RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND
NONLINEAR DISPERSIVE EQUATIONS
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ABSTRACT. We introduce the theory of random tensors, which naturally extends the method of ran-
dom averaging operators in our earlier work [36], to study the propagation of randomness under non-
linear dispersive equations. By applying this theory we establish almost-sure local well-posedness
for semilinear Schrodinger equations in the full subcritical range relative to the probabilistic scal-
ing (Theorem [1.1). The solution we construct has an explicit expansion in terms of multilinear
Gaussians with adapted random tensor coefficients. As a byproduct we also obtain new results
concerning regular data and long-time solutions, in particular Theorem which provides long-
time control for random homogeneous data, demonstrating the highly nontrivial fact that the first
energy cascade happens at a much later time than in the deterministic setting.

In the random setting, the probabilistic scaling is the natural scaling for dispersive equations,
and is different from the natural scaling for parabolic equations. Our theory of random tensors
can be viewed as the dispersive counterpart of the existing parabolic theories (regularity structures,
para-controlled calculus and renormalization group techniques).
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1. INTRODUCTION

The study of partial differential equations with randomness has become an important and in-
fluential subject in the last few decades. In this work we will be concerned with a major topic of
this subject, namely the local in time Cauchy problems with either random initial data or additive
stochastic forcing.

It is well known that in many situations, randomization or noise improves the behavior of so-
lutions to PDEs. Usually this can be interpreted as generic solutions being genuinely better than
pathological ones. This phenomenon, which has its roots in the various cancellation properties of
independent random variables (e.g. Central Limit Theorem or Khintchine’s inequality), has been
extensively studied since the 70-80’s. The key difficulty here is to analyze how the explicit ran-
domness (given for example by a Wiener measure or Gaussian noise) propagates under the flow of
nonlinear PDEs.

In the past few years, there has been significant progress in the setting of singular parabolic
stochastic equations (SPDEs): the development of the theory of regularity structures of Hairer and
the para-controlled calculus of Gubinelli-Imkeller-Perkowski has led to tremendous success in local
well-posedness theory, essentially completing the full picture in what is known as the subcritical
range. Unfortunately, both theories rely crucially on the parabolic nature of the equation, and
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have not achieved the same success in the other important class of PDEs, namely the dispersive
equations.

The purpose of this work is to develop a new theory, which we will call random tensors, to fill
this gap in the dispersive setting. This is a natural extension of the method of random averaging
operators in our earlier work [36], but is much more powerful. In fact, in the random setting
dispersive equations have a natural scaling, which we call the probabilistic scaling (see Section
, that is different from the parabolic oneEL and our method—just like the theory of regularity
structures and the para-controlled calculus in the parabolic setting—provides the complete picture
in the full subcritical range with respect to this natural scaling.

In this work we will focus on the random data problemﬂ for the semilinear Schrédinger equation,
which is the most common (and most studied) nonlinear dispersive equation. Our method is general
and can be applied to other dispersion relations (see Section [9.2]).

The rest of this introduction is organized as follows. In Section we describe the setup and
state the main theorems. In Section we present a heuristic scaling argument from [36] to justify
the notion of criticality in this work. In Section we briefly review the ideas in earlier works, and
in Sections we discuss the method of random averaging operators in [36]. Finally in Section
we provide the motivation behind our theory of random tensors; the detailed explanation of this
theory is left to Section

1.1. Setup and main results. Fix d > 1 and p > 3 odd, and assume (d, p) # (1, 3); in particular
d(p—1) > 4. Consider the nonlinear Schrodinger (NLS) equation on Ry x T¢, where T¢ = (R/27Z)%:
(10 + A)yu = WP(u),

u(0) = f(w).

Here f(w) is some choice of random initial data defined on an ambient probability space (0, B,P),

(1.1)

w € O, and WP(u) is either |u[P~lu or its Wick ordering, which will be defined precisely below.
The Hamiltonian of 1) is linked to the @ZH model in constructive quantum field theory.

1.1.1. Almost-sure local well-posedness. In the context of almost-sure local well-posedness, the ran-

dom initial data will be given by

g’“ e (1.2)
kezd

where {g(w) } ez areii.d. centered normalized (complex) Gaussian random variables. Such initial

data was first considered by Bourgain [I1], 12] and later by Burq-Tzvetkov [19]. In (1.2]) we will fix
1

a:$+§, 3>Sp7-::—1?1.

This value s, is the critical exponent for the probabilistic scaling, which will be discussed in detail

in Section It is always lower than s, := (d/2) —2/(p — 1), which is the critical exponent for

the usual (deterministic) scaling. The random data f(w) defined by (|1.2)) almost surely belongs to
5= (T9) := Ny H¥ (T?), but not to H*(T%).

(1.3)

1See Remark [1.12] and the explanation in Section

2Random data is a natural setting for dispersive equatlons (parallel to additive noise for parabolic ones) in view of
the invariant measures. Of course one may also consider stochastic versions of (1.1 -, which are similar but correspond
to different randomizations, see Section
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Our first main theorem, originally stated as Conjecture 1.7 in [36], proves that is almost
surely locally well-posed with random initial data , in the sense that canonical smooth approx-
imations converge to a unique limit; here and throughout the paper, canonical smooth approxima-
tions always mean the ones described in Theorem and Remark below. This result can be
interpreted as almost sure local well-posedness in H S‘(']I‘d) with respect to the canonical Gauss-
ian measure—the law of f(w) defined by —for any s > spr, i.e. in the full probabilistically
subcritical range.

To state the theorem, we need to define the canonical truncations and the associated Wick
orderings. Given a dyadic number N > IEL define the truncation operators Iy and Ay by

(Iyw)p = Tvug = 1<y -up, Ay =Ty =TIy, (1.4)

where uy, represents the Fourier coefficient. For notational simplicity, we will identify Iy with the
multiplier IIx (k) = 14y<y, and similarly for Ay. Define the expectation of truncated mass

ox ::E]ﬁd Myf@)= 3 — (1.5)

2a?
v F)

and, for integers r > 0, the Wick-ordered monomials

Wﬁ"(u)=Z<—1>T-j(7f)”N_“ru\2f, W]%r“(u):Z(—l)H(r“) N i, (1)

m . m
= J 7! prd Jj+1 7!

where op is as in ([1.5). The first main theorem is then stated as follows.

Theorem 1.1. Fiz s > sp, and o as in , and let f(w) be as in . Let un be the solution
to the canonically truncated system
(z@t + A)’U,N = HNW]I\}(UN), (1 7)
un(0) = Iy f(w). '
Then, for 0 < T < 1, there exists a set Z C © with P(Z) < 096*7_9, where 6 is a small constant
(ultimately determined by (d, p, s), and independent of T) and Cy is a constant determined by 0, such
that when w ¢ Z, the sequence {un} converges, as N — oo, to a unique limit u in CYHS™[—T,7].
Moreover, for this u, the nonlinearity WP(u) in , which is the Wick ordering of |u[P~u, is
well-defined as
p e 1 p = 1 p
WP (u) A}gnoo Wy (I yu) A}gnoo Wy (T yu) (1.8)

in the sense of spacetime distributions (where both limits exist and are equal), and u solves the
equation in the distributional sense. Finally this solution u has an explicit expansion in terms
of multilinear Gaussians with adapted random tensor coefficients; see for the precise form.

Remark 1.2. Theorem (and Theorem below) can be shown for any rectangular torus Tg =
(R/27BZ) x - -+ x (R/2wB4Z), and for focusing nonlinearity, with almost the same proof.

When (d,p) = (1, 3), instead of one should look at the completely non-resonant nonlinearity
(Ju|? = 2 f [u[*)u, since in this case [|[TIyul|2, — E|IIyul|?, does not converge as N — oo, see .
With this change, it is known, see [45], that is deterministically locally well-posed in a Fourier-
Lebesgue space which the data almost surely belongs to (as in this case s, = s¢r), so Theorem
[LI remains true.

IWe will assume N > 1 throughout, and only “formally” need to replace N by 1/2 in a few places.
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Remark 1.3. The Wick ordering is crucial in Theorem as our solution has infinite mass
when s, < s < 0; in this case the Wick-ordered NLS, rather than the original one, is the right
equation to study. In fact, even in the simplest case (d,p) = (1,3), the NLS without the renor-
malization as in Remark will have no solution for any infinite mass initial data; see [51]. As
another example, for the dynamical @‘21 model (2D cubic heat equation with white noise forcing),
the canonical smooth approximations will converge to a nontrivial limit only with Wick ordering,
otherwise the limit would be identically zero for any initial condition (see [23| [56]).

Remark 1.4. Despite having low regularity CP H2~, the local solution constructed in Theorem is
a strong solution, as it is the unique limit of canonical smooth approximations. In fact, by slightly
modifying our proof (which will not be done here for simplicity of presentation), we can obtain
the following general convergence result (see [67] for some discussions regarding different choices of
approximations):

Let ¢ be a function on R?, (0) = 1, and ¢ is either Schwartz or equals the characteristic function
1 of the unit ball B (the latter is the setting of Theorem [1.1). Let @ be either 1 or 1g, in the
latter case we assume ¢ = 0 outside B. Define Py(k) = (A~ k) and Py (k) = Z(A~'k). Let WY be
defined as in with oy replaced by oy, which is in turn defined as in with Il replaced
by P,. Consider the solution uy to the system

{ (Zat + A)U)\ = ’ﬁ)\W){D(uA),
ux(0) =Py f(w).

Then Theorem remains true with conclusion being the convergence of {uy} as A — oo. Here

(1.9)

the exceptional set Z and the limit u do not depend on the choice of (¢, 9).

More precisely, there exists a random time T = T(w) satisfying P(T < 7) < Cge_Fe for any
7 > 0, and a random function u = u(t,x,w) defined for |t| < T(w), such that almost surely in w,
we have uy — u in CPHS™[~T,T], as A — oo, for any choice of (p, ).

Remark 1.5. Although Theorem concerns singular (i.e. low regularity) data and short-time
solutions, the fundamental issue here is to understand how the randomness structureﬂ propagates
under the nonlinear Schrodinger flow. With this understanding, we can easily obtain new results
for regular data and long-time solutions, such as Theorem [I.6] below.

1.1.2. Long-time control for random homogeneous data. Consider the random homogeneous data,
which is the random initial data given by

foo(w) = N™¢ Z ¢(%)gk(w)6ik“; a=s+ g, 5> Spr (1.10)
kezd
Here ¢ is a fixed Schwartz function and N is a fized large parameter. Compared to , which is
a superposition of multiple scales, in we have only one scale N and the Fourier modes are
uniformly distributed in the ball (k) < N. Such random data in fact are, up to rescaling, the ones
appearing in the derivation of wave kinetic equation in weak turbulence problems [I8], 28| 33]. Note
that with high probability, || fuo(w)||ms ~ 1. The second main theorem is then stated as follows.

1Such structure lives on high frequencies and fine scales. It becomes more explicit when considering low regularity
solutions, and may be obscured by the dominant coarse scale profile in high regularity solutions.
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Theorem 1.6. Fiz (s,a) and fuo(w) as in (1.10), and 0 < v < (p — 1)(s — spr). Let uyo be the
solution to the system

107 + A)uno = |tuno|? uno,
{( T+ A)uno = |uno|" up, 1.11)

Uho(o) = fho(w)'
Then there exists a set Z C © with P(Z) < CoeN’, where 6 is a small constant (ultimately
determined by (d,p,s), and independent of N) and Cy is a constant determined by 0, such that
when w & Z, the solution uy, exists up to time T = NY. Moreover, for some real valued gauge
function B(T'), we have
sup  ||uno(T) — e B@ By (0)|| s < N7, (1.12)
0<T<NY
Remark 1.7. When s > 1, i.e. is H! supercritical in the usual (deterministic) sense, it is not
a priori known whether uy, exists up to time N”. Even in the H' subcritical case where uy, exists
for all time, Theorem demonstrates the highly nontrivial fact that there is no energy cascade
in uy,, (almost) until this very long time T = N®—1(s=spr),

In comparison, for deterministic data, say when g (w) in are replaced by 1, one can describe
the asymptotic behavior of up, only up to tim O(N(p_l)(s_SC’“)) provided s > s.; see [17), 38| for
the p = 3 case. Therefore, the randomization effectively extends the time of perturbative
regime for the given homogeneous initial data. In essence, this is the same as Theorem [I.I} where
we keep the time of the perturbative regime constant (namely 1), and randomization allows us to
increase the size of the initial data at a given frequency (equivalent to reducing regularity).

Remark 1.8. Since we are on the square torus T¢, the behavior of uy, at long time is dominated by
exact resonances. If T¢ is replaced by a generic irrational torus, then we may expect Theorem [1.6
to hold on even longer time intervals, conjecturally up to N2®—1(=5r) at least for some range of
s. This, after rescaling, would correspond to justifying the wave kinetic equation up to the kinetic
timescale in the context of weak turbulence, which is still open at this pointﬂ (despite the recent
success in [33] of the first author with Z. Hani; see also [I8], 28]).

Remark 1.9. Unlike Theorem in Theorem we do not need the Wick ordering . Indeed,
the worst contributions in the context of Theorem [1.1| (as well as the non-existence result of [51]),
which can only be rescued by Wick ordering, are the high-low interactions where the high frequencies
form a pairing and produce the mass term; for random homogeneous data there is no distinction
between high and low frequencies, so such terms will not be a concern.

Remark 1.10. Our Theorem provides the short time theory, and Theorem yields also long
time control for random homogeneous data. To pass from local to global (in time) results one needs
to combine the random tensor theory with other methods, as is also the case in all previous works
on parabolic and dispersive equations. See Section for a discussion.

n fact there is energy cascade in upe at time N®P~D¢=ser) dictated by the continuous resonance (CR) equation;
see [I7, [38]. Note that, the approximation leading to the CR equation does not work in our case as randomization
destroys the differentiability in rescaled Fourier space; in fact the solution un, in Theorem [I-6] has no energy cascade
at this time. It is currently unknown whether the solution uno in Theorem[I.6} or the corresponding ensemble average,
satisfies some effective equation at time N®~D(s=spr)

2 We remark that, after the submission of this manuscript, the justification of the wave kinetic equation has been
done by the first author and Z. Hani in [34] in certain regimes, including the case s = s, and v = 0 (the case s > spr
still remains open). This is a probabilistically critical result and is not covered by Theorem
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1.2. The probabilistic scaling. The probabilistic criticality threshold s,, plays a key role in the
local theory of with random initial data. In this section we recall a heuristic justification of
this fact, which originally appeared in [36].

Start with (1.1) on R x T¢, for simplicity we will replace WP (u) by the artificial nonlinearity
Nup, defined by

(Nap(u))g == Z Uy Uy ** * Uk, (1.13)
k1 —-Akp=Fk

assuming there is no pairing (i.e. k; ¢ {kj,k} for any odd j and even j'). Let the initial data
u(0) € H*, to prove local well-posedness in H*®, one would like to control

t
uM () = / BN (e Bu(0)) dt, (1.14)
0
namely the first nonlinear iteration, in H?®, at time |t| ~ 1. In the deterministic setting, if
; d
0)=N"¢ ik-x = — 1.15
u(0) |,€|Z:N6 , a=s+ 5 (1.15)

then ||u(0)| gs ~ 1. By 1) we can calculate the Fourier coefficients u,(cl)(t) of uM)(t), where

1 e 1

ult)y~ NN a4 k2 = k1] + - — |k (1.16)
k;€Z%,)k;|~N
fey—-thp=k

for |k| ~ N and [t| ~ 1. We may restrict to (say) = 0 in (1.16), and a dimension counting

argument shows that the inner sum has size NP4=9=2 hence
d 2
[u@ @) gs ~ NEDE=9-2 D) <1 s> g = o = Ser (1.17)
p—
Indeed in the deterministic setting, (1.1)) is locally well-posed for s > s, and ill-posed for s < s
Now we switch to the random setting, where instead of (1.15]) we have

u(0)=N"¢ Z ge(w)e™ T, (1.18)

k|~ N
where gi(w) are i.i.d. centered normalized Gaussians, and instead of ((1.16]) we have
(1) - [ p—
Uy, (t) ~ NP Z @glﬂgkz © Gk (119)
k;€Z4,|k;|~N
for— - +kp=k

Again we may restrict to = 0; due to the square root cancellation in (1.19)), now with high
probability the inner sum only has size N®4=4=2)/2 hence instead of (1.17) we have

1
[uD (@) || s ~ N~EDs=L W @) e <1 5> = (1.20)
p p—
This justifies the role of s,, in Theorem and explains why almost-sure local well-posedness is
plausible, in the probabilistically subcritical range s > sp,.

Remark 1.11. Theorem establishes almost-sure local well-posedness when s > sp,.. In the
probabilistically supercritical range s < s,,, we believe (|1.1]) is almost surely ill-posed, in the sense
that almost surely, the approximations uy defined in (1.7) do not converge in CY H:~[—, 7] for any
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7 > 0. This seems out of reach with the current methods, but some weaker results (for example
failure of convergem:(ﬂ in C{H:™ for any ¢ > 0) might be possible.

Remark 1.12. The notion of parabolic scaling (also known as the super-renormalizability scaling in
quantum field theory, see [22]) is central in the works on local theory of singular parabolic SPDEs,
see for example [52] [46]. For the analog of (1.1]), namely

(8 — Au = WP(u) +(, ¢ = spacetime white (or colored) noise (1.21)

(where WP is some renormalization beyond Wick ordering, see 1) below), this scaling has critical
exponent sy, := —2/(p — 1). Note that s, is strictly lower than s, which reflects a fundamental
difference between Schrodinger and heat equations. See Section for more detailed discussions.

1.3. Propagating randomness: Earlier works. The heuristics of Section [1.2] rely on the as-
sumption that the Fourier coefficients of u(0) are independent; this is no longer satisfied by wu(t),
as soon as t > 0. Therefore, the key to the proof of Theorem is to propagate the randomness
of the initial data, for the anticipated amount of time, in such a way that the square cancellation
in Section [L.2 remains valid.

The idea of propagating randomness, interpreted in one way or another, has been central in all
previous works concerning local well-posedness in the random setting. In this section we briefly
review the existing approaches, especially those developed in the past few years.

1.3.1. The method of Bourgain and Da Prato-Debussche. The important early results in this direc-
tion are proved by Bourgain [I1] (for random initial data) and later by Da Prato-Debussche [29]
(for additive noise). The idea is to propagate the random initial data (or the noise term) linearly,
which preserves all the independence properties, and treat the nonlinearity as a perturbation.

For example, the equation studied in [I1] is with (d,p) = (2,3) and Gibbs measure initial
data (i.e. a =1 in ), which is barely supercritical in the deterministic sense and subcriti-
cal in the probabilistic sense. In [II] Bourgain constructed the solution as u = wuy, + w, where
Ui = eimu(()) is the linear evolution which enjoys the same randomness properties as the initial
data u(0) = f(w), and the remainder w has improved regularity, say CY HZ with o > 0, thus
becoming subcritical in the deterministic sense. Then the classical fixed point analysis together
with large deviation estimates apply to control the hybrid nonlinearity—of the difference equation
that w satisfies—containing interactions of uj, with w. The situation in [29] is similar, except that
Schrodinger is replaced by Navier-Stokes, and wuyy, is replaced by the linear evolution of the noise
term.

Until recent years, the methods of Bourgain and of Da Prato-Debussche have been the dominant
strategy in the study of local well-posedness theory for random PDEs. The weakness of this
approach is that the improved regularity of the nonlinear contribution w may not be enough for
the deterministic theory to be applicable, especially when one gets close to probabilistic criticality.
One may try to enhance this by moving to higher-order variants and bringing in self-interactions
of ujy, see [9,[64], but in many situations (like in [9]), there is an upper bound for all the regularity
improvements obtained in this way, which may still fall short of the deterministic threshold.

1y comparison, when s > sy, the proof of Theorem easily implies the convergence of un (including the ux
in Remark } in C{Hy~ for some ¢ > 0 ultimately determined by (d, p, s).
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1.3.2. The theory of reqularity structures. The theory of regularity structures was developed by
Hairer [52) 53] in the context of singular parabolic SPDEs, to provide a natural and mathematically
rigorous notion of solutions to such equations and prove their local well-posedness. The theory is
based on the local-in-space properties of solutions at fine scales, hence it is well adapted to parabolic
equations. It builds a general theory of distributions by means of an abstract generalization of local
Taylor expansions of problem-dependent profiles (e.g. the spacetime white or colored noise, and self-
interactions and Duhamel iterations thereof), in order to make sense of the equation—in particular
the products of rough distributions emerging from the singular parabolic SPDE. Furthermore, the
solutions obtained can be approximated locally to arbitrarily high degree by linear combinations
of this fixed family of problem-dependent profiles. These expansions in the context of singular
parabolic SPDEs should be compared and contrasted to the ones that we obtain in Theorem
(more precisely (38.5)).

The theory of regularity structures establishes local well-posedness results in the sense of conver-
gence of canonical smooth approximations. When taking limits of such approximations, a suitable
renormalization in the form of divergent counterterms is usually needed. Sometimes (for example in
the dynamical @% model, see Remark [1.3)) this is just the Wick ordering, but for more sophisticated
equations further renormalizations become necessary. A nice feature of the regularity structures
theory is that these renormalization constants can always be calculated using the profiles defined
for the specific equation.

We illustrate this renormalization process following [52, 54 55] where Hairer studies the dynam-
ical <I>§ model. Here the canonical smooth approximations u. satisfy the renormalized equations
with the spacetime white noise ( replaced by its regularization (., namely

(0 — A)ue = 3(Cy — 3Cy)ue —ul + ¢, (1.22)

1

where C1 ~ £~ corresponds to Wick ordering, and C ~ loge is an additional renormalization

constant. The problem-dependent profiles are in the following space
T = <.,\V7V,$,T,%,M,I’iv,l,\?,v,"‘% (123)

with symbols ordered in increasing order of regularity and (-) used to denote the linear span. The
symbol e represents the regularized noise (., z; represent the coordinates of x, and 1 = (9, — A) " le,
W and ¥ represent the Wick renormalizedﬂ powers (1)% and (1)2, etc. The renormalization constants
are then calculated from these profiles, such as C; = E(1)2 ~ ¢71, Cy = E(Y - V) ~ loge, and
convergence of u. as € — 0 is proved for initial data in C'¢, —% <a< —%.

In a series of papers [I5] 16, 2], the regularity structures theory has been extended to general
parabolic equations and now covers the whole subcritical range s > s,, relative to the parabolic

scaling (as in Remark above); for an example see the ®} ; model in [15].

Remark 1.13. We remark that, though in principle the regularity structures theory can cover the
whole subcritical range for singular parabolic SPDEs, in reality there is an additional obstacle that
sometimes requires slightly higher regularity when the noise is rougher than white. This obstacle
can be traced back to the rough path theory [40], and is linked to the high-high-to-low frequency
interactions. In the Schrédinger case, however, such obstacle is absent as these interactions can
be treated in the same way as the main term, hence our theorem covers the full subcritical range

'n particular, ¥ = (1)2 = E(1)? and ¥ = (1)® — 3(E(1)?) - 1.
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s > Spr, which is in parallel with the full subcritical range s > s,, in parabolic case, for all
dimensions d and powers p.

1.3.3. The para-controlled calculus and the renormalization group technique. The theory of para-
controlled calculus put forward by Gubinelli, Imkeller and Perkowski [46] (see also Catellier and
Chouk [20]) and the work of Kupiainen [58] based on renormalization group techniques provide
alternative approaches to proving local well-posedness for singular parabolic SPDEs. The theory of
para-controlled calculus, based on paradifferential calculus, leverages the key observation that the
lack of regularity for w in the approaches of Bourgain and of Da Prato-Debussche, as described at
the end of Section [1.3.1] is only due to the high-low interactions where the high frequencies come
from wyy, (or self-interactions and Duhamel evolutions thereof) and the low frequencies come from w.
In this theory, such high-low interaction terms X are para-controlled by the high-frequency inputs
(for example uyy,), in the sense thatE| X = 7> (un, Y) + Z with Z being smoother than X. Such
terms, despite having insufficient regularity, are shown to enjoy similar randomness structures as
Uy itself, which allows for a fixed point argument, where X is constructed in some low regularity
space, and the remainder Z is constructed in a higher regularity space. We refer the reader to
[20, (48], 9], 50, [62] [6], B, 147, 14] and references therein for nice expositions of these ideas and some
other recent developments as well as a higher order variant of this method.

1.4. Random averaging operators. In view of these breakthrough works described in Sections
[1.3.2] and that deal with parabolic equations, it would be natural to think that something
similar can be done in the context of dispersive equations. However, there are fundamental dif-
ferences between dispersive (say Schrodinger) and heat equations, preventing these methods from
being applicable (for more comparisons see Section :

(a) The heat equation is compatible with local-in-space analysis, as is clear from the maximum
principle or the off-diagonal exponential decay for the heat kernel. The Schrédinger equation
does not have these properties, which makes the application of the theory of regularity structures
impossible, as the latter is based on pointwise Taylor expansions in physical space.

(b) Likewise, the heat equation is compatible with C* (Hélder) spaces; in fact both the regularity
structures theory and the para-controlled calculus rely heavily on such norms. On the other hand
the Schrodinger flow is unbounded on C'*, and is bounded only on H® type spaces, which require
a lot more derivatives to reach the same scaling as C'*.

(c) The heat equation gains two spatial derivatives in terms of the fundamental solution (9,—A)~*
(wave gains one), while the Schrédinger equation gains none. The smoothing is seen only in terms
of twisted temporal regularity by using X*? type norms, which is clearly not compatible with either
the regularity structures theory or the para-controlled calculus.

In our previous work [36], which studies with d = 2, arbitrary p > 5 and Gibbs measure
initial data (o = 1), we introduced the method of random averaging operators. The idea is to take
the high-low interaction X described in Section but instead of putting it in a low regularity
space (as is done in the para-controlled calculus), we write it as an operator applied to the high
frequency linear evolution wu,:

X=> Y Pyi(Ayum), (1.24)

N LN

Here > is the standard Bony paraproduct.
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where N and L are the frequencies of the high and low inputs. The operator Py, whose coefficients
are independent with the modes of Anuyn, contains all the randomness information of the low
frequency components of u, which is carried by two operator norm estimates

1 _1
IPrillop < L7, [[Pyillus < N2t L7z, (1.25)

where 07 <« dg < 1. Here Py, is viewed as a linear operator between two Hilbert spaces that
can be L? or X** depending on the context, || - [op and || - ||ug are respectively operator and
Hilbert-Schmidt norms.

The method of random averaging operators, compared to the regularity structures theory and
the para-controlled calculus, has three advantages relative to the three difficulties listed above,
which makes it suitable for the study of Schrédinger equations:

(a) The operator Py, is a global-in-space object (in fact it is defined on the Fourier side), which
is consistent with the non-local setting of Schrédinger equations;

(b) The role of C® norms is replaced by (essentially) the L? — L? operator norms, which is
compatible with the well-established L? theory;

(c) The analysis for Py, is performed in the category of X*? spaces, which allows one to exploit
the smoothing of the Schrodinger fundamental solution.

By applying this method, we have been able to propagate the randomness of Py, in terms of
the above operator norm bounds, as well as control the remainder in a deterministically subcritical
space, leading to the full resolution of the Gibbs measure problem in 2D. See [36].

1.5. Random tensors. The core of this work is a broad extension of the method of random
averaging operators, which we call the theory of random tensors. A detailed introduction to this
theory will be given in Section [2| here we will restrict our attention to only the motivation.

Start by considering the random averaging operators; roughly speaking, the frequency N piece
of the high-low interaction X in is given by Ay X = Pn(Anuiin) where Py = >, Pyr. In
Fourier space it can be written as

. /(W)
ANX)p(t) = eIkt e (1) 2L ,
(AnX)x(t) Dm0
(k") ~N
where subscripts denote Fourier coefficients, and hyx () is essentially the kernel of the operator Py .
For fixed ¢ this is a random matrix, or (1, 1) tensor, that depends on the low frequency components
of the solution.
Now, to prove Theorem we will need higher order expansions. This naturally leads to the
multilinear expressions (here we denote (u™,u™) = (u,u) as usual)
T
—a, +
Up= > Dy, | [k5) “G, (W), (1.26)
ki, kr J=1
as well as the associated random (r,1) tensors h = hyg,...k,, which depend on the low frequency
components of the solution. For simplicity, in ((1.26) we have omitted the dependence on t. We
always assume there is no pairing, i.e. kj # k; if the corresponding =+ signs are opposite.
Notice that, the product of ¥ with another expression
S

—a, +
b= D Mo [T 05 (@)
AN )

j=1
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can be written as a linear combination of similar multilinear expressions, depending on the possible
set of pairings between {ki,--- ,k.} and {k],--- ,kL}. For example, if

e = > hiabed (@) ga - (0) "o (&) ge - (d)""Ta,
a,b,c,d

;ﬂ/ = Z h/ 'yvw <u>_a% : <U>_agv ’ <w>—agw’

uU,U,W

and in the summation we assume a = u and b = w, then we have one representative component of

U - ¥’ being

®,, = Z Hipedv - <C>_agc : <d>_a% ! <U>_agva

c,d,v
/ (1.27)
Hypeqn ~ Z Z<a>7a<b>7ahka50d ' <a>7a <b>7ah "qvb?
k+k'=m a,b

where we have replaced |g4|? and |gy|? by 1. The process of going from (h,h’) to H as above will

be called merging, which gives the main algebraic structure of the tensors studied in this work.
For purposes related to independence of Fourier coefficients (which will be explained in Sec-

tion , we also need another process called trimming, which means contracting against free

Gaussians, namely going from h = hyg, ...k, to

T

ke = O Twken, ] {kj) " gx ,

ki1, ke j=s+1

where 1 < s < r. Note that ¥}, defined by is formally invariant under trimming.

Now, as in [36], the central objects in our work will be the tensors h (instead of the multilinear
expressions W), as well as suitable L? — L? operator norms for these tensors. The theory of random
tensors then provides a natural framework for studying such tensors, in particular proving estimates
for such norms that are consistent with merging and trimming. In Section [2| below we provide a
more detailed discussion of this theory, and application to the proof of Theorem

Remark 1.14. The reason for introducing the random tensor theory is that, as the problem gets
closer to probabilistic criticality, what is deemed a remainder term in the random averaging operator
method will no longer have enough regularity, thus a higher order expansion is needed. In fact, by
the arguments in Section each iteration of the equation gains regularity As = (p—1)(s —
Spr), so the order of the expansion needed would be ~ 1/As. This could be used as a measure for
the difficulty of the problem, which goes to infinity when p is fixed and s — sp,.

For example, for the problem studied in [36] one has d = 2 and (p, s, spr) = (2r + 1,0, —1/(2r)),
hence As =1 for any r (note that in order for s — sy, — 0 we need r — 00) so the random averaging
operator is always enough. However if d =3, p =3 and s — s, = —1/2, then As — 0 and the use
of random tensors becomes necessary.

1.6. Acknowledgement. The authors would like to thank Hendrik Weber for helpful comments
regarding the regularity structures theory and the reference [22]. They would also like to thank the
referees for their useful comments and suggestions.
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2. OVERVIEW OF THE THEORY

This section contains an overview of the theory of random tensors in the context of the proof
of Theorem We start with the definition and norms in Section then develop the algebraic
structure and main tools in Section In Section we introduce a simplified model, which is
analyzed in Section [2.4] using tools from our theory. In Section [2.5] we explain the changes needed
when moving to full generality, and finally in Section we list an outline for the rest of the paper.

2.1. Tensors and tensor norms. As discussed in Section the central objects in this work
are tensors and their L? — L? operator norms. We therefore start with the following definition.

Definition 2.1. Let A be a finite index set, we will denote ky = (k; : j € A). A tensor h = hy,
is a function (Z4)4 — C, with k4 being the input variables. The support of h is the set of k4 such
that hy, # 0. These tensors are usually random (i.e. depend on w which belongs to the ambient
probability space ©, though we may omit this dependence), hence the name random tensors.

A partition of A is a pair of sets (B,C) such that BUC = A and BN C = @. For such (B, C)
define the norm || - ||z —ko by

A A—— { T

ko

2
:Zyzk3\2:1}.

kp

thA * Zkp

kp

By duality we have that

Z Py - Zkp - Yk

kp.kc

(2 [r—— sup{ D sl =D kel = 1}, (2.1)
kg ko

hence ||h||kg—ke = |Pllkc—ks = [Pllkg—ke- If B =@ or C = & we get the norm || - ||z, defined by

1RlIZ, =D s .
ka

Note that trivially [|A||ks—ke < [Pk, -
Finally, we define a subpartition to be a pair (B, C) such that BUC C Aand BNC = @. In
such case let E = A\(BUC), then (B, () is a partition of A\E so we can define

[P~ Sup 1Ak, ks —ke- (2.2)
E

Remark 2.2. In the main proof the tensors may depend on other parameters, such as ¢ or (kp, Ap),
where A\p = () : j € F), for some set F'; in such cases we will write respectively hy, = hy,(t) or
hi, = hi,(kr, Ar). Moreover, the norm is designed only to treat some degenerate cases, so
it will not appear in the simplified model of this section.

2.2. Tensor algebra and basic tools. In this section we develop the algebra of random tensors
given by merging and trimming as described in Section [I.5] and some important estimates which
are the basic tools of our theory. The precise versions will be given in Sections and below.
First we record the definition of pairing.

