60)

which follows from (6.59) and(∑
kṼ

ˆ
dλṼ ·

∏
f∈Ṽ

〈λf〉−2b0

r∏
j=1

X∗j (kVj , λVj )
2

)1/2

.
r∏
j=1

Xj

q∏
j=r+1

N
d/2
j . (6.61)

Note that (6.61) follows from taking the tensor product of (6.56) for 1 ≤ j ≤ r and summing and

integrating over (kj , λj) for r + 1 ≤ j ≤ q. Finally, the desired bound (6.49) for HkkU (kV , λV)

follows from (6.60) and (6.54) in view of the N−D1
f powers on the right hand side of (6.54). The

desired bounds (6.50) and (6.52) for HkkU (kV , λV) can be obtained in a similar way.

Step 2: removing over-pairings. From now on we will fix the value of (kṼ , λṼ) and reduce to the

setting of the tensor H̃ in (6.57) and the tensor H◦ in (6.58).

We will first focus on (6.49), fix a subpartition (B,C) of U with C 6= ∅, and denote E =

U\(B ∪ C). Recall that O = {A1, · · · ,Am} is the collection of all pairings and over-pairings

(see Definition 3.6), and notice that the frequencies Nl are the same for l ∈ Ai. Without loss of

generality, we may assume the frequency Nl for l ∈ Ai is ≥M δ for all 1 ≤ i ≤ v (where 1 ≤ v ≤ m),

and ≤ M [δ] for v + 1 ≤ i ≤ m. In particular, we have that Ai ∩ U = ∅ and that Ai ∩ U1 = ∅ for

i ≥ v + 1 (since Nl ≥M δ for l ∈ U and l ∈ U1).

Next, in (6.57), the product
∏(2)

l,l′ has two parts, namely
∏(2,≥)

l,l′ containing (l, l′) such that Nl =

Nl′ ≥ M δ, and
∏(2,<)

l,l′ containing (l, l′) such that Nl = Nl′ < M δ. In the proof below we will

slightly modify (6.57) by changing
∏(2)

l,l′ 1kl 6=kl′ into
∏(2,<)

l,l′ 1kl 6=kl′ . This will be necessary in order

to separate the tensor h(1) from the rest later in the proof, and will not cause a problem, since

the original H̃ equals the modified H̃ multiplied by
∏(2,≥)

l,l′ 1kl 6=kl′ , and the original H◦ equals the

modified H◦ multiplied by
∏(2,≥)

l,l′ 1kl 6=kl′ , which is a bounded operation due to Lemma 4.10. The

reason we need to keep the factors in the product
∏(2,<)

l,l′ 1kl 6=kl′ is to guarantee the no-pairing

assumption required to apply Proposition 4.14 later in Step 3.

Recall that when C 6= ∅ we have max{Nl : l ∈ C ∩ U1} ∼ max{Nl : l ∈ C} (see part (i) in the

assumption). Denote the particular l ∈ C ∩U1 where the maximum is attained by ltop. In this step

we shall fix the values of kl for l ∈ E and for l ∈ Ai, where 1 ≤ i ≤ v and |Ai| ≥ 3. These l’s are

divided into groups according to the pairing and over-pairing relations, and there are four possible

cases:

Case 1 : For each l ∈ E that does not belong to any Ai, we form a group with only one element

l. Each of these l belongs to a unique Uj for some 1 ≤ j ≤ r.
Case 2 : For each i such that Ai ∩ E 6= ∅, we form a group containing all elements of this Ai.

Define1 yi and zi such that |Ai ∩Q| = 2yi and |Ai ∩ Ũ| = zi. We then have |Ai| = 2yi + zi.

Case 3 : For each i such that Ai ∩ E = ∅ and Ai ∩ Ũ 6= ∅, we form a group containing all

elements of this Ai. Define yi and zi such that |Ai∩Q| = 2yi and |Ai∩Ũ| = zi, then |Ai| = 2yi+zi.

Case 4 : For each i such that Ai ∩ Ũ = ∅, we form a group containing all elements of this Ai.
Note that in this case |Ai| ≥ 4. Define yi such that |Ai| = 2yi.

1Recall that Q is defined in (3.10). Since Q contains the two-element pairings in Ai, |Ai ∩Q| is even.
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Note that in Cases 1–3, some l in the group belong to Ũ (and hence U) and thus appear as a

variable of H̃ and H◦, while some l in the group may not. In Case 4, no l in the group appear as

a variable of H̃ or H◦, and they only appear in the summation
∑(3)

kQ
in (6.57).

Now let G be the union of all groups in Cases 1–4. Define Ũ† = Ũ\G and similarly U† = U\G,

and similarly Q†, B† and C†. Note that Ũ†\U† = Ũ\U . Let U†j = Uj\G for 1 ≤ j ≤ r, and define1

G1 = U1\U†1 = U1 ∩ G. Let O† be O after removing the Ai’s involved in Cases 2–4 above. Thus,

for any Ai ∈ O†, if 1 ≤ i ≤ v (in particular if Ai ∩ U†1 6= ∅), then |Ai| = 2.

Once we fix all the variables kl for l ∈ G described above, we can view H̃ as a tensor depending

on (k, kŨ†), and H◦ as a tensor depending on (k, kU†). In the same way h(j) can be viewed as a

tensor depending on (kj , kU†j
). More precisely, we define h(j,†) = h

(j,†)
kjkU†

j

to be h
(j)
kjkUj

with the values

of kl for l ∈ Uj\U†j = G ∩ Uj fixed.

If we use the triangle inequality, as well as the simple fact that

‖hkXkY kZkW ‖kXkY→kZkW .
∏

l∈X∪Z
N
d/2
l · sup

kX ,kZ

‖hkXkY kZkW ‖kY→kW

(where X,Y, Z,W are arbitrary sets) under the assumption that 〈kl〉 . Nl for l ∈ X ∪ Z, then we

can deduce that

‖H◦‖kkB→kC .
(O,2,≥)∏

i

N
−2yi(α−θ)
li

(O,3,≥)∏
i

N
(d/2)−2yi(α−θ)
li

(O,4,≥)∏
i

N
d−2yi(α−θ)
li

· sup
(kl)
‖(H◦)†‖kk

B†→kC† ,

(6.62)

where
∏(O,n,≥)
i is taken over all groups Ai of Case n for 2 ≤ n ≤ 4, li is any element of Ai, and

sup(kl)
is taken over all choices of the kl’s with l ∈ G. The tensor (H◦)† is defined by

(H◦)† = (H◦)†kkU†
=
∑

kŨ†\U†

(H̃)†kkŨ†

∏
l∈Ũ†\U†

(fNl
)
ζ∗l
kl
, (6.63)

(H̃)†kkŨ†
=

(1,†)∏
l,l′

1kl=kl′

(2,<)∏
l,l′

1kl 6=kl′ ·
∑

(k1,··· ,kr)

hkk1···kr

(3,†)∑
kQ†

∏
l∈Q†

∆Nl
γkl

r∏
j=1

[
h

(j,†)
kjkU†

j

]ζj . (6.64)

Here the product
∏(2,<)

l,l′ is the same as the one defined above in the third paragraph of Step 2, and

the product
∏(1,†)

l,l′ is the same as
∏(1)

(l,l′) defined in (6.57) (which is taken from (3.11)), except that

the product here is only taken over l, l′ ∈ Ai for Ai ∈ O†. Similarly the sum
∑(3,†)

kQ†
is the same as∑(3)

kQ
defined in (6.57) (which is taken from (3.11)), except that the sum here does not involve the

variables kQ\Q† . Also note that, the product
∏(1,†)

l,l′ and sum
∑(3,†)

kQ†
are exactly the same as the

ones defined in (3.11) when merging the tensors (h(1,†), · · · , h(r,†)) via (h,B,O†).

Let us illustrate the above Step 2 with an explicit example, which is an extension of the example

in Step 2 of the proof of Proposition 6.2; for simplicity, assume there is no blossoms (i.e. Vj = ∅)

and all frequencies are ≥M δ, so no trimming is needed throughout the process. Suppose q = r = 7,

(U1,U2, · · · ,U7) = ({ltop, c, j, k,m}, {a, b, k, o}, {c, d, e, k}, {e, f, g}, {a, f, h, j,m}, {i, j, k,m}, {k,m}),

1Note this definition is only for j = 1 and not for 2 ≤ j ≤ r, which we will define later.
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and the corresponding frequencies satisfy

Nltop ≥ Na ≥ Nb ≥ Nc ≥ Nd ≥ Ne ≥ Nf ≥ Ng ≥ Nh ≥ Ni ≥ Nj ≥ Nk ≥ Nm ≥ No ≥M δ.

Like in the proof of Proposition 6.2, a leaf occurring in at least two sets represents a pairing or

over-pairing; for these leaves l, we also use lj to indicate the copy of l in Uj . Then U = Ũ =

{ltop, b, d, g, h, i, j, k, o} and H̃ = H◦, and

(H◦)kkU =
∑

(k1,··· ,k7)

∑
(ka,kc,ke,kf,km)

hkk1···k7 · h
(1)
k1kltop

kckjkkkm
· h(2)

k2kakbkkko

× h(3)
k3kckdkekk

· h(4)
k4kekfkg

· h(5)
k5kakfkhkjkm

· h(6)
k6kikjkkkm

· h(7)
k7kkkm

,

where for simplicity, we have omitted the various ∆Nl
γkl factors.

Suppose B = {b, d} and C = {ltop, g, h, k} is a subpartition of U and E = {i, j, o}. Our goal is to

estimate ‖H◦‖kkB→kC . The groups in Cases 1–4 in the above process are then:

• Case 1 : {i} and {o};
• Case 2 : A1 = {j1, j5, j6};
• Case 3 : A2 = {k1, k2, k3, k6, k7};
• Case 4 : A3 = {m1,m5,m6,m7}.

After fixing the values of (ki, ko, kj, kk, km), which are considered in Cases 1–4 above, we can reduce

‖H◦‖kkB→kC to ‖(H◦)†‖kk
B†→kC† by the above argument, where the relevant sets

B† = {b, d}, C† = {ltop, g, h}, U† = {ltop, b, d, g, h}, Q† = {a2, a5, c1, c3, e3, e4, f4, f5}, (6.65)

(U†1 , · · · ,U
†
7) = ({ltop, c}, {a, b}, {c, d, e}, {e, f, g}, {a, f, h}, ∅, ∅),

and the tensors

(H◦)†kkU†
=

∑
(k1,··· ,k7)

∑
(ka,kc,ke,kf)

hkk1···k7 ·h
(1,†)
k1kltop

kc
·h(2,†)

k2kakb
·h(3,†)

k3kckdke
·h(4,†)

k4kekfkg
·h(5,†)

k5kakfkh
·h(6,†)

k6
·h(7,†)

k7
,

where h
(j,†)
kjkU†

j

is h
(j)
kjkUj

after fixing the kUj\U†j
for 1 ≤ j ≤ 7.

Step 3: the method of descent. Now we need to estimate (H◦)†. A key step is to implement

Proposition 6.2 by singling out h1,†. To that effect, consider those Ai ∈ O† such that Ai ∩U†1 6= ∅;

we know that each such Ai contains exactly one pair. Let (O†)′ be O† after removing these Ai’s,
and D be the union of these Ai’s. Define F = (U† ∪ D)\U†1 and similarly define F̃ = (Ũ† ∪ D)\U†1 ,

so that Ũ†\U† = F̃\F . Then by (6.63)–(6.64) we have

(H◦)†kkU†
=
∑
k1

∑
kD

∏
l∈D

∆Nl
γkl ·

[
h

(1,†)
k1kU†1

]ζ1 · (H∗)kk1kF , (6.66)

where
∑

kD
is taken over all kD such that kl = kl′ for any pairing Ai = {l, l′} ⊂ D, and the tensor

(H∗)kk1kF is defined by

(H∗)kk1kF =
∑
kF̃\F

Hkk1kF̃

∏
l∈F̃\F

(fNl
)
ζ∗l
kl
, (6.67)

Hkk1kF̃
=

(1′,†)∏
l,l′

1kl=kl′

(2,<)∏
l,l′

1kl 6=kl′ ·
∑

(k2,··· ,kr)

hkk1···kr

(3′,†)∑
kR

∏
l∈R

∆Nl
γkl

r∏
j=2

[
h

(j,†)
kjkU†

j

]ζj . (6.68)
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Here R = Q†\D; in (6.68) the product
∏(2,<)

l,l′ is the same as the one defined above in Step 2, and

the product
∏(1′,†)

l,l′ is the same as
∏(1,†)

l,l′ defined in (6.64). The sum
∑(3′,†)

kR
is the same as

∑(3,†)
kQ†

defined in (6.64), except that the sum here does not involve the variables kD. The tensor H∗ can

be understood as a “partial trimming” of H at frequency M δ, i.e. only the tree part F̃ is trimmed.

Note that Nα−θ
l ·∆Nl

γkl is a bounded function of kl and can be absorbed into one of the tensors

h(1,†) orH∗. Applying Proposition 4.11 to (6.66) with (kX , kY , kA1 , kA2) = (kkB† , kC† , k1kU†1
, kk1kF ),

where we combine any two elements in D that form a pairing into a single element as we did in the

proof of Proposition 4.14, we obtain

‖(H◦)†‖kk
B†→kC† .

∏
l∈D

N−α+θ
l · ‖h(1,†)

k1kU†1

‖k1k
(B†∪D)∩U†1

→k
C†∩U†1

· ‖(H∗)kk1kF‖kkB†∩F→k1k(C†∪D)∩F
.

(6.69)

To estimate H∗ in (6.69) we shall apply Proposition 4.14. First recall N∗ = max(N2, · · · , Nq),

and that since the expression (6.68) for H involves only h and h(j,†) for 2 ≤ j ≤ r, by assumption

this H is B(N∗)[δ] measurable. Next note that by assumption Nl ≥ (N∗)
δ for each l ∈ F̃\F and

that there is no pairing among kF̃\F in (6.67) in view of the product
∏(2,<)

l,l′ 1kl 6=kl′ in the definition

(6.68) of H. Now we apply Proposition 4.14 to (6.67), setting (b, c) = (kkB†∩F , k1k(C†∪D)∩F ), then

for some partition (B0, C0) of F̃\F we have τ−1M -certainly that

‖(H∗)kk1kF‖kkB†∩F→k1k(C†∪D)∩F
. (τ−1M)θ

∏
l∈F̃\F

N−α+θ
l · ‖H‖kkS→k1kT , (6.70)

where S = B0 ∪ (B† ∩ F) and T = C0 ∪ ((C† ∪ D) ∩ F). Note that (S, T ) form a partition of F̃
such that S ⊃ B† ∩ F and T ⊃ (C† ∪ D) ∩ F .

It now remains to estimateH. By applying Lemma 4.10 we may remove the product
∏(2,<)

l,l′ 1kl 6=kl′
from the definition (6.68). Then, we can repeat the arguments in Step 2 above, and fix the values

of kl for l ∈ Ai with Ai ∈ (O†)′ and |Ai| ≥ 3 (where necessarily i ≥ v + 1). Here we only have two

cases:

Case 3 : For each i such that Ai ∩ F̃ 6= ∅, we form a group containing all elements of this Ai.
Define yi and zi such that |Ai ∩R| = 2yi and |Ai ∩ F̃| = zi, then |Ai| = 2yi + zi.

Case 4 : For each i such that Ai ∩ F̃ = ∅, we form a group containing all elements of this Ai.
Note that in this case |Ai| ≥ 4. Define yi such that |Ai| = 2yi.

As in Step 2, we define G† to be the union of all groups in Cases 3–4 defined above. Define

(O††)′ to be (O†)′ after removing the Ai’s involved in Cases 3–4 above, F̃† = F̃\G†, and similarly

define S†, T † and R†. We also define U††j = U†j \G†. With these variables kl for l ∈ G† fixed, we can

view H as a tensor depending on (k, k1, kF̃†), and view h(j,†) as a tensor depending on (kj , kU††j
).

