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ABSTRACT

Replica exchange stochastic gradient Langevin dynamics (reSGLD) has shown
promise in accelerating the convergence in non-convex learning; however, an ex-
cessively large correction for avoiding biases from noisy energy estimators has
limited the potential of the acceleration. To address this issue, we study the vari-
ance reduction for noisy energy estimators, which promotes much more effective
swaps. Theoretically, we provide a non-asymptotic analysis on the exponential
convergence for the underlying continuous-time Markov jump process; moreover,
we consider a generalized Girsanov theorem which includes the change of Poisson
measure to overcome the crude discretization based on the Gronwall’s inequality
and yields a much tighter error in the 2-Wasserstein (VVs) distance. Numerically,
we conduct extensive experiments and obtain state-of-the-art results in optimiza-
tion and uncertainty estimates for synthetic experiments and image data.

1 INTRODUCTION

Stochastic gradient Monte Carlo methods (Welling & Teh, [2011}; |Chen et al., 2014} L1 et al.| 2016)
are the golden standard for Bayesian inference in deep learning due to their theoretical guarantees
in uncertainty quantification (Vollmer et al., 2016; |Chen et al., 2015) and non-convex optimization
(Zhang et al.l 2017). However, despite their scalability with respect to the data size, their mixing
rates are often extremely slow for complex deep neural networks with rugged energy landscapes (L1
et al., [2018). To speed up the convergence, several techniques have been proposed in the literature
in order to accelerate their exploration of multiple modes on the energy landscape, for example,
dynamic temperatures (Ye et al.l 2017) and cyclic learning rates (Zhang et al., 2020), to name a
few. However, such strategies only explore contiguously a limited region around a few informative
modes. Inspired by the successes of replica exchange, also known as parallel tempering, in tradi-
tional Monte Carlo methods (Swendsen & Wang, |1986; |[Earl & Deeml 2005), reSGLD (Deng et al.}
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2020) uses multiple processes based on stochastic gradient Langevin dynamics (SGLD) where inter-
actions between different SGLD chains are conducted in a manner that encourages large jumps. In
addition to the ideal utilization of parallel computation, the resulting process is able to jump to more
informative modes for more robust uncertainty quantification. However, the noisy energy estimators
in mini-batch settings lead to a large bias in the naive swaps, and a large correction is required to
reduce the bias, which yields few effective swaps and insignificant accelerations. Therefore, how to
reduce the variance of noisy energy estimators becomes essential in speeding up the convergence.

A long standing technique for variance reduction is the control variates method. The key to reduc-
ing the variance is to properly design correlated control variates so as to counteract some noise.
Towards this direction, [Dubey et al|(2016); |Xu et al.| (2018) proposed to update the control variate
periodically for the stochastic gradient estimators and [Baker et al.| (2019) studied the construction
of control variates using local modes. Despite the advantages in near-convex problems, a natural
discrepancy between theory (Chatterji et al., 2018} |Xu et al.l 2018} Zou et al., 2019b) and practice
(He et al., 2016; [Devlin et al., 2019) is whether we should avoid the gradient noise in non-convex
problems. To fill in the gap, we only focus on the variance reduction of noisy energy estimators to
exploit the theoretical accelerations but no longer consider the variance reduction of the noisy gra-
dients so that the empirical experience from stochastic gradient descents with momentum (M-SGD)
can be naturally imported.

In this paper we propose the variance-reduced replica exchange stochastic gradient Langevin dynam-
ics (VR-reSGLD) algorithm to accelerate convergence by reducing the variance of the noisy energy
estimators. This algorithm not only shows the potential of exponential acceleration via much more
effective swaps in the non-asymptotic analysis but also demonstrates remarkable performance in
practical tasks where a limited time is required; while others (Xu et al., [2018}; [Zou et al., [2019a)
may only work well when the dynamics is sufficiently mixed and the discretization error becomes a
major component. Moreover, the existing discretization error of the Langevin-based Markov jump
processes (Chen et al.| 2019; |Deng et al., |2020; Futami et al.| 2020) is exponentially dependent on
time due to the limitation of Gronwall’s inequality. To avoid such a crude estimate, we consider
the generalized Girsanov theorem and a change of Poisson measure. As a result, we obtain a much
tighter discretization error only polynomially dependent on time. Empirically, we test the algorithm
through extensive experiments and achieve state-of-the-art performance in both optimization and
uncertainty estimates.
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Figure 1: An illustration of replica exchange Monte Carlo algorithms for non-convex learning.