Definition 2.3. Define u¢ for ¢ € {} by (u™,u~) = (u, @) (in doing algebra we may view such ¢
as £1). Given k;, k; € Z4 with associated signs (;,(; € {%}, we say (k;, k;) is a pairing if ;+(; =0
and k; = k;. We say it is over-paired (or an over-pairing) if k; = k; = k; for some | ¢ {i,7}.
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2.2.1. Semi-products and merging. As described in Section[L.5] our theory will focus on the analysis
of the tensors hyy, and associated multilinear expressionsﬂ

Uy = thkA H(kj>7ag,:;, (2.3)
ka jeA
where kg = (k; : j € A) as in Definition and kj # k; when the signs are the opposite, as well
as the merging and trimming operations loosely described in that section.
In fact the merging operation can be viewed as a special case of taking what we may call sems-
products for two or more tensors, which means taking tensor products and contracting over the

given set of repeated indices—mnote that, the repeated indices can be indices appearing in both

!/

tensors, or the result of specific pairings between the tensors. For example, if hgpeqe and 27,400

are
two tensors, then their semi-product, under the assumptions b = u and ¢ = w, will beﬂ

/
Hdevx = Z habcde bvact*
a,b,c
In general, suppose hy, are h;B are two tensors, and we have a particular set of repeated indices

(coming from A N B or pairings between k4 and kp). We may then assume these repeated indices
belong to both A and B, and define the corresponding semi-product as

_ /
Hiynp = Z b, kg

kanp

This can easily be generalized to semi-products of more than two tensors, for example the semi-

product of the three tensors hgped, M, fq and hl, under the assumptions b = f and g = v is
Hgew = Z habcdhi;ebg /c/ug‘
a7b7c7g

Note that for simplicity we are not considering over-pairings where an index is repeated two or more
times, but such situations do appear in the actual definition of merging and need special treatment
(though they are only associated with degenerate situations which are always much easier). See
Definition [B.6] for details.

Now, with the notion of semi-products, we can define (in this simple case without over-pairing)
the merging of finitely many tensors A1), ... h(") via a base tensor h as follows:

Definition 2.4 (Merging: simple version). Let hl) = h,(é)kA. be tensors, where 1 < j < r, A; are

pairwise disjoint, and let h = hyg, ...k, be the base tensor. Also fix a set of pairings among the sets
Ay, -+, A, (which creates paired indices that will be viewed as repeated indices; as before, assume
there is no pairing within each A; and no pairing involving more than two indices), then the merging
of K ... h(") via h, assuming the given choice of pairings, is defined to be the semi-product of
rM ... h() and h, where (i) each 1) is ) multiplied by the product of (ki)™ over all [ € A;
that appear in some pairing, and (ii) in addition to the paired indices, each k; (1 < j < r) is also
viewed as a repeated index and is summed over, as it appears in both () and h.

n practice we will use 7, = |gx| ™" g, which is uniformly distributed on the unit circle, instead of g.

2In practice we will also have a + sign for each index of each tensor, for example a + sign for the index a in
habede Or a — sign for the index z in hl,q.,,. When precisely defining the merging operations, see Definition [3.6] we
will restrict to the cases where for each repeated or paired index, its signs in the two tensors that it appears are the
opposite (for example if the sign of b in hgpede is + then the sign of u in Al 4, must be —, assuming b = u). In this
section (including the simple case Definition we will ignore this issue for simplicity.



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 15

For example, if A0 = A, 1@ = p®  p® = p¥)

koefg’ ksuvw
of M, h® and h®) via h, under the assumptions a = w, b = f and g = v, will be

and h = hgk, kyks, then the merging

Hicdew = D Bidokaks + (@) 70 0) ™Ry (0)70) "R, - ()7 (@) R .
k1,k2,k3,a,b,g9

Similarly, the example (1.27]) which gives a component of the product ¥ - ¥’  is the merging of

Riabed and Ry .0 Via Rk = 1yp—g4 4, under the assumption a = u and b = w

The general version of Definition which includes the signs of indices, dependence on other
parameters and additional structures, as well as over-pairings, will be given in Definition

2.2.2. Key bilinear and multilinear bounds. Our first basic tool is the following lemma (together
with the multilinear version thereof), where the || - ||x; %, norms for semi-products of tensors, as
defined in Definition are estimated by the || - ||x; k. norms of the individual tensors.

Proposition 2.5 (A bilinear estimate). Let hy, and h;cB be two tensors, assume that all repeated
indices are already in AN B. Then for any partition (X,Y) of AAB, the semi-product H of h and
I satisfies that

[ H |lkx—ky < Hh‘|k(qu)HA—>kYmA ’ ||h/”kxmB—>k(yuA)mB'

For example, we have

HH|’dv~>ez S HhHabcdﬁe . ”h/Hv%zaba where Hde'uz = Z habcde f,mcw-

a,b,c

Note that in the setting b = v and ¢ = w as in Section we can identify hy, .. with hl, ...
and the norm | - [[y—zabe With || - [|s—zeuw; the same comment applies to Lemma [2.6] below.
An equivalent form of Proposition will be stated and proved in Proposition [4.11

Proposition 2.6 (A multilinear estimate). Let h(j ) (1 <7 <m) be tensors, assume all repeated

indices coming from pazrmgs between any A; and A are already in A; N Aj. Let H = Hx be the
semi-product of the hU)’s, where A = AjA--- AA,,, then for any partition (X,Y) of A we have

m
[ | sy < H Hh(])Hk(XmAj)quHk(YmAj)qu’ (2.4)
j=1

where

Bj = U(AJ ﬁAg), Cj = U(A] N Ag)

r>] 0<j

For example, we have

HHHe%ud < Hh”abcﬁdHh/||eg~>ath”chga where  Hge, = Z habcdhaebg cug*
a,b,c,g

An equivalent form of Proposition [2.6] will be stated and proved in Proposition
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2.2.3. Trimming. In the course the main proof, when considering the tensors hy, and associated
multilinear expressions ¥j, as in , we will always assume that the tensor h is independent with
the Gaussians gy, in order for the large deviation estimates (such as Lemma to be applicable.
In practice, this is guaranteed by requiring that (k;) > R in the support of hy, for some R, and
that hy, is a Borel function of {g; : (k) < R}. A problem then occurs, say when merging two
tensors h = hy, and h = h;B with cutoffs R; and Ry as above, because the merged tensor H is
a Borel function of {gi : (k) < max(R, R2)} and may not be independent with g, for j € AAB.
Because of this, we will introduce the operation of trimming as follows:

Definition 2.7 (Trimming: simple version). Let h = hyy, be a tensor, assume for each j € A
there is a dyadic IV such that h is supported in N;/2 < (k;) < N;. Then, for any R, the trimming
of h at frequency R is defined to be the contraction against free Gaussians, namely

—a +
e = O e T k)05
kg a0 JEA\A/
where A" = {j € A: N; > R}. Note that those gk; where j € A’ are independent with those gk,
where j € A\A'. In particular we recover the expression ¥y, in (2.3)) if A’ = @.

For example, if h = hggpeq, Wwhere N1 /2 < (a) < Nj etc., and assume N3 < N3 < R < Ny < Ny,
then the trimming of h at frequency R will be

fbd = O Mkabed - (@) g - () g
a,Cc

The general version of Definition which includes the signs of indices, as well as dependence
on other parameters and additional structures, will be given in Definition [3.5)

2.2.4. Method of descent. Our second basic tool is the following lemma, where the ||-||;; %, norms
for the contraction of a tensor against independent free Gaussians are estimated by the || - ||xz— ke
norms of this tensor. This inequality has an elegant form, and we believe it is of independent
interest in the study of random matrices.

Proposition 2.8. Let hy,, be a tensor, A’ be a subset of A such that {9k, 17 € A\A'} is independent
with hy,. Let k' = h;CA/ be the contraction of h against the free Gaussians {gz,c] :j € A\A'}, namely

+
o= Y h TT o
g\ a7 JeA\A
then for any partition (X', Y") of A’, with high probability we haveﬂ

12 i —kys S sUD (Pllnx—hy

)

where (X,Y) runs over all partitions of A such that X' C X andY' C Y.

For example, under the independence assumption, with high probability we have

17 [b—a S max(|Allabesd, 1Pllab—scds [17llbe—sads [Allb—acd), Where Ry, = Z habed9a e -

a,c

A more precise version of Proposition will be stated and proved in Proposition A
slightly different version due to technical reasons will be stated and proved in Proposition [4.15

1y practice this will have a small power loss MY where 6 is an arbitrary small number and M is the size of

ka € (Z%)*; see Propositions [4.14}14.15
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2.3. A simple model. We now turn to the proof of Theorem In this section we introduce a
much simplified model for and that still preserves the main difficulties.

First, we will replace the nonlinearities by the Ny, defined in . This N, is essentially
the result of Wick ordering and a suitable gauge transform, but avoids the complications linked to
over-pairings and deviation of mass around its expected value.

Second, we will remove the time variable. Indeed, if we believe our solution is close to a linear
solution, and thus restrict to functions u whose spacetime Fourier transform looks like uy(§) ~
uy, - (€ + |k|?) with some Schwartz function ¢ and some function ug of k& only, then by a formal
calculation using Duhamel’s formula, this u; will satisfy a fixed-point equation that essentially
looks like

9k . __
U = <k>a — 1 Z uk,‘lukz e Uk;p, (25)
Ky -t hep=h; Q=0
where Q := |k|? — [k1|? + -+ — |k,|?, and in (2.5 we also assume no-pairing as in (1.13).

Third, consistent with the setting of Section in analyzing (2.5)) we will disregard any over-
pairings, and assume, when merging tensors, that no index is repeated more than once.

2.4. The core ansatz. We now start the analysis of (2.5). For simplicity we denote the terms on
the right hand side of (2.5) by

<k>_agk’ = [k, —1 Z Uk Uy * " Uk, = an(uv o 7“)/6) (26)
k1 —-+kp=k; Q=0

where M, is an R-multilinear operator of degree p, so that (2.5) reads
Ug :fk—l_an(ua"' ,U)k, (27)
We also introduce the canonical truncations of (2.7]), namely

(un )k = IIN fie + Mup(un, -+ s un )k, (2.8)
and define yn by
YN =UN —Unja; UN = Y YN (2.9)
N'<N

Note that we do not put Iy before the nonlinearity in (2.8); however in this model we still assume
yn and upy are supported in (k) < N. Under these assumptions, yy satisfies the equation

(yn)k = Anfr + > Mup YNy S UN k- (2.10)
max(Ny, - ,Np)=N

The core ansatz for yy will be constructed by induction (assuming upys and yyn/ are already
defined for N’ < N). Recall that in [36] the analogue ansatz for y contains three parts: Ay f which
corresponds to the linear evolution, the terms corresponding to the random averaging operators
Pnr, and a remainder zy of higher regularity. We start by a description of this simple case in
Section In order to prove Theorem which covers the full subcritical range s > spr, in
Section [2.4.2] we will further unravel the propagation of randomness from the remainder and make
higher order expansions using the random tensors introduced in Sections [2.1
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2.4.1. Random averaging operators. As stated in Section the random averaging operator Py,
describes the high-low interaction, which in this simple model is defined by

PNL(Z/) :an(yauln'” ,'LLL), (211)

Whenﬂ L = N? for some small §. Note that when we discuss the ansatz for yy, uy has already
been defined by the induction hypothesis. The ansatz for yx then includes the following term:

(1+Pnp+ P, +Pop+-)Anf = (1 —Pyr) AN, (2.12)

where convergence is guaranteed by the operator bound ([1.25) for Pyr. In the case p = 3 for
example, we may represent the terms in (2.12) by means of the following iteration trees

o Anf, o:up, & Mup(Anf ur,ur) =Pnr(ANS),
P, i Ph@ns), e

For each term in ([2.13) we can define the associated random (1,1) tensor (or equivalently random
matrix). For example the random (1, 1) tensor associated to @ = Ay f is just the identity matrix,
while for the iteration tree 4, the associated random (1,1) tensor h# is such that

(2.13)

(Do) =D h - Anfr, (2.14)

k1
where f, is as in (2.6). By (2.6 and (2.11)), we have the formula (where Q = |k|2—|k1|?+|k2|>—|k3|?)
hfil = —i Z (wr)ky - (UL ) ks - (2.15)

k1 —ko+ks=k; Q=0

(k2),(k3)<L, (k)<N
Similarly we can define the random (1, 1) tensors associated to other iteration trees in such as
/é%. Since uy, (represented by o) has less importance in the estimates (in fact they will be trimmed
out, see the arguments below), all these random (1, 1) tensors can be treated in a similar way in
our proof. Hence for simplicity we will denote them by the single notation h*.

2.4.2. Random tensors. With the random (1,1) tensors h* defined as above, we proceed to con-
struct the random (r, 1) tensors in the ansatz for yx by induction, with h¢ being the base case.
These tensors arise from high order iterations of the equation . We start with a simple case,
namely the random (2, 1) tensor terms in the ansatz for yy, by using the following iteration trees
(assume p = 3):

bo: Mup(Bni, fAn, Lun), i Pvi(a). @ PRula),
(ﬁ\’ : an(an(AN[I f7 UL,UL), AN[Z fu UL), etc.

where ([1,[2) is not a pairing (i.e. ky # ki, in below, if the corresponding signs are the
opposite), Ny, Ni, > L and max(Ny,, N,) = N. These terms are similar to the high-low interactions
in and hence will also be added to the ansatz for yy. We can define the random (2, 1) tensors
associated to terms in (2.16)), proceeding similarly as in (2.14) and (2.15). Once again all these

(2.16)

I [36] we used L = N'~°%; here we need a smaller value of L which works better in the general setting.
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random (2, 1) tensors can be treated in a similar way in our proof, hence for simplicity we also
denote them by the single notation h*, such that the k-th mode of terms in (2.16] are given by

Z hé\k‘[lk[z (ANll fk[l)i(AN[ka[Q)i' (217)
Nli/2<<k[i>SN[i’ 1=1,2

Synthesizing the structures of these random (1,1) and (2, 1) tensors, we describe the associated
(r,1) tensors in general. To that effect we introduce the skeleton tree £ containing all solid leavesﬂ .
in the iteration trees associated to the (r, 1) tensors. For each leaf [ € £ we also attach a frequency
Ny (such as Ny, and Ny, in above) and a sign (; € {£} (for simplicity we will not explicitly
write {; below). Define also the frequency of the skeleton tree to be N, which always equals the
maximum of N; in particular if [ is the only leaf then N = N;. For example, the term in that
has the iteration tree /ﬁ% will correspond to the skeleton tree ¢\, or £ = {[y, [}, with two leaves, no
pairing, and max(Vi,, N,) = N. In such terms we always assume N; > L so that the tensor h~,
which is a Borel function of up, is independent with the Gaussians Ay, f.

Let us now show with an example how the inductive definition of the (r,1) tensors associated
to the ansatz for yy proceeds using high order iterations, first in the no-pairing case. For p = 3,
consider the high order iteration term such as

1@2 = Mup (b, 0, );
’ 4 (2.18)
(‘4§i‘°\°>k: Z Z hkklk?k?!hélkllklzhéjk[shﬁko H(AN[ifk[i)i’
OSNy

N[i/2<<k[ Ni;1§i§4 k1,k2,k3 =1

7

where £1 = {ly, [x} corresponds to the iteration tree ¢, and has frequency Ny, Lo = {l3} corresponds
to e and has frequency Na, and L3 = {l4} corresponds to the iteration tree ¢, and has frequency
N3. Also note that N = max(Ny, Na, N3) by . By the definition of My, in , the tensor
Pkckey keokes 1D is (with the no-pairing restrictions which we omit)

hkk1k2k3 = Y=y —kptks - 1|k|2:\k1|2—\k2|2+\k3|2‘ (2‘19)

Consider the case when there is no pairing among {1, l2, I3, [4} (note that (I1,[2) is already not a

pairing in ) By and Definition the random tensor h* associated to the iteration
tree .46}&\; is the merging of h*1, h*2, h*3 via h, assuming there is no pairing; it has skeleton tree
/{1\‘, or L= {[1, [2, [3, [4}.

It becomes unnecessarily complex to keep track of the iteration or skeleton trees such as
and &, as we iterate further and increase the depth. It turns out, see Section that the
desired estimates for the random (r,1) tensors depend only on the set of solid leaves and their
corresponding frequencies, not on the tree structure, except for some minor corrections. Therefore
it will suffice to consider structures that we will refer to as flattened trees below, provided we keep
the necessary information of the trees in a memory set ), which will yield the minor corrections
alluded above. The pair (£,)), where £ is viewed as a set, then plays the role of the trees (such
as /{1\ and /ﬁ}&]) The process of viewing L as a set—forgetting its tree structure—and finding the
set ) associated to the trees, is then called the flattening of trees. More precisely, every time we
merge the tensors, the flattening of trees proceeds by putting an element p into } and set NNV, to be

n addition, we remove edges connecting a node to its only child; they correspond to the random averaging
operator in 1| and can be dealt with as in Section m
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the second maximum among all frequencies of the trees of the merged tensors, so ) can be viewed
as a subset of selected nodes of the unflattened tree. For example, in the situation of , the
skeleton tree £ = {ly, l2, I3, [4}, which corresponds to the iteration tree 4{%\3, comes from merging
hE1, h22 and h%3, so we have p; € ) and Ny, equals the second maximum among {Ni, N2, N3}.
Furthermore L1, which corresponds to the iteration tree &y, is constructed by merging the tensors
h* (from Ay, f), h® (from Ay, f) andl] h° (from up ), hence we have one more element py in ), and
N,, equals the second maximum among {Ny,, Ny, }. Since h*? and h*3 are (1, 1) tensors which are
defined directly without merging, we obtain the memory set ) associated to the skeleton tree /{1\,
namely {p1,p2}. With this flattening process, we can forget the tree structures /{1\ and &, and
replace it by the flattened tree ) together with ), so we may also denote h% = h(edie, Y ), where
Y ={p1,p2}-

We now need to tri the tensor h(@%Y) as above at frequency 2L, in order to maintain the
property Ny > L and the independence between the Gaussians Ay, f and the tensor which contains
the low frequency components. When Ny > L for all [ € £, no trimming is needed and we get the
same random (4, 1) tensor h(«bs, V), with the k-th mode of the corresponding term in the ansatz
being

4
7))
) hl(f.l?f'kb;[sku AN fr, )" (2.20)

Ny, /2< (ki) <Ny 5 1<i<4 i=1

Instead, if N;, < L, then by Definition the trimmed tensor is a (3, 1) tensor:

@Y _ (¢, ) +
hkkllkIQk[3 - Z hkk[lk[2k[3k[4 : (AN[4 fk[4) (221)

Iy

and the k-th mode of the corresponding term in the ansatz should be

3
&Y
) h;kllklgk% AN fr)* (2.22)

N, /2< (ki) <Ny;5 1<6<3 i=1

which in fact is the same as . This means that the trimming process only changes the point
of view by which we regard the terms in the ansatz, but not the terms themselves.

Finally, we consider the case when pairings (see Definition occur in the merging process. In
the above example, if we have a pairing (2, [4) in the merging process , then instead of the
flattened tree 4\ we will have a flattened tree with pairing, namely

for simplicity we also assume N, > L for 1 <7 < 4, i.e. no trimming is needed. The set of paired

leaves is denoted by P = {l2, 4}, and the set of unpaired leaves is denoted by U = {l;,[3}. In this
case we still merge hX1, h%2 and h%3 via h using Definition as above, but assume now (lg, [4)

is a pairing, i.e. restricting ki, = ki, in the sum (2.18). The merged tensor, denoted by h(‘@’y),

Here b = (ur)x can be understood as a (0,1) tensor which has no input variable.
2This corresponds to removing o’s and low-frequency e’s from the iteration trees, or removing low-frequency
leaves from the skeleton and flattened trees. In the main proof, in addition to this trimming after merging, we also

need to trim the tensors before merging; see 1) and lj



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 21

is in fact a random (2, 1) tensor as only k( for unpaired leaves | € U are input variables. The k-th
mode of the corresponding term in the ansatz is then

(wddw: V)
> hkﬁ[g (AN frog ) (A fiog )™ (2.23)

Ny, /2<|ky; |<Ny;,i€{1,3}

In summary, in order to construct a random (r,1) tensor, we start with a high order iteration
which can be understood as the process of merging several lower order tensors as in , and
then trim the merged tensor at a given frequency 2L. This trimmed tensor is the (r, 1) tensor that
we seek for the ansatz for yy.

2.4.3. The core ansatz. Given a large parameter D, based on the above random (7, 1) tensors, we
construct the ansatz for yy as follows:

(e =) hkku JTANA)T + s (2.24)

(£, =

where zy is a smooth remainder, and the sum is taken over all flattened trees £ with frequency N
and cardinality |£| < D, and all possibilities of ) that arise from the above inductive process. In
, U is the set of unpaired leaves in £, and denote by P = L\U the set of paired leaves in L.

The main a priori estimates contain the bounds for various operator norms for the tensors h* (as
well as a high-regularity bound for the remainder zy, which we omit). Here we look at a simplified
exampleﬂ: for any partition (B, C) of U, we would like to show

ﬁy) € -5
H (e Hkk o <HN (max N)~ I1€_7[3N 1££NP 3 (2.25)

where [ is a constant which is a little bit smaller than o, and ;1 < 1 and 7 is small compared
to 1. In particular, the factor Hpey Ny % ghows the decay we gain from the tree structures (e.g.
/{1\-), hence we only need to keep the flattened trees (e.g. «f) and the memory set ) abstracted
from the full tree structures.

We will prove by induction. The key step here is to show that if is true for some
tensors h(LiYi) = h,(if,”my’ ) where 1 < j < p, then it also holds for the tensor h(5Y) = h,(jq’j)) which
is obtained by merging] and trimming those tensors as in Section [2.4.2] This argument, which is
the center of the whole paper, contains three main ingredients:

(1) The inequalities associated with the algebra of tensors, namely Propositions and
(and their precise versions in Section . Note that these are problem non-specific and are not
limited to Schrodinger equations.

(2) The operator norm bounds for the base tensor h that appears in the merging process. The
form of A is similar to , and operator norm bounds for A follow from various counting
estimates and Schur’s Lemma. This is proved in Proposition

(3) A particular selection algorithm. This is crucial when we apply Proposition since even
though H on the left hand side of does not depend on the order of the tensors h\), the right
hand side does. Therefore we have to follow a particular algorithm in order to go from bounds of
h(£3-Y5) to bounds of A(&Y). This algorithm is described in the proof of Proposition .

1See Proposition for the full detailed version. In particular there are distinctions between R and D
tensors, which we omit here.
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Random (1, 1) tensor hﬁk[
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Random (2, 1) tensor hfkllk[g
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FIGURE 1. Localization hyperplanes of random (1,1) and (2, 1) tensors

Finally, in addition to the operator norms, we need to control one more localization norm for
the tensor h(£Y), which localizes it around the hyperplane k = > ey Gk, where ¢ € {£} is the
sign of [. This norm is essentially a weighted L? or Hilbert-Schmidt norm, and the corresponding
estimates roughly look like

H (1 + %‘k‘ — ZC[[?[}) h;ﬁi;{y)'

el

<II™ TI™ TI ™ (2.26)

kku ey leP peY

where 3, 1 and §; are the same as in (2.25)) and & is a large enough constant. Such localizations
can be understood as our tensor h* being close to a multilinear Fourier multiplier. See Figure
for an illustration of the regions around which the (1,1) and (2,1) tensors are localized.

2.5. The extended ansatz, and general case. The ansatz in Section exhibits the
main idea, however the full ansatz has extra layers of complexity. Some of them come from passing
from the model to the full equation, such as the possibility of over-pairing (leading to the
norms in and the full Definition of merging) and the role of time Fourier or modulation
variables (leading to the spacetime norms defined in Section and allowing €2 # 0 in ) The
main one, however, arises already in the model .

To demonstrate, suppose we plug the ansatz into . Consider the nonlinear term
where one (or more) of the inputs is the remainder term zps with N < N/2; which is a part of
ynv in . If N'/2 > N’ > N?, then this N’ is not high enough for the resulting term to have
enough regularity to be put in the remainder zy, and not low enough for the tensor arising from
the resulting term to be independent with the Gaussians.

To remedy this, we go back to the iteration trees in Section and introduce more random
tensor terms by considering all possible configurations of iteration trees where we replace at least
one o (meaning uy,) by a diamond ¢ (meaning zys with N’ < N/2). For example consider the term

&3 : MHP(ANfa zN’auL)a (227)
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where N/ < N/2, whose k-th mode is given by
(Do)=Y hﬁ?{(kf) (AN i) - (2N )k (2.28)
Ky ks
where

hﬁc’[(kf) =t Z (UL )ks (2.29)

k[—kf-i-k:;;:k; Q=0

with Q = |k|*> — |ki|? + |kj|*> — |ks|® and uy, is the Fourier mode of uy, in (2.27). The iteration term
in can be viewed, via 7, as a linear combination of the tensor terms in Section
with coeflicients being the Fourier coefficients of zp, which are summable since the norm of
zn+ will be a large negative power of N’ (see part (4) of Proposition , Moreover the tensors

h‘,?,;"l(kf) in (2.29) do not involve zys and thus retain independence.

Then we flatten these new iteration trees and repeat what we did in Sections [2.4.2 except
that the pair (£,)) alone is not sufficient to represent the new random tensor terms, and we need
to introduce one more set V which contains all the ¢’s in the new iteration trees. Hence in the full
ansatz, the sum in should be taken over all triples (£,V,)), which will be defined as plants,
see Definition 3.2

2.6. Outline of the paper. Sections[3H4]are mainly preparations, with definitions listed in Section
and lemmas proved in Section[d In Section[5|we introduce the main random tensor ansatz, thereby
reducing Theorem to Proposition which is then proved in Sections [6H7} In Section [§ we
finish the proof of Theorem as well as the proof of Theorem which is a simplified version of
the former. Finally in Section [9] we make a few comments, including a comparison with parabolic
equations. The structure of the proof is presented in Figure

3. PRELIMINARIES I: DEFINITIONS

In this section we list the main definitions used in this work. In Section [3.1] we fix and collect the
various notations and parameters, in Section we define the plant structure, associated tensors,
and their operations. In Section we define the norms used in the main proofs.

3.1. Choice of parameters and notations. We use C' to denote a generic large constant de-

pending on (d,p). Let « be fixed as in ([1.3]). Define
d 1 _ o+ ag

=== — = (103dp) (o — 0 = =— 3.1

&7y] 9 = 15 € ( p) (O[ aO) >0, 6 2 3 /81 2 ( )

We assume 0 < € <¢ 1 and fix it throughout. We will use C. to denote a generic large constant

B+ ag

depending on ¢; similarly Cs etc. will depend on the small parameters § etc. defined below. These
constants, including C' and (6, Cy) defined below, may be varying from line to line.
Fix (4, D, k) such thatﬂ

0<d<ke. 1l; D>»c, 1, s>»pl. (3.2)
Define also ) . )
Dy :=6D, b:= 3+ 8kt bt = 5+ 16671, by = 5+ 4kt (3.3)

Let 6 denote a generic positive constant that is sufficiently small depending on «, and (as above)
Cy a generic large constant depending on 6. We also fix 6y to be a specific positive constant that is

1Roughly speaking § = %Y, D = 6 °°, x = D®® and 6 ~ £~ °° should suffice.
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Random tensor theory Counting estimates
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FIGURE 2. Structure of the proof

sufficiently small depending on k. Unless otherwise stated, the implicit constants in the < symbols
will depend on Cy. We fix 0 < 7 <¢, 1, and let J = [—7, 7]. If an event on the ambient probability
space (©, B,P) happens with probability > 1 — 006_,49 for some quantity A > 0, we say this event
is A-certain. In the proof below many quantities will depend on w € ©; we may include w in the
expressions for emphasis, or omit it for simplicity. We use 1g to denote the characteristic function
of a statement F.

In the proof, the capital letters N, M, L etc. will denote dyadic numbers > 1; when they (for-
mally) take the value of 1/2, we will understand that the corresponding quantities are 0 (or the
trivial case depending on the context). Define N9 := max{L : L < N%}. The lower case letters
k,m etc. will denote integer vectors in Z¢ or Cartesian powers of Z¢. The letters t,t etc. will
denote the time variable, and the letters A\, X', \; etc. will denote the Fourier dual of time (we call
these modulation variables). For k € Z%, let py, := |gx| and 7y, := plzlgk, which are independent
random variables, such that each 7 is uniformly distributed on the unit circle. We also define
v = (k)"%pg. For dyadic N, let By C B be the o-algebra generated by the random variables
{nk : (k) < N}. The cardinality of a finite set S is denoted by |S| or #S. Recall the notion of
partition and subpartition in Definition as well as the abbreviation k4 = (k; : j € A); similarly
we use Ag to denote (A : j € A) and dAa to denote [[;c 4 dA;. Also recall the notion of u, pairing
and over-pairing in Definition

We will use uy, to denote the spatial Fourier coefficients of u, and the notation U represents the
time Fourier transform only (maybe in multiple time dimensions, see f below). We will
be loose about powers of 27, and may write formulas like

() = /R e~ My(t)dt, w(t) = /R e T(N) dA.
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If .Z is an R-linear operator acting on spacetime functions, we can uniquely decompose it into the
sum of a C-linear operator, .2, and a C-conjugate linear operator, . ~. We will denote the kernel
of Z¢, where ¢ € {£}, by (L) (t,t'), so that

(Zow(t) = 3 [ a (Lt (0, (3.4)
k/
then on the time Fourier side we have

(Zn) = Y [ (ZurOh =) (@) () (3.5)
Y R

Fix a smooth cutoff function x(¢) which equals 1 for |[¢| < 1 and equals 0 for || > 2. For 0 < 7 <1
define x,(t) := x(77't). Define the standard and truncated Duhamel operators

Iv(t):/o o) dt, I, (t):X(t)/O X)) dt'. (3.6)

Note that these are not coming from the original Schrédinger equation ([L.1]), but a variant of it

after conjugating by the linear Schrédinger flow (namely v = e~#24). Finally we introduce the
notion of simplicity for real polynomials and R-multilinear operators; in practice the Wick-ordered

and suitably gauged power nonlinearities will be simple.

Definition 3.1. Consider a real polynomial (or R-multilinear operator) A/ of degree r, given by

N(u), = > Chloy ol UL+ T (3.7)
<1k1+“'+<rkr:k
We say it is simple if the coefficients cg, ...k, depend only on the set of pairingsﬂ in (k, k1, -, k),
and cgg, ...k, = 0 unless each such pairing is over-paired.

3.2. Plants and plant tensors. In this section we introduce the main structure—namely plants—
and the associated tensors, as well as two basic operations (Trim and Merge) of these objects.

Definition 3.2 (Plants). A plant S consists of the following objects:

(1) Three disjoint finite sets £ (called the tree), V (called the blossom set), and ) (called the
memory set); elements of £,V and ) are called leaves, blossoms and pasts, and are denoted
by [, f and p. An arbitrary element of LUV U Y is denoted by n.

(2) A collection of pairwise disjoint 2-element subsets of £, which we refer to as pairings; the
set of paired leaves is denoted by P, and the set of unpaired leaves is denoted by U := L\P.

(3) A dyadic number N = N(S) (called the frequency of S), a sign (, € {£} for each n € LUV
(note that signs are not defined for pasts), and a dyadic frequency Ny for each n € LUVU.
We require that Ny = Ny and (¢ = —(; for any pairing (I, ') in £; that N, < N forn € LUY;
and that N; < N/2 for f € V.

We will denote a plant by S = (£,V,)), and define |S| = |L| + |V| + |V]| to be the size of the
plant. Two plants will be identified if there is a bijection between them that preserves all these
objects. We say a plant S is regular if N, > N° for any n € LUV U Y, and plain if V = & and
> ier G =1 (so in particular [£] is odd). We also define the mini plant S¢,, where ¢ € {£}, to be
the plant where V = ) = &, £ has only one element [ with sign ¢ and frequency N, and N(S) = N.

1Here a pairing (k, k;) means k = k; and ¢; = +.
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This is regular, and is plain if ( = +. Finally we define the conjugate of a plant S to be S, which
is the same as S except that the signs of all elements in S are the opposite to the signs in S.

Remark 3.3. Note that the sets U, L, V etc. are associated with a plant S. We will keep this
correspondence throughout; for example whenever there is a plant §; in some context, the set U/
will always be the one coming from §;. We may encounter sets U; that do not come from any
plant; in such case there will simply be no plant called §; that appears in the same context.

Definition 3.4 (Plant tensors). Given a plant S = (£,V,)), let U be as in Definition We say
a tensozﬂ h = hg, (ky, Ay) is an S-tensor, if k and each ky (n € U UV) are vectors in Z¢, and in
the support of A we have that
(1) (k) < N, (k) < Njand |Af] < 2N** for each f € V, and Ni/2 < (k) < N, for cach [ € U;
(2) there is no pairing in ky, i.e. if [I' € U and {y = —(; then ky # k.
Here h may depend on other parameters like ¢, in which case we may write h = hyg,, (t, kv, Ap).

Suppose we have defined functions fy+ = (fn) for any N’, and zy» = (zn7)g(t) for any N < N.
Define ¥y = Wx[S, h] by

We= ) /d)‘v'hkku(kw)‘v)'H(fN[)i[[H(Z/\Nf)gf()\f), (3.8)

Ky Ky = fev

which is an expression determined by the tensor h. Note also that an S tensor A is also an S tensor,
and \I/k[S,h] = \I/k[g,ﬁ]

Definition 3.5 (Trimming). Given a plant S = (£,V,)) and R > 1, we can trim S at frequency
Rtoget S' = (L',V',)'), such that L' = {l € L: Ny > R} and (V',)’) are defined in the same way.
The other objects (i.e. the frequency of &', the signs and frequencies of elements, and the pairings
in £') are inherited from S. Obviously, S’ is regular if either S is regular or R > N°.

Now suppose we have defined functions fn' = (fn/)r for any N’ and zn' = (zn7)k(t) for any
N’ < R. Then, given an S-tensor h = hyy, (ky, \y), we can trim it at frequency R to get an
S'-tensor h' = (h')gx,,, (kyr, Ayr), which is defined by

(P Ykt (R Ap) = D> /d)‘V\V"hkku(kVa)\V)' I i T1 (ZNf) (A (3.9)
Ky kyyyr let\u'’ FeV\V/

We shall write the above definitions as &’ = Trim(S,R) and h' = Trim(h, R). Note that the

definition of A’ actually depends on the choices of (fn/) and (zn/)n'<gr, but in practice these

will be uniquely fixed whenever we apply Trim functions, so we will omit them from the list of

parameters. If Ny < Rfor alln e YUV then U’ =V = @, and h' = (I'), is just the Uy, defined in

B3).