We define h(j,††) = h
(j,††)
kk
U††
j

to be h
(j,†)
kk
U†
j

with the values of kl for l ∈ U†j \U
††
j = G† ∩ U†j fixed. By the

same arguments as in Step 2, we deduce that

‖H‖kkS→k1kT .
(O,3,<)∏

i

N
(d/2)−2yi(α−θ)
li

(O,4,<)∏
i

N
d−2yi(α−θ)
li

· sup
(kl)
‖(H†)kk1kF̃†

‖kk
S†→k1kT†

, (6.71)
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where the products
∏(O,n,<)
i and the supremum sup(kl)

are defined in the same way as in Step 2

above, and

(H†)kk1kF̃†
=

(1′,††)∏
l,l′

1kl=kl′
∑

(k2,··· ,kr)

hkk1···kr

(3′,††)∑
kR†

∏
l∈R†

∆Nl
γkl

r∏
j=2

[
h

(j,††)
kjkU††

j

]ζj . (6.72)

In (6.72) the product
∏(1′,††)

l,l′ is the same as
∏(1′,†)

l,l′ defined in (6.68), except that the product

here is only taken over l, l′ ∈ Ai for some Ai ∈ (O††)′; similarly, the sum
∑(3′,††)

kR†
is the same as∑(3′,†)

kR
defined in (6.68), except that the sum here does not involve the variables kR\R† . Note

that |Ai| = 2 and Ai ∩ F̃† = ∅ for any Ai ∈ (O††)′, so the product
∏(1′,††)

l,l′ vacuously equals 1,

and the condition of the sum
∑(3′,††)

kR†
is just kl = kl′ for each pairing {l, l′} ∈ (O††)′ (recall that

R† = R\G† = Q\(D ∪G ∪G†)).
Now recall the example in Step 2. To estimate ‖(H◦)†‖kk

B†→kC† , we separate h(1) from the others

as in (6.66)–(6.68), where D = {c1, c3}, U†1 = {ltop, c}, F = F̃ = {b, c, d, g, h} and R = Q†\D =

{a2, a5, e3, e4, f4, f5}, namely

(H◦)†kkU†
=
∑
k1,kc

h
(1,†)
k1kltop

kc
(H∗)kk1kF ,

(H∗)kk1kF =
∑

(k2,···k7)

∑
(ka,ke,kf)

hkk1···k7 · h
(2,†)
k2kakb

· h(3,†)
k3kckdke

· h(4,†)
k4kekfkg

· h(5,†)
k5kakfkh

· h(6,†)
k6
· h(7,†)

k7
,

where for simplicity, we have again omitted the various ∆Nl
γkl factors (and also the power factors

below). Note that H∗ = H = H† as all frequencies are ≥M δ, in particular no partial trimming or

Cases 3–4 in Step 3 above is involved. By (6.69) we have

‖(H◦)†kkU†‖kkbkd→kltop
kgkh ≤ ‖h

(1,†)
k1kltop

kc
‖k1kc→kltop

· ‖(H∗)kk1kF‖kkbkd→k1kckgkh .

The norm ‖h(1,†)‖k1kc→kltop
is then controlled using (6.43)–(6.45), and ‖H∗‖kkbkd→k1kckgkh is con-

trolled using Proposition 6.2; note that here E = {6, 7} as in the example in Step 2 of the proof

of Proposition 6.2, and the corresponding Hsg is the same as the one in that example, but with

h(j) replaced by h(j,†). After putting these two bounds together and calculating the various powers

involved (see Step 4 ), we can obtain the desired estimate (6.49) for this example.

Step 4: putting together. We now need to estimate H†. As in Step 3, we may replace ∆Nl
γkl by

N−α+θ
l and absorb the resulting factor into one of the tensors h(j,††) using Lemma 4.10, so instead

of H† we only need to consider

Mkk1kF̃†
:=
∏
l∈R†

N−α+θ
l

∑
(k2,··· ,kr)

hkk1···kr
∑
kR†

r∏
j=2

[
h

(j,††)
kjkU††

j

]ζj , (6.73)

where
∑

kR†
is the sum such that kl = kl′ for each pairing {l, l′} ∈ (O††)′ which is just

∑(3′,††)
kR†

in (6.72). We shall apply Proposition 6.2 to estimate (6.73), but we first need to make a few

adjustments to fit the framework of (6.9)–(6.17).

First, for r + 1 ≤ j ≤ q, we may define U††j = ∅ and h(j,††) = h
(j,††)
kj

to be supported at a single

point kj (the one fixed in Step 1 ). Moreover, in view of the extra factor
∏q
j=r+1N

−d/2
j described in

Step 1 when stating the norm bounds we want to prove for H◦kkU , we may assume |h(j,††)
kj
| . N−d/2j
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for r + 1 ≤ j ≤ q, so it satisfies the type R0+ conditions1 of Proposition 6.2 with Xj replaced by

1. Second, we also view hkk1···kr as a tensor depending on (k, k1, · · · , kq), in the support of which

kj (r+ 1 ≤ j ≤ q) takes a single value, and denote it by hkk1···kq . Moreover, the tensor h = hkk1···kq
satisfies the support condition (6.16) for some choice of Γ, as well as other conditions of h listed in

Proposition 6.2.

Next we check that h
(j,††)
kjkU††

j

for 2 ≤ j ≤ r satisfy the conditions in Proposition 6.2. Note that U††j

is a subset of Uj , and h(j,††) is formed from h(j) by fixing the values of kUj\U††j
(for simplicity we

denote it by kGj , where Gj = Uj\U††j = (G∩Uj)∪ (G† ∩Uj)). We consider the following scenarios.

Scenario 1 : when h(j) has type 1. Then h(j,††) will have type R1 in the sense of Proposition 6.2.

Indeed by (6.46) (actually the modified version of it2 in Step 1 ), we may assume∣∣∣∣kj −∑
l∈Uj

ζlkl − `j
∣∣∣∣ ≤ (N∗)

3δ, `j =
∑
f∈Vj

ζfkf,

otherwise we gain a huge power of M from (6.46) that would suffice (note that κ �Cδ 1 and

N∗ ≥ M δ). When kGj is fixed, the above implies that h(j,††) satisfies (6.14) with Uj replaced by

U††j and some fixed mj = `j +
∑

l∈Gj ζlkl. Moreover, by (6.44)–(6.45) we deduce that h(j,††) satisfies

(6.15) with Uj replaced by U††j , and Xj replaced by

X∗j ·
∏
l∈Pj

N−4ε
l

∏
l∈Gj

N8ε
l

∏
p∈Yj

N−δ
3

p

∏
f∈Vj

Nd
f .

Scenario 2 : when h(j) has type 0, and Gj = ∅. Then in this case, h(j,††) = h(j) and it will have

type R0 in the sense of Proposition 6.2. It satisfies (6.11)–(6.12) with Xj replaced by

X∗j ·
∏
l∈Pj

N−4ε
l

∏
p∈Yj

N−δ
3

p . (6.74)

Scenario 3 : when h(j) has type 0, and Gj 6= ∅. Then h(j,††) will have type R0+ in the sense of

Proposition 6.2. It satisfies the modified versions of (6.11)–(6.12) with Uj replaced by U††j , and Xj
replaced by

X∗j ·
∏
l∈Pj

N−4ε
l

∏
l∈Gj

N8ε
l

∏
p∈Yj

N−δ
3

p . (6.75)

In Scenarios 2–3, note the different powers of Nl for l ∈ Pj ∪Gj between (6.74)–(6.75) and (6.43)

for type 0 tensors, which allow us to bridge from X1,j in (6.43) and (5.33) to Z1,j in (6.11)–(6.12).

Therefore, by applying Proposition 6.2 with P , Q, U and Q replaced by S†, T †, F̃† and R†

respectively, we obtain that

q∏
j=r+1

N
−d/2
j · ‖M‖kk

S†→k1kT†
.

r∏
j=2

X∗j ·
∏

l∈P2∪···∪Pr∪R†
N−4ε

l ·
∏

l∈G2∪···∪Gr

N8ε
l ·

∏
p∈Y2∪···∪Yr

N−δ
3

l

×
∏

l∈V2∪···∪Vr

Nd
l ·
∏
l∈F̃†

Nβ
l ·

(0)∏
j

N−2ε
j · (N∗)−ε

3
, (6.76)

where
∏(0)
j is taken over all j such that r + 1 ≤ j ≤ q, or 1 ≤ j ≤ r and h(j) has type 0.

1The support condition (6.13) for type R0+ can be immediately verified, since U††j = ∅.
2In the analogous sense that (6.55) is the modified version of (6.44).
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This implies the same bound for H†. Next we can control the norm

‖h(1,†)
k1kU†1

‖k1k
(B†∪D)∩U†1

→k
C†∩U†1

(6.77)

using the modified versions of (6.43)–(6.45) in Step 1. In fact, if h(1) has type 1, the norm (6.77)

is bounded as follows

(6.77) . X∗1 · τ−θ
∏
l∈U†1

Nβ
l

∏
l∈P1

N−4ε
l

∏
l∈G1

N8ε
l

∏
p∈Y1

N−δ
3

p

∏
f∈V1

Nd
f · X

type1
1 , (6.78)

by the modified versions of (6.44) and (6.45), where X type1
1 equals (max

l∈C†∩U†1
Nl)
−β if C†∩U†1 6= ∅,

and equals N−ε1 if C† ∩ U†1 = ∅. If h(1) has type 0, the norm (6.77) is bounded as follows

(6.77) . X∗1 · τ−θ
∏
l∈U†1

Nβ1

l

∏
l∈P1

N−8ε
l

∏
l∈G1

N4ε
l

∏
p∈Y1

N−δ
3

p · X0,1X1,1 (6.79)

by (6.43), where X0,1 and X1,1 are as in (6.43) (which is taken from (5.33)), corresponding to

B1 = (B† ∪ D) ∩ U†1 and C1 = C† ∩ U†1 (and E1 = G1).

Now, by plugging the bound for H† (which follows from (6.76)) back into (6.71), (6.70), (6.69)

and (6.62), using the bounds for (6.77) described above, and exploiting the relations between the

various sets defined before, we can eventually obtain the bound for H◦ that implies (6.59), and

hence (6.49). In fact, by separating the two cases according to whether ltop ∈ U†1 or not (recall that

ltop ∈ C ∩U1 is such that Nltop ∼ max{Nl : l ∈ C}), and by using (6.78) if h(1) has type 1 or (6.79)

if1 h(1) has type 0, we can obtain in both two cases that

q∏
j=r+1

N
−d/2
j · ‖H◦‖kkB→kC . (τ−1M)θ(N∗)

−ε3/2
r∏
j=1

X∗j ·
∏

(l∈B∪C)\{ltop}

Nβ
l ·
∏
l∈P

N−4ε
l

×
∏
l∈E

N8ε
l ·

∏
p∈Ỹ

N−δ
3

p

∏
f∈V1∪···∪Vr

Nd
f ·

(0)∏
j

N−2ε
j · Z, (6.80)

where
∏(0)
j is defined in (6.76) and Z is a quantity such that

Z ≤
(O,2)∏
i

N
−2yi(α−θ)
li

·
(O,3)∏
i

N
(d/2)−2yi(α−θ)
li

·
(O,4)∏
i

N
d−2yi(α−θ)
li

·
∏
l

N50ε
l ·

(
max

l
Nl

)50ε
. (6.81)

In (6.81), the product
∏(O,n)
i , for 2 ≤ n ≤ 4, is the product of

∏(O,n,≥)
i defined in Step 2 and∏(O,n,<)

i defined in Step 3 (there is no
∏(O,2,<)
i , which is replaced by 1). In the last two factors in

(6.81), the product is taken over all l ∈ (G∪G†)∩Q, and the maximum is taken over all l ∈ G∪G†

involved in Cases 2–4 in Step 2 and Cases 3–4 in Step 3.

We make a few remarks regarding the calculations leading to (6.80)–(6.81):

(I) The factor
∏

p∈Ỹ N
−δ3

p in (6.80) is obtained from N
−ε3/2
∗ and

∏
l∈Y1∪···∪Yr N

−δ3

l coming from

(6.78) and (6.76), given that Ỹ arises from the merging process as in Definition 3.6.

1In fact in the cases we consider the bound in (6.79) is always better than that in (6.78) due to the X1,1 factor

in (6.79), so below we will always assume that we are using (6.78).
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(II) By combining all terms involving Nβ
l or N−α+θ

l in (6.78), (6.76), (6.70) and (6.69), we obtain∏
(l∈B∪C)\{ltop}N

β
l in (6.80) with extra decays

∏
l∈((B∪C)∩G)\{ltop}N

−β
l and

∏
l∈F̃∩G† N

−β
l

and
∏

l∈DN
−(α−β)+θ
l .

(III) By comparing
∏

l∈E N
8ε
l in (6.80) with

∏
l∈G1∪···∪Gr N

8ε
l coming from (6.78) and (6.76), we

observe that the quotient between these two products arises from the l’s in (G ∪ G†)\E.

This quotient, multiplied by the extra decays
∏

l∈((B∪C)∩G)\{ltop}N
−β
l and

∏
l∈F̃∩G† N

−β
l

obtained in (II), accounts for one square root of the factor
∏

lN
50ε
l ·

(
maxlNl

)50ε
in (6.81)

(the other square root will be used in (IV)).

(IV) Recall from Definition 3.6 that P ⊂ P̃ = P1 ∪ · · · ∪ Pr ∪ Q, also R† = Q\(D ∪ G ∪ G†).
Considering

∏
l∈P N

−4ε
l in (6.80), we know that

∏
l∈P1∪···∪Pr∪R† N

−4ε
l coming from (6.78)

and (6.76), multiplied by the extra decay
∏

l∈DN
−(α−β)+θ
l obtained in (II), can be bounded

by
∏

l∈P N
−4ε
l multiplied by the other square root of

∏
lN

50ε
l ·

(
maxlNl

)50ε
in (6.81).

Now we have verified (6.80)–(6.81). Since yi ≥ 1 in Cases 2–3 and yi ≥ 2 in Case 4 (this holds

in both Step 2 and Step 3 ), it is easy to verify that Z is a product of negative powers of Nli in

(6.81), thus Z ≤ 1, hence (6.80) implies the desired estimate (6.59) for H◦kkU . This finishes the

proof of (6.49).

Finally we prove (6.50) ((6.52) follows from the same arguments as explained in Step 1 ). When

C = ∅, we know that h(1) has type 1 and C† ∩ U†1 = ∅, thus we only need to use the modified

version of the bound (6.45) for h(1). The same arguments as above yield, instead of (6.80), that

q∏
j=r+1

N
−d/2
j · ‖H◦‖kkB . (τ−1M)θ(N∗)

−ε3/2
r∏
j=1

X∗j ·
∏
l∈B

Nβ
l ·
∏
l∈P

N−4ε
l

×
∏
l∈E

N8ε
l ·

∏
p∈Ỹ

N−δ
3

p

∏
f∈V1∪···∪Vr

Nd
f ·
(
N−ε1

(0)∏
j

N−2ε
j

)
· Z. (6.82)

Therefore, it suffices to prove that

√
Υ ·N−ε1 ·

(0)∏
j

N−2ε
j .M−ε,

which easily follows from the definition of Υ, the product
∏(0)
j , and the assumption that N1 & Nj

for all 2 ≤ j ≤ r such that h(j) has type 1. �

Proposition 6.5 (Merged tensor bounds: Case II). Consider the same setting as Proposition 6.4,

but assume q = r and each Sj and h(j) have type 0. Moreover, assume that Nl ≥ M δ for each

l ∈ Lj and 1 ≤ j ≤ q. Then, H satisfies the bound
√

Υ · ‖H‖kkB→kC . Y · τ−θ
∏

l∈B∪C
Nβ1

l

∏
l∈P

N−8ε
l

∏
l∈E

N4ε
l

∏
p∈Y

N−δ
3

p · X0X1, (6.83)

where Υ is defined in (6.41), X0,X1 are defined as in (5.33) but with N replaced by M , and

Y =

q∏
j=1

Xj · τ−θM−δ
3
. (6.84)

Note that unlike Proposition 6.4, this bound (6.83) is deterministic, i.e. we do not need to remove

any exceptional set.
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Proof. The proof will be similar to the proof of Proposition 6.4, so we mainly focus on the parts

where the two proofs are different.

Since q = r and each Sj and h(j) have type 0, we know that V = ∅. Since also Nl ≥ M δ for

each l, the possible trimming process in this proof will only affect the Y set and we may omit it;

in particular we will not need Propositions 4.14, and can obtain (6.83) deterministically. Next, it

can be easily verified that

Υ1/4 ·
q∏
j=1

X1,j . X1

where X1 and X1,j are defined as in (5.33) relative to S and Sj respectively, so in the proof below

we will replace
√

Υ by Υ1/4, and replace X1 and X1,j for all j by 1.

By rearranging the tensors, we may assume that (i) if C 6= ∅, then max{Nl : l ∈ C ∩ U1} ∼
max{Nl : l ∈ C}, denote the particular l ∈ C ∩ U1 where the maximum is attained by ltop; (ii) if

C = ∅ and E 6= ∅ then E∩U1 6= ∅; and (iii) if C = E = ∅ then min{Nl : l ∈ L1} ∼ min{Nl : l ∈ L},
denote the particular l ∈ C ∩L1 where the minimum is attained by lbot. We shall repeat the same

arguments in Steps 2–3 of the proof of Proposition 6.4. Namely, we first remove the over-pairings

as in Step 2 (in particular, the Cases 1–4 are the same as in Step 2, except that Ũ there is replaced

by U , and we do not require i ≤ v since there is no v in the current case), then separate h(1)

from the others as in Step 3 up to (6.69). After these, we shall apply Proposition 6.3 (instead of

Proposition 6.2 as in Step 4 of the proof of Proposition 6.4) to get that

‖H‖kkB→kC . τ
−θ

q∏
j=1

Xj ·
(O,2)∏
i

N
−2yi(α−θ)
li

(O,3)∏
i

N
(d/2)−2yi(α−θ)
li

(O,4)∏
i

N
d−2yi(α−θ)
li

×
∏
l∈D

N−α+θ
l

∏
l∈U†1

Nβ1

l

∏
l∈F

Nβ1

l ·
∏

l∈P1∪···Pq∪R
N−8ε

l

∏
l∈G1∪···∪Gq

N4ε
l

∏
p∈Y1∪···∪Yq

N−δ
3

p · XX ′. (6.85)

Here in the above:

• The product
∏(O,n)
i for 2 ≤ n ≤ 4, as well as the parameters yi and zi, are defined in the

same way as in Step 2 of the proof of Proposition 6.4.

• The set Gj = G ∩ Uj , where G is the union of all groups in Cases 1–4, and U†j = Uj\Gj .
• The setR = Q†\D, whereQ† is the union of all Ai’s with |Ai| = 2 (equivalentlyQ† = Q\G),

and D is the union of all Ai’s with |Ai| = 2 and Ai ∩ U†1 6= ∅. The set F = (U† ∪ D)\U†1
where U† = U\G.

• The factor X is such that (i) if C 6= ∅ and ltop ∈ U†1 then X = N−β1

ltop
, (ii) if C = G1 = ∅

(which implies E = ∅) then X = (Nlbot
)(d/2)−β1 , (iii) if U†1 = ∅ then X = N−εδ1 , (iv) in

other cases X = 1.

• The factor X ′ is such that (i) if U†j 6= ∅ for some 2 ≤ j ≤ q, then X ′ = (maxNl)
−4pε where

the maximum is taken over all l ∈ U†j for all 2 ≤ j ≤ q, (ii) if U†j = ∅ for all 2 ≤ j ≤ q then

X ′ = (N2 · · ·Nq)
−εδ.

In the last two points above regarding X and X ′, the powers N−β1

ltop
and (Nlbot

)(d/2)−β1 in cases (i)

and (ii) for X are obtained from the first and second lines in the definition (5.33) of X0,j (which is

the factor appearing in (6.43)) with j = 1. The powers N−εδ1 in case (iii) for X , and (N2 · · ·Nq)
−εδ

in case (ii) for X ′ are obtained from the third line in the definition (5.33) of X0,j , which is only
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used here and not needed in other parts of the proof. Finally, the power (maxNl)
−4pε in case (i)

for X ′ is obtained from the last term of (6.37).

Now, by the same arguments as in the proof of Proposition 6.4 (in particular using the quantity

Z in (6.81)), we can simplify the right hand side of (6.85) as follows. When C 6= ∅ we obtain that

Υ1/4 · ‖H‖kkB→kC . τ
−θ

q∏
j=1

Xj ·
∏

l∈(B∪C)\{ltop}

Nβ1

l

∏
l∈P

N−8ε
l

∏
l∈E

N4ε
l

∏
p∈Y

N−δ
3

p ·M δ3X ′, (6.86)

where we notice by definition that X ′ ≤M−εδ2 ≤M−4δ3
. This easily implies (6.83). When C = ∅

we obtain that

Υ1/4 · ‖H‖kkB . τ
−θ

q∏
j=1

Xj ·
∏
l∈B

Nβ1

l

∏
l∈P

N−8ε
l

∏
l∈E

N4ε
l

∏
p∈Y

N−δ
3

p ·M δ3XX ′; (6.87)

in this case, if E = ∅, then we have X ≤ (Nlbot
)(d/2)−β1 , which is acceptable as X0 = (Nlbot

)(d/2)−β1

in (6.83), and the bound X ′ ≤ M−εδ
2

provides the needed gain as above; if E 6= ∅ and B 6= ∅,

then X ≤ 1 and X0 = 1 in (6.83), so once again we can use the bound of X ′. Finally, if B = ∅,

then in particular U†j = ∅ for each 1 ≤ j ≤ q. In this case X = N−εδ1 , X ′ = (N2 · · ·Nq)
−εδ and

X0 = M−εδ in (6.83), so it suffices to prove that

M δ3
Υ1/4

q∏
j=1

N−εδj ≤M−δ3
M−εδ.

This is obviously true if Nj �M for each j, due to the definition (6.41) of Υ; if Nj ∼M for some

j, this is also true since the other Nj′ still satisfy N−εδj′ ≤M
−εδ2

. This completes the proof. �

Proposition 6.6 (A special case: Operator bounds). Let 3 ≤ q ≤ p be odd and 1 ≤ r ≤ q. For

2 ≤ j ≤ r, assume that Ψ
(j)
kj

= Ψkj [Sj , h(j)] as in (3.8), where Sj is a regular plant with |Sj | ≤ D and

N(Sj) = Nj ≤M such that Nl ≥M δ for each l ∈ Lj, h(j) is an Sj-tensor that is BM [δ] measurable.

Moreover we assume that h(j) either has type 0 and satisfies the assumptions of Proposition 6.4

(1), or has type 1 and satisfies the assumptions of Proposition 6.4 (2).

We also fix ζj (1 ≤ j ≤ q) and Nj ≤M/2 (r+1 ≤ j ≤ q), and assume that max(N2, · · · , Nq) = M .

Let h = hkk1···kq(λr+1, · · · , λq) be a constant tensor (which does not depend on ω) supported in the

set

〈kj〉 ≤ Nj (2 ≤ j ≤ q), 〈λj〉 ≤ 2Mκ2
(r + 1 ≤ j ≤ q), k =

q∑
j=1

ζjkj ; (6.88)

also assume that h can be written as a function of1 k−ζ1k1, |k|2−ζ1|k1|2, and (k2, · · · , kq, λr+1, · · · , λq),
and satisfies that

|h|+ |∂λjh| .
τ−θ

〈Ω + ζr+1λr+1 + · · ·+ ζqλq + Ξ̃〉
, r + 1 ≤ j ≤ q, (6.89)

1We may also need to multiply this h by functions 1〈k〉≥M2 or 1〈k1〉≥M2 , but they do not affect Proposition 4.15

(which can be easily checked), so the proof below will proceed in the same way.
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where Ω = |k|2−
∑q

j=1 ζj |kj |2, Ξ̃ ∈ R is fixed with |Ξ̃| .Mκ2
, and that any pairing in (k, k1, · · · , kq)

must be over-paired. Now define

Mkk1 =
∑

k2,··· ,kq

ˆ
dλr+1 · · · dλq · hkk1···kq(λr+1, · · · , λq)

r∏
j=2

(Ψ
(j)
kj

)ζj
q∏

j=r+1

(ẑNj )
ζj
kj

(λj), (6.90)

possibly with Fourier truncations on zNj as in part (5) of Proposition 5.1, then τ−1M -certainly we

have

‖Mkk1‖k→k1 ≤
r∏
j=2

Xj · τ−θM−ε
4
. (6.91)

Proof. The proof will be similar to the proof of Proposition 6.4, so we mainly focus on the parts

where the two proofs are different.

Let S1 be the empty plant (each component being empty). For any O as in Definition 3.6, define

S = (L,V,Y) = Merge(S1, · · · ,Sr,B,O),

and define

Hkk1kU (kV , λV) =

(1)∏
l,l′

1kl=kl′

(2)∏
l,l′

1kl 6=kl′ ·
∑

(k2,··· ,kr)

hkk1···kq(λr+1, · · · , λq)

×
(3)∑
kQ

∏
l∈Q

∆Nl
γkl

r∏
j=2

[
h

(j)
kjkUj

(kVj , λVj )
]ζj . (6.92)

Here in (6.92), the set Q (as well as U etc. below) is defined from O in the same way as in Definition

3.6; the products
∏(1)

l,l′ and
∏(2)

l,l′ , and the sum
∑(3)

kQ
, are defined as in (3.11). By the same proof as

Proposition 3.7 (2), we can write Mkk1 as a linear combination (for different choices of O) of

Nkk1 =
∑
kU ,kV

ˆ
dλV · Hkk1kU (kV , λV) ·

∏
l∈U

(fNl
)
ζ∗l
kl

∏
f∈V

(ẑNf
)
ζ∗f
kf

(λf), (6.93)

where ζ∗l and ζ∗f are defined as in Definition 3.6 when merging (S1, · · · ,Sr) via (B,O). If we assume∣∣|k|2 − ζ1|k1|2
∣∣ > Mκ3

, then by (6.89) and (6.88), we have

|h|+ |∂λjh| . τ
−θM−κ

3
, r + 1 ≤ j ≤ q,

which easily implies (6.91) thanks to the dominant decay M−κ
3
. Therefore, below we will focus

on the estimate for N with a fixed O as in Definition 3.6, and assume that
∣∣|k|2 − ζ1|k1|2

∣∣ ≤Mκ3

(which will allow us to apply Proposition 4.15).

First, notice that V = V2∪ · · ·∪Vr ∪{r+ 1, · · · , q}; define H∗ = (H∗)kk1(kV , λV) so that we have

(H∗)kk1(kV , λV) =
∑
kU

Hkk1kU (kV , λV) ·
∏
l∈U

(fNl
)
ζ∗l
kl
, (6.94)

Nkk1 =
∑
kV

ˆ
dλV · (H∗)kk1(kV , λV) ·

∏
f∈V

(ẑNf
)
ζ∗f
kf

(λf). (6.95)

By the same argument as in Step 1 of the proof of Proposition 6.4, using Cauchy-Schwartz, we

obtain that

‖Nkk1‖k→k1 . ‖H∗‖X−b0V [k→k1]
·
∏
f∈V

N−D1
f , (6.96)
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so it suffices to control ‖H∗‖
X
−b0
V [k→k1]

. For 2 ≤ j ≤ r, define X∗j = X∗j (kVj , λVj ) as in the proof of

Proposition 6.4. Using the inequality(∑
kV

ˆ
dλV ·

∏
f∈V
〈λf〉−2b0

r∏
j=2

X∗j (kVj , λVj )
2

)1/2

.
r∏
j=2

Xj

q∏
j=r+1

N
d/2
j ,

which is proved in the same way as (6.61), it suffices to prove τ−1M -certainly that

q∏
j=r+1

N
−d/2
j · ‖(H∗)kk1(kV , λV)‖k→k1 .

r∏
j=2

X∗j (kVj , λVj ) · τ−θM−ε
4

∏
f∈V2∪···∪Vr

Nd
f (6.97)

for any choice of (kV , λV). By a meshing argument as in the proof of Proposition 6.4, we may fix

a single choice of (kV , λV) and view h(j) = h
(j)
kjkUj

as depending only on (kj , kUj ), h = hkk1···kr as

depending only on (k, k1, · · · , kr), H = Hkk1kU as depending only on (k, k1, kU ), and (H∗)kk1 as

depending only on (k, k1). Also note the extra factor
∏q
j=r+1N

−d/2
j in the norm bound (6.97) that

we want to prove for (H∗)kk1 , which is analogous to Step 1 of the proof of Proposition 6.4, and can

be exploited in exactly the same way.

Now, using (6.94), noticing that H is BM [δ] measurable and Nl ≥ M δ for l ∈ U , that h (and

hence H) depends on (k, k1) only via the quantities k − ζ1k1 and |k|2 − ζ1|k1|2 and is supported

in ||k|2 − ζ1|k1|2| ≤ Mκ3
, and that no pairing occurs in kU in view of the product

∏(2)
l,l′ in the

definition (6.92) of H, we can apply Proposition 4.15 to (6.94) with (b, c, A) = (k, k1,U) and obtain

that τ−1M -certainly,

‖H∗‖k→k1 . (τ−1M)θ
∏
l∈U

N−α+θ
l ·max

(S,T )
‖H‖kkS→k1kT , (6.98)

where (S, T ) is any partition of U . Then, repeating the same arguments in Steps 3–4 of the proof

of Proposition 6.4 (namely, first removing the over-pairings as in Step 3 after (6.70), then applying

Proposition 6.2 as in Step 4 —note that here we do not have the set E), we obtain (after omitting

factors that are ≤ 1) that

q∏
j=r+1

N
−d/2
j · ‖H‖kkS→k1kT .

r∏
j=2

X∗j ·
∏

f∈V2∪···∪Vr

Nd
f ·
∏
l∈U

Nβ
l ·M

−2ε4 . (6.99)

Plugging (6.99) into (6.98) we get (6.97), as desired. �

7. Proof of Proposition 5.1

In this section we apply Propositions 6.2–6.6 to complete the inductive proof of Proposition 5.1.

Namely, assuming Local(M), we shall prove that Local(2M) holds τ−1M -certainly. Recall the

choice of M and the basic assumptions and facts listed in the beginning of Section 6.

7.1. The operator V M . We start by obtaining suitable bounds for the operator V M (as well as

RM = V M + 1), which will follow from the corresponding bounds for LM , which in turn follow

from the bounds for L ζ in part (5) of Local(M) in Proposition 5.1.

Proposition 7.1. Assume Local(M) is true. Then ‖LM,ζ‖X1−b→Xb ≤ τ (6κ)−1
for ζ ∈ {±}, so in

particular RM = (1−LM )−1 and ‖V M,ζ‖X1−b→Xb ≤ τ (7κ)−1
. For the kernel LM,ζ we also haveˆ

R
〈λ〉2(1−b)‖〈λ′〉−(1−b)(L̂M,ζ)kk′(λ, λ

′)‖2`2
k′L

2
λ′→`

2
k

dλ ≤ τ (3κ)−1
, (7.1)
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and the same bound (7.1) holds also for the kernel V M,ζ , with the power (3κ)−1 on the right hand

side replaced by (7κ/2)−1. Moreover for any Ñ we have (recall that α0 and β1 are defined in (3.1))

‖1〈k′〉≤Ñ (V M,ζ)kk′‖Xb,−(1−b)[kk′] ≤ τ
(8κ)−1

(Ñ)α0 ·MCδ, (7.2)

‖(1 +M−δ|k − ζk′|)κ2
(V M,ζ)kk′‖Xb,−(1−b)[kk′] ≤ τ

(8κ)−1
Mβ1−ε. (7.3)

Proof. Step 1: bounds for LM,ζ . For L < M δ, define the operators

(LMLw)k(t) = −i
∑

3≤q≤p
apq(m

∗
M )(p−q)/2χτ (t) · IχΠM

∑
sym

Mq(w, v
†
L, · · · , v

†
L)k(t) (7.4)

and L̃ML = LML −LM,L/2, then by definitions (7.4) and (5.19) we have

LM,ζ = LM,M [δ],ζ =
∑
L<Mδ

L̃ML,ζ ,

where the corresponding operators with ζ are defined as in Section 3.1. Moreover, each L̃ML,ζ

can be written as a superposition of at most (logL)Cθ operators of the form L ζ , defined by (5.39)

with this fixed ζ, where N is replaced by M and max(N2, · · · , Nq) = L. Therefore, to bound

‖LM,ζ‖X1−b→Xb , it suffices to control the same norm for L ζ with a gain of a power of L.

Let the kernel of L ζ be (L ζ)kk′(t, t
′), with Fourier transform (L̂ ζ)kk′(λ, λ

′), then by (3.5),

(L̂ ζw)k(λ) =
∑
k′

ˆ
dλ′ · (L̂ ζ)kk′(λ,−ζλ′)(ŵ)k′(λ

′).