Definition 3.6 (Merging). First, for any finite set A with a sign for each element, we will fix
a maximal collection of pairwise disjoint two-element subsets of A, such that each such subset
contains two elements of opposite sign (i.e. pairings). Let 2?(.A) be this collection, and Q(.A) be
the union of the two-element subsets in Z2(A).

Now let 3 < ¢ < p be odd and 0 < r < ¢g. Given dyadic numbers N and N; and signs (; € {£}
for 1 < j <g,sothat Nj < Nforl<j<rand Nj <N/2forr+1<j<g, andzgzlg“jzl,
denote the collection of these parameters by %. Given pairwise disjoint plants S; = (£;,V;,);)

"n this tensor ky and Ay appear as parameters. Note also that the definition does not involve P or ).
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with frequency N; for 1 < j < r, let U; etc. be as in Definition Let L:=L1U---UL, andE|
V=V U---UV,U{r+1,---,q}, and for each n € £; UV let the (new) sign of n be ¢} = (;G,
where (, is the sign of nin S;. Let ¢ = {Ay,--- , Ap,} be an arbitrary collection of disjoint subsets
of W:=U;U---UU,, such that:

(1) each A; contains two elements of opposite ¢ sign, but does not contain two elements of
opposite ¢/ sign that belongs to the same Uj;
(2) the frequencies of | € A; are the same for each 1 < i < m.

For each possible &, let
P=PA)U---ULP(A,) and Q:=Q(A)U---UQ(Ap) (3.10)

with Z(-) and Q(-) defined as above. We then merge S; (1 < j < r) via % and O, to get a plant
S =(L£,V,)) as follows. First N(S) = N, £ and V are as above, and the set of pairings in £ is the
union of the sets of pairings in each L;, together with & (the new pairings; in particular we have
U = W\Q). Second, the sign and frequency of j are given by (; and N; for r +1 < j < ¢, and
the sign and frequency of any n € £; UV; (1 < j <) is given by (¢ and the frequency of n in S;.
Finally, Y = )1 U--- U Y, U {0}, with Ny given by the second mazimum of all the N; (1 < j < g);
for any p € Y; (1 < j <r) the frequency of p in S equals the frequency of p in ;.

Now suppose we have defined a tensor h = hkk1~~~kq()\r+1, -+, Ng), where k, kq,--- , k, are input
variables and A,41,- -+, A, are parameters; assume in the support of h that (k) < N and (k;) < N;
for 1 < j < ¢, and that |\;| < 2N~ for r+1 < j < q. Then, given S;-tensors V) = hl(c];)kuj (kv;, Av;),

where 1 < j < r, we shall merge these h\9) via h, # and O, to form a new tensor H = Hipy, (v, Ay),
namely (recall also v, = (k)™ “pg)

(1) (2)

Hygy, (ky, ) = [ [ Loy [ Tree - Z Py oekeg (Arg1, 77+ 5 Ag)
Ly Ly (K1, skr)

X Z H ANﬁk[ H ]E;j)k;uj (kV]’7 )‘Vj)]cj' (311)

ko €Q

In the above expression, the product H[ ¢ is taken over all leaves [,I" € U such that they belong to

the same A; (in particular (j = ("), the product HEQ[,) is taken over all leaves [, € U such tha
¢ = —¢ (so they do not belong to the same A;), and the summation Z,(;Z is taken over all possible
ko (with Q defined above) such that for each i, all the k( for [ € Q N A; are equal, and they equal
ky for ' e U N A; (if such I' exists). We can verify that H is an S-tensor.

We shall write the above definitions as
S =Merge(Sy,---,S,, B,0), H =Merge(hV,--- ") h, B, 0). (3.12)

Proposition 3.7. Assume we have fized the choices of fn+ and zn+ as in Definitions[3.7] and [3.5,
and h = higyy(Ar1, 7 5 Ag), B, S; and Sj-tensors hY) for 1 < j < r as in Definition .
In applying the Merge function below we will omit the parameters h and %B. Then the following
statements hold:

Ly necessary we may replace the unions U by the disjoint unions LI to avoid repetition of elements.
2Here we may also require Ny = Ny ; whether we do so will not affect the result of this product.
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(1) Recall the definition of ¥y, = Wi[-,-] as in (@ Then for any R we have W[S;, h0)] =
\Ifk[Trim(Sj,R),Trim(h(j),R)]. Stmilarly, trimming at frequency Ry and then Rs is equivalent to
trimming once at max(Ry, Ra).

(2) Let \IJ,(CJJ) = Wy, [Sj,h0)] be defined as in (3.8) from the Sj-tensor h9) for 1 < j < r. Then
the quantity

Z / Wt dg - e, O, A) - [T T GRagow) (313)

k1, K j=1 j=r+1

can be written as a linear combinatiorﬂ of Uy, = Wi [S, H] (for different choices of € as in Definition

@), where

S =Merge(Sy,---,S,,0), H =Merge(hV, ... h" 0).

(8) Let S; = (L5, Vi, Vi) = Trim(S;, N°) and (h)) = Trin(h(), N%) for 1 < j <r. For any €
as in Definition[3.6, let €' be the sub-collection of €' consisting of subsets that are contained in the

union of Uj for 1 < j <r. Let

S=(LV,Y)=Merge(Sy, - ,S,,0), S' = (£, V,)) = Trim(Merge(S},--- ,S., 0"), N°),

Y~

H =Merge(hV, ... A" @), H' = Trim(Merge(()V, ... (W), &), N?),

then we have 8’ = Trim(S,N‘s)). Moreover, given any such O', the tensor H' can be written as
a linear combination of tensors Trim(H, N5) (for different choices of O that are related to O’ as
above).

(4) Assume that some Nj = N, S; is reqular, and Nj > N° for some j' # j. Then for the plant
S = Trim(Merge(Trim(S;, N?),--- , Trim(S,, N°), &), N®) where O is as in Deﬁnition we have
5> 1S

(5) Assume that each S; is plain, and r = q, then the plant S = Merge(Si,--- , Sy, 0), where O
1s as in Definition |3.6], is also plain.

Proof. First, (1) is obvious once we expand the Wy, expressions using (3.8)) and (3.9)); also (5) directly
follows from definition, noticing also that

q q q
DD E=D0 Ga=) G=1
j=11eL; J=11eL; J=1
Next, (4) is true because if N; = N and S; is regular, then Trim(S;, N°) = S;, so by definition, if
S = (L£,V,Y) we have L D L; etc.; moreover as the second maximum of Ny,---, N, is > N9, by
definition Y will have at least one more element than Y;, so |S| > [S;| + 1.

Next consider (2). Recall W = U U- - -UU,, using and , we can expand the expression

P, as a sum over the variables kyy and (kq,--- ,kq) and ky, for 1 < j <r, and an integration over
the variables (A 41, -+, Ag) and Ay, for 1 < j <7, of the quantity
r ) o r I q ,
hkkl--~kq(>\r+1a s ,)\q) . H [hl(cj)ku k‘v ,)\V H H fN[ [[ : H H(Z/Z\Zc)kff ()\f) H (?N\])kjj()‘J)a
Jj=1 J=11elU; J=1f€V; j=r+1
(3.14)

Here and below the phrase “linear combination” will refer to a linear combination with a fixed number of terms
and fixed constant coefficients.
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where in the summation we do not impose any pairing or no-pairing condition (with respect to the
¢ signs, same below) for the variables kyy (of course if there is a pairing within &, then rl) =0

so the quantity is zero).

On the other hand, using and , and noticing that (fz)e(fn)e = An(7)?, we can
write Wi[S, H|, corresponding to a certain choice of & = {A;,--- , A;,} as in Definition as a
sum and integration of the same quantity over the same set of variables as in ®j, but with
a set of additional pairing and no-pairing conditions on kjy. Precisely, the extra conditions are (i)
the k; are the same for [ in each A;; (ii) there is no pairing in ky\ o where Q is defined in Definition
We denote this set of extra conditions by (&,1). With these observations, it suffices to show
that the sum »_, =~ can be written as a linear combination of sums 4 ;) for different &. Now, by
identifying the exact set of pairings among kyy, we can write ka as a linear combination of sums
(0,2 for different &’s , where (&, 2) represents a different set of extra conditions, namely (i) the
kp are the same for [ in each A;; (ii) the k; for different 4; are different, and are different from any
ky for [ not in any A;; (iii) there is no pairing among the k; where [ is not in any A;. Note that we
may assume these @’s are as in Definition [3.6] i.e. each A; contains two elements of opposite sign
but does not contain two elements of opposite sign that belong to the same U/, and N for [ in each
A; are all the same, since otherwise the summand would be zero by Definition

Clearly the condition (&,2) is stronger than (&,1), and the difference }- 4 1) — > () can be
written as a linear combination of sums | 7 2) for different #’s, where #  has the same form as 0,
such that the condition (#,2) gives strictly more pairings than (&,2). Thus, we can inductively
write },  as a linear combination of sums ), ;) for different &. In this way we have written @y,
as a linear combination of W) = W[S, H] for different choices of &, which proves (2).

Finally look at (3). As &’ consists of those subsets in ¢ that are contained in the union of LI;
(note that any A; is either contained in the union of I/I]’-, or contained in the union of Llj\u]’-), we
know that &’ (defined from &’ as in Definition also consists of those subsets in & that are
contained in the union of Z/;. Then the equality &' = Trim(S, N %) follows from Definitions and
and straightforward verification. Note that if N; > NOforr+1<j <s, and N; < N9 for
s+ 1< j < ¢ (which we may assume), then {r+1,---,s} CV and {s+1,---,q} C V\V"

Now look at the tensor H'. Let R be the union of all the ¢;\U; and Z be the union of all the
V;i\V;, and let Q' be defined as in Definition which occurs in the process of merging S,--- , S/
via @', then using and , we can expand (H' )kku,(ky/, Ayr) as a sum over the variables
(kst1,- -+ ,kq) and ko and kg and kz, and integration over the variables (Agy1,---,Aq) and Az,
of the quantity

(1) (2)
H 1=k, Hlks[;ék:[/ : Z Pkkyookeg (Art1s -+ 5 Ag)

LI L (K1, k)
(3) T ) G e cr q ¢
3 TT v IT 2, G TT0wE TTEDE 00 T GRg ), (319)
ko 1€Q j=1 ‘ = ez j=s+1

where the sums and products HEII,) , HEQ[/) and Z,(f’g), are defined as in Definition in the process
of merging Sf,---, S, via ¢’, and in this summation we do not impose any pairing or no-pairing
condition for the variables kr. The signs (; are also defined as in Definition
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On the other hand, if & = ¢’ U ¥, then using and again, we can expand the tensor
(Trim(H, Ng))kkw (kyr, \yr) as a sum and integration of the same quantity over the same set
of variables as in (H')y,, (kyr, Ayr), but with the kr variables satisfying a set of additional pairing
and no-pairing conditions, given exactly by (#,1). Therefore, the same arguments as in the proof
of part (2) above also imply that H’ can be written as a linear combination of Trim(H, N°) for
different choices of &'. This completes the proof. O

3.3. Working norms. Based on the tensor norms of Definition we can define the norms
involving the modulation variables A, X', etc., as well as some other parameters; these will be the
norms used in the main proof.

Suppose by, be € [0,1], h = hy, (t) depends on ¢, and let h be the Fourier transform of h in ¢. Let
(B, C) be a subpartition of A, we define

ke = O W (I O (3.16)

If h = hy, (kr, Ar) depends on some parameters (kr, Ap), we define

LENRED [ e TL 2 e Ae)IE, e (3.17)
JEF
If h = hy, (t,kr, \r) depends on both ¢ and (kr, Ar), we define
HhH? k] / lez/d)\p LT ™22 e N o Ap)IIZ e AN, (3.18)

jJeEF

where % is the Fourier transform of h in ¢ only; note that

2 o 2b1 1|7 SN2
I gy ey = [ W By A

_Z/d)\p T 22 s A s oy (3:19)

JEF

Now, given a tensor h = hy,(t,t'), a subpartition (B,C), and b1,bs € [0,1], we can similarly
define

Ity = [ 0 2 g N Ry AN (3.20)

where % is the Fourier transform of A in (t, ). Finally, if s; € R, the X*1* norm for a function
f = fx(t) is defined by
[Fi /R</\>2b1H(/€>slfk(A)H§g dA. (3.21)

When s; = 0 we simplify write X1,

4. PRELIMINARIES II: ESTIMATES

In this section we collect the important core estimates. Sections contain the basic lin-
ear and large deviation estimates. Section contains counting estimates ultimately leading to
Proposition and Section contains the main tensor norm estimates, Propositions 4.11H4.12

and L 14H4.151
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4.1. Linear estimates. We record two estimates for Duhamel and time localization operators
(recall from (3.6|) the definition of Z, ), and another weighted estimate. For the proofs see [35} [36].

Lemma 4.1. We have the formula

—

To() = / T N)EN) A, (4.1)
R
where the kernel T satisfies that

1 1 1 1
2+ 00t = (55 5o ) 5 < 0 2

Proof. See [35], Lemma 3.1 whence by a similar proof, one can see that (4.2]) also holds for |0y x/Z]|.
]

Lemma 4.2. Let v = v(t) be a function on R valued in some Banach function space. For by € [0,1]
define the Y norm by

o2, = /R N2 [[G(A)]2 X, (4.3)

where v is the (vector-valued) Fourier transform of u. For 7 < 1 let x,(t) = x(77 ) be as in
Section then for any 0 < by < by < 1/2 and for any v, or for any 1/2 < by < be < 1 and for
any v satisfyinﬂ v(0) = 0, we have

X+ - vy S b= ||UHY’72- (4.4)

Proof. See [36], Proposition 2.7 (which proves the scalar case, but the proof directly carries over to
vector valued cases). O

Lemma 4.3. Fiz k1 > 0. Let M = My (X, N) be the kernel of an operator 4, namely
(M) = Y [ e O Xy () X,
kR

and assume that A is supported in |k — k| < R for some dyadic R. Then uniformly in any R and
any k0 € Z%, we have

1+ B = RO () sz S 112, 0z - 1L+ B = K= g (V) g, (45)
Proof. See [36], Proposition 2.5. O

4.2. Large deviation inequalities. We state a large deviation estimate that works for uniform
distributions on the unit circle, see [36].

Lemma 4.4. Let E C Z¢ be a finite set, a = a,...;, (w) be a random tensor such that the collection
{ak, ...k, } is independent with the collection {ny(w) : k € E}. Let (; € {£} and assume that in the
support of ak, ..., there is no pairing in (ki,--- , k) associated with the signs (;. Let the random
variable

X@)i= Y g (@) [ m(@)®, (4.6)
j=1

k1, kr
then for any A > 0, we have A-certainly that
X(@)P <A Y7 agyn, @) (4.7)
ki, kr

'In practice, the factor x, will always come with a v which has the form Z, (- - - ), so we always have v(0) = 0.
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Proof. This is a special case (i.e. no pairing) of [36], Lemma 4.1. O

4.3. Lattice point counting bounds. Here we state and prove the various counting bounds that
eventually lead to Proposition [4.9

Lemma 4.5. Consider the set

SO = L(k1, ka, k3) € (23 : Giky + Goko + Ghs = m, Cilki]® + Glkaf® + Glks|* =T,
|[k1 —mi| < My, |ka — ma| < Ms, and there is no pairing in (ki, kg,k:g)}, (4.8)

where (; € {£}, (m,I') € 7% x 7, m; € 7% and M; dyadic are given. Then we have, uniformly in
all parameters, that
#SG) < (M My)* 10 (4.9)

Proof. We may assume M; < M. If d = 1, by simple algebra, we can reduce to a divisor counting
problem in Z[e?™/3] (if (; = (o = (3) or Z (otherwise). Since each k; belongs to an interval of
length O(Ms), the estimate follows from Lemma 3.4 of [35].

Consider d > 2. Without loss of generality, we may assume (due to no-pairing) that either
the first coordinates of (ki, ko, ks) do not contain a pairing, or the j-th coordinates of (ki, k2, k3)
contain a pairing for each j, and this pairing is not from (ks, k3) for j = 1. In the former case the
j-th coordinates of (ki, ko, k3) have at most M; My choices for each 2 < j < d, and then at most
(M1 M>)? choices for j = 1 thanks to the d = 1 case. In the latter case the j-th coordinates of
(K1, k2, k3) have at most My choices for 2 < j < d, and at most M; choices for j = 1. In either case
we get

#5G) < max((M; M) (M My)?, ME—My) < (M My)1+9. O

Lemma 4.6. Recall that p > 3 is odd. For1 < p; < p, consider a partition of a set A C {1,--- ,p},
|A| = p1, into pairwise disjoint nonempty subsets By,--- , By, say By = {iy(1), -+ ,iu(by)} (1 <
u < t). Given m; € Z%, M; dyadic, (; € {£}(j € A) and T € Z, consider the set S consisting of
vectors ku (where each kj € Z2) that satisfy

Yy
DG =T | D Guekine) — Miuw)
z=1

JjEA

<M, (), V1<u<t,1<y<b,=|B,).  (4.10)

Assume M;, ) =1 for 1 <u <t, and that there is no pairing in ka. Then we have, uniformly in
all parameters, that
#5 < [ ()%, (4.11)
jEA
where aq 1S as in .
Proof. We may assume p; = p, since if p; < p we can add some elements to the sets B, and reduce

to the p; = p case. We will prove (4.11) by induction. Suppose (4.11)) is true for p — 2, we will
prove it for p. For simplicity we define

Y
wzu(y) = ZCiu(z)kiu(Z)’ 1 <u< t, 1 < y < bu
z=1

Since p is odd, at least one of |B,| (say |Bi|) must be odd. If |B1| =1 then the value of k;,(y) is
fixed, so we only need to count the vector k\p,. If |B2| = 1 also then we may reduce to counting
ka\(B,uB,) and apply the induction hypothesis; otherwise |B2| > 2 and we may add an element to
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Bj at no cost and reduce to the case |Bz| > 3. Therefore in any case we may assume some |Bj| > 3,
say |B1| = b1 > 3.

Let (é1(b1),41(by — 1),41(b1 — 2)) = (n,n/,n”). Since by (4 , each w;,(,) belongs to a ball of
radius M;, (), and k;, () = Tw;, (y) £ w;, (y—1) for some independent choices of + (same below), the
number of choices for the vector kg \ (n v/ n77) 18 at most

M0y M o, = (M M) ™ [T 0]
JjEB1
noticing that M, = 1. Similarly for 2 < u < ¢, the number of choices for the vector kp, is at most
HjeBu M]‘-i. Once k g\ 0/ nry 18 fixed, kpr = fwyr £ w;, 5, —3) belongs to a ball of radius M, and
k, = +w,, + w, belongs to a ball of radius M,,,. Then the number of choices for (ky, ky/, kp») can
be bounded by (M, M,»)?1% by Lemma thus

#8 S (M M) =40 T MY (4.12)
jeA\{n,n/,n""}
Note that this also settles the base case p = 3.
On the other hand, for p > 5, since M,, = 1, by we know that k, = +w, £+ w, belongs to
a ball of radius M,,/, and when k, is fixed, k,, = +w,, + k,, = w,» belongs to a ball of radius M,.
Thus the number of choices for (ky, k) is at most (M, M,»)?. When (k,, k) is fixed, we only
need to count the vectors £\ fp, vy Now wy, () belongs to a ball of radius M; (, if y < b1 — 3, and
to a ball of radius 1 if y = by — 2, so by the induction hypothesis we conclude that

d—-2.40
#5 < (MyM) T M, 777 (4.13)
jeA\{nn! "}

Interpolating (4.12]) and - we get

d—-2_49
#5< 11 M 7
JEA\{n}
which is just (4.11]). O
Lemma 4.7. For 1 < py < p, consider a partition of a set A C {1,--- ,p}, |A| = p1, into pairwise

disjoint nonempty subsets Ay,---,As and By, -+, By, say Ay, = {lp(1), - ,Ly(ay)} (1 < v < s5)
and By = {iy(1), - ,iu(bu)} (1 < u < t). Given m; € Z4, M; dyadic, (;j € {£}(j € A) and
[,T, € Z(1 <w <s), consider the set S consisting of vectors ka (where each k; € Z%) that satisfy

> Gl =T

)kzu(z) — My, (y) < Miu(y)? Vifu<t,1<y<b,= ’Bu‘7 (4‘14)

jeA
Y
Z Gilkj? =T, ZC@U(Z)I%(Z) — My, ()| < My, ), V1 <v<s,1<y<a,=[4,] (4.15)
JEA, z=1

Assume that My, (q,) = 1 and |Ay| <p—2 for each 1 < v <'s, that M;, ) =1 for each 1 <u <t
and that there is no pairing in ka. Then we have, uniformly in all parameters, that

< 2a0+9 M 2040—d. 4.1
#5 1; H min My, () (4.16)
J
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Proof. This essentially follows from Lemma Let B = By U---U By, by (4.14) and (4.15)) we
may count kp and each k4, (1 < v < s) separately. By Lemma the number of choices for kp

[T (azz)2eot?;

jEB

is at most

thus it suffices to prove that the number of choices for k4, is at most

ay—1
2a0-+0 200—d
]H1 (Mp, ()" (1%21 My, ()"0

Let |Ay| = a, = n, clearly we may assume n > 2. Lemma then implies that the number of
choices for k4, is at most

where n’ = n if n is even, and n’ = n — 1 if n is odd. Now the desired estimate follows, since

n—1 —

2

W (M, N My ()220 ¢
yHl( |:| )’ (Zoin Me, )™

due to the elementary inequality
2
(n—1)(200 —d + W) > d — 2w
which can be verified for 2 <n <p — 2. O

Lemma 4.8. Consider the same setting and set S as in Lemma[{.7, but instead of no pairing in
k4 we assume that (1) any pairing in ka4 must be over-paired, and (2) d(p—1) > 8. Then the bound
remains true.

Proof. As in the proof of Lemma we define

Wi, (y) = ZCiu(z)kiu(z)v 1<u<t, 1<y <by

Wy, (y Z% vk, 1<v<s, 1<y <a,

We also understand M;, () = My, (,) = 1 when y = 0. It suffices to bound #5 by

S t
=[] [] (4.17)
v=1 u=1
where for 1 <v <sand 1 <u<t,

Moo= ] (Mo ((min My,))* ™ and 90 = [ (Mj,0)*%" (418)
1<y<ay Y 1<y<by

We proceed by induction. The no-pairing case is already known by Lemma [£.7] Now suppose there
is some over-pairing in k4; we list all the different j’s in A (there are at least three of them) such
that k; are the same, and let this common value be k. We will fix &, count the remaining variables,
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and then sum in k. With k fixed, by using induction hypothesis, the number of choices for the
remaining variables will be bounded by some product

N(k) = [ Mu(k) ] 20(K),
v=1 u=1

and we need to bound the quotients M, (k)/M, and N (k)/N;. We only need to consider those v
and u such that at least one k; (j € A, or B,) equals k (otherwise the quotient is 1). There will
be several cases depending on how many k; equal k, and their positions. First, if |A,] = 1 (or
|By| = 1), then the value of k will be uniquely determined, so there is no summation in k, and the
result follows from the induction hypothesis. From now on we will assume |A,| > 2 and |B,| > 2.
Similarly, if |A,| = 3 or |B,| = 3 then the elements in {k; : j € A,} (or {k; : j € By,}) cannot all
equal k, since otherwise k£ would also be uniquely determined.

(1) If all (or all but one) elements in {k; : j € A,} (or in {k; : j € By}) equal k, then 0N, (k) (or
I, (k)) will be equal to 1. Considering By, since k;, () = Fw;, () = W, (y—1), DY we see that
if k;,(y) = K, then there exists a vector m* not depending on k, such that max(M;, ), M;, y-1)) 2
|k —m*|. This implies that

* | —2a0—0 :
0N (k L B if [Bu| < 3;
ulk) o ! (4.19)
mz |k:—m*|_2a0_9|k—m**|_2a0_9, if |Bu‘ 24’
where m** is another vector not depending on k.
Similarly considering A,, in view of the extra factor in (4.18)), the estimates will be
|k — m*|d-de0=0, if |Ay| = 2;
k
mm( ) <<k —m*| 7200 if |Ay| > 3; (4.20)
v

‘k - m*|72a079’k _ 7n*>s<‘d74040797 if |Av| > 4.

(2) If at least two elements in {k; : j € A,} (or {k; : j € B,}) do not equal k, then in particular
|Ay| > 3 (or |By| > 3). In this case we only need to consider B,,, and the bounds for A, will be the
same (if not better) due to the negative power of miny, My, ) in (4.18). If we fix k; ) = k, then
wj, (y—1) belongs to a ball of radius min(M;, (), M;, y—1)), so we get

0, ()
s,

S maX(Miu(y)a Miu(y—l))_2a0_07 (421)
which is bounded by |k —m*|720~% 'in the same way as in (1).

(3) By similar arguments as in (2), we know that if two non-adjacent elements in B,, equal k (sim-
ilarly for A,), say k;, (y) = ki, (y) = k, then w;, (,_1) belongs to a ball of radius min(M;, (), M;, (y—1))
and w; (1) belongs to a ball of radius min(M;, ), M;, (1)), S0 we have

0, (F)
n

< max(M;

[z

() M,

iu(yfl))72a070 maX(Miu(y’)v Miu(y’fl))72a079 5 \k—m* |72a079|k_m** |72a079.

In summary, since at least three elements in all the A,’s and B,’s equal k, we conclude that

N(k) v Molk) vy Mi(k) d—dao—0 i g0
R S u < _ * Qo _ *ok o7y
mgmgmwmm |k —m*| :

(
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Since 2(4ay — d + ) > d because d(p — 1) > 8, we conclude that

Z ‘k m ‘d 4og— H‘k m**’d 4og— 9<O Z;ﬁ
kezd kezd
which completes the proof. ]

Proposition 4.9. Partition {1,--- ,p} into disjoint nonempty subsets Ay, -+, As, B1,--+ , By and
C. Assume Ay = {ly(1),- - ,ly(ay)}, By = {in(1), -+ yiu(by)}, and C = {nqy,--- ,n. = 1}. Given
m; € Z% M; dyadic, ; € {£}(1 < j < p) and T\T\, € Z(1 < v < s), consider a tensor
h = hgg,..k,, where each k,k; € 7%, which satisfies |Pky -k, | S 1, and in the support of h we have

Yy
DGR =T, | D Gk — e
z=1

JEAy

p
> Gk = kP =
j=1

SM&(y)? V1Sv§871§y§aﬂy: ’A'U| (422)

< M), V1 <u<t,1 <y<b,=|B,|, (4.23)

Zu (Z - 7"'14 (y)

E anknz — Mn,
z=1

(be) = Mn, =1, and that

<M, V1<y<c-1=|C]-1 (4.24)

We assume that My, ) = M;

Zgj:()(wgvgs),zp: Zgjk —k= Y (k=0 (4.25)

JEAy j=1 JEAy

We also assume that any pairing in (k,ky,--- ,kp) is over—pazred. Then, for any subset Py satisfying
Py c C\{1}, let {1,--- ,p}\Po = Qo, then we have

a +0 ag—2
LTS ) (IR ) (B T (4.26)
j
unless (d,p) = (1,7), and (up to permutation) that |A1| = |Aa| = 2, ke, (1) = ke,(1)-
Furthermore, if we do not assume that h is supported in the set Z§:1 GlkjI> — k> =T as in
, but instead assume

1 P
Pyt | < ——, Q:=|k|?— | k5] 4.2
) S Ty = = DGl (427)
then the same result holds. Finally, all the above results remain true if we replace p by any odd
3 < q < p (without changing the value of ).

Proof. First assume d(p — 1) > 8. If there is some pairing between (k, kp,) and kq,, then using the
simple fact that

[Pk kakoks * Lhrmko ks ka—shokp < Sup Ptk gkt | a— ko

(this is proved in the same way as Lemma below), we may fix the value k of these paired
variables with no summation (hence no cost of powers) and reduce to a problem involving a smaller
setﬂ Therefore we may assume there is no pairing between (k, kp,) and kg,. We may also assume

1Strictly speaking this reduction may not preserve 1) but li is only used to guarantee |A,| < p—2 in order
to apply Lemma after this (4.25) can be replaced by the more general versions where the linear combinations of
k; and k are fixed 7% vectors instead of 0, which is preserved under the reduction.
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|Ay| < p — 2 for each v, since otherwise (k, k1) will be a pairing due to , which has to be
over-paired with an element in A,, and after removing these over-paired variablesﬂ, the remaining
set will satisfy |A,| < p— 2.

At this point we are ready to apply Lemma By Schur’s Lemma, we have

1/2 1/2
Rl p, oy < (sup > 1) <sup Z ) ,
Q0 k,kp, kokpy kg

so we just need to count (k,kp,) with kg, given, and also count kg, with (k,kp,) given. Now
Lemma, implies that

sup 1S [ (agy)2eet?, (4.28)

QO kkp jePy
2a +6 200—d
:.}Clp Zl < H 0 H 12}121 My, ()" (4.29)
o kq, J€Qo

This is because, for example, once (k, kp,) is fixed, for any n, € C'N Qo we have

Yy
Z Cnkn, = Z Cn.kn. + (constant vector),
1<2<y;n2€Q0 z=1
so the left hand side sum belongs to a ball of radius M,,,. Using also (4.22) and (4.23), and noticing
that any pairing in on must be over-paired, we can deduce (4.29) from Lemma @}, and similarly

(4.28]). Combining (4.28)) and (| - ) then gives

Now consider the exceptlonal cases d(p — 1) S 6. If p = 3, then either there is no pairing at all
and follows from and , which in turns follow from Lemma or there is an
over-pairing and each k; (1 < j < 3) is uniquely fixed, in which case is immediate.

In the remaining cases we must have d = 1, and p € {5,7}. Again we may assume there is an
over-pairing (otherwise follows from Lemma [4.7, which does require any condition on (d, p));
if p =5, then an over-pairing takes at least 3 variables while there are 6 in total (k and each k;),

so there are only 3 variables remaining. By using Schur’s Lemma and the one-dimensional version

of Lemma one can show that in such cases we always have || A|xkq, —kp, S (M2 M3)?, which
also implies (4.26)). Finally if p = 7, then we have

2(2a0 +0) > 2ap+60) + (dapg —d+6) > d,

so we can apply the same arguments in the proof of Lemma and get the same result, unless
we are in the worst case, namely the first line of , which implies that (up to permutation)
|A1] = |A2| = 2, and kg, (1) = ke, (1).-

Finally, we look at the case where is assumed instead of the support condition (the result
for 3 < ¢ < p follows from the same arguments, which we will not repeat). Here again we can
reduce to the case where Lemma is applicable, and by Schur’s Lemma and we have

1 1/2 1/2
17|k py kg S (iup Z <Q+F)> ( sup Q+F > ;

Q0 k,kp, Ry kg,

IThese over-paired variables include a pairing between (k, kp,) and kg, as 1 € Qo, and thus can be treated using
the argument in the beginning of the proof.
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so we just need to bound the sums on the right hand side. The idea is that, when k¢, (or (k,kp,))
is fixed, the number of choices for (k,kp,) (or kg,) is at most (Mz--- Mp)? due to (4.22)—(4.25)
(without using the equality for ), so by Holder

1 . 1 1/(146)
< -
o 3 ity S0 3 (s Y )
v P

kQO k7kP0

Upon fixing the value of 2 + T, the latter sum can be bounded by (4.28)); similarly the sum in kg,
can be bounded by (4.29)) with a loss of (Ms - - - M,,)?, which can always be incorporated into (4.26).
This completes the proof. ]

4.4. Tensor norm estimates. Here we prove the main estimates for tensor norms. Start with
the following simple lemma.

Lemma 4.10. Let (B, C) be a subpartition of A, and let E = A\(BUC). Then the norm ||h|x;—k.
increases by at most a constant multiple, under multiplication by:

(1) Any function f(kp,kg), or any function g(kc, kg), that is bounded;

(2) Any function of form (L7 [f(kp,kg) — g(kc,kg)]), where L > 0 is a real number, ¢ is
defined on some R™ such that § € L', and f,g are arbitrary R™-valued functions;

(3) Any function of form 1p,—, or 1,4y, , regardless whether i or j belong to B, C or E.

Proof. (1) is obvious by definition, and (2) follows from (1) by writing

(L7 [ (kp, kp) = g(kc, kp)]) = L™ / BLgert I hmhmlemietheke) g,

m

To prove (3), we may assume ¢ € B and j € C (otherwise i,j € B ori,j € C or one of them belongs
to £, and the proof will be easier), and also assume £ = @. Let kp\ ;3 = m and ke (3 = n, and
let k; = kj = k after multiplying by 1y,—,, then it suffices to prove that

Z Z hkmkn * Zkm

kn ' m

2
< Hhkzmk]nnzlm—mjn ’ Z ‘kaP'

k,m

Clearly we may fix k, and consider the tensor himnin, S0 the desired bound follows from the inequality
Sl]ip Hhkmanm—WL S ||hkimkjn”kim—>k]-n7
which is obvious by definition. The result for 1.k, then follows, since 1j,25, =1 — 1p,—;. O

Next we state and prove the bilinear semi-product estimate, equivalent to Proposition

Proposition 4.11 (Restatement of Proposition . Consider two tensors h,(clj and h,(fj , where
1 2
A1 NAy=C. Let Ai/AAs = A, define the semi-product
_ 1 (2
Hy, = ; hiy iy (4.30)
C

Then, for any partition (X,Y) of A, let XN A1 = X1, YN A =Y etc., we have

HHHkX—>kY < Hh(l)”kxluc—%}q ’ Hh(Q)”kXQ—)kCuYQ' (4.31)
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Proof. Note that X;, Xs, Y7, Y2 and C are five pairwise disjoint sets; let the vectors = := kx,,
y:=ky,, 2 = k¢, u:= kx, and v := ky,, then we can write

WV =pl) . h® =nl,; H=Hy = Zh(l) h{2

TYz uvz :

Now for any o = a, we can bound

Z Znyuva:cu :Z Z hxyz uvzaxu

2

ryz < Z huvzaﬂfu>

Yyv Tz y,v ! T,u,2
< ”h M ”xz—>y Z Zhuvzaﬂw = ||h(1 ||mz—>y uvzafEU
z,z0! u x
2)
< Hh‘ sz—>y Hh( Hu—>vz ’ Z‘axu‘ ’
so by definition, ||H||zu—yo < ANV [|lz2my - AP |lusvz, as desired. O

A corollary is the following multilinear semi-product estimate, equivalent to Proposition

Proposition 4.12 (Restatement of Proposition [2.6). Let A; (1 < j < m) be index sets, such that
any index appears in at most two A;’s, and let R = h(]) be tensors. Let A = A1A---AA,, be

the set of indices that belong to only one Aj;, and C = (A1 U U Ap)\A be the set of indices that
belong to two different A;’s. Define the semi-product

=> H hkA (4.32)

ko j=1
Let (X,Y) be a partition of A. For 1 <j<mlet X;=XNA; andY; =Y NAj, and define
B;=|J(4;nA), C;=[]J4;nA), (4.33)
£>5 <j
then we have
1ty < TR s, (4.31)
j=1

Proof. We induct in m. When m = 2, (4.34)) is just (4.31)); suppose (4.34) holds for m — 1. Then,
define F' = AsA---AA,,, E=(AyU---UA,)\F and

v = ST,
kg 7=2

then we have A = A1AF, and

Hiy = Y W) Yo, Gi= AN F = [ J(41nA) =
ke >1

Applying (4.31)) we get

HHHkX‘)kY < Hh(l)HkxluBlﬁkyl ) ||YHkaF‘>k(YﬁF)UBl'
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Note that X’ := X N F and Y/ := (Y N F) U By form a partition of F, by induction hypothesis we
have
m .
1Y ks —sys < H Hh(j)Hk(x’ﬁAﬁquﬁk(Y’ﬂAj)ij\Bl)'
j=2
Finally, note that (X'NA4;)UB; = X; UB; and (Y'NA;)U(C;\B1) =Y; UCj, this completes the
inductive proof. O

Remark 4.13. Note that, if we fix (X,Y) and rearrange the tensors h() then the expression
will not change, but the norms appearing on the right hand side of will. We may take
advantage of this and arrange these tensors in some order using a particular algorithm so that
(4.34]) gives the desired bound. This will be the key to the proof of Proposition below.

Finally we state and prove the precise form of Proposition 2.8 and a similar variant. The proofs
rely on higher order versions of Bourgain’s ¥¢* argument in [11].

Proposition 4.14 (Precise form of Proposition . Let A be a finite set and hyer, = hick, (w) be
a tensor, where each kj € Z¢ and (b,c) € (Z%)7 for some integer ¢ > 2. Given signs (; € {£}, we
also assume that (b),(c) S M and (kj) S M for all j € A, where M is a dyadic number, and that
in the support of hyck, there is no pairing in ka. Define the tensor

Hy. = Z Pock o H 77;5;., (4.35)
ka jEA

where we restrict k; € E in , E being a finite set such that {hp,} is independent with

{nk : k € E}. Then 7= M-certainly, we have

| Hpellpse S 770M° me (R I ——— (4.36)

where (B, C) runs over all partitions of A.

Proof. By conditioning on {hpe, (w)}, we may assume hpe,, are constant tensors. View H as a
linear operator that maps functions of ¢ to functions of b, and consider the kernel of (HH*)™ for
a large positive integer m.
Define R, = (HH*)™ if n = 2m, and R,, = (HH*)™H if n = 2m + 1. By induction in n, we will
prove that the kernel of R,, can be written as a linear combination of terms R,, which has the form
(Ru)py = Z Ybb/k H 77;%.7 n even;
kz

ez (4.37)

C.
(Rn)bc = Z Yock 7 H 77;9;., n odd,
kz JjEZ
where Z is a finite set, (; € {£}, yprk, (OT Ynck,) is a tensor such that in its support, there is no
pairing in kz, and satisfies the bound

—1
[Yllobi, (o [lYyllock,) S ((SBUE) 7llbkg—cke)” ™ I1Pllbek s (4.38)

)

In fact, when n = 1 this is obvious (with Z = A). Suppose (4.37) and (4.38)) are true for n — 1,
where n is odd, then since R,, = R,,—1H it suffices to consider the kernel (note that by relabeling
we may assume Z N A = &)

(RaJoe =D (Ro-DewHye =Y > Yowkshwers | [ 77;5; 11 77/% (4.39)

% Y kgzka jez = jeA



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 41

Now, by repeating the arguments in the proof of Proposition we can write as a linear
combination of sums (for different choices of &), which have the same summand as and are
taken over the same set of variables (b’ and kz_4), but with a set of additional pairing and no-
pairing conditions for the variables kz4 given by (&, 1). More precisely, here 0 = { Ay, -, A}
where 4; are pairwise disjoint subsets of Z U A such that each subset contains two elements of
Z U A with opposite (; sign, but does not contain two elements of Z or two elements of A with
opposite (; sign, and the set of conditions (&, 1) is defined by (i ) the k; are the same for j in each
A;, and (ii) there is no pairing in k(7)o where Q@ = Q(A1) U -+ Q(A) (see (3 ), as in the
proof of Proposition [3.7]

Since |n;|* = 1, we may recast the sum corresponding to & defined above as

(2)

(1)
Rie = Zwbcky H M Wheky = 11 L,k - SN Tk vk (4.40)

jey (4,4") b ko

Here Y = (Z U A)\Q, the product H(;j/) is taken over all j, ;' € Y such that (;; = —(;, the sum
2

ko is taken over the variables kg such that k; = k;; whenever {4, j'} is one of the opposite-sign
2-element subsets (pairings) selected when obtaining Q as in Definition and
(3) _ 3)

Uorky = Yk - || Thmhys  Dbrekn = Pycka - [ Thy=hy s (4.41)
where the products HS’)J,) are taken over all j, 7' € Z (for y, or j,j7/ € A for h) such that they
belong to the same A;. We shall apply Proposition to estimate ||Wpcky ||beky ; in order to do so
we need to make an adjustment in notations. Namely, for any pairing {j, 7'}, as we always require
kj = k; in the sum Z,(fg)? we may combine them into a single element and include this element in
both Z and A. In this way we are changing pairings between Z and A to intersections of Z and A,
which is the setting of Proposition [£.11]

With (4.40), (4.41)) and these adjustments, by Lemma and Proposition we conclude
that

[ Woeky lbeky S [Yobky otk « 1Prckallcke—brkp s
where B = QN A, and C = A\ Q. This completes the inductive proof of (4.37) and (4.38]) when n
is odd. When n is even noticing that R, = R,_1H*, we have

(Ru)owr = > (Rn-1)ocHye = D Ybchy Mckn H M, 11 77k (4.42)

c c kgka JjEZ JjEA

instead of (4.39), and the rest of proof goes analogously.
Now consider the product (HH*)™ with n = 2m. Using (4.38]), Lemma and noticing that
the number of choices for (b,V') is at most M O we conclude that 77 M -certainly, we have

0
[ Hyellg7e = IHE)™3p S > 1R > S (M) yl3n,
b,b
< 1 9 Am—2
S (M) sup 1Bk —seke )

12 lpek 4 »
(B,C) ek

and hence
1 Hpellp—se < (772M)°( sup [|hllpkg—scke ) 2’"HthckA

)
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Fixing m large enough, and noticing that by the support condition,

q+|A] g+|A]
[Pllbeks S M2 sup |hpeky| S M2 sup ||h|lpkg—che
b,c,ka (B,

we deduce (4.36)). O

Proposition 4.15 (A variant of Proposition . Consider the same setting as in Proposition
with the following differences: (1) we only restrict (k;j) S M but do not impose any condition
on (b) or {(c); (2) we assume b,c € Z¢ also, and assume that in the support of hper, we have
|b— Cc| S M where ¢ € {£}; (3) the tensor hye, only depends on b — (e, |b> — C|c|? and ka,
and is supported in the set where ||b|2 — (|c|?| < M**. The other assumptions are the same. Then
77 M -certainly we have
[ Hpcllpse < 770M? - sup ||B]lorp—che-
(B,C)

Proof. We may assume ¢ = +, since the other case is much easier. Since Ay, is supported in the
set where |b — ¢| < M, by an orthogonality argument we may modify h by restricting it to the set
where |b — f| < M and |c — f| < M, and to bound || Hpc|[p—. it suffices to bound these restricted
operators uniformly in f € Z<.

For any f,let x =b— f and y = ¢— f, then z and y are both assumed to have size < M, and it
suffices to estimate the norm

1H oy llosys  where  Hippy = hpaye, [ ] 771% and - fayky i= Mot fytfha s al yl<m-
ka jEA
For any fized value of f, we may apply Proposition to conclude that 7! M-certainly we have
1 fayllamy S 77M° - sup (hgaypenllonp-syhe < 7"M° - sup [[Allokg ko (4.43)
(B,0) B,C)
so it suffices to establish 1) uniformly in f. Note that by assumption, ﬁf;xyk 4 is in fact a
function of (z,y,ka) and |z + f|? — |y + f|*> = 2f - (x —y) + (|z|> — |y|?). The desired uniform bound
(4.43), and hence the proof of Proposition will follow from the following statement:

Claim 4.16. There exist finitely many integer-valued functions gj(z) (defined on a subset E; C
{z:(z) S M}), where 1 < j < K < M*", such that for any integer vector f € Z%, there exists
1 < j < A, such that for any z satisfying (z) < M, we have |f - z| < M2 if and only if z € Ej,
and in such case we have f -z = g;(2).

Proof of claim[{.16. The proof is a slight modification of (a special case of) the proof of [33], Claim
3.7, so we refer the reader to that paper. (|

5. THE RANDOM TENSOR ANSATZ

In this section we begin the main proof. We make several reductions to the equation (1.7 in
Section [5.1], write down the central random tensor ansatz in Section and state the key a priori
estimates, Proposition [5.1] in Section [5.3]

5.1. First reductions. We start by analyzing ([1.7)). The first step is to reduce it to a more suitable
form. This is done by using a gauge transform, conditioning on the norms of Fourier modes of ({1.2)),
and conjugating by the linear Schrédinger flow.
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5.1.1. The gauge transform. Define the gauge transform

) = uv) - (LE [ gt ar), (1)
which has inverse
un(t) = @ (1) - exp (‘(”2“) / t AUNCY dt/), (5.2)

then uy satisfies (1.7)) if and only if ux satisfies the gauged equation

. — — +1 1~
A)uv = II P _pr2 » .
(w”’t + )UN N (WN(UN) 5 . WN (U,N) UN>, (5'3)
un(0) =Tn f(w).
The nonlinearity in the big parenthesis of (5.3]) can be recast in the following form:
N +1 1, - _ N
W]I\),(UN) — p? ) W]Z\)[ l(uN) SUN = Z apq(mN — UN)(p q)/qu(uN), (5.4)
T

3<¢<p

where ¢ runs over odd integers, a,, are constants, my denotes the conserved mass of uy (and uy),
2
my = |av |2 _ Z ’gk‘
N — J N| — <k>2a7
B (k<N

oy is as in (1.5), and NV is a degree ¢ real polynomial (regarded also as a R-multilinear expression
of degree ¢q) that is simple in the sense of Definition For the derivation of ([5.4), see [36],
Proposition 2.2.

5.1.2. Conditioning and conjugating. Note that each my is a function of the norms pp = |gkl,
moreover let m}; := my — oy, then by standard large deviation estimates,

2
* * p - 1
’mN - m%|2 = Z <];€>2a
N/2<(k)<N

2
1
—0 A70 —0 nrd—4a+0 —0 pn7—40
<7'N E Ty <7 N < rTUNTHE (5.5)
N/2<(k)<N

holds 77! N-certainly, as 4o — d > 80¢ by our assumptions.

Now, by excluding a set of probability < 096_779 and conditioning on {p}, we may fix the

values of p;, and hence m’};, so that ux solves the equation

(0 + N)un = Y apg(miy) P92 - Ty N (un),

3<q<
N i . (5.6)
un(0) = Y Ty - mi(w)e™™,
kezd
where recall v, = (k)™ %pg; they and the m}y are constants that satisfy
el < 770k) O Imy < 770 Imy —miy | < TTONTAE (5.7)
2

We may also assume, due to (5.5)), that

> <Nt (5.8)
N/2<(k)<N
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Finally, define vy by (vn)(t) := e @y ), (), then vy satisfies the following equation

t
(n)k(t) = (FN)k —i Y apg(miy) P9/ / TN M (vn, - on)(t) dt (5.9)
3<q<p 0
where the initial data Fj is defined by
(Fw)k o= TIvye - me(w) = > (fn )k, where  (fa) i= Ak - mi(w) (5.10)
N'<N

(this fy will be the one appearing in Definitions and and in particular the Trim functions),
M, is a conjugated version of N, and is given by

q
.y Ne
M(I(v(l)a T aU(q))k(t/) - Z Ckky-kq et “ H(U(]))kj] (t/) (511)
CGkit-+Coke=k Jj=1
In (5.11), the signs (¢1,---,¢q) = (+, —, -+ ,+), and the coefficients cyg,...r, satisfy the simplicity
condition in the sense of Definition [3.1] Finally Q is defined by
q
Q= [k = [k + - = kgl = [KI* =D Gl (5.12)
j=1
Below we will focus on the system (5.9)—(5.11) on J = [—7,7], with the parameters satisfying
(5.7)—(5.8). Using (3.6)), (5.9) can be rewritten as
(on)k(t) = (En)k(t) —i > apg(mi) P92 Iy Mg (vn, -+ on)i(t), (5.13)
3<q<p

where 7 is as in (3.6)). In order to use the global-in-time norms defined in Section we need to
construct functions UZTV that are well-controlled for all time, and agree with vy on J. The strategy
is to construct ’U;fv by the time truncated system

(WA () = x() - (FN)k =i D apg(mi) P2 x7 (8) - LIy Mo (o, -+ on)(1), (5.14)
3<q<p

where 7, is as in |D Clearly if v;rv solves 1) then they must agree with the solution vy to
1) on J. Unlike vy, which always solve 1’ the v}r\, we construct are solutions to lb only

77l certainly, i.e. apart from a set of probability < Cpe "

5.2. Construction of tensors. In this section we present the random tensor ansatz. The reader
may recall that the core idea of this ansatz was presented for a simpler model in Section [2.4

Suppose U]TV solves 1} and let yn be defined by
yv = vl —vh; ol = > un, (5.15)
2 N'<N
then yy solves the system

(i )e()) = x(0) - ()i =7 D apg(mi) =0 2x(t) - AN Mgy, - vl )a(t)
3<q<p

=i D apa(mi) T (8) Ty [My (ol o) = Myl v k)L (0 (506
3<q<p
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where M, is as in 1' Conversely if yx solves 1} then U}LV solves l’ where we understand

that UI/Q = 0. So it suffices to construct yy.

We shall construct yy by an ansatz which involves S-tensors h(S7) = h( )(t ky,Ay) for n €
{0,1} and regular plants S having frequency N(S) = N and size S| < D, as well as a remainder
term zy. Here D is as in (3.2)). This construction will be inductive, first in N and then in |S| with
fixed N. As the base case we understand that all these quantities are 0 when (formally) N is 1/2.

Step 1: the induction hypothesis. Now, given dyadic M > 1, assume that we have already defined
the S-tensors k(5™ for all n € {0, 1}, all regular plants S with N(S) < M and |S| < D, as well as
zn' = (zn7)ik(t) for N' < M. For N < M, define

=y Z Z/d)\ B! (t ky, M)

nG{O 1} S: N =N ky,ky
|$|<D

< [T0wog TIERE ) + Gi(e), — (517)

= fev
(0h)(t) = D (uno)r(®):
N'<N
Note that the first equation in 1) can also be written as
= > Z Wi [S, S (0)] + (23 )k (D) (5.18)
ne{0,1} S:N(S)=N
\S|<D

in view of (3.8)). Here and throughout the proof, the fys in (3.8) will be fixed as in (5.10]), and
(zn')N'<nr Will be fixed as above. Moreover, define the R-linear operator (which plays the role of

P in Section [2.4.1))
(LMw)(t) = =i Y apg(mi) PV 2 (1) - LI Y Mg(w, vl ool (), (5.19)

3<q<p sym

where ) represents the sum over all possible permutations, for example

sym

ZM(w,v, v) == M(w,v,v) + M(v,w,v) + M(v,v,w).

sym
Let the components .Z<, as well as the kernels (£ )/ (t,1'), be defined as in Section Let
the R-linear operator FM = (1—- M)~ which is bounded from X% to itself, if | LM ||y, ybo <
1/2 (with bg in ); otherwise let %’M = Id. Define also 7™ = %M — 1. The goal is to define
the S-tensors h(s’”) for n € {0,1} and regular plants S having N(S) = M and |S| < D, and the
remainder term z,;, such that yy; defined by with N replaced by M solves with high
probability.

Step 2: paralinearization. If we assume ZM = (1 — £M)~1  then using the operator .ZM, we

can paralinearize and rewrite it as

(ya0)e(t) = X&) - (Fak + (LM + D D Tox (O [LIMyny, - yn,)] ()

3<q<p Ny, ,Ng<M
(5.20)
In the above summation ¢ is odd, II is one of the projections I15;, Aps or I1x, and we require that
2

if Nj = M for some j, then there must be another j' # j such that N;; > M? (otherwise the term
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is contained in the second term (£ yys)x(t)). The coefficient T depends only on ¢ and the N,’s,
and satisfies |Y| < 77% moreover if N; < (50dp)~'M for each 1 < j < ¢, we have the stronger
bound |Y| < 779 M—40dpe,

Using the operators 2™, #M and their kernels defined by —, we can solve by

® =x(®)- (Do + 3 3 [t 1Ot - (fan

Ce{£} ¥

FY Y @ @) Y T Mo [ (0.
Ce{x} K 3<q<p N1, ,Ng<M

(5.21)
The strategy is to construct the tensors h(5™ with N(S) = M inductively in |S|, such that when we
plug into allowing N = M, the terms on the left and right sides cancel to sufficiently

high order so that the remainders can be put in zj;.
Step 3: definition of h{>™ . Expanding the right hand side of using and allowing
N = M, we obtain a sum of terms of the form (omitting 2:¢ and other factors for the moment)

ZMq(\I,’(j‘l,nl)’ - \I]](Cfmnr)’ INpary aqu)k’ (t,), (522)
sym

where \If,(jj’nj) = \I/,(jj’nj)(t/) = Wy, [S), BEm) ().

Let £ = (M, q,r,fl, o+, (g N1, -+, Ny), note that >, (; =1. By Proposition (1) and (2),
if Nj < M/2 for each 7+1 < j < ¢, and each zy; in 1) is replaced by its low-modulation cutoﬂﬂ
z}?,j defined by

— - 2
(29, )k (Aj) = (ZN) )y (Ag) - X (M)
(see Section for the definition of x), then (5.22) can be recast as a linear combination of
\TJI(CS) = \T/l(f) (t') = Wi[S, H] (for different choices of & as in Definition , where
S = Trim(Merge(Trin(Sy, M?),--- , Trin(S,, M?), %, 0), M°) (5.23)
H = Trin(Merge(Trim(R(S1™) M%), ... Trim(h(S~™) M%), h, B, 0), M°). (5.24)
In (5.24) the tensor h = hgg,..k, (t', Arg1, - -+, Ag) s given by

q
Py oodeg (Fs Ar 15+ s Ag) = LimCrbrdtGoky - Liky<mt H L y<n;
j=1

 TT XM M)y gy a4 (5,95
j=r+1
with cgp,..k, as in and € as in . Here and throughout the proof, when applying Trim
functions, we always fix fys as in , and (zn7)N7<p as in the beginning of Step 1.
We will define two types of tensors, RS9 and h(S:V. The former are constant tensors without
randomness, while the latter may depend on low-frequency random variables, which are however
independent with the inputs of the tensor. Define h(S) inductively in |S|, by the equations

S
hékf) (t, kv, Av) = x(O)ls_gt - k=t Inrj2<(my<nr + Z Z T - xr(t) [T THk,, | (8, kv, Av),  (5.26)
sym (a)

1This matches Definition
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h( ) (t kv, d) = D 1, S5, /dt/ : 1M/2<(k[>§M'%%’C(tvt/)x(t/)

Ce{£}

+ZZT X (8) [T T Hy, ] (£, Ky, Ay)
sym

+ > Z/dt (M) o (£,1) ZZT X () [T I o, | (2, oy, Av)©.
ce{x} K sym (

(5.27)
Here SZC\/[ are the mini plants defined in Definition The summation Z(C[d) is taken over 4,
n; € {0,1} and regular plants S; with frequency N; < M and size |S;| < D for 1 <j <, andE| 0,
such that

(i) if Nj = M for some 1 < j < ¢ then there is ¢ > j' # j with N > MY
(ii)) Nj<M/2forr+1<j5<g;
(iii) if ¢ = + then (b.23) is true with the given S, and if ( = — then ([5.23)) is true with the left
hand side replaced by S.

The term Hyy,, (t', ky, Ay) that appears in the summand is defined in with h(Sim3) given by
the induction hypothesis. The summation E( q) 18 taken over the same set of variables as Z( c[4])
but with the restrictions (in addition to those in Z(o[c])) that ¢ = r, n; =0 and Ny > M? for each
j and each [ € £; (where £; is the set of leaves of Sj, see Remark , and 32 = X (e4]) — 2(a)-

The above is a valid inductive definition, i.e. the tensors h(Si") in 1' are already defined
when we use them to define (5™ via 7, thanks to Proposit (4). Note that the
first term on the right hand side of and the first line in are precisely the random (1, 1)
tensors described in Section the rest come from higher order iterations in Section

Step 4: definition of zyr. Now we have finished the inductive definition of S-tensors h(S™ for
n € {0,1} and regular plants S of frequency N(S) < M and |S| < D. Using this gives
definition to terms \I/gs’n) = \Ilgf’n) (t') = Wi[S, hS™)] for such n and S. Finally we shall construct
zpyr to complete the inductive definition; this is simply defined to be the solution to the equation

ZZ/dt (BM) e (£, 1) ZZT xr(t

ce(z) ¥ sym

S,TL Sryn'r * *
X [T, IIM, (T (1 Do) )L (@), (5.28)

T+1’..

where zN (r+1<j < q) is either zy; or z}{’, or the high-modulation cutoff z}‘\} = 2N, — zN Here

in , the sum Z is taken over %, n; € {0,1}, regular plants S; with frequency N; and size
|S; ] S D for 1 <y § 'r and choices of z} , under the restrictions that (i) if N; = M for some
1 < j < g then thereis ¢ > j' # j with Ny > M?, (i) either N; = M for at least one r +1 < j <g¢q
and z}*vj =zy; forallr+1<j<q,or N;<M/2foralr+1<;<gqand z}‘v :z}l\}j for at least
oner+1<j<gq, or (N; <M/2)A (ZN —ZN)fOI‘ all 7 +1 < j < g and the plant

S = Trim(Merge(Trim(S;, M?),--- , Trin(S,, M°), B, ), M°) (5.29)

1Strictly speaking the sum over & should carry the coefficients in the linear combination of \T/,(CS) that gives 1)
as above; these are constants, and for simplicity we will treat them as 1.
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has sizeE| |S| > D.

Note that in (5.28]), all terms \I/,(ij’nj) = Uy, [S;, h(Simi)] are already defined for n; € {0,1} and
regular plants S; with N(S;) < M and |S;| < D, so can be viewed as an equation for the
function zp; = (zp7)x(t). If the mapping defined by the right hand side of is a contraction
mapping from the set {2/ : ||2as]| xro < M~P1} to itself, we define z)s to be the unique fixed point

of this mapping; otherwise define z3; = 0.

This finishes the inductive definition of the tensors h(S:m)

definition of yx by the ansatz (5.17)).

5.3. The a priori estimates. With the complete definition of A

and the remainder zpy, which give the

(S:7) tensors and zy, we can now

state the main a priori estimates for these terms. First notice that they satisfy the following simple
properties, which are easily verified (using Definitions and and Proposition [3.7)) during the

construction process:

e The tensors h(S9) are constant (i.e. do not depend on w) and are nonzero only when S is
plain, the tensors h(S:Y) are B 15) measurable (recall Section for definition) for any S
with N(S) = N and |S| < D, and the remainder zy is By measurable;

e All these terms are supported in [t| < 1, and (zx)k(t) is supported in (k) < N. In the
support of hl(il’j)(t, ky,Ay) we have (k) < N, that N/2 < (k) < Nj for each | € U,
(k) < Nj and || < 2N** for each f € V, and that there is no pairing in ky.

The main a priori estimates are listed in the following proposition.
Proposition 5.1. Given a dyadic M, consider the following set of statements (viewed as an event

for w), which we shall refer to as Local(M) below:
(1) For any plain regular plant S = (£, 2,Y) with N(S§) = N < M and |S| < D, we have that

RS0 — h,(c‘,i’b?) (t) is supported in the set where k = ZQk[. (5.30)
leu
For any T € Z, let h(S0T) be the restriction of b5 to the set where
k2= ¢lkf? =T, (5.31)
el

obtained by multiplying by the indicator function of this set. Let (B,C') be a subpartition of U and
let E=U\(BUC). Then we have

— 2 2
/| <A>2”<Z|h,£i;,?’”<x>||kkwc) dAS< 11 NFlHN[&HN#gHN;‘Sg-Xo%)  (5:32)

ez leBUC leP lerk pey
with the quantities
(%%XNI)*BI, it €+ o;
Xo = (r[rélg N[)giﬁl’ fC=b=0 X = i ) II[IG&EXN[ - (103dp)7|qN; (5.33)
N-eb. fB—C-o N4, if max Vi < (103dp)~FIN.
1, otherwise,

\

INote that @ actually does not appear in the summation l} But this is fine, since it can easily be checked
that the size of S defined by 1) does not depend on 0.
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(2) For any regular plant S = (L£,V,)) with N(S) = N < M and |S| < D, consider the tensor
ASH = h,(i’b{l)(t, ky,\y). Let (B,C) be a subpartition of U and let E = U\(B U C). Then, recall
the norms defined in 7, for C # @ we have

(8,1 _ 53 B
g (¢ kv, W) bt ey S IT N TIv T v T T v (max Ny) ™,
[€BUC 1P I€EE peyY fev
(5.34)

while for C = & we have
B 4e -3 d -
Hhkku (t, ky, W) X0 < <IN TINCeTI v T TN Ve, (5.35)
leB lep ek peY ey
where b equals 1 —b if E # & and equals b if E = &. We also have a localization bound (for C' = @)
S.1) B —de 8 —53 d
H(HN%V@ > G- e|> o (kv )| <IN TINce T TI 0 T

teu Xy 0kks] B lep €E pey fev
(5.36)

where { = Zfev Ciky, and b is the one in .
Finally, we have an auxiliary bound for the )\v—derivativ of hkk (t ky,Ay) (forC =E =),

Oty (& ks M) g -ropygey < expl(log N)? + || (log N)?). (5.37)

(3) For n € {0,1} and regular plant S with N(S) = N < M and |S| < D, let the expression

\Il,gs’n) = U8, h(s’”)] be defined as in , then we have
”\p(57n)“XS’,bo < T*90N5’75 H N;53 (5.38)
neLUVUY

for any s — 6% < ' < s, where (s,bg,00) are defined in and Section .

(4) For all N < M, the mapping that defines zny (namely the right hand side of but with
M replaced by N and then zn replaced by an independent variable z) is a contraction mapping from
{21 ||zl xro < N7P1Y} to dtself with Dy as in . In particular, we have ||zy|| xoo < NPt for all
N <M.

(5) Let yn and U]TV be defined as in for N < M, then they solve the system for
N < M. Moreover, for any Na,--- , Ny < M and any N (which may be > M), consider the
operator ¢ (which is complex linear if ( = +, and conjugate complex linear if { = —) defined by

(gcw)k(t) = XT(t) ’ IXHNMq(y}kVy LW, ’yj\/'q)k(t)v (539)

and the corresponding kernel (L) (t, '), where each y}‘vj is either yn, or one of its components,
namely zn, (possibly with Fourier truncations similar to the ones in z}{} and z defined in Section
or W[S;, hSim3)] for some n; € {0,1} and regular plant S; with N(S;) = N; and |S;| < D (see

(@ and ), then they satisfy

5 -1
1 |1 sy < 7O (;2?%(qu)

Now, with the above definition of Local(M), we have that the probability that Local(M) holds

but Local(2M) does not hold is < Coe= M)’ " In particular, T -certainly, Local(M) holds for
all M.

INote that, once we have li we automatically have the same bound for the norm with the weight in | ,
with the right hand side multiplied by N”, which is negligible as the right hand side is super-polynomial.

e (5.40)
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6. TRIMMING AND MERGING ESTIMATES

In this and in the next section we prove Proposition [5.1} This section is devoted to the proof of
some important estimates on trimming and merging of tensors, which will be crucial to the proof we
will give in Section [/l These are: trimming bounds in Section no-over-pairing merging bounds
in Section [6.2] and general merging bounds in Section [6.3] Throughout this and the next section
we will fix a dyadic M (we may always assume M >>c, 1, since otherwise the relevant bounds
become trivial as 7 <, 1), and assume that the statement Local(M), defined in Proposition
is already true. If results in this and the next section rely on more assumptions (such as parts of
Local(2M) that have been established in preceding proofs), we will explicitly point this out.

All the quantities (functions, tensors, etc.) in this and the next section that depend on ¢ (or ¢/
etc.) will be supported in |[t| < 1 (or |[¢/| <1 etc.). This implies that their derivatives in the time-
Fourier variables (A, A; etc.) automatically satisfy the same bounds as they do; these derivative
bounds will be useful in applications of meshing arguments (see the proof of Proposition for
details) below. Moreover due to Local(M) part (4), the functions zn» = (2n/)x(t) for N' < M
are already defined and satisfy that ||zn/| b, < (N’)~P*. When applying Trim functions below we
always fix these zys, and the fn defined in .

6.1. Trimming estimates. We first prove the trimming estimates.

Proposition 6.1 (Trimmed tensor bounds). Let S be a regular plant, N(§) = N < M and |S| < D.
Let h = hyp,, (kv, Av) be an S-tensor which is Bys) measurable. For N < R < M?, consider the
trimmed plant S' = (L', V'",Y') = Trim(S, R) and the trimmed tensor h' = (h' )i, (kyr, \pr) =
Trim(h, R). Let (B,C) be a subpartition of U with E = U\(BUC) and (B',C") be a subpartition
of U with E' = U'\(B' U C").

(1) Assume h satisfies that, for any (B,C) with C # @,

ot v M) oo oy S % TT NI TN TT A5 I (max )™, (6.0)

[EBUC  [€P €E pey fev ¢
and for C = &,
_ 53 _
it (v oy < X TINE TTNCE TN TI N I -N (62)
€EB P €E pey fev
1 " -~ <3
H <1+N%|k:—2gk[—z\> b (kv AV S X ) el G ) s B
leu Xy, " [kkB] leB [ep I€E pey =%
(6.3)

where £ = Zfev Giks, and also the auxiliary bound for C = E = &,
10y Pk, (ks AWl b0y, 1 < X - expl(log N)® + [S](log N)?]. (6.4)
X, 0 [kky]
Then, 7—'M-certainly, the estimates f hold for h = hyp, (ky,\y) replaced by h' =
h;k,(kw,)\vz), the sets B,C,E, P,V etc. replaced by B',C',E',P',V' etc., the fraction 1/N?°
in (6.9) replaced by 1/ max(N?, R), and the factor X replaced by % -7-9M?.
(2) Assume V = @, h is supported in the set k =)o, Gki and satisfies that, for any (B,C),

ks ke < % T NP TN TN T o, (6.5)
leBUC lep leE pey
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where Xy and Xy are defined as in (5.39). Assume also that either C’ UE # @, or L # L (ie.
Ni < R for at least one | € L), then 7= M -certainly, the estzmates hold for h' = h?ck .
with the sets B,C, E,P etc. replaced by B',C', E', 73’ etc., the fmctzon l/N2 n (.) replaced by
1/R, and the factor X replaced by X - T 9M9 for , and by X - 70 MO(1 + N3 RY2-51) for

-2

Proof. (1) By definition we have

B = hig, (kv ) = Y /d)‘V\V’ iy (kv Av) [ (gﬁf)ii()\f)y
Ey\yr FeV\V/

(6.6)
Pty (ks Av) == > i (kv Av) T (Fw)st
Kyt e \u’
By Cauchy-Schwartz we have
PSR DT | () E PO DN | [l (6.7)
feEV\V/ fEV\V/

where [- - -] represents any kkp — kv or kkp or weighted norm as in (6.1)—(6.3).

It thus suffices to bound the corresponding norms for h. Note that if we fix the values of ky and
Ay, the tensor ﬁkku,(ky, Ay) can be estimated 7~!M-certainly, using Proposition in order to
transform this into a bound for the X, b[...] norms, we need to make this bound uniform in all
choices of ky and A\y. There is no problem in doing so for ky sincﬂ the number of choices for ky
is at most M". To deal with Ay, we will employ the following argument, which will be referred
to as the meshing argument (see the proof of Lemma 4.2 in [36]), and will be used frequently
in the proofs below. First note that |\;| < N** for each f € V, then we divide the big box
{5 S N** V§ e V} into small boxes B of size v := exp(—(log N)%). Now by taking averages
on these small boxes and using Poincaré inequality, there exists a tensor have = (Rave)kky, (kv, Av)
such that h,yg satisfies the same measurability condition as h, that h,ye is supported in the big box
and constant when Ay moves within each small box (and other parameters are fixed), and that

1B = Pave |l v (1l vo gy T 102 (6.8)

0 [k } 0 [kk ])

Let Eavg be defined from hayg, in the same way as h is defined from h, then for fized values of

Ay, the tensor (ﬁavg)kk& (ky, Ay) can be estimated 7~ M-certainly, using Proposition in the

same way that A is bounded in terms of h. Since Ay has at most exp(r(log N)8) different choices
in studying havg, and N < M, we know that the estimate for huyg is uniform in all choices of Ay,

after removing an exceptional Set Whose probability is still < Cye= (7 M) This gives the X, bo[ -]
norm bounds for havg, but by and our choice for v, the X7, bo[ -] norm of the difference
h— havg is negligible, so we get the desured X °[-+] norm bounds for h.