For any w with ‖w‖Xb = 1, we can estimate

‖L ζw‖2X1−b ≤
ˆ
R
〈λ〉2(1−b) dλ ·

( ˆ
R
‖(L̂ ζ)kk′(λ,−ζλ′)‖k→k′ · ‖(ŵ)k′(λ

′)‖`2
k′

dλ′
)2

≤
ˆ
R2

〈λ〉2(1−b)〈λ′〉−2b‖(L̂ ζ)kk′(λ,−ζλ′)‖2k→k′ dλdλ′ · ‖w‖2Xb ,

so we have by (5.40) that

‖L ζ‖Xb→X1−b ≤ ‖L ζ‖X1−b,−b[k→k′] ≤ τ (5κ)−1
L−4εδ. (7.5)

On the other hand, noticing that the X0 and X1 norms can be viewed as Sobolev L2 and H1 norms

in the t variable (for `2k valued functions), and using the elementary inequalities leading to

‖χτ (t) · Iχv(t)‖H1
t
. ‖v(t)‖L2

t
(7.6)

for both scalar and vector valued functions, we can deduce that

‖L ζ‖X0→X1 . sup
{
‖Mq(y

∗
N2
, · · · , w, · · · , y∗Nq)‖X0 : ‖w‖X0 = 1

}
.

q∏
j=2

‖(ŷ∗Nj )kj (λj)‖`1kjL
1
λj

. τ−θLdp,
(7.7)

where we have used Local(M) parts (3) and (5) to control the norms of y∗Nj . Interpolating (7.5) and

(7.7) gives ‖L ζ‖X1−b→Xb . τ (6κ)−1
L−3εδ, which implies the desired bound for LM,ζ . In particular

we also get that RM = (1−LM )−1 and the corresponding bound for V M,ζ . Note that the estimates

for L ζ in this step do not require that L < M δ.
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Step 2: more bounds for L ζ . We need to prove (7.1) for LM,ζ . Clearly we may replace LM,ζ

by L ζ , provided we can prove (7.1) with right hand side replaced by τ (3κ)−1
L−6εδ. For the purpose

of (7.2)–(7.3) we will also prove an additional bound, which holds assuming L < M δ, namely:

‖1〈k′〉≤Ñ (L ζ)kk′‖Xb,−(1−b)[kk′] ≤ τ
(6κ)−1

min(Ñ ,M)α0MCδ. (7.8)

The proof of (7.8) is straightforward. In fact, since Nj ≤ L < M δ for 2 ≤ j ≤ q, we may

expand the functions y∗Nj using their Fourier transforms which satisfy the `1kjL
1
λj

bounds as in Step

1, and then reduce to fixed values of kj and λj at a loss of MCδ. Using also Lemma 4.2 (note that

(L ζ)kk′(0, t
′) ≡ 0), we may get rid of the χτ factor at the price of replacing the Xb,−(1−b)[kk′] norm

by the slightly larger Xb+,−(1−b)[kk′] norm. With these reductions, let the resulting operator be

L ∗,ζ , then by Lemma 4.1 we have

|(L̂ ∗,ζ)kk′(λ, λ
′)| . 1〈k〉≤M1〈k′〉≤Ñ1k−ζk′=k∗

(
1

〈λ〉3
+

1

〈λ± (λ′ ± Ω± λ∗)〉3

)
1

〈λ′ ± Ω± λ∗〉
, (7.9)

where k∗ and λ∗ are fixed, and Ω = |k|2 − ζ|k′|2. The bound (7.8) for L ∗,ζ then follows from

(7.9), elementary integral bounds and the fact that the number of choices for (k, k′) with 〈k〉 ≤M
and 〈k′〉 ≤ Ñ , and the values of k − ζk′ = k∗ and |k|2 − ζ|k′|2 = Ω fixed, under the simplicity

assumption1, is . min(Ñ ,M)d−1 ≤ min(Ñ ,M)2α0 .

Now we prove (7.1) for L ζ with right hand side replaced by τ (3κ)−1
L−6εδ. Since

‖〈λ′〉−b(L̂ ζ)kk′(λ, λ
′)‖2`2

k′L
2
λ′→`

2
k
≤
ˆ
R
〈λ′〉−2b‖(L̂ ζ)kk′(λ, λ

′)‖2`2
k′→`

2
k

dλ′

and thanks to (5.40), we know that the desired bound is true with 〈λ′〉−(1−b) replaced by 〈λ′〉−b,
and the right hand side replaced by τ (5κ/2)−1

L−8εδ, in (7.1). By interpolation, it then suffices to

verify that ˆ
R
〈λ〉2(1−b)‖(L̂ ζ)kk′(λ, λ

′)‖2`2
k′L

2
λ′→`

2
k

dλ ≤ τ−θL2dp. (7.10)

Here we first use Lemma 4.2 (again since (L ζ)kk′(0, t
′) ≡ 0) to get rid of the χτ factor in

L ζ , then apply the same arguments as in (7.7) in Step 1 to control the spacetime L2 norm of

Mq(y
∗
N2
, · · · , w, · · · , y∗Nq), and reduce (7.10) to the bound (viewing w as an `2k valued function)

|FtIχw(λ)| . 〈λ〉−1‖w(λ′)‖L2
λ′
,

which easily follows from Lemma 4.1.

Step 3: bounds for V M . Now we can prove (7.1)–(7.3) for V M,ζ . First look at (7.2)–(7.3); note

that V M = LM + LMV M , so in terms of kernels we have

(V̂ M,ζ)kk′(λ, λ
′) = (L̂M,ζ)kk′(λ, λ

′) +
∑

ι1,ι2∈{±}
ι1ι2=ζ

∑
m

ˆ
dµ · (L̂M,ι1)km(λ, µ)(V̂ M,ι2)ι2mk′(−µ, λ

′).

1See Definition 3.1. Here simplicity implies that, if ζ = + and k = k′, then k must also equal some other kj ,

which has already been fixed.



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 77

We may multiply by the truncation 1〈k′〉≤Ñ on both sides; then, by fixing (k′, λ′) and applying the

kernel (L̂M,ι1)km(λ, µ) to (V̂ M,ι2)ι2mk′(−µ, λ
′) as a function of (m,µ), we obtain that∑

ζ∈{±}

‖1〈k′〉≤Ñ (V M,ζ)kk′‖Xb,−(1−b)[kk′] ≤
∑
ζ∈{±}

‖1〈k′〉≤Ñ (LM,ζ)kk′‖Xb,−(1−b)[kk′]

+
∑

ι1∈{±}

‖LM,ι1‖Xb→Xb ·
∑

ι2∈{±}

‖1〈k′〉≤ÑV M,ι2
kk′ ‖Xb,−(1−b)[kk′]. (7.11)

Using (7.8) for LM,ζ , and the estimates for LM,ζ obtained in Step 1, we get (7.2). The proof for

(7.3) is similar, where we use Lemma 4.3 (with κ1 = κ2) to control the weighted norm of V M ,

noticing that (L̂M,ι1)km(λ, µ) is supported in |k − ι1m| .M δ.

Finally we prove (7.1) for V M,ζ . Since V M = LM + V MLM , similar to the above argument

we can write

(V̂ M,ζ)kk′(λ, λ
′) = (L̂M,ζ)kk′(λ, λ

′) +
∑

ι1,ι2∈{±}
ι1ι2=ζ

∑
m

ˆ
dµ · (V̂ M,ι1)km(λ, µ)(L̂M,ι2)ι2mk′(−µ, λ

′).

This implies, for any fixed λ, that∑
ζ∈{±}

‖〈λ′〉−(1−b)(V̂ M,ζ)kk′(λ, λ
′)‖`2

k′L
2
λ′→`

2
k
≤
∑
ζ∈{±}

‖〈λ′〉−(1−b)(L̂M,ζ)kk′(λ, λ
′)‖`2

k′L
2
λ′→`

2
k

+
∑

ι2∈{±}

‖LM,ι2‖X1−b→X1−b ·
∑

ι1∈{±}

‖〈µ〉−(1−b)(V̂ M,ι1)km(λ, µ)‖`2mL2
µ→`2k

. (7.12)

Using (7.1) for LM,ζ , and the estimates for LM,ζ obtained in Step 1, we get (7.1) for V M,ζ . �

7.2. The h(S,0) tensors. In this section we prove part (1) of Local(2M).

Proposition 7.2. Assume Local(M) is true. Then part (1) of Local(2M) is true. More precisely,

h(S,0) satisfies (5.30) and (5.32), for each plain regular plant S with N(S) = M and |S| ≤ D.

Proof. We induct in |S|, using the inductive definition (5.26). For the first term on the right hand

of (5.26), which corresponds to the mini-plant S = S+
M , the desired bounds are obvious, so we just

need to consider the second term, which is a multilinear expression of the input tensors h(Sj ,0). By

induction hypothesis, each input tensor satisfies (5.30) and (5.32) associated with Sj . Recall also

that Vj = V = ∅ for 1 ≤ j ≤ q when considering h(S,0) tensors.

First, to prove (5.30) for h(S,0), we notice that the sign of l ∈ U in S is given by ζ∗l = ζjζl where

l ∈ Uj and ζl is the sign of l in Sj (see Definition 3.6). In the support of S we have∑
l∈U

ζ∗l kl =
∑
l∈W

ζ∗l kl =

q∑
j=1

ζj
∑
l∈Uj

ζlkl =

q∑
j=1

ζjkj = k, (7.13)

where W = U1 ∪ · · · ∪ Uq, using the induction hypothesis, and the definition (5.25) of the tensor h

used in the merging process. Now let us prove (5.32) for h(S,0).

Step 1: first reductions. By definition of
∑

(a) in (5.26), we know Nl ≥ M δ for each l ∈ Lj and

1 ≤ j ≤ q, so we can omit the trimmings in (5.24), as they involve only the Y sets which do not

appear in the tensors. Applying Lemma 4.2, we may remove the localization factor χτ (t) on the

right hand side of (5.26) and gain a power τ8κ−1
(which would overwhelm any possible τ−θ loss),

provided we estimate this expression without χτ in the stronger norm with the power 〈λ〉2b in (5.32)
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replaced by 〈λ〉2b+ . By abusing notation we will still use h(S,0) to denote the expression after these

reductions; moreover, since
∑

sym and
∑

(a) involve at most (logM)κ terms, we may focus on one

single term in the discussion below.

With the above reductions, and applying also Lemma 4.1 and the definition (5.25) of h, we can

then take the Fourier transform in time and obtain that

ĥ(S,0)(λ) =

ˆ
dλ1 · · · dλq ·H(λ, λ1, · · · , λq), (7.14)

where H(λ, λ1, · · · , λq) = [H(λ, λ1, · · · , λq)]kkU is a tensor (with (λ, λ1, · · · , λq) being parameters)

defined by

H(λ, λ1, · · · , λq) = Υ · Merge(ĥ(S1,0)(λ1), · · · , ĥ(Sq ,0)(λq), h̃,B,O). (7.15)

In the above formula (Υ,B,O) are as in Section 5.2, h̃ = [h̃(λ, λ1, · · · , λq)]kk1···kq is a function of

(k, k1, · · · , kq) with parameters (λ, λ1, · · · , λq), that is supported in the set k =
∑q

j=1 ζjkj , and

satisfies the bound

|h̃| . τ−θ

〈λ〉〈λ− Ω− ζ1λ1 − · · · − ζqλq〉
; Ω := |k|2 −

q∑
j=1

ζj |kj |2. (7.16)

We shall separate two cases: the high modulation case where |λ| ≥ M
√
κ, and the low modulation

case where |λ| ≤M
√
κ.

Step 2: the high modulation case. Assume |λ| ≥M
√
κ. If we can estimate the norm in (5.32) for

h(S,0), but with 〈λ〉2b+ replaced by 〈λ〉2, then this gain of power in λ will overwhelm any possible

loss coming from any summation of any kj and kl variables (the latter summation loses at most a

power MC·D, while
√
κ � D). Because of this we can fix the values of k, kj and all kl, and view

ĥ(S,0)(λ) as a function of λ only, and ĥ(Sj ,0)(λj) as a function of λj only. Moreover by induction

hypothesis (5.32) and Hölder, this function of λj can be controlled in L1
λj

, so upon integrating in

λj , we can also fix the value of λj , in which case ĥ(S,0)(λ) satisfies the bound

|ĥ(S,0)(λ)| . τ−θ

〈λ〉〈λ− Ξ〉

due to (7.16), where Ξ is a fixed real number depending on the choices of k, kj , kl and λj . Clearly

this implies
´
R〈λ〉

2|ĥ(S,0)(λ)|2dλ . τ−θ uniformly in all choices of the fixed parameters, so the

desired estimate (5.32) follows.

Step 3: the low modulation case. Assume |λ| ≤M
√
κ. Recall the formula (7.14); we shall further

decompose h(S,0) into h(S,0,Γ) and h(Sj ,0) into h(Sj ,0,Γj), where Γ and Γj are integers, as in part (1)

of Proposition 5.1. By induction hypothesis (5.32), if we define Xj = Xj(λj ,Γj) to be the smallest

value such that ̂h(Sj ,0,Γj)(λj) satisfies the type 0 bounds (6.42)–(6.43) in Proposition 6.4, then(∑
Γj

ˆ
R
Xj(λj ,Γj) dλj

)2

.
ˆ
R
〈λj〉2b

(∑
Γj

X(λj ,Γj)

)2

dλj . 1. (7.17)

For fixed values of (λ, λj) and (Γ,Γj), if we replace h(Sj ,0) by h(Sj ,0,Γj) in (7.15), restrict to the

set |k|2 −
∑

l∈U ζ
∗
l |kl|2 = Γ, and denote the resulting tensor by H(Γ,Γ1,··· ,Γq)(λ, λ1, · · · , λq), then by

similar arguments as in (7.13) (but with kl replaced by |kl|2), we know that in this situation, we
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may further restrict h̃ to the set |k|2 −
∑q

j=1 ζj |kj |2 = Γ − Γ̃ in (7.15), where Γ̃ depends only on

the fixed parameters Γj . Therefore we can apply Proposition 6.5, also using (7.16), to deduce that

‖H(Γ,Γ1,··· ,Γq)(λ, λ1, · · · , λq)‖kkB→kC

. τ−θM−δ
3〈λ〉−1〈λ− Γ + Ξ〉−1

q∏
j=1

Xj(λj ,Γj) ·
∏

l∈B∪C
Nβ1

l

∏
l∈P

N−8ε
l

∏
l∈E

N4ε
l

∏
p∈Y

N−δ
3

p · X0X1,

(7.18)

where X0 and X1 are as in (5.33), and Ξ ∈ R is a quantity depending only on the fixed parameters

λj and Γj . Note that here no meshing argument is required since Proposition 6.5 holds determinis-

tically. Then, after summing in Γ, then taking the weighted L2 norm in λ within the set |λ| ≤M
√
κ,

then integrating in λj and summing in Γj using (7.17), we deduce that
ˆ
R
〈λ〉2b+

(∑
Γ∈Z
‖ĥ(S,0,Γ)(λ)‖kkB→kC

)2

dλ .

(
τ−θM−δ

4
∏

l∈B∪C
Nβ1

l

∏
l∈P

N−8ε
l

∏
l∈E

N4ε
l

∏
p∈Y

N−δ
3

p ·X0X1

)2

,

which implies (5.32) in view of Lemma 4.2. �

7.3. The h(S,1) tensors. In this section we prove part (2) of Local(2M).

Proposition 7.3. Assume Local(M) and part (1) of Local(2M) are true. Then τ−1M -certainly,

part (2) of Local(2M) is true. More precisely, h(S,1) satisfies (5.34)–(5.37), for each regular plant

S with N(S) = M and |S| ≤ D.

Proof. Again we proceed by induction on |S|, using the inductive definition (5.27). We first focus on

the main case, namely the estimates (5.34)–(5.36) for the second line of (5.27), assuming the second

maximum of Nj (1 ≤ j ≤ q) is ≥ M δ; then we will treat the remaining estimates. By induction

hypothesis, if nj = 0 then h(Sj ,nj) satisfies (5.30) and (5.32) associated with Sj ; if nj = 1 it satisfies

the bounds (5.34)–(5.37) associated with Sj . In various steps below, we will abuse notation and

refer to some components of h(S,1) in (5.27) still as h(S,1) for simplicity.

Step 1: the main case. We start with the second line of (5.27), assuming the second maximum of

Nj (1 ≤ j ≤ q) is ≥ M δ. Here we will prove (5.34)–(5.36) with all norms replaced by the stronger

ones Xb,−b0
V [· · · ]. By Lemma 4.2, we can get rid of the χτ (t) localization with a gain of τ8κ−1

, as

long as we estimate the expression without χτ in the Xb+,−b0
V [· · · ] norms. Repeating the proof of

Proposition 7.2, we can reduce to

ĥ(S,1)(λ) =

ˆ
dλ1 · · · dλr ·H(λ, λ1, · · · , λr) (7.19)

in the same way as (7.14), but instead of (7.15) we have

H(λ, λ1, · · · , λr) = Υ·Trim(Merge(Trim(ĥ(S1,n1)(λ1),M δ), · · · , Trim(ĥ(Sr,nr)(λr),M
δ), h̃,B,O),M δ),

(7.20)

where h̃ = [h̃(λ, λ1, · · · , λr)]kk1···kq(λr+1, · · · , λq) satisfies the same bound (7.16), as does any λj

derivative of h̃ for r + 1 ≤ j ≤ q.
Similar to the proof of Proposition 7.2, we shall consider two cases, the high modulation case

where max(|λ|, |λ1|, · · · , |λr|) ≥M
√
κ, and the low modulation case where max(|λ|, |λ1|, · · · , |λr|) ≤

M
√
κ. In the high-modulation case, we may again fix the values of k, kj and all kl and kf; then

ĥ(Sj ,nj)(λj) can be viewed as a function of λj and λVj only, and ĥ(S,1)(λ) can be viewed as a
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function of λ and λV only, where recall V is associated to the plant S in (5.23). The trimming steps

follow easily from Cauchy-Schwartz as in the proof of Proposition 6.1, so we may omit them and

consider only the merging step. We may take the X−b0Vj norm for ĥ(Sj ,nj)(λj) and denote the result

by hj(λj); similarly we may take the X−b0V norm of ĥ(S,1)(λ) and denote it by h(λ). Then each hj
is bounded in a weighted L2 space embedded in L1

λj
, so we may fix the value of λj as in the proof

of Proposition 7.2 whenever wanted. Now if |λ| = max(|λ|, |λ1|, · · · , |λr|), then the same argument

as in Step 2 of the proof of Proposition 7.2 works and implies the desired bound (with significant

decay) for
´
R〈λ〉

2b+ |h(λ)|2dλ uniformly in all choices of the fixed parameters; instead, if (say) |λ1|
is the maximum, then we can fix λj (j ≥ 2), also using the definition of X−b0V norm, to get that

|h(λ)|2 . τ−θ
ˆ (

1

〈λ〉

ˆ
R

1

〈λ± λ1 ± Ξ〉
|h1(λ1)| dλ1

)2

·
q∏

j=r+1

〈λj〉−2b0 dλr+1 · · · dλq,

where Ξ is a real number depending on (λr+1, · · · , λq), and the choices of the fixed variables. We

can then fix (λr+1, · · · , λq), estimate the λ1 integral using Cauchy-Schwartz and the L2 norm of

h1(λ1), save the 〈λ1〉b weight to gain an M
√
κ power, and bound

´
R〈λ〉

2b+ |h∗(λ)|2dλ (with significant

decay) uniformly in (λr+1, · · · , λq) and all choices of the fixed variables, where h∗(λ) is the above

integral in λ1. This implies (5.34)–(5.35).