Armed XVlth the meshing argument, we can now apply Proposition to control the X, bo[- -]
norms of h. Given any subpartition (B',C") of U', C' # @, let E = E' = U'\(B' U (C"); since
h is Bys) measurable and Ny > N ] for all [ € U, we can apply Proposition (note that
(fNDk, = ANYE, - Mk (w), where An,y, can be replaced by T_GN[_“JFQ due to 1} and Lemma

IThe same applies to the kg variables when measuring kkg — ko norms, where E = U\(B U C).
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4.10) to get

5 - 9
||hkku,(kfv,/\y)” ,bo[kkB,_)kCl] 90 H N at+td sFup | ko, (Rvs Av) || 7b0[kk:3—>k:c]’
leu\u’ (
where (F,G) is any partition of U\U’, and B = B'UF, C = C' UG. The conclusion about the
XoPolkkg — kc] norms then follows by combining (6.1) and (6.7])), and noticing that P’ C P,
v

V' c Y, and maxiecr N = maxiec N;. When €' = &, the proofs for the X{’), [kkp/] norms are
completely analogous (simply choose G = & so C' = &), and so is the weighted norm bound, where
for the latter we notice that

1 - /
+max N25 R) ‘ IEZUICI]?I ¢

with ¢ =3 .y Gky and € = 3 i, Gy, since (kj) < R for any § € V\V' (hence |[¢ — | < R) and
(k) < R for any [ € U\U'.

(2) The proof is similar to (1) but much easier since there is no blossom § € V (hence no meshing
argument) involved. Since |k—" o, Cki| S R because k— 3", (ki = 0 and (k) < R for [ € U\,
we know that the weighted norm bound follows from the unweighted norm bound . For
the kkpr — k¢v norms in 7, we simply apply Proposition when C’ # @& we readily
get with the indicated changes. When ¢/ = @ (and C' = &) we make two observations.
First, when £ = E' = & there is an extra factor Xy in (6.5)), but since minic, Ny < R due to
the assumption £ # £/, we have Xy < RY/2-P1 by deﬁnitio, which gives rise to the factor
Rd/ 281 in the desired estirnate Second, thanks to the different powers between and
, in the process of using ) for h to deduce (6.1] . for 1/, we will be gamlng a factor

— _ —4
H NCPIT 45S(r{1€8;;><Nt) g
(€U\E/ (€E'UP

= Gk — ‘

leu

N26

which is at most N =% if maxic, Ny > (103dp)~1¢IN. If maxic, Ny < (10%dp)~1#IN we gain exactly
the same N % from the factor A} in (5.33). In any case, this gain will contribute the N3¢ in the
desired estimate, after providing the N~¢ factor for (6.2)). O

6.2. No-over-pairing merging estimates. Next we will prove two merging estimates in the
no-over-pairing case by introducing a selection algorithm. Note that in Propositions [6.2] and [6.3]
below, the sets U; are just sets by themselves and are not coming from any plant; nevertheless in
applications, they do occur as suitable subsets of the sets coming from some plants, see the proof

of Propositions and

Proposition 6.2 (Selection algorithm: Case I). Let Us,--- U, be pairwise disjoint finite index
sets (could be empty), |U;| < D. Given (j € {£} for 1 < j < p and { € {£} for any | € U;, and
Nj for2 < j <p and Ny for any | € Uj, let N, = max(Na, -, Np), and define ( = ((; for L € U;.
Assume that

P
dY¢G=1, N <N<N;(Viel;2<j<p).
Assume there are some pairings in W := Uy U --- UU, (i.e. a collection of pairwise disjoint two-

element subsets of W, each containing two elements from two different U;), such that for any pair
(LU) we have ¢ = —( and Ny = Ni. Let () = h,(gj),m, where 2 < j < p, be tensors, and
J
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h = hgg,..k, be a tensor supported in (k;) < N; for 2 < j <p. Let the set of paired elements in W
be Q and the set of unpaired elements be U, define the semi-product

p

H = Hypypy, = Z Z Pkky -k H (hg.)kuj)g, (6.9)

ko, ,kp ko 7j=2
where the sum is taken over all (ka,--- ,k,) and kg that satisfy ky = ki for any pairing (I,V').
For each 2 < j < p, in the support of k) we assume that k; € Z%, (k;) < N; and Ni/2 < (k) < Ny
for each L € U;. Moreover, R has one of the following three types:
(1) Type RO: where we assume, in the support of )| that

=1, k=Y Gk, k7= Glkf>=T; (6.10)

lel; lel; lel;

Moreover, for any partition (Pj,Q;) of U;, we assume

1B Ny tep, sk, < 2+ [T N - 20214, (6.11)
[EU]'

where 2o j and 21 ; are defined similarly as in but with the following modifications,

(?Glng[)_Bl, if Q; # @, 1 if max Ny > (103dp)*DNj'
j

’ [EM]'

2o = (6.12)

Z ;=
. d . 5J —A4e . 3 —D ar.
(%lij‘) 2 517 it Q= o, N, 1fr[r€12§(N[ < (10°dp)” " N;.
(2) Type RO : similar to type RO, but instead of , in the support of R we only assume
that
]fj - Z C[k[ =myj (6.13)
[GUj
for some given m; € Z%. Moreover the bounds (16.11 )7(16.12) also hold (in particular 2, j =
Nj_45 if Uy = @), except that in 46.1%), when Q; = &, we have Zy; = 1 instead of
(min[euj ]\f[)d/Q_ﬁ1 .
(8) Type R1: where we assume, in the support of )| that

k; — ZC[k[ —m;

[GZ/{J‘

< (NP (6.14)

for some given mj € Z%. Moreover, for any partition (P}, Q;) of U; we have
:fj . H N[’B . (maXN[)_ﬂ, Qj #+ O,
(eu; 1€Q;

X [ N7 Nye Qj=92.
[EUj

Hh(j)|’kjkpj*>ij < (6.15)

Regarding the tensor h, we assume that ’hkk1~--kp| <1, and that h = hkky .-k, 1S supported in the set
P p

k=Y Gkj kP =D ¢lkl =T, (6.16)
j=1 J=1

and that any pairing in (k,k1,-- -, kp) must be over-paired.
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F1GURE 3. Classification of U;, j € {2,--- ,p}

Then, for any partition (P, Q) of U, we have the bound

(0,07)

p
_ _ _ =3
[INC 4 Bl arg < T TIN TT N2 00 1)
l€eQ j=2 e J

+ .
where the product Hg-o’o ) is taken over all 2 < j < p such that hY9) is of type RO or type ROT.
The result is uniform in all parameters I',I';, m; etc., and remains true if we replace p by an odd
3 < q <p. It also remains true if instead of the second equation in the support condition in ,

we assume that h satisfies .

Proof. The two key ingredients in the proof are Proposition and Proposition

Step 1: first reductions. We start by making an adjustment in notation, just like the one in the
proof of Proposition which will allow us to apply Proposition below. For each pairing
(I,I'), where [ € U; and ' € Uy, since in the sum we are always assuming ky = ky, we may
combine them into a single element and include this element in both ¢/; and ;.. In this way we
are changing pairings between different U/;’s to intersections of different 2{;’s, which is the setting
of Proposition Then U will be the set of elements that occurs once in all the U;’s, and Q is
the set of elements that occur twice.

Next, we will identify all subsets A C {2,---,p} such that each and every element in the union
of U (j € A) occurs twice in these sets U; (j € A). We only need to consider minimal subsets A
that satisfy this, which will be pairwise disjoint. Let them be A, (1 < v < s) and B, (1 < u <t),
where for each v, the tensor k() is of type RO for each j € A,, while for each u, there is at least
one j € B, such that the tensor h() is of type ROT or R1. Let £ be the union of all these sets A,
and B, and D = {2,--- ,p}\&; See Figure [3| for an illustration of the above subsets of {2,--- ,p}.
We know that U; C Q for j € £. Let R C Q be the set of elements that occur twice in the sets
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Uj(j € D). Then we have

s t
_ _ [v] [u]
H = Hipyy = Z H Hkq;v H kal;u ) HZ%lkgkw (6.18)
(kA17"'kAs7kBlv"'kBt)vzl u=1
where
] . _ (4) [u] . _ (4)
B o= > ]I R S SOOI M (6.19)
(kuj:j€Av) J€A (ku;:j€Bu) J€Bu
o (4)

Hljilkgku T Z hk‘k’l“'k’p : H hk‘z’kb{j . (620)

(k'D,kR) jED

By (6.18) and Proposition we have

S t
1H lkkp—tirg < TTIH Nea, TTIR™ ks, - 1 H* ks ke (6.21)
q:l u=1

so it suffices to bound the norm || H®8||xp—skikeko and the other norms ||H[v]||kAv and HR[“]HkB.

By , the tensor H®8 is a semi-product the tensors h and k() (j € D) in the sense of li
in Proposition so our strategy is to select these tensors in some particular order and apply
Proposition The selection algorithm is described as follows.

Step 2: the selection algorithm for H®®. First, by our choice of the set D, there will be at least one
element in the union of the sets U; (j € D) that appears only once in these sets. Consider such an
element [ with IV being the biggest. Denote this [ by [._1 and the j € D such that [._1 € U; by n._1,
where c—1 = |C|—1 = |D| and C = DU{1}. Next, there will be at least one element in the union of
the sets U; (j € D\{n.—1}) that appears only once in these sets. Consider such an element [ = [._
such that N is the biggest, and suppose such [._y € Uj, where j° € D\{n._1}; we shall denote
ne—g = j'. Next there will be at least one element in the union of the sets U; (j € D\{ne—1,nc—2})
that appears only once in these sets, and so on. Repeating this process, we can label the elements

of D as ni,ng, -+ ,n.—1. Notice that by (6.10) and (6.14) and our selection algorithm, for each

1 <y <c¢—1 we must have

Yy
/
E an knz - mny
z=1

where m%y € Z% is some fixed vector, otherwise the product in 1) will be zero. Let us provide
some details to explain (6.22)). When y = 1, [} € U,,, and Ny, is the biggest among all [ that appear
only once in U, (here these I's are just all elements [ € U,,,). By (6.10]), (6.13]) and (6.14]), setting

[
ny

< max((N)*, Ny,) := M, (6.22)

m CnyMn,, We then have

|Cn1kn1 - m:zl| < |un1|N[1 + (N*)%’ (6'23)

where we understand that m,, = 0 if (") has type RO (same below), which implies since
|Un,| < D. When y = 2, [ € U, and Ny, is the biggest among all [ that appear only once in
Uy Uy, (ice. all | € Uy, Aly,), then by (6.10)), (6.13]) and (6.14), we have [(p, kny 4 Cnykny — My, | S
max((N,)3, Ni,) with m/,, = Co,Mn, + CoyMin,, since the ky terms for [ € Uy, N Uy, always cancel
themselves thanks to our assumption about signs of paired elements. For the other y’s, is
obtained similarly. The above selection for n._1,--- ,n; is designed to fit the hypothesis in

Proposition via (6.22)). Proposition will be applied to h later in Step 4.
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Next, we divide these n, into two classes: first n._; will be class P (or @) if [._; which belongs
toU, is in P (or Q). Next, if l._o € U, then n._o will be class P (or Q) if l._2 is in P (or Q); if
lc—2 € Q, then [, also belongs to U; for some previously selected j (here j = n._1), then n._o
will be same class as j. Then consider [._3, and so on. Repeating this process we can assign a
class P or @ to each n, (1 <y < c¢—1). Now we can apply Proposition by arranging the
tensors h and h) (j € D) in a particular order (which will correspond to the superscripts in the
tensors in Proposition : first list all the A("™), where ny has class @, in the decreasing order
for y, then list h, then list all the h(™), where ny has class P, in the increasing order for y. By
applying Proposition to with (ka, ko, kx, ky) = (kkikgky, kpkr, kkp, kikekq) in the
above order we then have

IH*® kkp bk S Whllkkn ko, ] ||h(j)!|kjkpj—>ij 11 ||h(])\|ij—>k;jkPj, (6.24)
jofclass Q jofclass P
where (P, Qo) and (Pj,Q;)(j € D) are sets defined according to Proposition which are
explained next. Next we analyze the individual factors on the right hand side of .
(1) For j = ny of class @, by Proposition and our algorithm, the set @); will consist of all
[ € Uy, such that either [ € @, or [ belongs to L{ny, for some 3 > y with n,y of class ). Furthermore
P; = U;\Q;. By the definition of classes, this implies that [, € Q;. By (6.11)) and (6.15) we then
have

||h(j)||kjkpj—>ij <% - H N[B . N[;ﬁ <X H N[ﬁ . (N*)C‘SM@B% (6.25)
= =
moreover if A% has type RO or ROT, we gain an extra factor namely 2 from .

(2) Similarly, for j = n, of class P, by Proposition and our algorithm, the set @; will
consist of all I € Uy, such that either [ € P, or [ belongs to Z/lny, for some ' > y with n,, of class P.
Furthermore P; = U;\Q;. By the definition of class, we also have [, € Q;. Now by m, (]m[),
and using the duality of the operator norm Hh(j) Hij —hkikp, = Hh(j) ijkpj kg, We know that (6.25

is true (with the gain Z; ; for types R0 and R0™") also in this case.

(3) For the tensor h, by our algorithm we have that Py consists of all j € D of class P, and Qg
consists of all 5 € D of class @), as well as 1 and all j € £.

We illustrate the above algorithm with an explicit example. Suppose p = 7, D = {2,3,4,5},
€ =A6,7} and Up = {a,b}, Us = {¢,0, ¢}, Uy = {e, ], g}, Us = {a,f,b} with Ng > Ny > Ne > Np >
Ne > Nj > Ng > Ny, then Y = {b,¢,0,g9,b}, R = {a,¢,f} and

Z (2) (3) (4) (5)
Hi hohokyy = Z Pcer e * Pk, ™ Pghekake ™ Pigkekshg * Piskakky
(kQ» ) ) (ka»ktzkf)

Suppose P = {b,0} and Q = {c,g,h} is a partition of all unpaired leaves. Then, by our algorithm
we have ng = 2 since Ny = maxXe{p ¢4} (V) and b € Uz. Then ng = 5 since Ny = maxie(q g5} M
and a € Us. Similarly we have no = 3 and ny = 4. Next, by definition ngy = 2 and ng = 5 will have
class P, while no = 3 and n; = 4 will have class (). Then we can apply Proposition to (6.20))
in the following order: A® — Y — h — () — 12 and obtain that

| |k kg —shakokrkekaky, S 1R lkskokemie * 1A aky—ickg

X | llkkgks -k kskakskr * 1B kg * 1B (kg —soke-



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 57

Moreover we have the following inequalities (assume m; = 0, and up to error (N,)*):
ko £ kg £ ks £ks| S No, |ks £ ket k5| S Na, |k £ka| S Ne, |ka| S Ne

Step 3: the selection algorithms for HY and R . Now we discuss the estimates for the norms
||H[”]||kAU and ||R[u]||k3u~ The basic idea is the same as before, but as each element in the sets
U; (j € Ay or B,) occurs twice in these sets, we have to make some small adjustments. Let us first
look at A,. Let a, = |A,|, and first choose [ = [,, in the sets U; (j € A,) such that Ny is the
smallest over all [ in the sets U; (j € A,). We denote the j such that [,, € U; by ¢,(ay). Next,
as in Step 2 there will be at least one element in the union of the sets U; (j € A,\{lv(av)}) that
appears only once in these sets. Consider such an element [ with N; being the biggest. We shall
denote this [ by [,,—1 and the j € A,\{ly(ay)} such that l,,_1 € U; by £y(a, —1). Then we can
repeat the process in Step 2 and label the elements of A, as ¢,(1),--- ,¢,(ay). Recall that hU) has
type RO for all j € A,. By , in the same way as in Step 2, for 1 <y < a, — 1 we have

Yy
Z CZU(Z)kﬁu(z) S N[y = va(y)’ (626)
z=1
as well as
Y Cukne =0 Y Guelkuel =T, (6.27)
z=1 z=1

where I' = Y21 C(2)Ley(2)- Now we apply Proposition to H"! in 1' with (A,C, X,Y) =
(A, U{U; : j € Ay}, Ay, @) by arranging the tensors h(*®)) in the decreasing order for y, hence

1y, S TT 109yt - (6.28)

JEAy
where Q; = @ for j = {,(ay), and for j = £,(y) with y < a,, Q; consists of all [ € Uy, (,) that
belongs to Uy, (,r) for some y' >y, so in particular [, € Q;. Furthermore P; = U;\Q; for all j € A,.

By (6.11]) and (6.12)) we then get

D iy, kg, S %5 - [T NP MG - 2150 i 5= u(y) (v < aw), (6.29)
lel;
; d_ op
Dy, kg, S %5 - [T NP (N, )25 21y, i = f(aw), (6.30)
lel;

noticing also that N[av < Mgv(y) for any 1 <y < a, — 1 by our choice.

As for B, the argument is essentially the same as above. We choose i,,(b,) such that hU) has
type ROt or R1 for j = i,(by,); then i,(y) for y < b, are chosen in the same manner as £,(y)
above. In this case, 1D holds after translating by some fixed vector m;u(y), and with a loss

of (N,)®? due to the weaker bound (6.14)). For (6.27) in this case we don’t have the equation for

> <ty Cin2) | Fin(2) 2, and the sum > <ty Giu(2)Fi, () only belongs to a ball of radius (N,)3°. However

by losing a factor (IV,)“? in the operator bound for the tensor h we may assume > 2<by Giu(2)Kiu(2)

is constant. Therefore, for the norms appearing in (6.28)), instead of (6.29)) and (6.30]), we now have

12 gk, g, S %5 - (N ] NC My G =iuy) (< bu), (6.31)
lel;
Hh(j)||kjkpj—>ij SER (N*)Cé H N[/j’ if J = du(bu); (6.32)

[GZ/{J'
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moreover we gain an extra factor Zj ; in and if h9) has type ROT.

Step 4: putting together. We now come back to the estimate for ||h||kkp ke, that appears in
. By all the previous discussions, we may assume that in the support of h = hyy, ...k, we have
the equalities and inequalities (6.16)), (6.22]), (6.26), (6.27)), as well as the variants of and
for B, (see Step 3), and that any pairing in (k, ki, -, k,) must be over-paired. All these
allow us to apply Proposition (unless we are in the exceptional case, namely (d,p) = (1,7), and

up to permutation |A,| =2 for v = 1,2, ky (1) = kg,(1)) to obtain the bound

S
1Pl ke, ko, S (V) HMO‘O H min My, ()" 2.

d
1<y<av 2 (6.33)
Now combining (6.21)), (6.24), (6.25) and ([6.28)—(6.33)), we conclude that
(0,0%)
gzv N H lkkp kakg S H3€ [g{NB N (max N) = (ymax M;) = H 21, (6.34)
where H§0,0+) is defined as in (6.17). By definition of M} we have
ZriljagcpM > r{leaXN[,
using also and the fact that Y U Q =Us U --- UU,, we then have
P (0,0%)
[EIZN[_&HEM NH kkp—hikg S jl;[23€j L[{Nf : (N*)C‘S(Ieul;f’l%?;SpN[)_zlpE l:[ Zy;. (6.35)

The factor HS-O’OJr) N j_28 in ((6.17]) will be provided by separating a square root of the last two factors
in the right hand side of M To gain the other factor (N*)_83 in , we consider two cases.
If max{N;:lel;,2<j<p}> (N,)¥", then the factor (maxey;, 2<j<p Ni) "% in the other square
root is bounded by (N*)*C‘S*S?’, hence is proved. Otherwise, let 2 < j < p be such that
Nj = N., then Ny < Nf for all [ € U;. If h< 7) has type RO or RO, the factor zl/ > = N2 in the

j
other square root is bounded by (N*)_C‘S_ag. If hU) has type R1, by using the bound of ||h) ij,%

(the second bound in (6.15)) and that N;E/Q < (maxieq, N))~?, we have

1RO b, kg, < X5 NPT {gng[) -8 (6.36)
[EUJ'

for any partition (Pj, @;) of U;. Then we gain an extra factor N ;E/ 2 (which is less than (N, )~¢9-¢")

by using ((6.36)) instead of (6.15)) in (6.25]), (6.31)) or (6.32), and hence (6.17)) is proved.

Finally, in the exceptional case mentioned above, we may assume (up to permutation) that
Ay ={2,3} and Az = {4,5}, so (d,p) = (1,7) and ky = k3 = kg = k5 := k. by the setting of A, in
Step 1. Here we may fix and sum in k,, while for fixed k, the corresponding part of the tensor H

can be bounded as above, with h(/) (2 < j < 5) measured in the norm
sup A9l < 1A |1, -k, -
k;
One can check that the power gain coming from using these norms is enough to cancel the sum-
mation in k, and the rest of the proof goes just like above. The cases when p is replaced by odd
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3 < q < p, or when h satisfies (4.27)) can be proved in the same way, since Proposition works
equally well. 0

Proposition 6.3 (Selection algorithm: Case II). Consider the same setting as in Proposition .
Here we assume that each h\9) has type RO or ROY (in the sense of Proposition , but in both
cases the factor Zyj in is replaced by 1 (the factor Zo; remains the same). Then we have

P
—_ 0 —4
HN[ a+8e+0 | ||H||kk:p—>k1kQ < | | X | | NfBl . (QQagpr[IElng[) e (6.37)
€0 =2 leU SIEPE

The same holds if p is replaced by odd 3 < q < p, without changing the power 4pe in .

Proof. The proof is the same as Proposition [6.2 with the following adjustments. First due to the
absence of type R1 tensors, we will not lose any (N*)05 factor in the proof process; second, we
do not gain any extra factor as in the proof of Proposition since Zi ; has been replaced by 1.
With these, we are still able to gain a factor
(max N[) _4p€( max ]\/[j)_élp6
leQ 2<5<p

as in (6.34)), which implies (6.37]) in the same way as in the proof of Proposition O
6.3. Merging estimates. Finally we prove the general merging bounds, Propositions

Proposition 6.4 (Merged tensor bounds: Case I). Let 3 < g < p be odd, 0 < r < q, and let
S; (1 < j < r) be regular plants with frequency N(S;) = Nj < M and |S;| < D. Fiz N; < M/2
forr+1<j<gqand (; € {£} for 1 < j < q, and assume that 25:1 ¢; = 1. Denote B =
(M,q,7,C1,--+ ,Cqy N1, -+, Ng). Let h = hppy oy (Ary1,- -+, Ag) e a constant tensmﬂ supported in
the set

(k) < M, (kj) SN;(1<j<q), (\)<2M™ (r+1<j<q),
a 1 a - (6.38)
k=Y Gk, ’!k\Q—ZCj!kj\er > CjAjJrT' ST
j=1 j=1 j=r+1
where T € 7 is fized. Assume that
bl +0xnl ST7°0 r+1<j<q, (6.39)

and that any pairing in (k,ky,--- ,kg) must be over-paired. Now let R = hl&i)lCuj(ij’ Ay;) be an
Sj-tensor for 1 < j <r, 0 be as in Definition[3.6, and let

S =(L,V,Y) =Trin(Merge(Sy,--- ,S,, B, 0), M?),

(6.40)
H = Trim(Merge(h(V),--- | h(") h, 8, 0), M?).
Let N, := max(Na,- -+, N,), assume N, > M°, and T be a factor such that
T< 1Y T < 70 pA0dpe i max N; < (50dp)~* M. (6.41)
<j<q

We assume that the tensor hV) is Bys1 measurable, and Ny > MO forle Ly; for2 < j <r, the
tensor h\9) is B(N*)[a] measurable, and Ny > (N,)? for | € L;. Furthermore we assume that for
1<j<r, S and hU) have one of the following two types:

1i e. which does not depend on w.
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(1) Type 0: where V; = &, and in the support of () we have
D=1, k=) Gk, kP =) Glkf> =Ty, (6.42)
lel; lel; lel;
where I'; € Z is fizved, and hU) satisfies the bound
; _ _ _ 53
||h(j)‘|kjkBj_>ij <Sxj T 9 H N{ﬁl H N, 8¢ H N[46 H N, s - X0, X5, (6.43)
leB;UC; leP; leE; PeEY;

for any subpartition (Bj,C;) of Uj, where E; = U;\(B; U Cj), and Xy ; and Xy are defined as in
but are associated with S; and (Bj, C}) instead.
(2) Type 1: where h\9) satisfies the bounds (with B;,C;, E; same as (1))

©) B —4e 8¢ 53 B e
1RD]] Sl ke S X N e e v r[relng[ . if
leB;UC; leP; leE; peY; feEV;
(6.44)
1R X5k, e O TN T N T v T N T NE-N;=, i ) = @ (6.45)
leB; leP; leE; peY; fev;

and we also assume for C; = @ the localization bound

(o pe-Sano) @] cxe I I T 157 I
= Xy, Ckjkp;] €B;  IeP; €E;  pey; fev;
(6.46)
where Ry = M?9, R; = (N for j > 2 and U = Zfevj Gk, and the \y,-derivative bound (for
Cj =FE;= ),

1930, oo, S %y -7 expl0g Ny)P + 15,1 (108 ). (6.47)
J

Finally fix a subpartition (B,C) of U, and let E = U\(B U C). Then, under all of the above
assumptions, we have the following results, where we denote

Y =[x 7'M (N)=" (6.48)
j=1

(i) If C # @, and assume that max{N;: [ € C NU} ~ max{N;: [ € C}, then 71 M-certainly,
the tensor H = Hyy,, (ky, \y) satisfies the bounds

VT - VD oty ey S0 7" | R U el N B sl ) (max V)~ 7 (6.49)
leBUC lepP [eFE pey fev

(ii) If C = @, and assume that Y has type 1, and N, 2 Nj for all1 < j <r such that 9 has
type 1, then 7~ M -certainly we have

VT - I —toppy S | U el D G U RV (6.50)

leB lep leE pey fevy

(i) If C = @, and assume that Y has type 1. Moreover, assume we restrict the tensors
Hygy, (v, Ay) and h}jl)ku (ky,, Av,) to the sets

M26

1
= G- ‘ L+ s |k = > Gl — ] ~ K, (6.51)

leu ety

+ 2,
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where K < Ki are two dyadic numbers, ¢} represents the sign of n in S, { = Zfev Cf*kf, and
l = Zfevl Giks as above. Then 77 M -certainly we have

1 K
VT H (1+M%\k—ZC[*k[—€|) H‘ N PR | B I el D Rl | Ny T] ~e.
teu Xy, Plkks] leB lep =30 pey fev
(6.52)

Proof. We would like to apply Proposition 6.2 The technical difficulty before doing so is two-
folded. On the one hand, we must separate the tensor () from the tensor H defined in .
On the other hand, since there are no over-pairings in the statement of Proposition [6.2] we must
remove these from H. Once we have dealt with this technical difficulty, the heart of the matter lies
in implementing Proposition to obtain the desired bounds above.

In the proof below we will mainly focus on . The proof of will be analogous, and we
will only point out the necessary changes in the course of the proof. Moreover, in proving
we will only use the bound for the tensor (Y, so will follow from the same arguments
as once we use instead of , in view of and K < Ky, N < M.

The proof will proceed in four steps. In Step 1, we reduce the desired estimates for the tensor
H to those for the tensor H° defined in below. In Step 2, we remove and estimate the
over-pairings, and reduce the desired estimates for H° to those for (H®)' defined in m In Step
3, we first single out h(") in (H°)! and in turn apply Propositions @l and M, then remove and
estimate the over-pairings as in Step 2, to reduce the desired estimates for (H®) to those for HT
defined in . Finally in Step 4, we implement Proposition and conclude the proof.

Step 1: pre-processing. Define

$~: (Z,i,y) = Merge(sb U 787’7%7 ﬁ)a

H = Hyy,_ (ky, Ay) = Merge(h!D),--- | hl" b, B, 0),

noticing that V=VU---UV, U {r+1,---,q}, and define

(o] (e} I7 C*
H® = (Hpy, (ki Ap) = Y Hi (i, Ap) [T (v (6.53)
konu (e\u
then we have
(o] — C*
Hkku(kVa/\V) = Z /d/\ﬁ\v . (H )kku(kfﬁ)‘f/) H <2Nf)kff ()\f)
kg fEV\V

By the same proof as part (1) of Proposition for any X, bo [ -] norm we have

o —D1
HHHX;”O[...] SIH HX\;bO[...] ) H Nf ) (6.54)
fEV\V
as well as for the weighted norm in (6.52)). Therefore, it suffices to estimate the X%bo [---] norms

(as well as the weighted ones) for H®.
For each 1 < j < r, if h\9) has type 1, we can define %}“ = %;(k:yj,)\yj) to be the smallest
positive number such that the bounds (§6.44))—(6.47) are true for this choice of (ky,, Ay,) with X;j bo

in the norms removed (for example Xy, Z [kjkp; — kc;] replaced by kjkp, — kc;), and with X;
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replaced by X;(kyj,)\vj); for example one of the inequalities satisfied by X7 = %;f(k:yj, Ay; ), which
corresponds to (6.44)), would be
* — — _ 53 _
1B gy ke, S %5 -7~ TT N7 T v T v TT 5% TL 8- (max ) b (6.55)

[ECJ'
[GBJ'UC]' [GP]' [EE]' peyj fEVJ'

with C; # @, for fixed (ky;, Ay,). If hU) has type 0, we simply define X7 = X;. Then we have

Z / dAy, - [T 0720 - X5 (ky,, Ay,)* S X3 (6.56)
fev;

for type 1 tensors. When (kg;, >‘l7) is fixed, which means (ky,, Ay, ) are fixed for 1 < j < r and (kj, \;)
are fixed for r + 1 < j < ¢, we shall view h = hgg,..,. as a tensor depending on (k, ki,--- , k,); for
1 < j <7 we shall view hU) = hgj )kuj as a tensor depending on (kj, ky, ).

With these reductions, we can view H = H, kky; as a tensor depending on (k, k;) and H® = H, Ky
depending on (k, k), namely

(1) (2)
ﬁkka = H 1kl:kl’ H 1k[7£k[/ . Z hkk1~~~kr Z H AN[’Yk[ H hl(fj)ku ]Cj, (657)

L L (K1, k) ko 1€Q

(H)iry, = Z Hu, TT (w5 (6.58)
u\u [EZ/I\Z/I
where in , the sum and products are taken in the same way as when merging the
tensors (A, ... (")) via (h, %, 0). Similarly Q is defined as in Definition Also note that
U={lel: N> M}

Our goal is to prove that, for fixed values of (kﬁ, )\9) defined in , the tensor H® = Hp)
satisfies , and 7! M-certainly, but with the following three adjustments: (a)
we remove the X ~bo parts in the norms (for example X, ~bo [kkp — k¢ is replaced by kkp — k¢),
and multlply the left hand sides by the extra factor H] rr1 IV 4/ % (b) the set V in the factors

[Liev V, f on the right hand sides is replaced by V; U---UV, and y is replaced by Y; and (c) the X;
in the definition (6.48) of Q) is replaced by Xj. For example, the analogue of (6.49) with the above
adjustments (a)—(c) amounts to showing:

q
VI T NP NE gk <770 TT N T T v ( max Vi)~

j=r+1 [€EBUC [P €k
(6.59)
_53 . 4
<JIw 11 A~ H36 "MONTE
ey FEVIU-UV,

where H§:1 X3 - =00 (]\7*)_2‘€4 is Q) in |) with replacements of X; by Xj. The corresponding
analogues of (6.50) and (6.52)) with the adjustments (a)—(c) are similar.

If we can prove (6.59)) for a fixed choice of (kg;, Aj;) in H®, then by applying the meshing argument
in the same way as we did in the proof of Proposition using (6.39)) and (6.47]), we can reduce
to the case of at most exp(r(log M)%) choices for (K53, Ap), hence 7! M-certainly we may assume

that 1) holds for Hy, for all choices of (ks3, A)- Since V=V U---UVU {r+1,---,q} and
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the definition of X="[-] involves summing and integrating over (k33, Ap), then 771 M-certainly
we have the following estimate

VY H|l oy osie) S D 0 I NI =TI v T~ T ( (max V)~ % (6.60)

leBUC lep leF pey fEV
which follows from (6.59) and
,

r 1/2

(X [ axs-TTow = H%?-(kvﬂvﬂ?) <11 [T (6.:61)
ks 2% Jj=1 = j=r+1

Note that follows from taking the tensor product of for 1 < j < r and summing and

integrating over (k;,\;) for r +1 < j < ¢. Finally, the desired bound for Hpy,, (ky, Ay)

follows from (]6.60 and (]6.54 in view of the Nf_D ! powers on the right hand side of 1' The

desired bounds (6.50)) and (6.52) for Hyg,, (ky, A\y) can be obtained in a similar way.

Step 2: removing over-pairings. From now on we will fix the value of (k:g, /\\7) and reduce to the
setting of the tensor H in and the tensor H® in .

We will first focus on (6.49), fix a subpartition (B,C) of U with C' # @, and denote E =
U\(B U C). Recall that ¢ = {A;,---, Ay} is the collection of all pairings and over-pairings
(see Definition , and notice that the frequencies Ny are the same for [ € A;. Without loss of
generality, we may assume the frequency Ny for [ € A; is > M?® for all 1 < i < v (where 1 < v < m),
and < MW forv+1<i<m. In particular, we have that A; "YU = @ and that A; Ny = & for
i > v+ 1 (since Ny > M? for [ € U and [ € Uy).