As for (5.36), just notice that h̃ is supported in k =
∑q

j=1 ζjkj , which implies that

1 +
1

M2δ

∣∣∣∣k −∑
l∈U

ζ∗l kl − `
∣∣∣∣ . max

1≤j≤r

(
1 +

1

M2δ

∣∣∣∣kj −∑
l∈Uj

ζlkl − `j
∣∣∣∣), (7.21)

where `j =
∑

f∈Vj ζfkf and ` =
∑

f∈V ζ
∗
f kf (note that trimming at frequency M δ or lower will not

affect this inequality). This allows to control the weight in (5.36) for h(S,1) by the weights in (5.36)

for h(Sj ,nj), so the M
√
κ power gain above also implies (5.36).

From now on we can restrict to the low modulation case. We first look at (5.34)–(5.35); the proof

of (5.36) requires slightly different arguments and is left to the end of this step. Recall the bounds

(5.34)–(5.37) for the norms X b̃,−b0
Vj [· · · ] where 1 ≤ j ≤ r and b̃ ∈ {b, 1 − b}; since |λj | ≤ M

√
κ, we

may replace b̃ by b in all these bounds, at a price of MC/
√
κ which in the end will be negligible as

κ�Cδ 1. Suppose we want to estimate the Xb+,−b0
V [kkB → kC ] norm of h(S,1). If C 6= ∅, we shall

rearrange the tensors such that max{Nl : l ∈ C ∩ U1} ∼ max{Nl : l ∈ C}; if C = ∅, we shall select

all 1 ≤ j ≤ q such that either j > r, or nj = 1 or minl∈Lj Nl < M δ (such j exists by definition of∑
(b) in (5.27)), and by rearranging the tensors we may assume that the maximum of Nj for such

j corresponds to1 j = 1.

Next, for 1 ≤ j ≤ r, define h(j) = Trim(h(Sj ,nj), Rj) where R1 = M δ and Rj = (N∗)
δ for j ≥ 2,

with N∗ = max(N2, · · · , Nq). Then, by the rearrangements we made above, it can be verified

that the relevant parts (measurability, etc.) of the assumptions of Proposition 6.4 are satisfied.

Moreover, since ∂λj ĥ
(Sj ,nj) can be controlled using the fact that h(Sj ,nj) is compactly supported in

t, we can apply a meshing argument in λj in the same way as in the proof of Proposition 6.1. By

combining the bounds (5.34)–(5.37) for h(Sj ,nj), Proposition 6.1, and the above meshing argument

in λj , we obtain that the following holds τ−1M -certainly:

1Here we have assumed 1 ≤ j ≤ r. If r + 1 ≤ j ≤ q, then this j would correspond to the input function zNj in

(5.22), which gains a big power N−D1
j . Thus the case where the maximum Nj occurs at this j will be strictly easier

than the cases we actually treat in the proof.
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(a) If j is such that either nj = 1, or nj = 0 and minl∈Lj Nl < Rj , define Xj = Xj(λj) to be

the smallest value such that the type 1 bounds (6.44)–(6.47) in Proposition 6.4 hold for

ĥ(j)(λj), then we have(ˆ
R
Xj(λj) dλj

)2

.
ˆ
R
〈λj〉2bXj(λj)2 dλj .

[
τ−θMC/

√
κ(1 +RCj N

−3ε
j )

]2
. (7.22)

(b) If nj = 0 and minl∈Lj Nl ≥ Rj (in particular h(j) = h(Sj ,0)), we may decompose h(j) into

h(j,Γj) = h(Sj ,0,Γj) as in part (1) of Proposition 5.1; define Xj = Xj(λj ,Γj) to be the smallest

value such that the type 0 bounds (6.42)–(6.43) in Proposition 6.4 hold for ĥ(j,Γj)(λj), then

we have (7.17).

Moreover, since h̃ satisfies (7.16), we can apply a further meshing argument to replace it by some

function (which we still denote by h̃ for simplicity) that is supported in the big box |λ|, |λj | ≤M
√
κ

and is constant on each small box of size (say) exp(−(logM)6). Let Ξ := λ−Ω− ζ1λ1− · · · − ζqλq
(see (7.16)), we may also decompose h̃ into h̃Ξ∗ , which are restrictions of h̃ to the set bΞc = Ξ∗

for Ξ∗ ∈ Z, |Ξ∗| . M2
√
κ. Then h̃Ξ∗ satisfies the assumptions (6.38) and (6.39) in Proposition 6.4,

with Γ̃ in (6.38) depending on (λ, λ1, · · · , λr,Ξ∗), and the right hand side of (6.39) multiplied by

〈λ〉−1〈Ξ∗〉−1.

Let the tensor H(λ, λ1, · · · , λr,Γj ,Ξ∗) be defined as in (7.20) but with h̃ replaced by h̃Ξ∗ , and

Trim(ĥ(Sj ,nj)(λj),M
δ) replaced by ĥ(j)(λj) or ĥ(j,Γj)(λj) in case (a) or (b) above, and O replaced

by some O+ containing O. By Proposition 3.7 (3), ĥ(S,1)(λ) can be written as a linear combination

of ˆ
dλ1 · · · dλr ·

∑
Ξ∗

∑
(Γj)

H(λ, λ1, · · · , λr,Γj ,Ξ∗),

where
∑

(Γj)
are present only for those j in case (b) above. We now apply Proposition 6.4 to

conclude that the tensor H(λ, λ1, · · · , λr,Γj ,Ξ∗) satisfies (6.49)–(6.50) with

Y =
√

Υ
1

〈λ〉〈Ξ∗〉

r∏
j=1

Xj · τ−θM θ(N∗)
−ε4 , (7.23)

where Υ is as in Proposition 6.4, and Xj = Xj(λj) or Xj(λj ,Γj) in case (a) or (b) above; the

meshing argument guarantees that the above holds for all values of (λ, λj) after removing a single

exceptional set of probability ≤ Cθe
−(τ−1M)θ . Therefore, by taking the weighted L2 norm in λ

within the set |λ| ≤ M
√
κ, then summing in Ξ∗ and Γj and integrating in λj , we will obtain the

bounds (5.34)–(5.35) for this component of h(S,1) under consideration, once we show that

√
Υ · τ−θMC/

√
κ

r∏
j=1

(1 +RCj N
−3ε
j ) ≤ (N∗)

ε5 . (7.24)

But this is true since Rj = (N∗)
δ for j ≥ 2, so any power RCj for j ≥ 2 will be negligible. Moreover

R1 = M δ, so either N∗ & M and RC1 is also negligible, or N1 ∼ M and the RC1 loss is covered by

the N−3ε
1 gain, or max(N1, N∗) � M and the RC1 loss is covered by the

√
Υ gain. Finally since

N∗ ≥M δ, the gain (N∗)
ε4 in (7.23) will overwhelm the loss MC/

√
κ by our choice of κ. This proves

(5.34)–(5.35) in the main case.
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Now we turn to the proof of (5.36). Starting with H(λ, λ1, · · · , λr), we shall further decompose

it by attaching smooth truncations supported in sets

1 +
1

M2δ

∣∣∣∣k −∑
l∈U

ζ∗l kl − `
∣∣∣∣ ∼ K, 1 +

1

M2δ

∣∣∣∣kj −∑
l∈Uj

ζlkl − `j
∣∣∣∣ ∼ Kj (1 ≤ j ≤ r), (7.25)

where 1 ≤ K,Kj ≤ M are dyadic numbers, ` and `j as in (7.21). The number of terms in this

decomposition is ≤ (logM)C , so we only need to consider a single term. By (7.21) we know

K . max(K1, · · · ,Kr). By rearrangement we may assume K . K1; in particular we may assume

n1 = 1 (otherwise K . K1 ∼ 1, so (5.36) follows directly from (5.35)). At this point we can repeat

the arguments in the above proof of (5.34)–(5.35) (namely trimming h(Sj ,nj) at frequency Rj with

R1 = M δ and Rj = (N∗)
δ (j ≥ 2), decomposing H(λ, λ1, · · · , λr) into H(λ, λ1, · · · , λr,Γj ,Ξ∗),

defining Xj as above, etc.) and then apply Proposition 6.4 to conclude that H(λ, λ1, · · · , λr,Γj ,Ξ∗)
satisfies (6.52) with Y defined as in (7.23). Here the assumptions of Proposition 6.4 are satisfied,

since K . K1, and multiplying by any of the smooth truncations we introduced does not increase

any of the X b̃,−b0
Vj [kjkBj → kCj ] norms due to Lemma 4.10. After obtaining (6.52), we can again

repeat the arguments in the above proof (namely taking the weighted L2 norm in λ within the set

|λ| ≤M
√
κ, then summing in Ξ∗ and Γj and integrating in λj) and deduce (5.36) for this component

of h(S,1) under consideration, using (7.24). This proves (5.36) and completes the main case.

Step 2: adding the R-linear operators. Now we prove the estimates (5.34)–(5.36) for the second

line of (5.27) assuming the second maximum of Nj (1 ≤ j ≤ q) is < M δ (and in particular the

maximum of Nj is ≤ N/2), and the same estimates for the third line of (5.27). First look at the

second line of (5.27); we may assume the maximum of Nj is N1 ≥M δ (and L := max(N2, · · · , Nq) <

M δ), since the cases when the maximum of Nj occurs at r+ 1 ≤ j ≤ q, or when N1 < M δ also, are

much easier. With such assumptions we must have O = ∅, and the current term can be written as

an R-linear operator1 L ζ (for some ζ ∈ {±}, see (5.39) for definition, where N should be replaced

by M) applied to the tensor h′ := Trim(h(S1,n1),M δ). More precisely, S ′ := Trim(S1,M
δ) has

the same sets of leaves, pairings, blossoms and pasts as S (in particular the sets L,U ,V etc. are

common to both tensors), the only differences being that N(S ′) = N1 while N(S) = M , and the

sign ζ∗n of n ∈ L ∪ V in S equals the sign ζn of n in S ′ multiplied by ζ; for the tensors we have

(ĥ(S,1))kkU (λ, kV , λV) = Υ ·
∑
k′

ˆ
R

dλ′ · (L̂ ζ)kk′(λ,−ζλ′)(ĥ′)ζk′kU (λ′, kV , λV). (7.26)

To estimate the X b̃,−b0 [kkB → kC ] norms of h(S,1) (including the weighted ones in (5.36)), where

(B,C) is a subpartition of U and we denote E := U\(B ∪ C), we will consider four cases.

(a) Assume C 6= ∅, then for any fixed λ, (kV , λV) and kE , by (7.26) and a variant of Proposition

4.11 we have

‖(ĥ(S,1))kkU‖kkB→kC ≤ Υ · ‖〈λ′〉1−b(ĥ′)k′kU (λ′)‖`2
k′kB

L2
λ′→`

2
kC

· ‖〈λ′〉−(1−b)(L̂ ζ)kk′(λ,−ζλ′)‖`2
k′L

2
λ′→`

2
k
.

1When S is fixed, the sum in (Nj ,Sj) etc. for j ≥ 2 involves at most (logL)κ terms, which is negligible in view

of the Lεδ gain we will obtain below. The sum in (N1,S1) involves at most κ terms if N1 ∼ M and S1 = S ′, and at

most (logM)κ terms otherwise; either way this is negligible in view of the gain from Υ, and the gain of at least Mδ5

coming from trimming assuming S1 6= S ′, which is evident from the proof of Proposition 6.1.
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The third factor above is a function of λ only, and we shall temporarily denote it by G(λ); the

second factor is bounded by ∥∥〈λ′〉1−b · ‖(ĥ′)k′kU (λ′)‖k′kB→kC
∥∥
L2
λ′
,

so upon taking supremum in kE , and then taking the weighted L2 norm in λ and the weighted `2L2

norm in (kV , λV), we obtain that

‖h(S,1)‖
X

1−b,−b0
V [kkB→kC ]

≤ Υ · ‖h′‖
X

1−b,−b0
V [k′kB→kC ]

· ‖〈λ〉1−bG(λ)‖L2
λ
.

By the proof of Proposition 7.1, the weighted norm of G above is bounded by τ (6κ)−1
L−3εδ, hence

‖h(S,1)‖
X

1−b,−b0
V [kkB→kC ]

. τ (6κ)−1
L−3εδ ·Υ · ‖h′‖

X
1−b,−b0
V [k′kB→kC ]

.

By using the induction hypothesis for h(S1,n1), Proposition 6.1, and controlling the potential loss

factor 1 +MCδN−3ε
1 occurring in Proposition 6.1 by the Υ factor, we deduce (5.34) for h(S,1). Note

that, if S1 = S ′ then the above estimate has no loss. If S1 6= S ′, then applying Proposition 6.1

loses a factor M θ, but by examining the proof of Proposition 6.1 we see that we can also gain a

small power of N1 (which is ≤ N−δ
4

1 ). This, in view of the Υ factor, is enough to cover this loss

together with the potential log loss coming from summing over all plants; moreover the continuous

variable λ′ can be handled by restricting to |λ′| ≤Mκ2
and performing another meshing argument

exploiting the above power gain. The same comment also applies in the other cases below.

(b) Assume C = ∅ and E 6= ∅, then the same argument as in case (a) is enough to control

the norm ‖h(S,1)‖
X

1−b,−b0
V [kkB ]

; note that to prove (5.35) for h(S,1) we need to gain a power M−ε,

which is provided by the corresponding power N−ε1 (or the better powers and the X1,1 factor in

(5.32) corresponding to S1) from the induction hypothesis if N1 ∼ M , and by the Υ factor if

N1 �M . The weighted norm in (5.36) is bounded in the same way using the induction hypothesis,

Proposition 6.1, (the proof of) Proposition 7.1, and (a variant of) Lemma 4.3, using the fact that

(L ζ)kk′ is supported in |k − ζk′| .M δ.

(c) Assume C = E = ∅, and either n1 = 1, or minl∈L1 Nl < M δ, then the norm in question,

namely Xb,−b0
V [kkU ], is a weighted `2L2 norm in (kV , λV), while for fixed (kV , λV) it is an `2L2 norm

in (k, kU , λ) weighted by 〈λ〉b. Therefore, by (7.26) we have

‖h(S,1)‖
X
b,−b0
V [kkU ]

≤ Υ · ‖h′‖
X

1−b,−b0
V [k′kU ]

· ‖L ζ‖X1−b→Xb .

Using the induction hypothesis, Proposition 6.1 and the bound ‖L ζ‖X1−b→Xb ≤ τ (6κ)−1
L−3εδ,

which also follows from the proof of Proposition 7.1, we can prove the desired estimates in the

same way as in parts (a) and (b).

(d) Assume C = E = ∅, n1 = 0, and that minl∈L1 Nl ≥ M δ (in particular V = ∅ and L = L1).

In this case we will use a different estimate. Still starting with (7.26), we have

‖h(S,1)‖Xb[kkU ] ≤ Υ · ‖(L ζ)kk′‖Xb,−(1−b)[kk′] · ‖h
(S1,0)‖X1−b[k′→kU ].