Next, in (6.57]), the product H[(2[,) has two parts, namely H[(?[,’Z) containing ([, ') such that Ny =

Ny > M?, and [(2[,’<) containing (I, ') such that Ny = Ny < M?. In the proof below we will
slightly modify (6.57)) by changing Hﬁ,) 1g £k, into Hﬁ;q 14k, This will be necessary in order

to separate the tensor AV from the rest later in the proof and will not cause a problem, since
the original H equals the modlﬁed H multiplied by H[ [, 1kr7ék[/a and the original H° equals the

modified H° multiplied by H[ v ].k[7ék ,» which is a bounded operation due to Lemma |4.10, The

reason we need to keep the factors in the product H[’[, <) 1p £k, is to guarantee the no-pairing
assumption required to apply Proposition 4.14] later in Step 3.

Recall that when C' # @ we have max{N;: [ € CNU;} ~ max{N;: [ € C} (see part (i) in the
assumption). Denote the particular [ € C'NU; where the maximum is attained by liop. In this step
we shall fix the values of k; for [ € FE and for [ € A;, where 1 <1 < v and |A4;| > 3. These I's are
divided into groups according to the pairing and over-pairing relations, and there are four possible
cases:

Case 1: For each [ € E that does not belong to any A;, we form a group with only one element
[. Each of these [ belongs to a unique U; for some 1 < j <.

Case 2: For each i such that A; N E # &, we form a group containing all elements of this A4;.
Deﬁn y; and z; such that |4; N Q| = 2y; and |A; N L7| = z;. We then have |A;| = 2y; + ;.

Case 3: For each i such that A4, NE = @ and 4; NU # &, we form a group containing all
elements of this A;. Define y; and z; such that |.A; N Q| = 2y; and |.Aiﬂ1/~{| = z;, then |A4;| = 2y; + z;.

Case 4: For each i such that A; N U=o , we form a group containing all elements of this A;.
Note that in this case |.A;| > 4. Define y; such that |A;| = 2y;.

1Recall that Q is defined in 1| Since Q contains the two-element pairings in A;, |A; N Q| is even.
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Note that in Cases 1-3, some [ in the group belong to u (and hence U) and thus appear as a
variable of H and H°, while some [ in the group may not. In Case 4, no [ in the group appear as

a variable of H or H° , and they only appear in the summation Zk 6.57)).
Now let G be the union of all groups in Cases 1—4. Define Ut = Z/{\G and similarly U7 = U\G,
and similarly Of, Bt and CT. Note that 1\t = 2\U. Let U}L =U;\G for 1 < j <r, and deﬁn
G = Ul\l/l;r =U; NG. Let O be O after removing the A;’s involved in Cases 24 above. Thus,
for any A; € 01, if 1 <4 < v (in particular if A; OZ/IEL # @), then |A4;] = 2.
Once we fix all the variables k| for [ € G described above, we can view H as a tensor depending

on (k, k), and H° as a tensor depending on (k, k). In the same way h9) can be viewed as a

tensor depending on (kj, k,,1). More precisely, we define RUt) = h,% ’,];) . to be h,% )ku with the values
J u! J
J
of & for [ € Uj\U] = G NU; fixed.
If we use the triangle inequality, as well as the simple fact that
d/2
HhkxkykszHkka%ksz ~ H Ny /2. sup HhkxkykszHkyﬂkW
lexuz kxkz

(where X, Y, Z, W are arbitrary sets) under the assumption that (k) < Ny for [ € X U Z, then we
can deduce that

(0,2,>) (0,3,>) (0.4,>)
IH ke < H N[i—Qyi(a—Q) H N[(id/Z)—Qyi(oc—O) H N[tj—2yi(oc—9) ) s(u[)) H(HO)THkkBTchT’
; . : Ky
(6.62)
where H 7m:2) is taken over all groups A; of Case n for 2 < n < 4, [; is any element of A;, and

sup(y,) is taken over all choices of the ks with [ € G. The tensor (H °)T is defined by

(H) = ) = S (D TT Ui (6.63)

kgt teut\ut
1) (3,1) ( ) .
kk~T H ]-k:[ Ky H ]_kﬁék[, . Z hkk?1 oy Z H AN['W@[ H Kok ] J . (664)
Ly L (k1,,k ot l€Qf Jj=1 J

Here the product Hle,‘) is the same as the one defined above in the third paragraph of Step 2, and
the product J; [’T) is the same as HE[D[,) defined in (6.57)) (which is taken from (3.11])), except that

the product here is only taken over [, ' € A; for A; € 01. Similarly the sum Z,(f’:) is the same as
)

,(:’Q) defined in (6.57)) (which is taken from (3.11])), except that the sum here does not involve the

variables kg\oi. Also note that, the product Hfll,’ﬂ and sum Z,(f”? are exactly the same as the

ones defined in when merging the tensors (h(L1) ... (1) \Q/ia (h, B,07).

Let us illustrate the above Step 2 with an explicit example, which is an extension of the example
in Step 2 of the proof of Proposition for simplicity, assume there is no blossoms (i.e. V; = @)
and all frequencies are > M?, so no trimming is needed throughout the process. Suppose ¢ =r = 7,

(u1>u27"' 72/{7) = ({[topacvjvevm}a {a,b,‘é,o}, {C,O,Q,E}, {e7f7g}a {a7f’h7j7m}a {i7j7kam}7 {Eam})>

INote this definition is only for j = 1 and not for 2 < j < r, which we will define later.
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and the corresponding frequencies satisfy
Ny, 2 Ng> Ny 2 Ne > Ny > N > Np > Ny > Ny > Ny > Ny > Ne > Ny > N > M.

Like in the proof of Proposition a leaf occurring in at least two sets represents a pairing or
over-pairing; for these leaves [, we also use [; to indicate the copy of [ in ;. Then U = U =
{[top) bu aa ga ha ivj? E? 0} and H = H07 and

(2

} : } : (1) )
kk'z,{ - hk)klk’? ’ hklk[topk;kjkgkm ’ hkzkakhkeko
(kly k7) (ka:kt:keakf:km)

X hl(sg)k,kgkek? : hl(:i)kgkfkg : h;i)kakfkhkjkm ' hl&i)kikjkgkm : hl(c?kgkmv

where for simplicity, we have omitted the various Ay, v, factors.

Suppose B = {b,9} and C = {liop, g, b, £} is a subpartition of / and E = {i,j,0}. Our goal is to
estimate || H°||gkz—k.- The groups in Cases 1-4 in the above process are then:
Case 1: {i} and {o};
Case 2: A1 = {j1,]5,)6};
Case 3: AQ = {317927337367E7}§
Case 4: .A3 = {ml, ms, Mg, m7}.

After fixing the values of (ki, ko, kj, k¢, km), which are considered in Cases 1-4 above, we can reduce
| H® || kkp—ke tO ”(HO)T”MBT%’CCT by the above argument, where the relevant sets

BT = {bao}7 CT = {[topvg> b}v uT = {[topa baa)g> b}a QT = {a27a57 C1,C3,¢€3, e47f4af5}7 (665)

(u{f’ o vu;r) = ({[t0p7c}v {avb}? {c,b,e}, {e7f79}7 {a’ fab}a a, @)’
and the tensors

O 1=T) 27T) (3 T 47T) 57T) 67T) 77T)
(H Kk, 4 Z Z Pkcky ke 'hélk[topk( 'hgmkakb h’kgk)kakg hz(%kckfkg 'hlgg,kukfkh 'hg% ~h§€7 )
(K1, k7)) (Ka,ke ke, k)

where hgj ’]Zz)ﬂ is h](jj )kuj after fixing the k:uj\u; for1<j<7.

Step 3: tjhe method of descent. Now we need to estimate (H°)!. A key step is to implement
Propositionby singling out AT, To that effect, consider those A; € & such that A; OUI =+ O
we know that each such A; contains exactly one pair. Let (& T)’ be O after removing these A;’s,
and D be the union of these A;’s. Define F = (UT U D)\Z/{if and similarly define F = (U U D)\L{I,

so that UN\UT = F\F. Then by (6.63)(6.64) we have
)Lkm - Z Z H AN - hgﬂi)T] D (H kb (6.66)

k1 kp €D

where kp 18 taken over all kp such that k= ky for any pairing A; = {l,I'} C D, and the tensor
(H*)kky iy 1s defined by

kkikr = Z Hiraky | ] (fN[)i[[> (6.67)
F\F [Gf\}—
'1 (2,<) 31

ik, = [ Lok [ Loty - Z hkk1 w Y ] Awoe, H h(i’;ZLT]Cj' (6.68)
(K2, k g

L L kr lER
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Here R = QN\D; in (6.68) the product HE2[,’<) is the same as the one defined above in Step 2, and

the product H[ [,’T) is the same as H” defined in (6.64). The sum Zk "D is the same as Z (3 T)

defined in , except that the sum here does not involve the variables kp. The tensor H* can
be understood as a “partial trimming” of H at frequency M?, i.e. only the tree part F is trimmed.

Note that N[O‘_e - AN, Vk, is a bounded function of k; and can be absorbed into one of the tensors

h(L1) or H*. Applying Proposition|4.11]to (6.66) with (kx, ky, ka,, ka,) = (kkgt, kot kiky i, kkikz),
1

where we combine any two elements in D that form a pairing into a single element as we did in the
proof of Proposition we obtain

0
ICH) iy ke S TN - ||h} o T||1c11<z NCH )bk ke ke bk

(BTuD)muI ﬁkctmui BTnF (ctup)nF’
leD
(6.69)
To estimate H* in - We shall apply Proposition First recall N, = max(Na,---,Ny),

and that since the expression ) for H involves only h and U for 2 < j <r, by assumptmn
this H is By, yis) measurable. Next note that by assumption N; > (N,)° for each [ € ]:\]: and

that there is no pairing among k‘j:_\ # in (6.67)) in view of the product Hﬁ,’<) 1k, in the definition

(6.68) of H. Now we apply Proposition [4.14]to (6.67)), setting (b, c) = (kkgtnz, klk(ofup)m}'), then
for some partition (By, Cp) of F\F we have 7~ M-certainly that

[CH )ik 1k T T NS Ml kks ik (6.70)

[eF\F

—)klk

BtnF (ctuD)nFrF ~ (

where S = By U (BT N F) and T = Cy U ((C' UD) N F). Note that (S,T) form a partition of F
such that S D BTN F and T > (CTUD)N F.

It now remains to estimate H. By applying Lemma|4.10|we may remove the product H[(’ZI,K) 1ktk,
from the definition . Then, we can repeat the arguments in Step 2 above, and fix the values
of ki for [ € A; with A; € (01)" and |A;| > 3 (where necessarily i > v + 1). Here we only have two
cases:

Case 3: For each i such that A; N F % &, we form a group containing all elements of this A4;.
Define y; and z; such that |A; N R| = 2y; and |A4; N .7?| = z;, then |A4;| = 2y; + 2.

Case 4: For each i such that A; N F=0 , we form a group containing all elements of this A;.
Note that in this case |A;| > 4. Define y; such that |A;| = 2y;.

As in Step 2, we define G' to be the union of all groups in Cases 34 defined above. Define
(611 to be (O7) after removing the A;’s involved in Cases 54 above, FI = F\G', and similarly
define ST, T and Rt. We also define Z/{JT [ L{JT \GT. With these variables ki for [ € GT fixed, we can
view H as a tensor depending on (k, k1, kz ), and view h1) as a tensor depending on (k;, kuﬂ).

We define h0:11) = h(] TTT) to be h,gjkT)T with the values of ki for [ € I/IT\Z/{TJr Gt ﬂZ/{T fixed. By the

same arguments as in Step 2, we deduce that

(0,3,<) (0,4,<)

[Hlkks—rnr S]] N[(id/ D-2(a) 11 fo—%(a_e)'S(}Cll))!(HT)kklkﬁHkksﬁklk
7 i [

(6.71)

T’



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 67

where the products Hgﬁ’n’<) and the supremum sup) are defined in the same way as in Step 2

above, and
gLl & ( ) 16
(ki = [ Lemn [, Z hkk1 Ky Z 11 AN[’Yk[H . .J . (6.72)
L =t IERT Yj

In (6.72)) the product Hl(ll,’ﬁ) is the same as Hﬁ,’ﬂ defined in (6.68]), except that the product
)

here is only taken over [,I' € A; for some A; € (0'1)'; similarly, the sum Z,(C?’/T is the same as
R

](;’Q’T) defined in (6.68)), except that the sum here does not involve the variables kg\gi. Note
that |A4;| = 2 and A; N F! = @ for any A; € (617, so the product Hﬁl[,/’ﬂ) vacuously equals 1,
and the condition of the sum Z ’TT is just ki = ky for each pairing {I,I'} € (€T1) (recall that

=R\GT = Q\(DUGUG)).

NOW recall the example in Step 2. To estimate || (HO)T”kkBT—HfCT , we separate h1) from the others

as in (6.66)(6.68), where D = {c1,¢3}, Ul = {liop, ¢}, F = F = {b,¢,0,9,h} and R = Q"\D =

{a27 as, €3, ¢4, f47 f5}) namely

ot (L,1) *
(H gy, = > Mg e (Do
K1 ,ke
_ B2 1) (3,7) (4.,1) (5,1) 6,1) , 5 (71)
(H) ke ke = Z Z ks kr * Mgy~ Piskkoke hkzmkfkg Phskakky e Py
(kZ,""W) (kmke»kf)

where for simplicity, we have again omitted the various Ay, factors (and also the power factors
below). Note that H* = H = H' as all frequencies are > MY, in particular no partial trimming or

Cases 3—4 in Step 3 above is involved. By (6.69) we have

1
I(E°)E, ko sk kaky < ||h§gl;1[ ktHklkc—m[top N ) ekey e e ko — e kg -

The norm |h(11) ||k51kc_>k'[m is then controlled using (6.43)—(6.45), and || H™|[kkyky—skikekqgky 1S cOD-
trolled using Proposition note that here & = {6,7} as in the example in Step 2 of the proof
of Proposition and the corresponding H*®® is the same as the one in that example, but with

hU) replaced by h91). After putting these two bounds together and calculating the various powers
involved (see Step /), we can obtain the desired estimate (6.49) for this example.

Step 4: putting together. We now need to estimate H. As in Step 3, we may replace AN, Yk by
N[_O‘Jre and absorb the resulting factor into one of the tensors hU-TH) using Lemma so instead
of H' we only need to consider

Mkklk;ah = H N o+ Z hkkl Ky ZH )T 5 (6.73)
lert (k2 ,kr) kot 7=2 Y;
where ka is the sum such that k = ky for each pairing {I,l'} € (€) which is just Z & TT)
in . We shall apply Proposition to estimate , but we first need to make a few
adjustments to fit the framework of (6.9 - -
First, for r + 1 < j < ¢, we may define L[ﬁ @ and RU = h(j ) to be supported at a single

N —d/2 described in
—d/2

point k; (the one fixed in Step 1). Moreover, in view of the extra factor IT¢ F—

Step 1 when stating the norm bounds we want to prove for H ;;k , We may assume |h (1) | < N;
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for r +1 < j < g, so it satisfies the type ROT conditionﬂ of Proposition with X; replaced by
1. Second, we also view hyg,.., as a tensor depending on (k,k1,--- , k), in the support of which
k;j (r+1 < j < q) takes a single value, and denote it by hkk,...k,- Moreover, the tensor h = hyg, ...k,
satisfies the support condition for some choice of I', as well as other conditions of h listed in
Proposition [6.2}

Next we check that hfjﬁp)ﬂ for 2 < j < r satisfy the conditions in Proposition Note that L{]T f

Iul
J

is a subset of U}, and RO is formed from hU) by fixing the values of ku_\uﬂ (
i\

denote it by k¢, where G; = Uj\Z/{;T = (G NU;) U(GTNU;)). We consider the following scenarios.

Scenario 1: when hU) has type 1. Then A1) will have type R1 in the sense of Proposition

Indeed by (6.46) (actually the modified version of itﬂ in Step 1), we may assume
kj — Z Gy — 4] < (NP, €= Z Gy,
lel; feV;
otherwise we gain a huge power of M from (6.46) that would suffice (note that x >¢, 1 and

N, > M‘;). When kg, is fixed, the above implies that RU) satisfies (6.14) with U; replaced by
U]ﬁ and some fixed m; = ¢; +Z[€Gj Ciki. Moreover, by (6.44)—(6.45) we deduce that hU-T) satisfies

(6.15) with 24; replaced by U], and X; replaced by

- I I IT N T

leP; leG; peY; fev;

for simplicity we

Scenario 2: when hU) has type 0, and Gj = @. Then in this case, R = BU) and it will have
type RO in the sense of Proposition It satisfies (6.11)—(6.12) with X; replaced by

—4 53
SRl || Bl | B (6.74)
leP; peY;
Scenario 3: when hl9) has type 0, and Gj # @. Then RO will have type RO in the sense of
Proposition It satisfies the modified versions of 1'{) with U; replaced by Z/I]T T, and X;

replaced by
* — € —53
co Bl | Bl | Bl | B (6.75)
leP; leGj peY;
In Scenarios 2-3, note the different powers of N for [ € P; U G; between (6.74)—(6.75)) and (6.43])

for type 0 tensors, which allow us to bridge from X ; in (6.43) and (5.33) to 21 ; in (6.11))—(6.12).
Therefore, by applying Proposition with P, Q, U and Q replaced by ST, TT, F and Rf
respectively, we obtain that

q r
H Njid/2 Mk g =gy S H%j ’ H N H NE< H N[_63

j=r+1 Jj=2 [EP2U--UPURT leGaU--UGr peEVoU---UYp
(0) ,
d —2 -
< I ™~ TIN-T]v% o)~ (6.76)
[EVoU---UV, [ej—v“i‘ J

where H§0) is taken over all j such that r+1 <53 <q,or 1 <j <7r and R\ has type 0.

IThe support condition l| for type RO" can be immediately verified, since Z/{;Jr =J.
°In the analogous sense that 1) is the modified version of ll
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This implies the same bound for #!. Next we can control the norm

1A (1T

ko k THklk (6.77)

—k

(BTUD)OMI CTnulT

using the modified versions of —6.45 in Step 1. In fact, if (V) has type 1, the norm 1)

is bounded as follows

6.77) < x7 -0 T N7 T N I v T v I - e, (6.78)

[EZ/[I l[eP1 leGy peEVL fevi

by the modified versions of (6.44) and (6.45), where X;¥**" equals (max;_ oyt N)Bif Ot ﬂl/llT + @,
1

and equals Ny © if ctn Z/{I = . If k) has type 0, the norm 1| is bounded as follows

6.77) < x7 -0 T NP TT N0 T v T 5% - Ao (6.79)

[EMI lePy leGy peEVL

by , where Xp; and X ; are as in (6.43)) (which is taken from ), corresponding to
By = (BtUD)NU] and ¢ = CT N (and E; = Gy).

Now, by plugging the bound for H (which follows from ) back into (6.71]), (6.70)), (6.69)
and , using the bounds for described above, and exploiting the relations between the
various sets defined before, we can eventually obtain the bound for H° that implies , and
hence . In fact, by separating the two cases according to whether [}, € Z/{;r or not (recall that

lop € C'NU is such that Ny ~ max{N;: [ € C}), and by using 1) if AV has type 1 or 1)
i h(Y) has type 0, we can obtain in both two cases that

q '
—d/2 o - —&3 * -
H N; / NH ke S (77 M)P(NL) /Qij ' H Ny HN‘ "
) =l (€BUO\{lop} 1P
IR TT T T e
€E ey fEVIU--UV,

where Hgo) is defined in (6.76)) and 3 is a quantity such that

(0,2)
3 < H N —2y; (a—0) H Nd/2 —2y;(a—0) H Nd 2y;(a—0) HN5O€' HlaXN[) ] (6.81)
In (6.81)), the product H (@.m) , for 2 < n < 4, is the product of H ) defined in Step 2 and

HE <) defined in Step 3 (there is no Hiﬁ 2,%) , which is replaced by 1). In the last two factors in
, the product is taken over all [ € (GUGT)N Q, and the maximum is taken over all [ € GUGT
involved in Cases 2-4 in Step 2 and Cases 3—4 in Step 3.

We make a few remarks regarding the calculations leading to f:

(I) The factor Hpey ~0% in (6.80)) is obtained from N*_‘ES/2 and H[e)hu--u% N[_‘s3 coming from

(|6.78[) and d6.76|), given that Y arises from the merging process as in Definition

1In fact in the cases we consider the bound in |D is always better than that in l} due to the A7 ,; factor

in (6.79), so below we will always assume that we are using (6.78]).
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(IT) By combining all terms involving N[B or N[_a+9 in d6.78l), (16.76[), (16.70') and , we obtain
5y i —B -8
H([eBu(J)\{lmp} N[ in (6.80) with extra decays H[e((BuC)mG)\{[mp} N, " and H[efnGT N,
d (a—ﬁ)—i—@
and [[iep Ny

(III) By comparing [[cx N8‘E in with [Ticq,u..ua, N coming from (6.78) and (6.76)), we
observe that the quotient between these two products arises from the I's in (G U GT)\E.

This quotient, multiplied by the extra decays H[e(( BUC)NG)\ {lsop} N[_B and [[ic 7o N[_B
obtained in (II), accounts for one square root of the factor [T, NP - ( max N[)506 in
(the other square root will be used in (IV)).

(IV) Recall from Definition that PCP=PU---UP.UQ, also RT O\(DUGU G’T)
Considering [[cp N N % in , we know that HIEP1U UP,URT N * coming from
and 1' multlphed by the extra decay [[cp N, ( A+ obtained in (IT), can be bounded
by [Tiep N, ¢ multiplied by the other square root of H[N50’3 . (maX[ N[) 502 i .

Now we have verlﬁed -7- Since y; > 1 in Cases 2-3 and y; > 2 in Case 4 (this holds

in both Step 2 and Step &), it is easy to verify that 3 is a product of negative powers of NV, in
6.81]), thus 3 < 1, hence (6.80) implies the desired estimate (6.59|) for Hy, . This finishes the
of -3 P (659 Ry

Finally we prove - ) follows from the same arguments as explained in Step 1). When
C = @, we know that h(l) has type 1 and CT N Z/{l &, thus we only need to use the modified
version of the bound 1' for hY). The same arguments as above yield, instead of 1) that

q T
—d o _ g3 " _
IT ™2 By S M) (V)2 [ 2 T 0 [T v

J=r+1 j=1 leB lep
, (0)
8 -8 d - -2
< [ TI 11 Nf'<N1€HNj E)'B- (6.82)
l€E pey fEVIU--UVr J

Therefore, it suffices to prove that
(0)
—& —2¢e —€
VT - N; -HNj <M,
J

which easily follows from the definition of Y, the product HEO), and the assumption that Ny 2 IV;
for all 2 < j < r such that ) has type 1. O

Proposition 6.5 (Merged tensor bounds: Case II). Consider the same setting as Proposz'tz'on
but assume q¢ = r and each S; and ) have type 0. Moreover, assume that N; > M9 for each
le Ljand1 < j <gq. Then, H satisfies the bound

_ _ _ 53
VY N Hllikgoke SO -77 T NOTINTETINET NG 2, (6.83)

leBUC leP leE pey
where Y is defined in , Xo, X1 are defined as in but with N replaced by M, and

q
Y =[x "M (6.84)

Note that unlike Proposz'tz'on this bound 18 deterministic, i.e. we do not need to remowve
any exceptional set.
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Proof. The proof will be similar to the proof of Proposition so we mainly focus on the parts
where the two proofs are different.

Since ¢ = r and each S; and h() have type 0, we know that V = @. Since also Ny > M? for
each [, the possible trimming process in this proof will only affect the ) set and we may omit it;
in particular we will not need Propositions and can obtain deterministically. Next, it
can be easily verified that

q
T/ HXl,j S &
j=1

where X7 and X ; are defined as in relative to § and §; respectively, so in the proof below
we will replace VY by Y/4, and replace X; and Ay ; for all j by 1

By rearranging the tensors, we may assume that (i) if C' # &, then max{N;: l € CNU} ~
max{N : [ € C}, denote the particular [ € C'NU; where the maximum is attained by liop; (ii) if
C =g@and E # @ then ENU; # @; and (iii) if C = F = @ thenmin{N;: [ € L1} ~ min{N;: [ € L},
denote the particular [ € C' N £y where the minimum is attained by l,o;. We shall repeat the same
arguments in Steps 2-3 of the proof of Proposition [6.4 Namely, we first remove the over-pairings
as in Step 2 (in particular, the Cases 1-/ are the same as in Step 2, except that U there is replaced
by U, and we do not require i < v since there is no v in the current case), then separate A
from the others as in Step & up to . After these, we shall apply Proposition (instead of
Proposition as in Step 4 of the proof of Proposition to get that

q (0,2)
VH lkkp—ke ST Hgg H N; —2y;(a—0) H Nld/z —2y; (a—0) H Nd 2y; (a—0)

< [ N7 “+9HN’31HN51- I ~% II »~¢ JI N xx. (685

leD teu] ler (€P1U-PyUR (€G1U-UG,  peVIU-UY,

Here in the above:

e The product H ) for 2 < n < 4, as well as the parameters y; and z;, are defined in the
same way as in Step 2 of the proof of Proposition

e The set G; = G NUj;, where G is the union of all groups in Cases 1-4, and Z/{]L =U;\Gj.

e Theset R = QN\D, where Q is the union of all A;’s with |A | =2 (equlvalently of = Q\G)
and D is the union of all A;’s with |A;] = 2 and A; NU] # @. The set F = U UD)\U{
where U = U\G.

e The factor X is such that (i) if C' # @ and lp € U{r then X = N_ﬁl, i)ifC=G =9
(which implies E = @) then X = (N, ) ¥2=51_ (iii) if L{{r — @ then X = N;{%, (iv) in
other cases X = 1.

e The factor X’ is such that (i) if Z/IT # @ for some 2 < j < ¢, then &’ = (max N;)~*”¢ where

the maximum is taken over all [ € Z/{T for all 2 < j <gq, (ii) if Z/{T @ for all 2 < j < ¢ then
X' = (N2 Nq) .

In the last two points above regarding X and X”’, the powers N[;fl and (N,,,) @2 =P in cases (i)
and (ii) for X are obtained from the first and second lines in the definition of &Xp,; (which is
the factor appearing in ) with j = 1. The powers N;*° in case (iii) for X, and (Ny--- N,) =%
in case (ii) for X’ are obtained from the third line in the definition of Xy j, which is only
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used here and not needed in other parts of the proof. Finally, the power (max N;)~% in case (i)
for X’ is obtained from the last term of .

Now, by the same arguments as in the proof of Proposition (in particular using the quantity
3 in (6.81))), we can simplify the right hand side of as follows. When C' # & we obtain that

q

TN H e STOI[%- [T NOTINCSTINETIND - M7 &, (6.86)
j=1 1e(BUC)\{lop } lep leFE peY

where we notice by definition that X/ < M —ed? <M —48%  This easily implies 1} When C =@
we obtain that

q
T s 70 TT 2 [TV TI N TN TT - Mt (6.87)
j=1 leB lep IcE pey

in this case, if E = @, then we have X < (N, )(%/?=81 which is acceptable as Xy = (N, )(¢/2) =5
in , and the bound &’ < M=% provides the needed gain as above; if £ # @ and B # &,
then X <1 and Ay =1 in , so once again we can use the bound of X’. Finally, if B = &,
then in particular u} = @ for each 1 < j < ¢. In this case X = NI_E‘S7 X' = (Ny- ..Nq)—f‘s and
Xy = M™% in (6.83), so it suffices to prove that

q
LA H Nj—ea < M,
j=1

This is obviously true if N; < M for each j, due to the definition (6.41]) of Y; if N; ~ M for some
J, this is also true since the other Nj still satisfy NJ?a‘S <M —e8*  This completes the proof. ]

Proposition 6.6 (A special case: Operator bounds). Let 3 < g < p be odd and 1 < r < q. For
2 <j <r, assume that \IJ,(CJJ) = V. [S;, RO as in , where 8; is a reqular plant with |S;| < D and
N(S;) = Nj < M such that Ny > M? for each | € L;, ) s an Sj-tensor that is B s) measurable.
Moreover we assume that h\9) either has type 0 and satisfies the assumptions of Proposition
(1), or has type 1 and satisfies the assumptions of Proposition [6.4] (2).

We also fix (j (1 < j < q) and Nj < M/2(r+1 < j < q), and assume that max(Na,--- ,Ny) = M.

Let h = higy .y (Ary1, 7+, Ag) be a constant tensor (which does not depend on w) supported in the
set
q
(hy) <N;(2<j<q), (\)<eM™ (r+1<j<q), k=Y (hj; (6.88)
j=1

also assume that h can be written as a function oﬂ k—Ciky, [k1>=Cilk1]?, and (Ko, kg Art1, -+ 5 Ag),
and satisfies that

+—0

Q0+ Gt drpr + -+ CAg + B)

|7 + 1051 < , r+l1<j<g, (6.89)

lwe may also need to multiply this h by functions 1> a2 or 1, y> a2, but they do not affect Propositionm
(which can be easily checked), so the proof below will proceed in the same way.
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where Q = |k|? — i ¢Gilkj1%, Z € R is fived with |Z| < M**, and that any pairing in (k, ki, - - - kq)
must be over-paired. Now define

T

. q )
Mg =Y / A1 g gy, s A) TTOYS TT GRIR W), (6.90)

iz kg j=2 j=r+1
possibly with Fourier truncations on zy; as in part (5) of Proposz'tz’on then 71 M -certainly we
have
" 4
M oty < ] %5 -7 OM= (6.91)
j=2
Proof. The proof will be similar to the proof of Proposition so we mainly focus on the parts

where the two proofs are different.
Let S; be the empty plant (each component being empty). For any & as in Definition define

S=(LV,Y) =Merge(S1, - ,S,,%,0),
and define

Hikrky (kv, Av) = Hlk[ ky Hlkgék[/ . Z Py ooy (Art1s o+ 5 Ag)
L L (K2, k)

X ZHAN('Yk[ H kj)ku (ky,, Av,)] . (6.92)

ko l€Q
Here in (6.92)), the set Q (as well as U etc. below) is defined from & in the same way as in Definition

the products Hl(l[,) and HEQI,), and the sum Z,f’g), are defined as in (3.11)). By the same proof as
Proposition 3.7 (2), we can write .#j, as a linear combination (for different choices of &) of

Nk = D /dAv Heky ey (kys Av) - H(fN[)i[: H(ZNf) ()‘f) (6.93)

ky ky lel fey

where (" and ¢} are defined as in Deﬁnitionlmwhen merging (S1,---,S;) via (£, 0). If we assume
||k|? — Cilk1]?| > M*°, then by (6.89) and (6.88), we have

Al 4+ |0xh] S TOMTF, 1<) <q,

which easily implies thanks to the dominant decay M - Therefore, below we will focus
on the estimate for .#” with a fixed & as in Definition and assume that ||k|? — (1|k1[?| < M~
(which will allow us to apply Proposition .

First, notice that V =VoU--- UV, U{r+1,--- ,q}; define H* = (H*)yx, (ky, Ap) so that we have

(H* ik, (v, M) =D Mk (R, M) - H(fN[)i;:, (6.94)
Ky ey
Nk, = Z/d)\v ik (v, Av) - H(@)iuf). (6.95)
jev

By the same argument as in Step 1 of the proof of Proposition using Cauchy-Schwartz, we
obtain that

* -D
Hf/%ﬂklukﬁkl S ”H HX;bO[kﬁkl] ’ HNf Y (6'96)
fev
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so it suffices to control ||H*| . For 2 < j <, define X = Xj(ky;, \y;) as in the proof of

;bo lkska]”
Proposition [6.4] Using the inequality

r

(z [ Ton = TTwom, 7)< 11w 11 %

fev =2 = J=r+1
which is proved in the same way as (6.61)), it suffices to prove 7—!M-certainly that

q r

11 Nj_d/2 AN Yy oy, M) sy S T 25 Ry Ay /M= T Nf (6.97)

j=rt1 =2 fEVoU--UV,

for any choice of (ky, A\y). By a meshing argument as in the proof of Proposition we may fix
a single choice of (ky, \y) and view h\) = hgs]])ku as depending only on (kj, ku;), h = hyky ..k, as
depending only on (k, ki, -+ ,kr), H = Hikyky ;s depending only on (k, k1, ky), and (H*)gk, as
depending only on (k, k1). Also note the extra factor HJ 1 V5 ~%/2 i1 the norm bound (6.97) that
we want to prove for (H*)gx,, which is analogous to Step 1 of the proof of Proposition [6.4} and can

be exploited in exactly the same way.

Now, using , noticing that H is B,,sy measurable and Ny > M? for | € U, that h (and
hence H) depends on (k, k1) only via the quantities k — (1k; and |k|? — (1|k1]? and is supported
in ||k]? — ¢G|k1]?] < M~ and that no pairing occurs in ky in view of the product HI(QI,) in the
definition of H, we can apply Proposition to with (b,¢, A) = (k, k1,U) and obtain
that 7— ! M-certainly,

1 (l5sry S (710 TN pax [# ks k1 (6.98)

leul (&
where (S,T) is any partition of U. Then, repeating the same arguments in Steps 3—4 of the proof
of Proposition (namely, first removing the over-pairings as in Step 3 after (6.70]), then applying

Proposition as in Step 4—mnote that here we do not have the set E), we obtain (after omitting
factors that are < 1) that

q r
—d/2 * _9.4
[T N7 1 Hlsoinr S TTX- T N TN 2 (6.99)

j=r+1 j=2 FEV2U---UVy leu

Plugging into (6.98) we get (6.97)), as desired. O

7. PROOF OF PROPOSITION [5.1]

In this section we apply Propositions 6.6| to complete the inductive proof of Proposition
Namely, assuming Local(M), we shall prove that Local(2M) holds 7! M-certainly. Recall the
choice of M and the basic assumptions and facts listed in the beginning of Section [6]

7.1. The operator ¥, We start by obtaining suitable bounds for the operator ¥ (as well as
FM = M 1 1), which will follow from the corresponding bounds for #* | which in turn follow
from the bounds for .#¢ in part (5) of Local(M) in Proposition

Proposition 7.1. Assume Local(M) is true. Then || Lxr 7O for ¢ € {£), so in
particular ZM = (1 — LM)~Y and |V M) 10 xp < 7(7"‘) . For the kernel ZM< we also have

_ —(1=b) T )1
OO0 0D IR0 N g3,y 0 < 7 1)
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and the same bound (7.1 (.) holds also for the kernel ¥ < with the power (3x)~! on the right hand
side replaced by (7k/2)~'. Moreover for any N we have (recall that oy and By are defined in (E))

k)L Ao
1L oy < 5 (7| oy < 7ED (V)20 - M2, (7.2)

(L 4+ Mk — CR ) (P M) gl -y ey < 7 MO, (7.3)
Proof. Step 1: bounds for £ZM<. For L < M?, define the operators
(LMEw)n(t) = =i Y apg(min) P02 () - Tdlag Y S Mo(w,vp, - vpe(t)  (74)

3<q<p sym
and ZML = oML _ LML/2 then by definitions 1’ and 1) we have

M _ pMMPLC Z PMLC
L<M?

where the corresponding operators with ( are defined as in Section Moreover, each PMLL
can be written as a superposition of at most (log L)“? operators of the form .#¢, defined by
with this fixed ¢, where N is replaced by M and max(Na,---,N,) = L. Therefore, to bound
|-ZMC|| x1-b_, b, it suffices to control the same norm for .Z¢ with a gain of a power of L.

Let the kernel of .Z¢ be (Z°)gw (t,1'), with Fourier transform (,E’z)kk/()\, X'), then by ,

.ZCw Z/d)\ -iﬂckk/)\ —CX) (@) (X).

For any w with |Jw|| y» = 1, we can estimate
2

15w % < / (A)20-0) gy . ( / 1Z e s =N s @) (N, dA’)
< / 20D AN =2 (L) (A, —CN) |2 AAN - ] %,
R2
so we have by (/5.40) that

12 00 < 1L vy < 797 L4 (7.5)

On the other hand, noticing that the X° and X! norms can be viewed as Sobolev L? and H' norms
in the ¢ variable (for Ei valued functions), and using the elementary inequalities leading to

Ixr () - Zyo(®)l gy < [lo()]] 2 (7.6)
for both scalar and vector valued functions, we can deduce that

12 Nl xox1 < sup{II/Vl Wy ws o yN o+ llwllxo = 1}

7.7
= H 165, )l 1y, S 778 0
where we have used Local(M) parts (3) and (5) to control the norms of Yy, Interpolating (7-5) and
(7.7) gives ||.ZC|| x1-5_, x» < 7% L3 which implies the desired bound for .#M<. In particular
we also get that ZM = (1—.2M)~! and the corresponding bound for ™. Note that the estimates
for .#¢ in this step do not require that L < M?.
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Step 2: more bounds for <. We need to prove (7.1) for ZM<. Clearly we may replace .ZM<
by Z¢, provided we can prove 1) with right hand side replaced by 7GR =620 For the purpose
of (7.2)—(7.3) we will also prove an additional bound, which holds assuming L < M % namely:

1T oy < 5 (Lt om0 ey < 79 min(W, )0 M. (7.8)

The proof of is straightforward. In fact, since N; < L < M O for 2 < j < ¢, we may
expand the functions y}kvj using their Fourier transforms which satisfy the E,lgj L}\j bounds as in Step
1, and then reduce to fixed values of k; and \; at a loss of M ©9. Using also Lemma (note that
(L) (0,') = 0), we may get rid of the y, factor at the price of replacing the X~(1=)[kk/] norm
by the slightly larger X b, —(1-b) [kk'] norm. With these reductions, let the resulting operator be
£*¢ then by Lemma 4.1 we have

—

1 1 1
#,G ’ N < ~ /. .
(25 A NS L <L oy < Li—ch= (()\>3 - <)\i()\’iﬂi)\*)>3></\/j:Qi>\*>’ (79)

where k* and \* are fixed, and Q = |k|?> — (|¥'|>. The bound for %< then follows from
(7.9), elementary integral bounds and the fact that the number of choices for (k, k') with (k) < M
and (k') < N, and the values of k — k' = k* and |k|? — ¢|/|> = Q fixed, under the simplicity
assumptio is < min(N, M) < min(N, M)2o,

Now we prove for ¢ with right hand side replaced by 73R [ =623 Since

1) X 12,y < [ YU D AN g 0N

and thanks to (5.40), we know that the desired bound is true with (\')~(!=% replaced by (\)~°
and the right hand side replaced by 7'(5“/2)71[/_855, in 1' By interpolation, it then suffices to
verify that

/R<>\>2(1_b)\\($<)kk/(/\, )‘I)”?i/Li/—%i dx < 7 0L, (7.10)

Here we first use Lemma (again since (L) (0,#') = 0) to get rid of the x, factor in
Z€, then apply the same arguments as in (7.7) in Step 1 to control the spacetime L? norm of
MYy e ws - ,yj‘vq), and reduce 1) to the bound (viewing w as an £ valued function)

IFZwN] < 0 w2,

which easily follows from Lemma
Step 3: bounds for ¥ M. Now we can prove (7.1)—(7.3) for # <. First look at (7.2)—(7.3); note
that ¥M = M 4 My M 5o in terms of kernels we have

L1,L2€{:<t}
L1t

1See Definition Here simplicity implies that, if ( = + and k = k', then k must also equal some other k;,
which has already been fixed.
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We may multiply by the truncation 1 (k<N On both sides; then, by fixing (k’, ') and applying the
kernel (ﬁ)km(A,u) to (m):ﬁbk,(—u, X') as a function of (m, i), we obtain that

Y 1y (Pl xemanpy € D 1L gy <9 (Lt -
Ce{+£} Cef£}

+ Z ”$M7L1|’Xb_)Xb‘ Z H1<k,>gﬁ7/k],\€/[/b2HXb,—u—b)[kk,]. (7.11)
ue{t} pe{t}
Using (7.8)) for ZM<, and the estimates for .ZM:< obtained in Step 1, we get . The proof for
is similar, where we use Lemma (with k1 = k?) to control the weighted norm of ¥,
noticing that (@)km()\, 1) is supported in |k — tym| < M.
Finally we prove for ¥ M<. Since ¥M = M 4 yM M gimilar to the above argument
we can write

L, LQG{:CE}
L1t

This implies, for any fixed A, that

> I IMO ANz, 12,00 < D N (EM )0 (X2, 12,002

ce{=£} S €S
+ > LM e Y |!<u>‘“‘b’(”VM’“)km(A,u)!\ema%g (7.12)
rp€{+} ve{£}

Using (7.1)) for M, and the estimates for .Z*< obtained in Step 1, we get (7.1) for ¥M<. O
7.2. The h(50) tensors. In this section we prove part (1) of Local(2M).

Proposition 7.2. Assume Local(M) is true. Then part (1) of Local(2M) is true. More precisely,
RS0 satisfies and , for each plain regular plant S with N(S) = M and |S| < D.

Proof. We induct in |S|, using the inductive definition . For the first term on the right hand
of , which corresponds to the mini-plant S = 81\+47 the desired bounds are obvious, so we just
need to consider the second term, which is a multilinear expression of the input tensors h(%i:0). By
induction hypothesis, each input tensor satisfies and associated with S;. Recall also
that V; =V = @ for 1 < j < ¢ when considering h(5:0) tensors.

First, to prove 1' for h(5:0) we notice that the sign of [ € U in S is given by ¢ = ¢;G where
[ € U; and (; is the sign of [ in S; (see Definition . In the support of S we have

q q
DGk=) =) Gy Ghi=)Y Gki=F (7.13)
leu lew Jj=1 lel; Jj=1

where W = U U - - - UU,, using the induction hypothesis, and the definition of the tensor h
used in the merging process. Now let us prove 1D for h(S0),

Step 1: first reductions. By definition of Z(a) in , we know Ny > M? for each [ € L; and
1 < j < gq, so we can omit the trimmings in , as they involve only the ) sets which do not
appear in the tensors. Applying Lemma we may remove the localization factor y,(¢) on the
right hand side of and gain a power 8 (which would overwhelm any possible 7% loss),
provided we estimate this expression without y, in the stronger norm with the power (A\)? in
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(5:0) to denote the expression after these

replaced by (A\)2". By abusing notation we will still use h
reductions; moreover, since Zsym and Z(a) involve at most (log M )" terms, we may focus on one
single term in the discussion below.

With the above reductions, and applying also Lemma and the definition of h, we can
then take the Fourier transform in time and obtain that

—

h(S0)(N) = /d)\l cedAg - HOL AL -+, M), (7.14)

where H(A, A1, -+, Ag) = [HA A1, -+, Ag)|iky, s a tensor (with (A, A1, -+, Ag) being parameters)
defined by

HM AL+, Ag) = T - Merge(hStO(Ay), -, hEO(A,), h, B, 6). (7.15)
In the above formula (Y, %, 0) are as in Section m ho=[h(A A, s Ag)|kky -k, 15 a function of

(k,k1,--- ,kg) with parameters (A, A,---, ), that is supported in the set k = 2321 (jkj, and
satisfies the bound

—0

q
7L < T . Q= k2 — ks |2. 716
LSV ey vy =3 G (7.16)

We shall separate two cases: the high modulation case where |A| > MV*, and the low modulation
case where |\| < MV*.

Step 2: the high modulation case. Assume |\| > MV*. If we can estimate the norm in (5.32) for
RS9 but with ()\)2b+ replaced by (\)?, then this gain of power in A will overwhelm any possible
loss coming from any summation of any k; and k; variables (the latter summation loses at most a
power MY P while \/k > D). Because of this we can fix the values of k, k; and all kf, and view

R(S:0)()\) as a function of A only, and h(%:0();) as a function of \; only. Moreover by induction
hypothesis |D and Holder, this function of A\; can be controlled in L}\j, so upon integrating in

o —

Aj, we can also fix the value of A;, in which case h(S:0)()\) satisfies the bound

— 7__9

T v

due to (7.16), where Z is a fixed real number depending on the choices of k, k;, ki and A;. Clearly

this implies fR<)\>2|w()\)|2d)\ < 779 uniformly in all choices of the fixed parameters, so the
desired estimate follows.

Step 3: the low modulation case. Assume [\ < MV%. Recall the formula ; we shall further
decompose h(S:0) into A(SOD) and h(Si:0) into h(Si:0L5) where I' and I'; are integers, as in part (1)
of Proposition /Blinduction hypothesis , if we define X; = X,;();,I';) to be the smallest

value such that h(Si-015)();) satisfies the type 0 bounds (6.42)—(6.43) in Proposition then
2 2
(Z/ xj(Aj,rj)dAj> 5/<Aj>2b<2x(xj,rj)> d\ <L (7.17)
r, K ® Ly

For fixed values of (A, A;) and (I',T;), if we replace h(8:0) by R(Si:015) in 1} restrict to the
set |k|? — Y1y (k1| =T, and denote the resulting tensor by HII1Ta) (A Xy -+ | \)), then by
similar arguments as in ((7.13)) (but with & replaced by |ki|?), we know that in this situation, we
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may further restrict h to the set k|2 — ?:1 Glkil> =T — T in 1} where T depends only on
the fixed parameters I';. Therefore we can apply Proposition also using ([7.16)), to deduce that

| H T T () Ay, - - ) |k —s ke
q
STOMNTT AT+ [T X000 T M TINCETIVE T o - o,
j=1 € BUC leP €E pey
(7.18)
where X and &) are as in (5.33]), and = € R is a quantity depending only on the fixed parameters
Aj and I';. Note that here no meshing argument is required since Proposition holds determinis-
tically. Then, after summing in I', then taking the weighted L% norm in A within the set |\| < MVE,
then integrating in A; and summing in I'; using (7.17)), we deduce that

P 2 2
/ <A>2“<Zr\h<&0f><x>||kkmc) < <T—9M—<‘4 11 NFIHN[&HN;EHN;&B.XO&) ,

ez leBUC lep ek pey
which implies (5.32)) in view of Lemma O
7.3. The h(51) tensors. In this section we prove part (2) of Local(2M).

Proposition 7.3. Assume Local(M) and part (1) of Local(2M) are true. Then 7'M -certainly,

part (2) of Local(2M) is true. More precisely, h(SY) satisfies f, for each reqular plant
S with N(§) =M and |S| < D.

Proof. Again we proceed by induction on |S|, using the inductive definition . We first focus on
the main case, namely the estimates f for the second line of , assuming the second
maximum of N; (1 < j <gq)is > M 9. then we will treat the remaining estimates. By induction
hypothesis, if n; = 0 then h(Si"%) satisfies (5.30)) and (5.32)) associated with S;; if n; = 1 it satisfies
the bounds — associated with §;. In various steps below, we will abuse notation and
refer to some components of h(S:1) in still as (S for simplicity.

Step 1: the main case. We start with the second line of , assuming the second maximum of
Ni(1<j<qis>M % Here we will prove f with all norms replaced by the stronger

ones X\b,’_bo[- --]. By Lemma we can get rid of the x,(t) localization with a gain of 78 ' as
. . . . bt,—bg .
long as we estimate the expression without x, in the X, [--] norms. Repeating the proof of
Proposition we can reduce to
h(SD(N) = /d)\l ceedAe - HA AL -+, A) (7.19)

in the same way as (|7.14]), but instead of ((7.15)) we have

H\ A -+, A) = T-Trim(Merge(Trim(ASum) (A), MP), - -, Trim(hS-m)(\,), M), T, B, 6), M),
(7.20)
where h = [E(A, ALy Ap) kg kg (Ara1, -+ 5 Ag) satisfies the same bound , as does any \;
derivative of h for 7 + 1 <j<q.
Similar to the proof of Proposition [7.2] we shall consider two cases, the high modulation case
where max(|\|, [A1],- -, |A]) > MV%, and the low modulation case where max(|A[, | A1, -, |A|) <
MV%. In the high-modulation case, we may again fix the values of k, k; and all k and kj; then

o — _—

R(Simi)(\;) can be viewed as a function of )\; and Ay, only, and A(S:D(X) can be viewed as a
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function of A and Ay, only, where recall V is associated to the plant S in (5.23). The trimming steps
follow easily from Cauchy-Schwartz as in the proof of Proposition so we may omit them and

consider only the merging step. We may take the X, b norm for h(Sin )()\j) and denote the result

by b;(A;); similarly we may take the X, % porm of h/(:gT)()\) and denote it by h(X). Then each b;
is bounded in a weighted L? space embedded in Lij, so we may fix the value of A; as in the proof
of Proposition [7.2| whenever wanted. Now if |A\| = max(|A|, [A1],- -, |A\+|), then the same argument
as in Step 2 of the proof of Proposition works and implies the desired bound (with significant
decay) for fR<)\>2b+ 1H(X)|2d) uniformly in all choices of the fixed parameters; instead, if (say) |A1]

7b0

is the maximum, then we can fix \; (j > 2), also using the definition of X, norm, to get that

q

2
RS [ (55 [ oramammOoian) - IT o dre - a,

j=r+1
where = is a real number depending on (A,41,- -, ), and the choices of the fixed variables. We
can then fix (Ar41, -+ ,)), estimate the A\ integral using Cauchy-Schwartz and the L? norm of
b1 (A1), save the (A;)? weight to gain an MV* power, and bound fR<)\>2b+ 15*(\)|2d\ (with significant
decay) uniformly in (A\q41,--- ,/\q) and all choices of the fixed variables, where h*()\) is the above

integral in A\;. This implies (|5.34] -

As for (5.36)), just notice that his supported in k = (;k;, which implies that
] 15575

= (k- )< max (1+ T |Fi = D Gki— > (7.21)

leu lel;

M26

where /; = ZfEVj Gik; and £ = Zfev G ks (note that trimming at frequency M? or lower will not
affect this inequality). This allows to control the weight in 1' for h(S:1) by the weights in
for h(Si3) | so the MV* power gain above also implies

From now on we can restrict to the low modulation case. We first look at 7; the proof
of (5.36]) requires slightly different arguments and is left to the end of this step. Recall the bounds
5.34)—(5.37)) for the norms Xb [, where 1 < j <7 and b € {b,1 — b}; since I\ < MVE we
may replace b by b in all these bounds at a price of MY/V¥ which in the end will be negligible as
k >c; 1. Suppose we want to estimate the Xb —bo [kkp — k¢ norm of RESD . If ¢ =% &, we shall
rearrange the tensors such that max{N;: [ € C NU } ~ max{N;: [ € C}; if C = @, we shall select
all 1 < j < g such that either j > r, or n; =1 or mines,; Ny < MY (such j exists by definition of
E(b) in ), and by rearranging the tensors we may assume that the maximum of NN; for such
j corresponds tdﬂ j=1

Next, for 1 < j < r, define h¥¥) = Trim(h(Si"), R;) where Ry = M? and R; = (N,)? for j > 2,
with N, = max(Na,---,Ny). Then, by the rearrangements we made above, it can be verified

that the relevant parts (measurability, etc.) of the assumptions of Proposition are satisfied.

o —

Moreover, since 8>\jh(51‘ ) can be controlled using the fact that h(Simi) ig compactly supported in
t, we can apply a meshing argument in \; in the same way as in the proof of Proposition By
combining the bounds f for h(Sim3) Proposition and the above meshing argument
in \j, we obtain that the following holds 771 M-certainly:

1Here we have assumed 1 <j<r. Ifr+1<j<qg then this j would correspond to the input function zy; in
1) which gains a big power N~ D1 Thus the case where the maximum Nj; occurs at this j will be strictly easier
than the cases we actually treat in the proof.
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(a) If j is such that either n; = 1, or n; = 0 and mines; Ny < Rj, define X; = X;(\;) to be
the smallest value such that the type 1 bounds (6.44)—(6.47)) in Proposition hold for
hG)();), then we have

</ %j(Aj)dAj>2 < /(Aj>2baej(Aj)2dAj < [P MOVEQ +R]-0Nj‘3a)]2. (7.22)
R R

(b) If nj = 0 and mine; Ny > R; (in particular hU) = h(Si0), we may decompose hU) into
hT3) = pS:015) a5 in part (1) of Proposition|5.1} define X; = X;();,T;) to be the smallest
value such that the type 0 bounds (6.42)—(6.43]) in Proposition hold for thvr\j)()\j), then
we have .

Moreover, since h satisfies , we can apply a further meshing argument to replace it by some
function (which we still denote by I for simplicity) that is supported in the big box |\l ]/\j\ < MVE
and is constant on each small box of size (say) exp(—(log M)%). Let Z:= A= Q— (A1 — - — (g

(see (7 ), we may also decompose h into hw, which are restrictions of h to the set L J = :*

for E* € Z,|2*| < M2V%. Then hz- satisfies the assumptions (6 and in Proposition

with T in 1} depending on (A, A1,---, A\, 2%), and the right hand side of l) multiplied by

L)L
Let the tensor H (A, Aq, - - )\T,F], =*) be defined as in l) but with h replaced by hz+, and

Trim(h(%75)();), M?) replaced by h) 7 (N;) or RGTI)();) in case (a) or (b) above, and & replaced
by some " containing &. By Proposition 3.7/ (3), h(S:1)()) can be written as a linear combination

of
/d/\l A\, ZZH MAL A T E),

where Z(FJ_) are present only for those j in case (b) above. We now apply Proposition to
conclude that the tensor H(X, A1,---, A, I';, 2%) satisfies (6.49)(6.50) with

9 = Hae T OMO(N,)F, (7.23)

where T is as in Proposition and X; = X;()\;) or X;(A\;,T'j) in case (a) or (b) above; the
meshing argument guarantees that the above holds for all values of (A, \;) after removing a single

exceptional set of probability < Cpe= (T M)" Therefore, by taking the weighted L? norm in A
within the set |\| < MV% then summing in Z* and I'; and integrating in A;, we will obtain the

bounds (5.34)—(5.35) for this component of h(S:}) under consideration, once we show that

VY - OMOVETT (1 + RYN3) < (N, (7.24)

Jj=1

But this is true since R; = (N*)‘S for j > 2, so any power R]C for j > 2 will be negligible. Moreover
R1 = MY, so either N, > M and Rlc is also negligible, or N1 ~ M and the Rlc loss is covered by
the Nfgg gain, or max(N1, N,) < M and the R? loss is covered by the v/T gain. Finally since
N, > M 5, the gain (N*)64 in will overwhelm the loss M¢/VE by our choice of k. This proves

(5.34)—(5.35)) in the main case.
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Now we turn to the proof of (5.36). Starting with H(\, A1, -+, A.), we shall further decompose
it by attaching smooth truncations supported in sets

ki — ) Gk — 4

[EZ/{J'

1 .

k—zg*k[—é‘ ~K, 1+
leu

where 1 < K, K; < M are dyadic numbers, ¢ and ¢; as in . The number of terms in this
decomposition is < (log M)®, so we only need to consider a single term. By we know
K < max(Ky,- -, K,). By rearrangement we may assume K < K7; in particular we may assume
ny = 1 (otherwise K < K; ~ 1, so (5.36) follows directly from ) At this point we can repeat
the arguments in the above proof of 1j (namely trimming h(Simi) at frequency R; with
Ry = M° and R; = (N.)°(j > 2), decomposing H (X, A1,---, ) into H(AAp, -+, A, Ty, E%),
defining X; as above, etc.) and then apply Propositionto conclude that H(A, Ay, -+, A, T'j, E%)
satisfies with Q) defined as in . Here the assumptions of Proposition are satisfied,
since K < K1, and multiplying by any of the smooth truncations we introduced does not increase

any of the X]b,’j_bO [kjkp; — kc;] norms due to Lemma [4.10, After obtaining (6.52)), we can again

repeat the arguments in the above proof (namely taking the weighted L? norm in A within the set
A < M Ve then summing in Z* and I'; and integrating in A;) and deduce for this component
of h(5V) under consideration, using . This proves and completes the main case.

Step 2: adding the R-linear operators. Now we prove the estimates f for the second
line of (5.27) assuming the second maximum of N; (1 < j < ¢) is < M % (and in particular the
maximum of N; is < N/2), and the same estimates for the third line of (5.27). First look at the
second line of ; we may assume the maximum of N; is Ny > M? (and L := max(Ny, -+, N,) <
M‘S), since the cases when the maximum of N; occurs at r +1 < j < ¢, or when Ny < M? also, are
much easier. With such assumptions we must have & = &, and the current term can be written as
an R-linear operatmﬂ Z¢ (for some ¢ € {£}, see for definition, where N should be replaced
by M) applied to the tensor i/ := Trim(h(S"1) M?). More precisely, S’ := Trim(S;, M?) has
the same sets of leaves, pairings, blossoms and pasts as S (in particular the sets £,U,V etc. are
common to both tensors), the only differences being that N(S’) = N; while N(S) = M, and the
sign ¥ of n€ LUV in S equals the sign ¢, of n in 8’ multiplied by (; for the tensors we have

—

(hSD) ey, (N, Ky, Ap) :T~Z/Rd/\’-($<)kk/(>\, —CX) (), (N o, Av). (7.26)
k/

To estimate the X? b0 [kkp — kc] norms of A5V (including the weighted ones in ), where
(B, C) is a subpartition of & and we denote E :=U\(B U C), we will consider four cases.

(a) Assume C' # @, then for any fixed A, (ky, A\y) and kg, by and a variant of Proposition
[4.11] we have

—

NSt iy st < T 1IN0 Wk (X e

Kkp

2 IO LY N =) ez, 12,4z

1When S is fixed, the sum in (N;,S;) etc. for j > 2 involves at most (log L)® terms, which is negligible in view
of the L=° gain we will obtain below. The sum in (N1, S1) involves at most « terms if Ny ~ M and S = &', and at
most (log M)" terms otherwise; either way this is negligible in view of the gain from T, and the gain of at least M o
coming from trimming assuming S; # &', which is evident from the proof of Proposition
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The third factor above is a function of A only, and we shall temporarily denote it by G(\); the
second factor is bounded by

(A0 H(}?)k’ku()\l)uk’kg—%cHLi/’

so upon taking supremum in kg, and then taking the weighted L? norm in X and the weighted ¢2L?
norm in (ky, Ay), we obtain that

1P D] NGz

/
*b!*bO[kkB_)kc] S T ' ”h ||X\1;7b’7b0[k‘/k3—>k‘c] ' ||<
By the proof of Proposition the weighted norm of G above is bounded by 7'(6“)_1L_355, hence

< (65)71[1—365 T h/
—b,—b T —b,—b .
3T kkp—ko] ~ I HX%, Ok kp—ke]

RS

By using the induction hypothesis for h(51"1) Proposition and controlling the potential loss
factor 1+ M C‘SNI_ 3¢ oceurring in Proposition by the T factor, we deduce l) for RSV, Note
that, if S; = &’ then the above estimate has no loss. If S; # &', then applying Proposition
loses a factor MY, but by examining the proof of Proposition we see that we can also gain a
small power of Ny (which is < Ny 54). This, in view of the Y factor, is enough to cover this loss
together with the potential log loss coming from summing over all plants; moreover the continuous
variable A’ can be handled by restricting to |\| < M ~* and performing another meshing argument

exploiting the above power gain. The same comment also applies in the other cases below.
(b) Assume C = @ and E # @, then the same argument as in case (a) is enough to control
the norm Hh(s’l)HX1
v

000 k) note that to prove ((5.35) for A1) we need to gain a power M ¢,

which is provided by the corresponding power N; ¢ (or the better powers and the X;; factor in
corresponding to S;) from the induction hypothesis if Ny ~ M, and by the Y factor if
N1 <« M. The weighted norm in is bounded in the same way using the induction hypothesis,
Proposition (the proof of) Proposition and (a variant of) Lemma using the fact that
(L )gr is supported in |k — Ck'| < M°.

(c) Assume C' = E = @, and either ny = 1, or minicz, Ny < M?, then the norm in question,
namely Xﬁ’fbo [kky], is a weighted ¢2L? norm in (ky;, Ay, while for fixed (ky, Ay) it is an £2L? norm
in (k, ky, \) weighted by (\)°. Therefore, by we have

87
R Y [ (R L P

Using the induction hypothesis, Proposition and the bound ||.Z¢|| 1o, xs < 7687 [ =30,
which also follows from the proof of Proposition we can prove the desired estimates in the
same way as in parts (a) and (b).

(d) Assume C = FE = @, ny = 0, and that minez, Ny > M?° (in particular V = @ and £ = £;).
In this case we will use a different estimate. Still starting with , we have

RS g < T 1L kw o a-wprey - 1EO | xr-op -

Now let N = maxey Ny, then in the above formula we may assume (k') < N. By the proof of
Proposition [7.1] we have

K 1 «
||1(k/)5ﬁ ’ (gc)kk’bev%lfb)[kk/} S 7(6%) (N) OMC(;;
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combining with the induction hypothesis (in particular summing over the I' variable in (5.32])) we
obtain that

||h(s’1)”Xb[kku] g T. T(GK)—l(N)aOMCé . HNIBI H NI—SE H Np753 . (]'\7)*,31 . Xl,la (727)
leu leP pey

where &7 1 is the one in corresponding to S;. To prove we just need to gain an extra
M —?¢ power, which is provided either by the difference in the powers of N for [ € £ between
and , or by the A7 and T factors. The proof of is the same, as the weight in
is in fact bounded by 1 using the induction hypothesis and the support condition for (,,2”4) kK -
Next we look at the third line of . For simplicity, we will consider the case ( = +; the case

¢ = — is analogous, with S replaced by S in a few places. This term can be written as
(h(SJ))kku ()‘7 ky, )‘V) = Z/ X’ (”//M7+)kk'()‘7 _A/)(ﬁ)k/ku ()\17 ky, )‘V) (728)
w VR

The term is similar to , except that £ is replaced by ¥ M-+, and k' is replaced by H,
which is either the second term on the right hand side of (if we take }_,) instead of 3 ) in
the third line of ), or the second line of (if we take -, instead of } (). By what we
proved in Proposition and the above arguments, we know that H is an S-tensor, which either
satisfies ((5.30]) and ([5.32)), or satisfies the bounds f. Moreover for the R-linear operator
M+ by Proposition [7.1 we have

17 oo < 709

HLi S 7_(7/{)—1

)

[V I TP I M Ao A X2, 12, -2 (7.29)
||1<k‘/>§f\i%M’+HX&*(l,W[k‘k’] < 7(8”)_1(N)a0 ' Mca’

1L+ M7k — B )M gy < 7O M

which are similar to the bounds for .Z* we have used above. The estimate for the third line
of can then be deduced by considering cases (a)—(d), in the same way as above. We only
mention a few important points: (i) going from H to h(S1) does not involve trimming, so in these
proofs no meshing argument is needed, hence they do not require the derivative bound for
‘H (which has not been proved yet); (ii) the Y factor is not needed, because H is an S-tensor,
therefore the Nj in the above proof will be replaced by M; (iii) the fact that £ is supported in
|k — k'| < M? is replaced by the last bound in , which leads to the restriction |k — k| < M?°,
since otherwise we gain a sufficiently high power of M. This allows us to apply Lemma [4.3| in
estimating the weighted norms in in cases (b) and (c), and also bound the weight in
in case (d).

Step 3: remaining estimates. Next we shall prove f for the first line of . In
fact, this term can be treated in the same way as the third line of , see Step 2 above, where
the only difference is that H is replaced by the Sj\t[ tensor occurring as the first term of the right

hand side of ([5.26)). Since this tensor also satisfies ((5.30)) and (5.32)) by Proposition the same

arguments as in Step 2 above suffice to estimate this term.
Finally we prove the derivative bound (5.37)) for all terms in (5.27)). This is a very loose bound,
so it can be proved by very loose estimates. Just notice that:
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e The R-linear operator ¢ commutes with Oy and increases the norm in consideration by
at most a constant multiple;

e If b/ = Trim(h, R), where h is an S-tensor and %’ is an S'-tensor, then 0.2’ = Trim(dyh, R)
for any f € V';

o If H= Merge(h(l)7 oo A b, B, 0), where hU) is an Sj-tensor and H is an S-tensor, then
o\H = Merge(h(l), e ,(9,\fh(j), oo B R, B, 0) for any f € V;; in the same way we also
have 0), H = Merge(h(l), e ,h(r),fb\jh,%, O)forany r+1<j<gq.

Therefore, in order to estimate 8,\fh(371) for f € V, we only need to consider the same Trim-Merge
combination, where one of the inputs h(5i"%) is replaced by Oy, h(Si75)  This input is then bounded
by the induction hypothesis, noting that either N; < M/2 or |S;| < |S|, and the other inputs are
bounded trivially (say using part (3) of Local(M)) by a power MY*. Therefore we get, without
removing any exceptional set, that

S, ‘K K N7 I N
0B (v W)l gy S M+ M e log NP + 18] 1o 3,

where N < M, |S| < D, and either N < M/2 or |S| < |S|. Therefore (5.37) follows from the bound
exp|(log M)® + |8|(log M)?] > exp((log M)?) - exp|(log N)° + |S|(log N)?|
under these assumptions. This completes the proof. ]

7.4. The remaining parts. In this section we prove parts (3)—(5) of Local(2M).

Proposition 7.4. Assume Local(M) and parts (1) and (2) of Local(2M) are true. Then 7~ M-
certainly, parts (3)—(5) of Local(2M) are true. More precisely, is true for each n € {0,1}
and regular plant S with N(S) = M and |S| < D, and the mapping that defines zp; (see the right
hand side of ) is a contraction mapping from the ball {z : ||z||xro < M~P1} to itself, and
5.400) is true for the kernel £¢ defined by , if max(Na,--- ,Ny) = M.

Proof. First we shall prove (5.38) for U(5)  assuming either (5.30) and (5.32), or the estimates
f for h(S™) . If n = 1, by applying Cauchy-Schwartz (in the (ky, Ay) variables), Lemma
and a meshing argument in A and Ay variables, we can get from f (where we choose
C = E = @) that 7~ M-certainly,
19 e < (rtanars I N
neLUYUY

which clearly implies ([5.38]). Here for the meshing argument, just notice that the A and Ay deriva-

tives of h(S:1) are bounded, and that the choice of by in 1) (compared to b) allows us to restrict
A to the big box |A| < M"‘Q, so we can apply the same arguments as in the proof of Proposition

Next, if n = 0 and S # S}, (which is the mini-tensor defined in Definition , then |£| > 3.
For each fixed k € Z¢ with (k) < M, using Lemma a meshing argument in A as above, and the
simple inequality

Sl];l;p ”hkk‘u ||k‘(,{ S ||h’k‘kqu‘%ku

for any tensor h = hyy,,, we deduce from ([5.32) (where we choose B = E = & instead of C = E =
@) that 7~ M-certainly,

— 1/2 f
R (€L\{lop} pey
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where Ny = maxiey Ni, and &7 is as in (5.33) but with IV replaced by M. We may assume that
771 M-certainly the above holds for every k; since (k) < Ny, by 1) we conclude that

S,0 —6, r— 253 ) _53
”\Il( 7 )HXS/’bO <7 ON[L:OPSM Xl ' H N[ c H N[ ’
leL\{lop } neLUy

which implies ((5.38]), noticing that
’_ 3 _ o
NiopsMQ(S Xl . H N[ 2e S M 87
€L\ {ltop }

which easily follows from the assumption 0 < s — s’ < 62 and the definition of X;. Finally,
if n =0 and § = S, then we simply have \IJI(CS’O) (t) = x(t) - Larjocy<rr (far)ks SO follows
from .

Next we prove the contraction mapping part in the statement. We will only prove that the right
hand side of maps the given ball to itself, since the contraction part follows in the same way.
Suppose ||zar|| ybo < M~P1. The right hand side of , which we shall denote by zoy, contains
three types of terms, which we shall analyze below. Like in the proof of Proposition we will
abuse notation and refer to some components of zy,t on the right hand side of still as zout.