Now let Ñ = maxl∈U Nl, then in the above formula we may assume 〈k′〉 . Ñ . By the proof of

Proposition 7.1 we have

‖1〈k′〉.Ñ · (L
ζ)kk′‖Xb,−(1−b)[kk′] . τ

(6κ)−1
(Ñ)α0MCδ;



84 YU DENG, ANDREA R. NAHMOD, AND HAITIAN YUE

combining with the induction hypothesis (in particular summing over the Γ variable in (5.32)) we

obtain that

‖h(S,1)‖Xb[kkU ] . Υ · τ (6κ)−1
(Ñ)α0MCδ ·

∏
l∈U

Nβ1

l

∏
l∈P

N−8ε
l

∏
p∈Y

N−δ
3

p · (Ñ)−β1 · X1,1, (7.27)

where X1,1 is the one in (5.33) corresponding to S1. To prove (5.35) we just need to gain an extra

M−2ε power, which is provided either by the difference in the powers of Nl for l ∈ L between (5.35)

and (7.27), or by the X1,1 and Υ factors. The proof of (5.36) is the same, as the weight in (5.36)

is in fact bounded by 1 using the induction hypothesis and the support condition for (L ζ)kk′ .

Next we look at the third line of (5.27). For simplicity, we will consider the case ζ = +; the case

ζ = − is analogous, with S replaced by S in a few places. This term can be written as

(ĥ(S,1))kkU (λ, kV , λV) =
∑
k′

ˆ
R

dλ′ · (V̂ M,+)kk′(λ,−λ′)(Ĥ)k′kU (λ′, kV , λV). (7.28)

The term (7.28) is similar to (7.26), except that L + is replaced by V M,+, and h′ is replaced by H,

which is either the second term on the right hand side of (5.26) (if we take
∑

(a) instead of
∑

(c) in

the third line of (5.27)), or the second line of (5.27) (if we take
∑

(b) instead of
∑

(c)). By what we

proved in Proposition 7.2 and the above arguments, we know that H is an S-tensor, which either

satisfies (5.30) and (5.32), or satisfies the bounds (5.34)–(5.36). Moreover for the R-linear operator

V M,+ by Proposition 7.1 we have

‖V M,+‖X1−b→Xb ≤ τ (7κ)−1
,∥∥〈λ〉1−b‖〈λ′〉−(1−b)(V̂ M,+)kk′(λ, λ

′)‖`2
k′L

2
λ′→`

2
k

∥∥
L2
λ
≤ τ (7κ)−1

,

‖1〈k′〉≤ÑV M,+‖Xb,−(1−b)[kk′] ≤ τ
(8κ)−1

(Ñ)α0 ·MCδ,

‖(1 +M−δ|k − k′|)κ2
V M,+‖Xb,−(1−b)[kk′] ≤ τ

(8κ)−1
Mβ1−ε,

(7.29)

which are similar to the bounds for L + we have used above. The estimate for the third line

of (5.27) can then be deduced by considering cases (a)–(d), in the same way as above. We only

mention a few important points: (i) going from H to h(S,1) does not involve trimming, so in these

proofs no meshing argument is needed, hence they do not require the derivative bound (5.37) for

H (which has not been proved yet); (ii) the Υ factor is not needed, because H is an S-tensor,

therefore the N1 in the above proof will be replaced by M ; (iii) the fact that L + is supported in

|k− k′| ≤M δ is replaced by the last bound in (7.29), which leads to the restriction |k− k′| ≤M2δ,

since otherwise we gain a sufficiently high power of M . This allows us to apply Lemma 4.3 in

estimating the weighted norms in (5.36) in cases (b) and (c), and also bound the weight in (5.36)

in case (d).

Step 3: remaining estimates. Next we shall prove (5.34)–(5.36) for the first line of (5.27). In

fact, this term can be treated in the same way as the third line of (5.27), see Step 2 above, where

the only difference is that H is replaced by the S+
M tensor occurring as the first term of the right

hand side of (5.26). Since this tensor also satisfies (5.30) and (5.32) by Proposition 7.2, the same

arguments as in Step 2 above suffice to estimate this term.

Finally we prove the derivative bound (5.37) for all terms in (5.27). This is a very loose bound,

so it can be proved by very loose estimates. Just notice that:
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• The R-linear operator V M,ζ commutes with ∂λf and increases the norm in consideration by

at most a constant multiple;

• If h′ = Trim(h,R), where h is an S-tensor and h′ is an S ′-tensor, then ∂λfh
′ = Trim(∂λfh,R)

for any f ∈ V ′;
• If H = Merge(h(1), · · · , h(r), h,B,O), where h(j) is an Sj-tensor and H is an S-tensor, then

∂λfH = Merge(h(1), · · · , ∂λfh(j), · · · , h(r), h,B,O) for any f ∈ Vj ; in the same way we also

have ∂λjH = Merge(h(1), · · · , h(r), ∂λjh,B,O) for any r + 1 ≤ j ≤ q.
Therefore, in order to estimate ∂λfh

(S,1) for f ∈ V, we only need to consider the same Trim-Merge

combination, where one of the inputs h(Sj ,nj) is replaced by ∂Vjh
(Sj ,nj). This input is then bounded

by the induction hypothesis, noting that either Nj ≤ M/2 or |Sj | < |S|, and the other inputs are

bounded trivially (say using part (3) of Local(M)) by a power MC·κ. Therefore we get, without

removing any exceptional set, that

‖∂λVh
(S,1)
kkU

(t, kV , λV)‖
X
b,−b0
V [kkU ]

.MC·κ +MC·κ exp[(log Ñ)5 + |S̃|(log Ñ)3],

where Ñ ≤M , |S̃| ≤ D, and either Ñ ≤M/2 or |S̃| < |S|. Therefore (5.37) follows from the bound

exp[(logM)5 + |S|(logM)3] ≥ exp((logM)2) · exp[(log Ñ)5 + |S̃|(log Ñ)3]

under these assumptions. This completes the proof. �

7.4. The remaining parts. In this section we prove parts (3)–(5) of Local(2M).

Proposition 7.4. Assume Local(M) and parts (1) and (2) of Local(2M) are true. Then τ−1M -

certainly, parts (3)–(5) of Local(2M) are true. More precisely, (5.38) is true for each n ∈ {0, 1}
and regular plant S with N(S) = M and |S| ≤ D, and the mapping that defines zM (see the right

hand side of (5.28)) is a contraction mapping from the ball {z : ‖z‖Xb0 ≤ M−D1} to itself, and

(5.40) is true for the kernel L ζ defined by (5.39), if max(N2, · · · , Nq) = M .

Proof. First we shall prove (5.38) for Ψ(S,n), assuming either (5.30) and (5.32), or the estimates

(5.34)–(5.37) for h(S,n). If n = 1, by applying Cauchy-Schwartz (in the (kV , λV) variables), Lemma

4.4, and a meshing argument in λ and λV variables, we can get from (5.34)–(5.37) (where we choose

C = E = ∅) that τ−1M -certainly,

‖Ψ(S,1)‖Xb0 ≤ (τ−1M)θ0M−ε
∏

n∈L∪V∪Y
N−δ

3

n ,

which clearly implies (5.38). Here for the meshing argument, just notice that the λ and λV deriva-

tives of ĥ(S,1) are bounded, and that the choice of b0 in (5.38) (compared to b) allows us to restrict

λ to the big box |λ| ≤Mκ2
, so we can apply the same arguments as in the proof of Proposition 6.1.

Next, if n = 0 and S 6= S+
M (which is the mini-tensor defined in Definition 3.2), then |L| ≥ 3.

For each fixed k ∈ Zd with 〈k〉 ≤M , using Lemma 4.4, a meshing argument in λ as above, and the

simple inequality

sup
k
‖hkkU‖kU ≤ ‖hkkU‖k→kU

for any tensor h = hkkU , we deduce from (5.32) (where we choose B = E = ∅ instead of C = E =

∅) that τ−1M -certainly,( ˆ
R
〈λ〉2b0 |Ψ̂(S,0)

k (λ)|2
)1/2

≤ (τ−1M)θ0X1 ·
∏

l∈L\{ltop}

N−4ε
l

∏
p∈Y

N−δ
3

p ·N−α+θ
ltop

,
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where Nltop := maxl∈U Nl, and X1 is as in (5.33) but with N replaced by M . We may assume that

τ−1M -certainly the above holds for every k; since 〈k〉 . Nltop by (5.30), we conclude that

‖Ψ(S,0)‖Xs′,b0 ≤ τ
−θ0N s′−s

ltop
M2δ3X1 ·

∏
l∈L\{ltop}

N−2ε
l ·

∏
n∈L∪Y

N−δ
3

l ,

which implies (5.38), noticing that

N s′−s
ltop

M2δ3X1 ·
∏

l∈L\{ltop}

N−2ε
l ≤M s′−s,

which easily follows from the assumption 0 < s − s′ < δ2 and the definition (5.33) of X1. Finally,

if n = 0 and S = S+
M , then we simply have Ψ

(S,0)
k (t) = χ(t) · 1M/2<〈k〉≤M (fM )k, so (5.38) follows

from (5.8).

Next we prove the contraction mapping part in the statement. We will only prove that the right

hand side of (5.28) maps the given ball to itself, since the contraction part follows in the same way.

Suppose ‖zM‖Xb0 ≤M−D1 . The right hand side of (5.28), which we shall denote by zout, contains

three types of terms, which we shall analyze below. Like in the proof of Proposition 7.3, we will

abuse notation and refer to some components of zout on the right hand side of (5.28) still as zout.

(1) Consider the terms on the right hand side of (5.28) that contain no factor zM (that is,

Nj ≤ M/2 for all r + 1 ≤ j ≤ q). If some zNj is replaced by zhi
Nj

whose Fourier transform is

supported in |λj | ≥ Mκ2
, then we can gain a power Mκ by using the bound ‖zNj‖Xb0 ≤ 1, which

will overwhelm all loss and easily imply the desired estimate. Below we will assume each zNj is

replaced by zlo
Nj

, so by definition of
∑

(d) in (5.28), the corresponding component (up to linear

combination over different O) can be written in Fourier space as

(ẑout)k(λ) = Υ ·
∑
ζ∈{±}

∑
k′

ˆ
dλ′ · (R̂M,ζ)kk′(λ,−ζλ′)(Ψ̂(S,n))ζk′(λ

′), Ψ
(S,n)
k′ = Ψk′ [S, h(S,n)],

where

S = Trim(Merge(Trim(S1,M
δ), · · · , Trim(Sr,M δ),B,O),M δ)

satisfies |S| > D, and h(S,n) is defined in the same way as the second term on the right hand side

of (5.26) (if n = 0), or as the second line of (5.27) (if n = 1).

Note that we now have D < |S| ≤ C · D; however in the proof of Propositions 7.2 and 7.3

we have not used the assumption |S| ≤ D, so the same proof also works in the current case and

gives (τ−1M -certainly, i.e. after removing an exceptional set of probability ≤ Cθe
−(τ−1M)θ) the

bound (5.32) or the bounds (5.34)–(5.37) for h(S,n). Then, applying once more Lemma 4.4 and the

meshing argument as before, we deduce that

‖Ψ(S,n)‖Xb0 ≤Md/2
∏

n∈L∪V∪Y
N−δ

3

n ≤Md/2M−δ
4D ≤M−2D1 ,

using the fact that |L|+ |V|+ |Y| = |S| > D and Nn ≥M δ for each n ∈ L∪ V ∪Y. Using then the

Xb0 → Xb0 norm bound for RM,ζ (which follows from the corresponding bound for V M,ζ proved

in Proposition 7.1), we deduce the same bound for zout.

(2) Consider the terms on the right hand side of (5.28) that contain at least two factors zM (that

is, Nj = M for at least two r + 1 ≤ j ≤ q). Then, these zM factors can be estimated in Xb0 and

lead to a gain of at least M−2D1 . The other factors that are not zM can be bounded trivially using

either the induction hypothesis or (5.38) which we just proved and contributes at most an MC
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power. Since D1 = δ5D and D �Cδ 1, the power M−2D1 will be more than enough to close the

estimate.

(3) It remains to consider the terms on the right hand side of (5.28) that contains exactly one

factor zM (that is, Nj = M for exactly one r+ 1 ≤ j ≤ q). By rearranging, we can write this term

as zout = RM,ιL ζzM , where ι, ζ ∈ {±}, and L ζ is the R-linear operator defined in (5.39). Here in

(5.39), each Nj (2 ≤ j ≤ q) is assumed to be ≤ M instead of < M , but if Nj = M then y∗Nj can

only be one of the Ψ[Sj , h(Sj ,nj)] terms with Sj a regular plant of frequency M and size at most

D (i.e. y∗Nj is not allowed to be zM or any Fourier truncation thereof). Our goal here is to prove

that (5.40) holds for such L ζ . In fact, if (5.40) holds, then by repeating Step 1 of the proof of

Proposition 7.1 we obtain that

‖L ζ‖Xb0→Xb0 ≤ τ (6κ)−1(
max

2≤j≤q
Nj

)−3εδ
;

summing over all possible choices of L ζ and using also the Xb0 → Xb0 bound of RM,ι, we obtain

‖zout‖Xb0 ≤ τ (8κ)−1‖zM‖Xb0 ≤ τ (8κ)−1
M−D1 ,

which is acceptable. This means that, if we can prove (5.40) for the L ζ as above, then part (4),

i.e. the contraction mapping part of Local(2M) is true, and thus zM , being the unique fixed point

of a contraction mapping, does satisfy ‖zM‖Xb0 ≤M−D1 . Combining with Proposition 7.1 and the

construction in Section 5.2, we also obtain that yM defined by (5.17) solves (5.16) with N replaced

by M . Finally, the bound (5.40) for the L ζ as above also implies part (5) of Local(2M), since if

any y∗Nj in (5.39) is replaced by zM or its Fourier truncation, then the M−D1 decay will overwhelm

any possible loss and immediately imply (5.40).

In summary, we now only need to prove (5.40) for L ζ as in (5.39), where either Nj < M or

Nj = M and y∗Nj = Ψ[Sj , h(Sj ,nj)]. We may assume max(N2, · · · , Nq) = M (otherwise use the

induction hypothesis) and replace zNj by zlo
Nj

. Applying Lemma 4.2, we can remove the χτ factor

in (5.39) and gain a power τκ
−1

, which will overwhelm all possible τ−θ losses, provided we estimate

the expression without χτ in the stronger X1−b0,−b[k → k′] norm.

By Proposition 3.7 (1) we can write

(L̂ ζ)kk′(λ, λ
′) =

ˆ
[M ζ(λ, λ′, λ2, · · · , λr)]kk′ dλ2 · · · dλr, (7.30)

where for fixed values of (λ, λ′, λ2, · · · , λr), M ζ(λ, λ′, λ2, · · · , λr) = [M ζ(λ, λ′, λ2, · · · , λr)]kk′ is the

tensor M = Mkk1 defined in (6.90), Proposition 6.6 (where we rename k1 as k′). Here in (6.90),

we assume that Ψ
(j)
kj

= Ψkj [S ′j , ĥ(j)(λj)] where S ′j = Trim(Sj ,M δ) and h(j) = Trim(h(Sj ,nj),M δ)

for 2 ≤ j ≤ r; moreover, for fixed values of (λ, λ′, λ2, · · · , λr), the tensor h = h(λ, λ′, λ2, · · · , λr) =

[h(λ, λ′, λ2, · · · , λr)]kk′···kq(λr+1, · · · , λq) satisfies (6.88) and

|h|+ |∂λjh| .
τ−θ

〈λ〉〈Ω + ζr+1λr+1 + · · ·+ ζqλq + Ξ̃〉
, r+1 ≤ j ≤ q; Ξ̃ := ζ2λ2 + · · ·+ζrλr+ζλ′−λ.

Moreover, h is in fact a function of (k− ζk′, |k|2− ζ|k′|2) and (k2, · · · , kq, λr+1, · · · , λq) only, in the

same manner as in Proposition 6.6.

Like before, we will separate the high modulation case max(|λ2|, · · · , |λr|) ≥ M
√
κ, and the low

modulation case max(|λ2|, · · · , |λr|) ≤ M
√
κ. In the high modulation case we may assume (say)

|λ2| = max(|λ2|, · · · , |λr|) ≥ M
√
κ, then as before, using the induction hypothesis and (5.38), we
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can fix the values of kj (2 ≤ j ≤ q) and λj (3 ≤ j ≤ q), and view Ψ(2) as a function of λ2 only.

Then we obtain, up to a loss of MC , that

|(L̂ ζ)kk′(λ, λ
′)| . τ−θ

〈λ〉
1k−ζk′=k∗

ˆ
R

1

〈λ− ζλ′ − |k|2 + ζ|k′|2 − ζ2λ2 + Ξ〉
|Ψ(2)(λ2)|dλ2,

where k∗ is a fixed Zd vector, and Ξ is a fixed real number, depending on the choices of the fixed

variables. Since Ψ(2) is bounded in L2
λ2

with the weight 〈λ2〉b0 ≥ M
√
κ/2, we can gain this M

√
κ/2

power (which overwhelms all MC losses) and apply Cauchy-Schwartz, estimating Ψ(2) only in L2
λ2

,

to obtain that

‖(L̂ ζ)kk′(λ, λ
′)‖k→k′ .

τ−θ

〈λ〉
M−

√
κ/4

uniformly in (λ, λ′), which is sufficient to prove (5.40).

Now we can restrict to the low modulation case. With a loss of MC/
√
κ, which will be negligible

compare to the gain, we can replace the exponents 1− b and b̃ in (5.34)–(5.37) all by b. Therefore,

by the same arguments as in the proof of Proposition 7.3, we obtain the following:

(a) If j is such that either nj = 1, or nj = 0 and minl∈Lj Nl < M δ, define Xj = Xj(λj) to

be the smallest value such that the type 1 bounds (6.44)–(6.47) in Proposition 6.4 hold for

ĥ(j)(λj), then we have(ˆ
R
Xj(λj) dλj

)2

.
ˆ
R
〈λj〉2bXj(λj)2 dλj . τ

−θMC/
√
κ+Cδ. (7.31)

(b) If nj = 0 and minl∈Lj Nl ≥ M δ (in particular h(j) = h(Sj ,0)), we may decompose h(j) into

h(j,Γj) = h(Sj ,0,Γj) as in part (1) of Proposition 5.1; define Xj = Xj(λj ,Γj) to be the smallest

value such that the type 0 bounds (6.42)–(6.43) in Proposition 6.4 hold for ĥ(j,Γj)(λj), then

we have (7.17).

Moreover we may also assume max(|λ|, |λ′|) ≤Mκ2
, otherwise we exploit the room coming from

the exponents 1− b0 < 1/2 and b > 1/2 to gain a power Mκ that will overwhelm all possible losses.

These assumptions allow us to apply Proposition 6.6 and get

‖[M ζ(λ, λ′, λ2, · · · , λr)]kk′‖k→k′ ≤
1

〈λ〉

r∏
j=2

Xj ·M−ε
5
,

where Xj = Xj(λj) or Xj(λj ,Γj) in case (a) or (b) above. Since max(|λ2|, · · · , |λr|) ≤ M
√
κ and

max(|λ|, |λ′|) ≤Mκ2
, by a meshing argument we can remove a single exceptional set of probability

≤ Cθe
−(τ−1M)θ such that the above holds for all values of (λ, λ′, λ2, · · · , λr). Therefore, by taking

the L2 norm weighted by 〈λ〉1−b0〈λ′〉−b in (λ, λ′), then summing in Γj and integrating in λj , we

obtain the bound (5.40) for L ζ . This completes the proof of parts (3)–(5) of Local(2M) and

finishes the inductive proof of Proposition 5.1. �

8. Proof of the main results

In this section we prove our main theorems, Theorems 1.1 and 1.6. Theorem 1.1 follows from

Proposition 5.1 together with some arguments similar to those in Sections 6–7; Theorem 1.6 is

easier and follows from simplified versions of these arguments.
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8.1. Proof of Theorem 1.1. First, by Proposition 5.1, after removing an exceptional set of

probability at most Cθe
−τ−θ , we may assume that Local(M) holds for all M . In particular, by

(5.18), (5.38) and part (4) of Local(M) in Proposition 5.1, and in view of the fact that the number

of plants S with frequency N(S) = N and size |S| ≤ D is at most (logN)κ, we conclude that

‖yN‖Xs′,b0 ≤ τ
−θN (s′−s)/2 (8.1)

for each s′ < s and each N , thus

lim
N→∞

v†N = lim
N→∞

∑
N ′≤N

yN ′ exists in Xs′,b0 . (8.2)

Moreover, under all these Local(M) assumptions, v†N solves (5.14), thus it must equal vN on

J = [−τ, τ ]. By definition eit∆v†N also equals the solution ũN of (5.6) on J .

Now, define

BN (t) =
p+ 1

2
χ(t)

ˆ t

0
χ(t′)

 
Td
W p−1
N (eit

′∆v†N ) dt′, (8.3)

akin to the one in (5.2) but with the smooth cutoff χ, and define u†N (t) = eit∆v†N (t) · e−iBN (t),

then u†N equals uN , which is the solution to (1.7), on J . By analyzing the term W p−1
N as in [36],

Proposition 2.2, and applying the same calculations as in Section 5.1.2, we can rewrite BN (t) as

BN (t) =
∑

3≤q≤p
a′pq(m

∗
N )(p−q)/2 · IχAMq−1(v†N , · · · , v

†
N )(t). (8.4)

In the above q runs over odd integers, a′pq are constants, m∗N is defined as in Section 5.1.2, A
is the projection onto frequency k = 0, Mq−1 is defined as in (5.11)–(5.12) but with q replaced

by q − 1. Note that instead of the simplicity condition as in Definition 3.1, here the coefficients

ckk1···kq−1 satisfy the slightly different input-simplicity condition, namely that ckk1···kq−1 depends

only on the set of pairings in (k1, · · · , kq−1), and ckk1···kq−1 = 0 unless any pairing in (k1, · · · , kq−1)

is over-paired. However, in view of the projection A to k = 0, this input-simplicity condition will

imply the same tensor norm estimates in Section 4 that are proved under the simplicity condition.

Therefore, by decomposing v†N using (5.17) and repeating the proofs1 of Sections 6–7, after

possibly removing another exceptional set of probability not exceeding Cθe
−τ−θ , we conclude that

BN (t) converges to some B(t) in Hb0
t ↪→ C0

t as N →∞, where recall b0 > 1/2 as in (3.3). Therefore

uN , which equals u†N = eit∆v†N · e−iBN on J , converges in C0
tH

s−
x (J) as N →∞. This limit u has

the explicit expansion (which is valid on J)

uk(t) = e−i(|k|
2t+B(t))

[ ∑
n∈{0,1}

∑
|S|≤D

∑
kU

{∑
kV

ˆ
dλV · h(S,n)

kkU
(kV , λV)

×
∏
f∈V

(ẑNf
)
ζf
kf

(λf)

}∏
l∈U

∆Nl
(kl)

〈kl〉α
· gζlkl(ω) + zk(t)

]
, (8.5)

where the sum is taken over all regular plants S with |S| ≤ D, the random tensors h(S,n) and the

functions zN are defined as in Section 5.2, and the remainder z belongs to C0
tH

D1−1
x (J).

1If needed, we can always view an R-multilinear operator of degree q − 1 as one of degree q by adding a trivial

input function.
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It now remains to prove that the nonlinearity W p(u) defined by (1.8) exists as a spacetime

distribution, and that u solves (1.1) in the distributional sense. Define

v† = lim
N→∞

v†N =
∑
N ′

yN ′ , and u†(t) = eit∆v†(t) · e−iB(t), (8.6)

then u equals u† on J , so it suffices to prove that

lim
N→∞

W p
N (ΠNu

†) = lim
N→∞

ΠNW
p
N (ΠNu

†) = lim
N→∞

W p
N (u†N ) = lim

N→∞
ΠNW

p
N (u†N ) (8.7)

in the sense of distributions. As BN → B, we may replace u†N by eit∆v†N and u† by eit∆v†; then

arguing as in Section 5.1.2, we can reduce to analyzing the terms∑
3≤q≤p

a′′pq(m
∗
N )(p−q)/2 ΠMq(w, · · · , w)(t), (8.8)

where q is odd as before, a′′pq are constants, Π is either 1 or ΠN , w is either v†N or ΠNv
†, and M

is as in (5.11)–(5.12) but is input-simple instead of simple. Decomposing w using (5.17), it then

suffices to show that

Φ :=Mq(yN1 , · · · , yNq)→ 0, as Nmax := max(N1, · · · , Nq)→∞, (8.9)

in the sense of distributions. In fact we shall control the term IχΦ which, by Lemma 4.1, satisfies

ÎχΦk(λ) =

ˆ
R
I(λ, λ′)Φ̂k(λ

′) dλ′, |I|+ |∂I| .
(

1

〈λ〉3
+

1

〈λ− λ′〉3

)
1

〈λ′〉
. (8.10)

Note that, apart from simple modifications, IχΦ essentially has the same structure as Ψ(S,n) in

(5.38) with the associated tensor h(S,n) as in (5.26) and (5.27), so it can be estimated in the same

way as in Sections 6–7. We only make two additional observations:

(a) The proofs of Sections 6–7 do not depend on any cancellation in (8.10), so the same argu-

ments can be applied for the term Iabs
χ Φ defined by

Îabs
χ Φk(λ) =

ˆ
R
〈λ′〉−1(〈λ〉−3 + 〈λ− λ′〉−3)|Φ̂k(λ

′)|dλ′, (8.11)

leading to the control of Iabs
χ Φ in the X−d,b0 norm (here the exponent −d has to do with

the potential power loss associated with fixing k, see observation (b) below), which in turn

implies the control of Φ in the sense of distributions—for example, due to the trivial bound

‖Iabs
χ Φ‖X−d,b0 &

∑
k

ˆ
R
〈k〉−2d〈λ′〉−4|Φ̂k(λ

′)| dλ′.

(b) The R-multilinear operator Mq is input-simple instead of simple. However, in order to

control the X−d,b0 norm of Iabs
χ Φ, we may fix the value of k in Φ̂k(λ) and it suffices to get a

bound uniform in k thanks to the exponent −d. Now once k is fixed, the pairings between

k and any kj become unimportant (they no longer cause losses in any counting estimate

as the paired and over-paired variables now have only one choice), so an input-simple R-

multilinear operator can be treated in the same way as a simple one, similar to the analysis

of (8.4) above.
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With the observations above, after possibly removing another exceptional set of probability not

exceeding Cθe
−τ−θ , the same proofs of Sections 6–7 can be carried out to obtain, for example, that

‖Iabs
χ Φ‖X−d,b0 ≤ τ

−θ(Nmax)−δ
6
. (8.12)

This proves (8.9) and thus finishes the proof of Theorem 1.1.

8.2. Proof of Theorem 1.6. Fix ε > 0 small enough depending on (d, p), s− spr and (p− 1)(s−
spr)− ν (note that this is different from (3.1)). Let (δ,D, κ, θ) etc. be defined as in Section 3.1, we

may assume N �Cθ 1. Let

B(T ) =
p+ 1

2

ˆ T

0

 
Td
|uho|p−1 dT ′,

and repeat the gauging, conditioning and conjugating arguments as in Section 5.1, except that σN
is replaced by 0 since we are dealing with the nonlinearity |uho|p−1uho instead of the Wick-ordered

one. After also rescaling time, we can write N -certainly that

ũ(T, x) =
∑
k

wk(N
−νT )ei(k·x−|k|

2T−B(T )), (8.13)

where wk(t) is the solution to the system

wk(t) = fk − iNν
∑

3≤q≤p
apq(mho)(p−q)/2

ˆ t

0
Mq(w, · · · , w)k(t

′) dt′ (8.14)

similar to (5.9), where

mho =

 
Td
|uho|2 = N−2α

∑
k

φ2
( k
N

)
|gk|2,

which is N -certainly bounded by Nd−2α; like in (5.14) we also consider the solution w† to

w†k(t) = χ(t)fk − iNν
∑

3≤q≤p
apq(mho)(p−q)/2 · IχMq(w

†, · · · , w†)k(t). (8.15)

Here in (8.14)–(8.15) we have fk = γk · ηk(ω) with constants |γk| ≤ N−α+θ〈k〉θ|φ(k/N)|, apq are

bounded constants and |mho| ≤ Nd−2α (α is defined as in (1.10)), and the R-multilinear expression

Mq(w
(1), · · · , w(q))k(t

′) =
∑

ζ1k1+···+ζqkq=k
ckk1···kq · eiN

νt′Ω
q∏
j=1

(w(j))
ζj
kj

(t′), (8.16)

with the signs ζj and coefficients ckk1···kq as in (5.11).

Since the initial data fk is uniformly distributed in k, the analysis of (8.14) will be significantly

simpler than the arguments in Sections 5–7. More precisely, we will only need the tensors1 h(S,n)

with n = 0 (which will be constant tensors, i.e. do not depend on ω), and instead of the full plant

structure, we will only need its tree part (which is called L before, see Definition 3.2), leaf pairings

and signs of leaves. As such, we will define (in this proof only) S to be a set of leaves l with possible

pairings, together with the sign ζl ∈ {±} for each l ∈ S. Let P (resp. U) be the set of paired (resp.

unpaired) leaves, we require that ζl′ = −ζl for any pair (l, l′), and that
∑

l∈L ζl = 1. The S tensors

h = hkkU are defined as in Definition 3.4 but instead of condition (1) we only assume2 〈kl〉 ≤ N1+θ

for each l ∈ S, and Ψk = Ψk[S, h] is defined as in (3.8). We do not need the Trim function, and

1Because we do not need to distinguish the low-frequency inputs as there is only one scale.
2The choice of N1+θ is because φ is not compactly supported and may have a Schwartz tail.
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Merge is defined in the same way as in Definition 3.6 (with only the tree part, and without the

frequency parameters such as Nl for leaves l; also the factors ∆Nl
γkl in (3.11) are replaced by γkl).

Next, for any S with |S| ≤ D, define the S tensor h(S) = h
(S)
kkU

(t) inductively by

h
(S)
kkU

(t) = 1|S|=1 · 1k=kl1〈k〉≤N1+θ +Nν
∑

3≤q≤p
apq(mho)(p−q)/2

∑
(∗)

IχHkkU (t), (8.17)

similar to (5.26). Here the sum
∑

(∗) is taken over B = (ζ1, · · · , ζq), Sj as defined above, and O, such

that S = Merge(S1, · · · ,Sq,B,O); H = HkkU is defined by H = Merge(h(S1), · · · , h(Sq), h,B,O)

with

h = hk1···kq(t
′) = 1k=ζ1k1+···+ζqkq · 1〈k〉≤N1+2θ

q∏
j=1

1〈kj〉≤N1+2θ · ckk1···kqe
iNνt′Ω (8.18)

similar to (5.23)–(5.25). By arguing similarly as in Propositions 4.9, 6.3, 6.5 and 7.2, we can prove

inductively that h
(S)
kkU

satisfies the support condition (5.30); moreover, for each subpartition (B,C)

of U , we can prove thatˆ
R
〈λ〉2b

(∑
Γ∈Z
‖ĥ(S,Γ)

kkU
(λ)‖kkB→kC

)2

dλ ≤
(
N (α−2ε)|B∪C|N−ε|P|N ε|E| · X0

)2
, (8.19)

similar to (5.32). Here P is the set of paired leaves as defined above, E = U\(B ∪ C), and h(S,Γ)

is the restriction of h(S) to the set (5.31) as in part (1) of Proposition 5.1; moreover, X0 is defined

to be N−(α−2ε) if C 6= ∅, and Nmax(0,d/2−α+2ε) if C = E = ∅, and N−εδ if B = C = ∅, and 1

otherwise, as in (5.33).

We note that the proof of (8.19) is much easier than that of (5.32), as we do not need to apply

the careful selection algorithm in Proposition 6.2. There are only two nontrivial differences. The

first is due to the extra Nν factor in eiN
νt′Ω in (8.18), which actually helps us as ν > 0, since NνΩ

belonging to an interval of length O(1) will force Ω to belong to an interval of length O(1). The

second is the extra factor Nν on the right hand side of (8.17), which gets cancelled by the N−α

decay of γk and the (mho)(p−q)/2 factor in (8.17), in view of the inequality ν ≤ (p−1)(α−α0−10ε)

(α0 is defined as in (3.1)). In particular we have

(mho)(p−q)/2Nν ·
q∏
j=2

Nα′0+θ ≤
q∏
j=2

Nα−8ε, α′0 :=
d

2
− 1

q − 1
,

so the bound for the h tensor we see when merging h(Sj) tensors—which is the one on the right

hand side of (4.26) with p replaced by q—can be cancelled by the N−α decay of γk with extra gain

of N ε powers, after being multiplied by Nν and (mho)(p−q)/2 factors.

Now, with (8.19) available, we can construct the solution w† to (8.15) by the ansatz

w†k(t) =
∑
|S|≤D

Ψk[S, h(S)(t)] + z†k(t), (8.20)

where z† satisfies the equation

z†k(t) = χ(t)1〈k〉≥N1+θ · fk − iNν
∑

3≤q≤p
apq(m∗)

(p−q)/2
∑

(v(1),··· ,v(q))

IχMq(v
(1), · · · , v(q))k(t), (8.21)

with the sum taken over (v(1), · · · , v(q)) such that each v(j) is either z† or Ψk[Sj , h(S)j)] for some Sj
with |Sj | ≤ D, and that either (i) at least one v(j) = z, or (ii) v(j) = Ψk[Sj , h(Sj)] for each j, and

S = Merge(S1, · · · ,Sr,B,O) satisfies |S| > D (for any O).
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Note that, due to the lack of projection ΠN on the right hand side of (1.11), the remainder z†

is not guaranteed to have compact support in k. Thus, instead of the Xb0 norm as in Proposition

5.1, we should control the X̃C0,b0 norm of z†, defined by

‖z†‖2
X̃C0,b0

:=
∑
k

ˆ
R

(
1 +

|k|
N1+θ

)2C0

〈λ〉2b0 |(ẑ†)k(λ)|2 dλ,

where C0 > 0 is a large absolute constant depending only on (d, p) and b0 is as in (3.3). Indeed we

shall prove that ‖z†‖
X̃C0,b0

≤ N−D1 by a contraction mapping. Note that again we only need to

prove that the right hand side of (8.21) satisfies this same inequality assuming that z† does. This

right hand side contains four types of terms, which are listed as follows1:

• The first term on the right hand side of (8.21), which is acceptable because |fk| ≤ |φ(k/N)|
where φ is Schwartz and 〈k〉 ≥ N1+θ.