(1) Consider the terms on the right hand side of that contain no factor zp; (that is,
N; < M/2 for all r +1 < j < q). If some zy; is replaced by z}{}j whose Fourier transform is
supported in |[A;] > M** | then we can gain a power M* by using the bound llzn; |l xto < 1, which
will overwhelm all loss and easily imply the desired estimate. Below we will assume each zy; is
replaced by z}{}j, so by definition of Z(d) in , the corresponding component (up to linear
combination over different &) can be written in Fourier space as

G =T Y 3 [N @ - EEDE ), B = w5
Ce{x} ¥
where
S = Trim(Merge(Trin(Sy, M?), - , Trimn(S,, M?), %, 0), M°)

satisfies |S| > D, and k(5™ is defined in the same way as the second term on the right hand side
of (if n = 0), or as the second line of (if n=1).

Note that we now have D < |S| < C - D; however in the proof of Propositions and
we have not used the assumption |S| < D, so the same proof also works in the current case and
gives (77! M-certainly, i.e. after removing an exceptional set of probability < Coe= (7'M )0) the

bound (5.32)) or the bounds (5.34)(5.37) for h(5). Then, applying once more Lemma and the

meshing argument as before, we deduce that

[ g < M2 T N < MM < P
neLUYUY
using the fact that [£|+ [V|+ V| = |S| > D and N, > M? for each n € LUV U Y. Using then the
Xbto — X% norm bound for ZM< (which follows from the corresponding bound for ¥ ¢ proved
in Proposition , we deduce the same bound for zgyut.

(2) Consider the terms on the right hand side of that contain at least two factors zjs (that
is, Nj = M for at least two 7 + 1 < j < ¢). Then, these z)s factors can be estimated in Xt and
lead to a gain of at least M ~2P1. The other factors that are not zj; can be bounded trivially using
either the induction hypothesis or which we just proved and contributes at most an M¢
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power. Since D; = 6°D and D >c; 1, the power M~2Pv will be more than enough to close the
estimate.

(3) It remains to consider the terms on the right hand side of that contains exactly one
factor zps (that is, N; = M for exactly one r +1 < j < ¢). By rearranging, we can write this term
as Zouy = #MH L2y, where 1, ¢ € {£}, and .Z¢ is the R-linear operator defined in . Here in
, each N; (2 < j < q) is assumed to be < M instead of < M, but if N; = M then y}"vj can
only be one of the ¥[S;, h(Si ’"J')] terms with S; a regular plant of frequency M and size at most
D (i.e. y}“vj is not allowed to be zp; or any Fourier truncation thereof). Our goal here is to prove
that holds for such .Z¢. In fact, if holds, then by repeating Step 1 of the proof of
Proposition [7.1] we obtain that

—3ed

6 -1
1 0 xs0 < 7097 (g )7

summing over all possible choices of ¢ and using also the X% — X% bound of ZM+*, we obtain

(8%)_1| (8&)_1M7D1

| Zout|| xvo <7 lzpmllxvo <7 )

which is acceptable. This means that, if we can prove for the .Z¢ as above, then part (4),
i.e. the contraction mapping part of Local(2M) is true, and thus zys, being the unique fixed point
of a contraction mapping, does satisfy ||zas|| v, < M ~P1. Combining with Proposition [7.1{and the
construction in Section we also obtain that y,; defined by solves with NV replaced
by M. Finally, the bound for the .Z¢ as above also implies part (5) of Local(2M), since if
any y}‘vj in is replaced by zjs or its Fourier truncation, then the M~ decay will overwhelm
any possible loss and immediately imply .

In summary, we now only need to prove for Z¢ as in , where either N; < M or
Nj = M and yy = U[S;, h(Sm)]. We may assume max(Na,---,N,) = M (otherwise use the
induction hypothesis) and replace zy; by z}@j. Applying Lemma we can remove the x, factor

in 1) and gain a power 7'“71, which will overwhelm all possible 7= losses, provided we estimate
the expression without y, in the stronger X'~k — k/] norm.
By Proposition (1) we can write

(L) (A, N) = /[///C(A, N gy A e da - - d, (7.30)

where for fixed values of (A, N, g, -+, An), (NN, Aoy N) = [N N, Ag, -+, A)]ar is the
tensor A = My, defined in , Proposition (where we rename kj as k’). Here in ,
we assume that \IJl(g]]) = Uy, [S}, hU)(\))] where S} = Trim(S;, M?®) and h¥) = Trim(h(5"m), M)
for 2 < j < r; moreover, for fixed values of (A, N, Ag, -+, \.), the tensor h = h(A\, N[ Ag, -+ | \) =
RN A2y s A )kt (Arg1, -+ 5 Ag) satisfies and

_9 .
B+ 03, h] S T 1< <q Zi=Codadte o+ GA N — AL

<)\> <Q + Cr+1>\r+1 + -+ Cq)‘q + E>

Moreover, h is in fact a function of (k — k', |k|?> — ¢|K'|?) and (ka, - -+ , kg, Ar+1, -+ , Ag) only, in the
same manner as in Proposition [6.6]

Like before, we will separate the high modulation case max(|Ag],--- ,|A.]) > MV%, and the low
modulation case max(|Az,-- -, |A-]) < MV%. In the high modulation case we may assume (say)
IA2| = max(|Az, -+ ,|\]) = MVF, then as before, using the induction hypothesis and (5.38), we
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can fix the values of k; (2 < j < ¢) and X\; (3 < j < ¢), and view U2 as a function of Ay only.
Then we obtain, up to a loss of M, that

VWX < T - (2)
L e sy s = I OLLS

where k, is a fixed Z% vector, and = is a fixed real number, depending on the choices of the fixed
variables. Since ¥(?) is bounded in L§\2 with the weight (A\p)% > M VA2 e can gain this MV*/2

power (which overwhelms all M losses) and apply Cauchy-Schwartz, estimating ¥ only in L§2,
to obtain that

— —0
1L 0 Nk S ZWM—W

uniformly in (A, '), which is sufficient to prove .

Now we can restrict to the low modulation case. With a loss of MY/V% which will be negligible
compare to the gain, we can replace the exponents 1 — b and bin — all by b. Therefore,
by the same arguments as in the proof of Proposition [7.3] we obtain the following:

(a) If j is such that either n; = 1, or n; = 0 and mineg; Ny < M?, define X; = X;()\) to
lle\the smallest value such that the type 1 bounds f in Proposition hold for
h()(A;), then we have

2
(/%‘(Aj)d/\j) §/<>\j>2b3€j()\j)2d)\j < T IMOIVRETOS, (7.31)
R R

(b) If nj = 0 and minge; Ny > M? (in particular h9) = h(51:0)) we may decompose hU) into
hT3) = pS:015) as in part (1) of Proposition|5.1} define X; = X;()\;,T;) to be the smallest
value such that the type 0 bounds (6.42))—(6.43) in Proposition hold for m()\j), then
we have .

2 . . .
Moreover we may also assume max(|A|, |A\']) < M*", otherwise we exploit the room coming from

the exponents 1 — by < 1/2 and b > 1/2 to gain a power M"* that will overwhelm all possible losses.
These assumptions allow us to apply Proposition and get

1 .
AN A A i (i < (A) [[x-M ”,
j=2

where X; = X;()\;) or X;(\;,T;) in case (a) or (b) above. Since max(|Aa|,---,|\]) < MV¥ and
max(|A|, |X|) < M**, by a meshing argument we can remove a single exceptional set of probability
< Cge_(TflM)g such that the above holds for all values of (A, A, A2, -+, \;). Therefore, by taking
the L? norm weighted by (A\)17%(\)=% in (X, ), then summing in T; and integrating in );, we
obtain the bound for #¢. This completes the proof of parts (3)—(5) of Local(2M) and
finishes the inductive proof of Proposition [5.1 O

8. PROOF OF THE MAIN RESULTS

In this section we prove our main theorems, Theorems and Theorem follows from
Proposition together with some arguments similar to those in Sections [6H7, Theorem is
easier and follows from simplified versions of these arguments.



RANDOM TENSORS, PROPAGATION OF RANDOMNESS, AND NONLINEAR DISPERSIVE EQUATIONS 89

8.1. Proof of Theorem First, by Proposition after removing an exceptional set of
0
—T

probability at most Cye , we may assume that Local(M) holds for all M. In particular, by

(5-18), (5.38) and part (4) of Local(M) in Proposition and in view of the fact that the number
of plants S w1th frequency N(S) = N and size |S| < D is at most (log N)*, we conclude that

||yN||Xs’,b0 < TfON(s’,s)/2 (81)
for each s’ < s and each N, thus
A}Enoo U;rV = ]\}gnoo Z YN exists in X0, (8.2)
N'<N

Moreover, under all these Local(M) assumptions, UJTV solves |i thus it must equal vy on
(5.

J = [-7,7]. By definition eitAv]TV also equals the solution uy of (5.6)) on J.
Now, define
+1 ! 1,
B(t) = T(e) [ (o) £ WET ) ar, (83)

akin to the one in || but with the smooth cutoff y, and define u;rv(t) = eitAv]TV(t) ceTiBN ()
then u}r\, equals uy, which is the solution to |i on J. By analyzing the term Wﬁfl as in [36],
Proposition 2.2, and applying the same calculations as in Section we can rewrite By (t) as

Bx(t) = Y apy(mi) P2 TAM 1wk, v])(0). (8.4)
3<q<p

In the above ¢ runs over odd integers, apq are constants, mj; is defined as in Section A
is the projection onto frequency k = 0, M,_1 is defined as in f but with ¢ replaced
by ¢ — 1. Note that instead of the simplicity condition as in Definition here the coeflicients
Chky kg1 satisfy the slightly different input-simplicity condition, namely that Ckky -k, depends
only on the set of pairings in (ki,--- , k1), and cgp,..k,_, = 0 unless any pairing in (k1,- -+, k¢—1)
is over-paired. However, in view of the projection A to k& = 0, this input-simplicity condition will
imply the same tensor norm estimates in Sectlon [] that are proved under the simplicity condltlon

Therefore, by decomposing U}LV using and repeating the proof* of Sections after
possibly removing another exceptional set of probablhty not exceeding Cge™ T_G, we conclude that
By (t) converges to some B(t) in H?® < C? as N — oo, where recall by > 1/2 as in . Therefore
upn, which equals ujv = eitAv;r\, -e7BN on J, converges in CPH3™(J) as N — oo. This limit u has
the explicit expansion (which is valid on J)

up(t) = e ikPE+B() [ >y Z{Z/d)\v ™ (ky, Av)

ne{0,1} |S|<D ky

A, (k

< TTEDE ) }H <’Z[§ J Cgii(w) + a(t) |, (8.5)
fev leu

where the sum is taken over all regular plants S with |S| < D, the random tensors h(>™ and the

functions zxy are defined as in Section and the remainder z belongs to CP HP1=1(.]).

1 needed, we can always view an R-multilinear operator of degree ¢ — 1 as one of degree ¢ by adding a trivial
input function.
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It now remains to prove that the nonlinearity WP?(u) defined by (1.8 exists as a spacetime
distribution, and that u solves (|1.1)) in the distributional sense. Define

f= lim of = : d uf(t) = eBof(t) . e B0 8.6
vt = lim vy ;yzv» and ul(t) =e"20l(t) - e, (8.6)

then u equals u! on J, so it suffices to prove that

lim W (Iyul) = ]VlijrleNW]f](HNuT)

N—o0

im W2 (uly) = lim IyWE(ul) (8.7

=1

N—oo
in the sense of distributions. As By — B, we may replace u}v by e”Av}LV and u! by e*®vf; then
arguing as in Section [5.1.2] we can reduce to analyzing the terms

* — 2

Z (qu(mN)(p 2 HMq(w7 T 7w)(t)7 (88)

3<q<p
" T

where ¢ is odd as before, a;,, are constants, II is either 1 or Iy, w is either vy or Ixof, and M

is as in (5.11)—(5.12)) but is input-simple instead of simple. Decomposing w using (5.17]), it then
suffices to show that

Q= My(yny, -+ ,yn,) = 0,  as Npax := max(Ny,---, Ny) — 00, (8.9)

in the sense of distributions. In fact we shall control the term Z, ® which, by Lemma @7 satisfies

T 0r(N) :Az(x,x’)@(x’)ax/, IZ) + 07| < <<A1>3 5 _1X>3><A1/>. (8.10)

Note that, apart from simple modifications, Z, ® essentially has the same structure as U(Sn) i
1) with the associated tensor h(S™) as in 1} and 1} so it can be estimated in the same
way as in Sections We only make two additional observations:

(a) The proofs of Sections do not depend on any cancellation in (8.10), so the same argu-
ments can be applied for the term I;bSq) defined by

Tesdy () = /R YL T 4 (A= X))@ (V)Y (8.11)
leading to the control of I;bsé in the X~%% norm (here the exponent —d has to do with
the potential power loss associated with fixing k, see observation (b) below), which in turn
implies the control of ® in the sense of distributions—for example, due to the trivial bound

||I;bsq)||xfd,bo 2 Z/<k>_2d<)\/>_4|<f>7§()\’)|d)\’,
Lk R

(b) The R-multilinear operator M, is input-simple instead of simple. However, in order to
control the X% norm of Z2*®, we may fix the value of k in @(A) and it suffices to get a
bound uniform in k£ thanks to the exponent —d. Now once k is fixed, the pairings between
k and any k; become unimportant (they no longer cause losses in any counting estimate
as the paired and over-paired variables now have only one choice), so an input-simple R-
multilinear operator can be treated in the same way as a simple one, similar to the analysis

of (8.4) above.
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With the observations above, after possibly removing another exceptional set of probability not

)

exceeding Cye , the same proofs of Sections can be carried out to obtain, for example, that

HI;bS(I)”de,bO < T_G(Nmax)_‘sﬁ. (8.12)
This proves and thus finishes the proof of Theorem

8.2. Proof of Theorem [1.6, Fixe >0 small enough depending on (d,p), s — sy, and (p —1)(s —
Spr) — v (note that this is dlfferent from (3.1))). Let (6, D, x,0) etc. be defined as in Section we

may assume N >¢, 1. Let
1
p+ / ][ ’uho‘p 1dTI

and repeat the gauging, conditioning and ConJugatmg arguments as in Section except that on
is replaced by 0 since we are dealing with the nonlinearity |upo|P~ 'y, instead of the Wick-ordered
one. After also rescaling time, we can write N-certainly that

Z wk l/T (kw—\k\QT—B(T))’ (813)
where wy(t) is the solution to the system

Wht) = fio—iN" Y apg(mine) P qW/ My(w, - w)u() dt’ (8.14)

3<q<p
similar to (5.9)), where
ho = ][ |uno|* = N2 Z¢2 ) gkl
Td

which is N-certainly bounded by N9~2¢; like in we also consider the solution w' to
wh(t) = x(O)fi = iN" Y agglmne ><P V2T Mgl wh(e). (5.15)

3<q<p

Here in (8.14)—(8.15) we have fi, = % - nr(w) with constants |vi| < N=(k)?|¢(k/N)|, ap, are
bounded constants and |my,| < N972% (« is defined as in (1.10)), and the R-multilinear expression

MW, w@)(t) = ST Chedy @N”tQH g;< ", (8.16)

Clkl“r""i‘quq*k .7 1

with the signs (; and coefficients cyy, ...k, as in (5.11)).
Since the initial data fj is uniformly distributed in &, the analysis of (8.14)) will be significantly

simpler than the arguments in Sections More precisely, we will only need the tensor h(S:m)
with n = 0 (which will be constant tensors, i.e. do not depend on w), and instead of the full plant
structure, we will only need its tree part (which is called £ before, see Definition , leaf pairings
and signs of leaves. As such, we will define (in this proof only) S to be a set of leaves [ with possible
pairings, together with the sign ¢, € {£} for each [ € S. Let P (resp. U) be the set of paired (resp.
unpaired) leaves, we require that (¢ = —(; for any pair (I, '), and that ), . ¢, = 1. The S tensors
h = hyy,, are defined as in Definition (3.4 but instead of condition (1) we only assumeﬂ (k) < N1+0
for each [ € S, and W), = W.[S, h] is defined as in (3.8). We do not need the Trim function, and

1Because we do not need to distinguish the low-frequency inputs as there is only one scale.
2The choice of N'*? is because ¢ is not compactly supported and may have a Schwartz tail.
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Merge is defined in the same way as in Definition (with only the tree part, and without the
frequency parameters such as Ny for leaves [; also the factors Ay vy, in (3.11)) are replaced by 7, ).
Next, for any S with |S| < D, define the S tensor h(S) = hglsczl (t) inductively by

S v —
hiy) (1) = Lsjet - Lier Lganiso + N> apg(muo) P02 3" T, Hyg, (1), (8.17)
3<q<p (%)
similar to 1' Here the sum Z(*) is taken over Z = ((1,- -+ ,(q), S; as defined above, and €, such
that S = Merge(S1,--+,8¢, %, 0); H = Hyy,, is defined by H = Merge(h(sl),-" WD) b, B, 0)
with

h = hkl kq( ) = 1k Ciki+-+(gkq * L(k)<N1+20 H 1 <N1+29 Ckkl...kqeiNut Q (818)
similar to ). By arguing similarly as in Prop0s1t10ns m and we can prove

1nduct1vely that hkk satlsﬁes the support condition (5.30]); moreover, for each subpartition (B, C)

of U, we can prove that

2
/ %(Z D ) ||kkwkc) dA < (N@29IBUC N —PINIEL 3)? (8.19)
reZ
similar to . Here P is the set of paired leaves as defined above, E = U{\(B U C), and h(S1)
is the restriction of h(%) to the set as in part (1) of Proposition moreover, Xy is defined
to be N=(@=2) if ¢ £ @, and Nmax(0.d/2—at+2e) jf 0 = F = &, and N9 if B=C = @, and 1
otherwise, as in .

We note that the proof of is much easier than that of , as we do not need to apply
the careful selection algorithm in Proposition There are only two nontrivial differences. The
first is due to the extra N” factor in eN"*? in , which actually helps us as v > 0, since N}
belonging to an interval of length O(1) will force Q to belong to an interval of length O(1). The
second is the extra factor N” on the right hand side of , which gets cancelled by the N=¢
decay of v;, and the (my,)?P~9/2 factor in , in view of the inequality v < (p—1)(a— ap — 10¢)
(o is defined as in (3.1)). In particular we have

q q
(mho)(p—Q)/QNl/ . H N+t < HNCM—8E’ a6 — g _ qil’
7j=2 j=2
so the bound for the h tensor we see when merging h(5i) tensors—which is the one on the right
hand side of with p replaced by ¢—can be cancelled by the N™% decay of v with extra gain
of N¢ powers, after being multiplied by N and (mho)(p_q)/ 2 factors.
Now, with (8.19) available, we can construct the solution w' to by the ansatz

= Y WS, KO ()] + 2L (1), (8.20)
|S|<D
where 21 satisfies the equation
) = X gysnreo - fo —iN Y apg(ma) @02 3" LM (0D, 0 @) (1), (8.21)
3<q<p (1) - @)
with the sum taken over (v}, ... v(@) such that each vl is either 2! or Wx[S;, h(5)7)] for some S;
with |S;| < D, and that either (i) at least one v\ = z, or (ii) v\ = W,[S;, h(S)] for each j, and
S = Merge(Sy, -+ ,Sr, A, 0) satisfies |S| > D (for any 0).
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Note that, due to the lack of projection IIy on the right hand side of (1.11)), the remainder 2
is not guaranteed to have compact support in k. Thus, instead of the X norm as in Proposition
M we should control the X 0% norm of 21, defined by

EL Y om0 5
I eom =3 [ (1+ 1) PRICOLE AN
k

where Cp > 0 is a large absolute constant depending only on (d, p) and by is as in . Indeed we
shall prove that ||zT|| Sooby SN ~D1 by a contraction mapping. Note that again we only need to
prove that the right hand side of satisfies this same inequality assuming that 2z does. This
right hand side contains four types of terms, which are listed as followsﬂ

e The first term on the right hand side of (8.21)), which is acceptable because |fx| < |¢(k/N)|
where ¢ is Schwartz and (k) > N'*9.
e The term where at least two v() equal =T, which is acceptable thanks to the decay NP1

of 2! and the choice of large Cj.

e The term where vl) = W, [S;, h(S))] for each j. This term is acceptable because it can be
written as a linear combination of W[S, h(S)] for some S = Merge(Sy,--- ,S,, B, O) with
|S| > D, and the corresponding tensor h(S) = Merge(h(sl), oo RS h B, 0), which can
be shown to satisfy by repeating the proofs above. By applying Lemma again,
this ¥y, term can be bounded by N~P1 in X% and hence in XC0b0 hecause it is supported
in |k| < N1,

e Finally, the term where exactly one v equals 2. This term can be written as an R-linear
operator .Z¢ applied to z', where this .#¢ has similar form as the one in . Now by
repeating the same arguments as in Propositions and [7.4] we can bound
the X% — X% norm of this operator by a negative power of N. As the kernel (Z¢)gp is
supported in |k — (k| < N by Lemma the XCobo —y XCobo norm of ¢ is also
bounded by a negative power of IV, so this term is also acceptable.

As such, we have closed the estimates for zI and obtained the solution w' in the form of .
This means that the equation is well-posed at least up to time ¢ = 1, so the equation
is well-posed at least up to time T' = N”. Moreover easily follows from the bound for zf, as
well as the bounds for nonlinear components ¥,[S, h(S)] with |S| > 1, which in turn follow from

(8.19) and Lemma This completes the proof of Theorem

9. FINAL REMARKS

In this section we make some final remarks. These include a comparison with parabolic equations
in Section [9.1] and some future directions in Section We also list some open problems.

9.1. Comparison with parabolic equations. The random data Schrédinger equation
(10 + A)yu = WP(u), u(0)= f(w), (9.1)
is closely linked to, and fundamentally different from, the stochastic heat equation
(8, — A)u = WP(u) +(, (9.2)
if both are suitably renormalized. In this section we will explain their differences and connections.

IThe reader may notice the similarity with the construction of zp)s in l)
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9.1.1. Difference in scaling. In Section [1.2] we explained the heuristics behind the probabilistic
scaling critical index s, for . In fact the same philosophy can be applied to , leading to
the parabolic scaling critical index s,, in Remark which is the one appearing in works such as
[52, [46]. Note that sy, is strictly lower than s,

Fix some value of s, and let @ = s+ d/2. As in Section we will make simplifications to
by replacing the nonlinearity by Ny, defined in and neglecting the renormalizatiorﬂ; we also
set initial data «(0) = 0. Similar to (1.18), assume the noise ¢ (or its regularization) has the form

C(t,a:) _ N—a+l Z 8t,8k(t> . eik~:r:7
|k|~N

where ;(t) are independent Brownian motions. Let 1) = (9; — A)~1( be the linear evolution of
noise (which plays the same role as e*“(0) in Section , then

P(t,z) = N~ Y Grt)e®™, Gi(t) =N /0 LR g, (1),

k| ~N

For fixed [t| ~ 1 these G}, (t) form a collection of independent Gaussian variables with E|G},(¢)|? ~ 1,
hence v is bounded in CY H? (also in CYC$ by Khintchine’s inequality), just as in Section
Now, plugging into (the simplified version of) ((9.2)), we need to control the first nonlinear iteration

t
u() = [N e . (93
where [t| ~ 1, in H® (or equivalently C*). Similar to Section on the Fourier side we have
t
uM () ~ N 3T / e O G (#)Gry (8 -+ G, (1) dF. (9.4)
k;j€Z4,|k;|~N 0
k1 —-tkp=k

Suppose |k| ~ N, using the square root cancellation in the sum in (from independence, as
in Section and the N~2 gain from the ¢ integral, we see that with high probability, the inner
sum-integral has size N (pd=d)/2=2 Yence

DO ~ N2 OOl S 152~ =
We make a few observations on the above heuristic calculation:

(a) It is no surprise that sp, = s¢r —d/2. Indeed this makes C** and H**" have equal scaling, and
in the usual (deterministic) sense H* thus also C®re is critical for the heat equation. The effect of
randomness then comes through Khintchine’s inequality, where a Gaussian random function which
belongs to H*r* must also belong to C*re which scaling-wise equals the critical space H®e. This is
essentially how sy, is calculated in [52].

(b) The above argument does not work for Schrédinger equations, because even though H® and
C*®re are still scaling critical in the usual sense, the latter is not compatible with Schrodinger flows.
However, this does not tell us what is the right notion of criticality for Schrodinger.

(c) To exactly see the difference between s,, and s,,, we have to compare the calculations in
here and in Section Note that in the t’ integral gains two derivatives N ~2; in comparison

1Even with the Nup nonlinearity, some renormalization may still be needed for higher order iterations, but not
for the first nonlinear iteration which is discussed here. Also whether u is real or complex valued, and whether A,
contains complex conjugates, does not affect the scaling heuristics.
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in (1.16)) and (1.19) there is no derivative gain—since the Schrédinger flow has no smoothing—only

the denominator (€2)~! which restricts to the submanifold = 0. This is the fundamental difference
between heat and Schrédinger that eventually leads to different scalings in the random setting.
(d) More precisely, note that restricting to Q@ = 0 reduces the number of dimensions by two.
In the deterministic setting, this gains two derivatives N~2 in the summation in , which
matches the two-derivative gain from heat, leading to the same criticality threshold s.,; however in
the random setting the summation in gets square rooted due to randomness, which means
the N2 gain also gets square rooted, leading to the different criticality thresholds s, and sp;.

9.1.2. Necessary renormalizations. Another difference between our theory and the parabolic the-
ories is that, in the latter more and more renormalization terms are needed when one gets close
to criticality (for example with the ®] ; model [I5, 22]), while in the former we stay with Wick
ordering in the full subcritical range.

The main reason for this is the difference in the notions of scaling. For example, in the ®3 setting
where (d,p) = (3,3), if solutions have regularity C~'/2~ or equivalently H~'/2~ then is still
subcritical though needs a log correction 3Cy beyond Wick ordering (see ), but is already
critical relative to the probabilistic scaling (comparable to the four dimensional ®} problem which
is critical relative to the parabolic scaling, due to the reason explained in Section. Conversely,
if is subcritical, then a calculation shows that the 3Cy in will not appear as E(Y - V) is
not divergent in the limit, so only needs Wick ordering.

More precisely, for there are two types of renormalization termsﬂ, namely those coming from
the mass (which is just Wick ordering for ®3 in ) and those not coming from the mass (such as
the log term in and the further corrections described in [15], Section 2.8.2 for ®} ). Now for
only the mass terms diverge (and need to be renormalized) in the probabilistically subcritical
range; moreover since the Schrédinger equation conserves mass, we can always replace the mass
by the mass of initial data, which just leads to Wick ordering and no further renormalization is
needed.

Given this difference, one might ask whether for we can go strictly below s, and down
to spe by including additional counterterms such as the ones in [15]. We believe the answer is no
due to the following reason. In all previous works, the counterterms in the renormalization process
are needed because certain specific terms in the formal expansion of the solution with respect to
the random initial data or noise become unbounded when ¢ — 0 (or N — oo in the setting of
Theorem ; however if one considers in the supercritical range s < s, then an extended
version of the calculation in Section shows that every term in the formal expansion—not just
those with a renormalizable structure—becomes unbounded (say with respect to the regularity of
initial data) as N — oco. This is similar tﬂ what happens to when s < s,4. Therefore, it is at
least highly improbable that the local-in-time problem for can be solved perturbatively via a
renormalization process similar to those in the theory of regularity structures [52, [54] 55| [15].

I This distinction may be artificial from the regularity structure perspective, but is convenient in comparison with
the dispersive case here.

2Pyt in another way, imagine one has all the input and output frequencies being the same in the nonlinearity.
Then is locally well-posed, without any renormalization or special arguments, if and only if s > sy, while for
the same thing holds if and only if s > sp.
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9.1.3. Invariant measures and quantum field theory. If the random initial data of is given by
with « = 1, or if { in is the spacetime white noise, then both equations will possess the
same formally invariant Gibbs measure, which is the @ZH measure in quantum field theory (up to
real/complex distinction), formally defined by

dp ~ exp [p_+21 » WP (u) daz] - exp [— /M |Vu\2dx] H dz (9.5)

zeTd

for some renormalization WP+ of |u|PTL. The justification of the formal definition is a major
problem in constructive quantum field theory, see [44} [66, 63] and recently [7]. It has been done
in dimension d € {1,2} for any p, and in dimension d = 3 for p = 3. The other cases are not
super-renormalizable in the sense of [22], and such constructions are either unknown or proved
impossible [11, 2, 41].

The study of the dynamics of the measure (9.5) under the flow of , commonly known as
stochastic quantization, starts with [65]. The invariance of the @ZH measure with d € {1,2} and
any p is proved in [30]. Recent developments of parabolic theories has led to the resolution of the
®% case, with proof of invariance in [62, [].

On the other hand, the Gibbs measure problem for is harder, both conceptually and tech-
nically, due to lack of smoothing and (consequently) the different scalings as described above. The
invariance of <I>11”+1 (for any p) and ®3 measures are proved by Bourgain [10, [I1] (see also [59]). The
@g“ case for p > 5 is much more challenging and is resolved only in our recent work [36]. This
matches the results of the Gibbs measure problem for (9.1) with those of the measure construction
problem, and of the stochastic quantization problem for , except in the ®4 case (d,p) = (3,3).

The Gibbs measure problem for (d,p) = (3,3) has two main difficulties. First it is probabilis-
tically critical. This is not as bad as supercritical cases which we believe—as mentioned above—
cannot be renormalized (at least through a process similar to [52]), but still log divergences seem
unavoidable in all aspects, even for short time. Second, the <I>§ measure is mutually singular with
the reference Gaussian measure, as proved in [§], thus f(w) in (9.1)) will not be given by the simple
formulaﬂ . Therefore the hope is to somehow get rid of the log divergences by moving to the
right measure, i.e. Gibbs instead of Gaussian, but then a local solution theory has to be developed
without independence of Fourier coefficients.

Open problem 1. Prove invariance of the Gibbs measure for , possibly with suitable
renormalizations, when d = p = 3.

9.2. Future directions. Though in this paper we have restricted to Schrodinger equations, our
method can be applied to more general settings. In this last section we list some future directions.

9.2.1. The stochastic setting. Consider (9.1)), but with additive noise ¢ instead of random data, for
example

(10 + A)u =WP(u)+ ¢, u(0)=0,

IThis should be compared to the stochastic quantization problem for l} where the solution theory relies on
the Gaussian noise instead of the non-Gaussian measure, as observed in [§].
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see [311, B9, 37, 25] for some previous works. Here the role of the linear evolution et f (w) is played
by 1 := (i0; — A)~!¢. Note that if we formally periodize the time, then v will have the form

Y(t,2) =Y apage(w)eEe kA
Y

where X is the modulation variable, ay, ) is some fixed function of (k, \) and gj ) are i.i.d. Gaussian
random variables. Therefore, in addition to the k variables, we should include also the \ variables
as input variables for our random tensor, which will then look like Az, ar, for some sets A. The
counting estimate should be adjusted, which may lead to changes in the selection algorithm.

9.2.2. Other dispersion relations. Similarly we may consider other dispersion relations, still in the
semilinear setting. The main difference is again in the counting estimates: suppose the new dis-
persion relation is A(k) for some function A, then we should look at the cardinality of sets

{(k1, - kp) ik — 4y =k, A(k1) — -+ Alky) = T + O(1)}

with fixed £ and I', perhaps with some additional linear relations between k; like those in Section
Note that while parabolic equations are all alike, each dispersive equation is dispersive in its
own way. As a result, the above counting bound will depend on the exact form of A (not just
its homogeneity), and a selection algorithm is then designed to match the counting bound. In
particular we will not have a general black-box argument working for all A, and the proof has to
be done in a dispersion-specific way.

9.2.3. Quasilinear problems. Recently there have been attempts to extend the existing parabolic
theories to quasilinear equations [42, 43]. This is also of interest in the dispersive setting, especially
in view of the recent results in low regularity deterministic local well-posedness [3| [57].

Of course, compared to parabolic equations, moving to the quasilinear (or even variable-coefficient
semilinear) setting completely changes the methodology for dispersive equations. The X*’-based
approaches become unavailable and dispersion has to be observed on the level of energy estimates
or parametrices. In the deterministic setting, it is expected that the local well-posedness threshold
is higher than s.., but the precise value is only known in some cases; in the random setting we
also expect the threshold to be higher than s, but are unable to decide or even guess the correct
value. The method of random averaging operators can be applied to the quasilinear setting but
may not achieve the same power as the semilinear version, and the quasilinear version of random
tensor theory still needs to be explored.

Open problem 2. Build a random data theory for quasilinear dispersive (including wave)
equations, and determine the threshold for almost-sure local well-posedness.

9.2.4. Long-time propagation of randomness. It is natural to ask whether the short-time solutions
for (9.1) constructed in Theorem can be extended to longer or infinite time; i.e. whether
the randomness structure can be propagated beyond the perturbative regime. Such global-in-
time extensions are immediate if an invariant Gibbs measure is available at the regularity we are
considering, but as discussed in Section this happens only in a few specific cases.

Note that the theory of random tensors, like the theory of regularity structures, is a short-time
theory by nature; thus to get global results it has to be combined with separate global or large-scale
techniques. In the context of , the work [62] combines the para-controlled calculus with energy
estimates, and the more recent works [61l 22] combine (a reformulated version of) the regularity
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structures theory with the maximum principle. In the context of , the main global technique
known is energy conservation, and the associated high-low and [-methods [13| 24] 26, 27]. Note
that these require deterministic analysis at the H' (energy) level, so they need (deterministic) H'!
subcriticality, i.e. s.. < 1, to work.

In the H' supercritical (s, > 1) case, another natural question is whether classical solutions
with random initial data (such as with « suitably large, as opposed to low regularity solutions
of Theorem are almost surely global. This is also important from the PDE point of view,
as it would mean that blowup for defocusing H' supercritical nonlinear Schrédinger equations is
non-generic and unstableﬂ Note that the blowup example in R?, recently constructed in [60], is
indeed non-generic.

Open problem 3. In the energy subcritical case, do the singular solutions constructed in
Theorem extend to all time? In the energy supercritical case, does almost-sure global well-
posedness hold for random initial data of high regularity?
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