• The term where at least two v(j) equal z†, which is acceptable thanks to the decay N−D1

of z† and the choice of large C0.

• The term where v(j) = Ψk[Sj , h(Sj)] for each j. This term is acceptable because it can be

written as a linear combination of Ψk[S, h(S)] for some S = Merge(S1, · · · ,Sq,B,O) with

|S| > D, and the corresponding tensor h(S) = Merge(h(S1), · · · , h(Sq), h,B,O), which can

be shown to satisfy (8.19) by repeating the proofs above. By applying Lemma 4.4 again,

this Ψk term can be bounded by N−D1 in Xb0 , and hence in X̃C0,b0 because it is supported

in |k| . N1+θ.

• Finally, the term where exactly one v(j) equals z†. This term can be written as an R-linear

operator L ζ applied to z†, where this L ζ has similar form as the one in (5.39). Now by

repeating the same arguments as in Propositions 4.9, 6.2, 6.6, 7.1 and 7.4, we can bound

the Xb0 → Xb0 norm of this operator by a negative power of N . As the kernel (L ζ)kk′ is

supported in |k − ζk′| . N1+θ, by Lemma 4.3, the X̃C0,b0 → X̃C0,b0 norm of L ζ is also

bounded by a negative power of N , so this term is also acceptable.

As such, we have closed the estimates for z† and obtained the solution w† in the form of (8.20).

This means that the equation (8.15) is well-posed at least up to time t = 1, so the equation (1.11)

is well-posed at least up to time T = Nν . Moreover (1.12) easily follows from the bound for z†, as

well as the bounds for nonlinear components Ψk[S, h(S)] with |S| > 1, which in turn follow from

(8.19) and Lemma 4.4. This completes the proof of Theorem 1.6.

9. Final remarks

In this section we make some final remarks. These include a comparison with parabolic equations

in Section 9.1 and some future directions in Section 9.2. We also list some open problems.

9.1. Comparison with parabolic equations. The random data Schrödinger equation

(i∂t + ∆)u = W p(u), u(0) = f(ω), (9.1)

is closely linked to, and fundamentally different from, the stochastic heat equation

(∂t −∆)u = W̃ p(u) + ζ, (9.2)

if both are suitably renormalized. In this section we will explain their differences and connections.

1The reader may notice the similarity with the construction of zM in (5.28).
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9.1.1. Difference in scaling. In Section 1.2 we explained the heuristics behind the probabilistic

scaling critical index spr for (9.1). In fact the same philosophy can be applied to (9.2), leading to

the parabolic scaling critical index spa in Remark 1.12, which is the one appearing in works such as

[52, 46]. Note that spa is strictly lower than spr.

Fix some value of s, and let α = s+ d/2. As in Section 1.2 we will make simplifications to (9.2)

by replacing the nonlinearity by Nnp defined in (1.13) and neglecting the renormalization1; we also

set initial data u(0) = 0. Similar to (1.18), assume the noise ζ (or its regularization) has the form

ζ(t, x) = N−α+1
∑
|k|∼N

∂tβk(t) · eik·x,

where βk(t) are independent Brownian motions. Let ψ = (∂t − ∆)−1ζ be the linear evolution of

noise (which plays the same role as eit∆u(0) in Section 1.2), then

ψ(t, x) = N−α
∑
|k|∼N

Gk(t)e
ik·x, Gk(t) := N

ˆ t

0
e−(t−t′)|k|2 dβk(t

′).

For fixed |t| ∼ 1 these Gk(t) form a collection of independent Gaussian variables with E|Gk(t)|2 ∼ 1,

hence ψ is bounded in C0
tH

s
x (also in C0

t C
s
x by Khintchine’s inequality), just as in Section 1.2.

Now, plugging into (the simplified version of) (9.2), we need to control the first nonlinear iteration

u(1)(t) =

ˆ t

0
e(t−t′)∆Nnp(ψ(t′)) dt′, (9.3)

where |t| ∼ 1, in Hs (or equivalently Cs). Similar to Section 1.2, on the Fourier side we have

u
(1)
k (t) ∼ N−pα

∑
kj∈Zd,|kj |∼N
k1−···+kp=k

ˆ t

0
e−(t−t′)|k|2Gk1(t′)Gk2(t′) · · ·Gkp(t′) dt′. (9.4)

Suppose |k| ∼ N , using the square root cancellation in the sum in (9.4) (from independence, as

in Section 1.2) and the N−2 gain from the t′ integral, we see that with high probability, the inner

sum-integral has size N (pd−d)/2−2, hence

‖u(1)(t)‖Hs ∼ N−(p−1)s−2; ‖u(1)(t)‖Hs . 1⇔ s ≥ − 2

p− 1
:= spa.

We make a few observations on the above heuristic calculation:

(a) It is no surprise that spa = scr−d/2. Indeed this makes Cspa and Hscr have equal scaling, and

in the usual (deterministic) sense Hscr , thus also Cspa , is critical for the heat equation. The effect of

randomness then comes through Khintchine’s inequality, where a Gaussian random function which

belongs to Hspa must also belong to Cspa which scaling-wise equals the critical space Hscr . This is

essentially how spa is calculated in [52].

(b) The above argument does not work for Schrödinger equations, because even though Hscr and

Cspa are still scaling critical in the usual sense, the latter is not compatible with Schrödinger flows.

However, this does not tell us what is the right notion of criticality for Schrödinger.

(c) To exactly see the difference between spa and spr, we have to compare the calculations in

here and in Section 1.2. Note that in (9.4) the t′ integral gains two derivatives N−2; in comparison

1Even with the Nnp nonlinearity, some renormalization may still be needed for higher order iterations, but not

for the first nonlinear iteration which is discussed here. Also whether u is real or complex valued, and whether Nnp

contains complex conjugates, does not affect the scaling heuristics.



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 95

in (1.16) and (1.19) there is no derivative gain—since the Schrödinger flow has no smoothing—only

the denominator 〈Ω〉−1 which restricts to the submanifold Ω = 0. This is the fundamental difference

between heat and Schrödinger that eventually leads to different scalings in the random setting.

(d) More precisely, note that restricting to Ω = 0 reduces the number of dimensions by two.

In the deterministic setting, this gains two derivatives N−2 in the summation in (1.16), which

matches the two-derivative gain from heat, leading to the same criticality threshold scr; however in

the random setting the summation in (1.19) gets square rooted due to randomness, which means

the N−2 gain also gets square rooted, leading to the different criticality thresholds spa and spr.

9.1.2. Necessary renormalizations. Another difference between our theory and the parabolic the-

ories is that, in the latter more and more renormalization terms are needed when one gets close

to criticality (for example with the Φ4
4−δ model [15, 22]), while in the former we stay with Wick

ordering in the full subcritical range.

The main reason for this is the difference in the notions of scaling. For example, in the Φ4
3 setting

where (d, p) = (3, 3), if solutions have regularity C−1/2− or equivalently H−1/2−, then (9.2) is still

subcritical though needs a log correction 3C2 beyond Wick ordering (see (1.22)), but (9.1) is already

critical relative to the probabilistic scaling (comparable to the four dimensional Φ4
4 problem which

is critical relative to the parabolic scaling, due to the reason explained in Section 9.1.1). Conversely,

if (9.1) is subcritical, then a calculation shows that the 3C2 in (1.22) will not appear as E( · ) is

not divergent in the limit, so (9.2) only needs Wick ordering.

More precisely, for (9.2) there are two types of renormalization terms1, namely those coming from

the mass (which is just Wick ordering for Φ4
3 in (1.22)) and those not coming from the mass (such as

the log term in (1.22) and the further corrections described in [15], Section 2.8.2 for Φ4
4−δ). Now for

(9.1) only the mass terms diverge (and need to be renormalized) in the probabilistically subcritical

range; moreover since the Schrödinger equation conserves mass, we can always replace the mass

by the mass of initial data, which just leads to Wick ordering and no further renormalization is

needed.

Given this difference, one might ask whether for (9.1) we can go strictly below spr and down

to spa by including additional counterterms such as the ones in [15]. We believe the answer is no

due to the following reason. In all previous works, the counterterms in the renormalization process

are needed because certain specific terms in the formal expansion of the solution with respect to

the random initial data or noise become unbounded when ε → 0 (or N → ∞ in the setting of

Theorem 1.1); however if one considers (9.1) in the supercritical range s < spr, then an extended

version of the calculation in Section 1.2 shows that every term in the formal expansion—not just

those with a renormalizable structure—becomes unbounded (say with respect to the regularity of

initial data) as N →∞. This is similar to2 what happens to (9.2) when s < spa. Therefore, it is at

least highly improbable that the local-in-time problem for (9.1) can be solved perturbatively via a

renormalization process similar to those in the theory of regularity structures [52, 54, 55, 15].

1This distinction may be artificial from the regularity structure perspective, but is convenient in comparison with

the dispersive case here.
2Put in another way, imagine one has all the input and output frequencies being the same in the nonlinearity.

Then (9.2) is locally well-posed, without any renormalization or special arguments, if and only if s > spa, while for

(9.1) the same thing holds if and only if s > spr.
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9.1.3. Invariant measures and quantum field theory. If the random initial data of (9.1) is given by

(1.2) with α = 1, or if ζ in (9.2) is the spacetime white noise, then both equations will possess the

same formally invariant Gibbs measure, which is the Φp+1
d measure in quantum field theory (up to

real/complex distinction), formally defined by

dµ ∼ exp

[
−2

p+ 1

ˆ
Td
W̃ p+1(u) dx

]
· exp

[
−
ˆ
Td
|∇u|2 dx

] ∏
x∈Td

dx (9.5)

for some renormalization W̃ p+1 of |u|p+1. The justification of the formal definition (9.5) is a major

problem in constructive quantum field theory, see [44, 66, 63] and recently [7]. It has been done

in dimension d ∈ {1, 2} for any p, and in dimension d = 3 for p = 3. The other cases are not

super-renormalizable in the sense of [22], and such constructions are either unknown or proved

impossible [1, 2, 41].

The study of the dynamics of the measure (9.5) under the flow of (9.2), commonly known as

stochastic quantization, starts with [65]. The invariance of the Φp+1
d measure with d ∈ {1, 2} and

any p is proved in [30]. Recent developments of parabolic theories has led to the resolution of the

Φ4
3 case, with proof of invariance in [62, 4].

On the other hand, the Gibbs measure problem for (9.1) is harder, both conceptually and tech-

nically, due to lack of smoothing and (consequently) the different scalings as described above. The

invariance of Φp+1
1 (for any p) and Φ4

2 measures are proved by Bourgain [10, 11] (see also [59]). The

Φp+1
2 case for p ≥ 5 is much more challenging and is resolved only in our recent work [36]. This

matches the results of the Gibbs measure problem for (9.1) with those of the measure construction

problem, and of the stochastic quantization problem for (9.2), except in the Φ4
3 case (d, p) = (3, 3).

The Gibbs measure problem for (d, p) = (3, 3) has two main difficulties. First it is probabilis-

tically critical. This is not as bad as supercritical cases which we believe—as mentioned above—

cannot be renormalized (at least through a process similar to [52]), but still log divergences seem

unavoidable in all aspects, even for short time. Second, the Φ4
3 measure is mutually singular with

the reference Gaussian measure, as proved in [8], thus f(ω) in (9.1) will not be given by the simple

formula1 (1.2). Therefore the hope is to somehow get rid of the log divergences by moving to the

right measure, i.e. Gibbs instead of Gaussian, but then a local solution theory has to be developed

without independence of Fourier coefficients.

Open problem 1. Prove invariance of the Gibbs measure for (9.1), possibly with suitable

renormalizations, when d = p = 3.

9.2. Future directions. Though in this paper we have restricted to Schrödinger equations, our

method can be applied to more general settings. In this last section we list some future directions.

9.2.1. The stochastic setting. Consider (9.1), but with additive noise ζ instead of random data, for

example

(i∂t + ∆)u = W p(u) + ζ, u(0) = 0,

1This should be compared to the stochastic quantization problem for (9.2) where the solution theory relies on

the Gaussian noise instead of the non-Gaussian measure, as observed in [8].



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 97

see [31, 39, 37, 25] for some previous works. Here the role of the linear evolution eit∆f(ω) is played

by ψ := (i∂t −∆)−1ζ. Note that if we formally periodize the time, then ψ will have the form

ψ(t, x) =
∑
k,λ

ak,λgk,λ(ω)ei(k·x−|k|
2t+λt),

where λ is the modulation variable, ak,λ is some fixed function of (k, λ) and gk,λ are i.i.d. Gaussian

random variables. Therefore, in addition to the k variables, we should include also the λ variables

as input variables for our random tensor, which will then look like hkkA,λλA for some sets A. The

counting estimate should be adjusted, which may lead to changes in the selection algorithm.

9.2.2. Other dispersion relations. Similarly we may consider other dispersion relations, still in the

semilinear setting. The main difference is again in the counting estimates: suppose the new dis-

persion relation is Λ(k) for some function Λ, then we should look at the cardinality of sets

{(k1, · · · , kp) : k1 − · · ·+ kp = k, Λ(k1)− · · ·+ Λ(kp) = Γ +O(1)}

with fixed k and Γ, perhaps with some additional linear relations between kj like those in Section

4.3. Note that while parabolic equations are all alike, each dispersive equation is dispersive in its

own way. As a result, the above counting bound will depend on the exact form of Λ (not just

its homogeneity), and a selection algorithm is then designed to match the counting bound. In

particular we will not have a general black-box argument working for all Λ, and the proof has to

be done in a dispersion-specific way.

9.2.3. Quasilinear problems. Recently there have been attempts to extend the existing parabolic

theories to quasilinear equations [42, 43]. This is also of interest in the dispersive setting, especially

in view of the recent results in low regularity deterministic local well-posedness [3, 57].

Of course, compared to parabolic equations, moving to the quasilinear (or even variable-coefficient

semilinear) setting completely changes the methodology for dispersive equations. The Xs,b-based

approaches become unavailable and dispersion has to be observed on the level of energy estimates

or parametrices. In the deterministic setting, it is expected that the local well-posedness threshold

is higher than scr, but the precise value is only known in some cases; in the random setting we

also expect the threshold to be higher than spr, but are unable to decide or even guess the correct

value. The method of random averaging operators can be applied to the quasilinear setting but

may not achieve the same power as the semilinear version, and the quasilinear version of random

tensor theory still needs to be explored.

Open problem 2. Build a random data theory for quasilinear dispersive (including wave)

equations, and determine the threshold for almost-sure local well-posedness.

9.2.4. Long-time propagation of randomness. It is natural to ask whether the short-time solutions

for (9.1) constructed in Theorem 1.1 can be extended to longer or infinite time; i.e. whether

the randomness structure can be propagated beyond the perturbative regime. Such global-in-

time extensions are immediate if an invariant Gibbs measure is available at the regularity we are

considering, but as discussed in Section 9.1.3 this happens only in a few specific cases.

Note that the theory of random tensors, like the theory of regularity structures, is a short-time

theory by nature; thus to get global results it has to be combined with separate global or large-scale

techniques. In the context of (9.2), the work [62] combines the para-controlled calculus with energy

estimates, and the more recent works [61, 22] combine (a reformulated version of) the regularity
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structures theory with the maximum principle. In the context of (9.1), the main global technique

known is energy conservation, and the associated high-low and I-methods [13, 24, 26, 27]. Note

that these require deterministic analysis at the H1 (energy) level, so they need (deterministic) H1

subcriticality, i.e. scr < 1, to work.

In the H1 supercritical (scr > 1) case, another natural question is whether classical solutions

with random initial data (such as (1.2) with α suitably large, as opposed to low regularity solutions

of Theorem 1.1) are almost surely global. This is also important from the PDE point of view,

as it would mean that blowup for defocusing H1 supercritical nonlinear Schrödinger equations is

non-generic and unstable1. Note that the blowup example in Rd, recently constructed in [60], is

indeed non-generic.

Open problem 3. In the energy subcritical case, do the singular solutions constructed in

Theorem 1.1 extend to all time? In the energy supercritical case, does almost-sure global well-

posedness hold for random initial data of high regularity?
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