2 PRELIMINARIES

A common problem, in Bayesian inference, is the simulation from a posterior P(3|X)
P(B3) Hf\il P(x;|3), where P(8) is a proper prior, Hivzl P(x;|3) is the likelihood function and
N is the number of data points. When N is large, the standard Langevin dynamics is too costly
in evaluating the gradients. To tackle this issue, stochastic gradient Langevin dynamics (SGLD)
(Welling & Teh), 2011)) was proposed to make the algorithm scalable by approximating the gradient
through a mini-batch data B of size n such that

B =B w3 VE(lB) + V20T, 1)

1€ By,



Published as a conference paper at ICLR 2021

where 3 € R<, 7 denotes the temperature, 7y, is the learning rate at iteration k, &, is a standard
Gaussian vector, and L(-) := —log P(8|X) is the energy function. SGLD is known to converge
weakly to a stationary Gibbs measure 7 (3) o< exp (—L(8)/7) as n, decays to 0 (Teh et al.,[2016).

The temperature 7 is the key to accelerating the computations in multi-modal distributions. On the
one hand, a high temperature flattens the Gibbs distribution exp (—L(3)/7) (see the red curve in
Fig[T[(a)) and accelerates mixing by facilitating exploration of the whole domain, but the resulting
distribution becomes much less concentrated around the global optima. On the other hand, a low
temperature exploits the local region rapidly; however, it may cause the particles to stick in a local
region for an exponentially long time, as shown in the blue curve in Fig[T[a,b). To bridge the gap
between global exploration and local exploitation, Deng et al.|(2020) proposed the replica exchange
SGLD algorithm (reSGLD), which consists of a low-temperature SGLD to encourage exploitation
and a high-temperature SGLD to support exploration

D = g, n,ﬁ S VLB + Ve
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where the invariant measure is known to be (3™, 3(?)) o exp ( L(’B ; ) L(f(; )) asn — 0

and 71 < 7). Moreover, the two processes may swap the posmons to allow tunneling between

different modes. To avoid inducing a large bias in mini-batch settings, a corrected swapping rate S
is developed such that

s 1 1 N W, N @, _ (5~ =5) 0

S = GXP{ (7_(1) - 7_(2)) (; Z L(x8y ") — N Z L(x;]8,") — #)},
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where 52 is an estimator of the variance of & Y ien, L(xi |5 ) v 2ieB, L(xi|ﬁ,(€2)) and F is
the correction factor to balance between acceleration and bias. In other words, the parameters switch
the positions from (3, ) ) (ﬁk ; k ) with a probability r(1 A S)ny,, where the constant 7 is
the swapping inten51ty and can set to n—k for simplicity.

From a probabilistic point of view, reSGLD is a discretization scheme of replica exchange Langevin
diffusion (reLD) in mini-batch settings. Given a smooth test function f and a swapping-rate function
S, the infinitesimal generator Lg associated with the continuous-time reLD follows

Lsf(BY, ) = =V f(BY,87), VLBM)) = (Ve £(B, 87, VL(B?))

+ 108500 f(BY,8%) + 7 Mg (B, 8%) +rS(BY, 89) - (£(87,8Y) - 1B, BD)),
where the last term arises from swaps and A g, is the the Laplace operator with respect to B4). Note
that the infinitesimal generator is closely related to Dirichlet forms in characterizing the evolution

of a stochastic process. By standard calculations in Markov semigroups (Chen et al, 2019), the
Dirichlet form Eg associated with the infinitesimal generator L£g follows

Es(f) = / (F V1V 00 £BY BN 4+ 72V g0 £(BY, B ) (87, 87)

vanilla term € (f)

@
+5 / S(BY.B9) - (189, 8Y) — £(8,8Y)%dn (8, BY),

acceleration term

which leads to a strictly positive acceleration under mild conditions and is crucial for the expo-
nentially accelerated convergence in the W, distance (see Fig[I[c)). However, the acceleration
depends on the swapping-rate function .S and becomes much smaller given a noisy estimate of
NS ie5 L(xi|B) due to the demand of large corrections to reduce the bias.
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3 VARIANCE REDUCTION IN REPLICA EXCHANGE STOCHASTIC GRADIENT
LANGEVIN DYNAMICS

The desire to obtain more effective swaps and larger accelerations drives us to design more efficient
energy estimators. A naive idea would be to apply a large batch size n, which reduces the variance
of the noisy energy estimator proportionally. However, this comes with a significantly increased
memory overhead and computations and therefore is inappropriate for big data problems.

A natural idea to propose more effective swaps is to reduce the variance of the noisy energy estimator
L(B|BM) = &5 o L(x;|B™) for h € {1,2}. Considering an unbiased estimator L(B|3"))
for vazl L(x;|8™) and a constant ¢, we see that a new estimator L(B|3™), which follows

L(B|BM) = L(B|B™) + ¢ < (B|B™) ZL (x:|B™) ) 3)

is still the unbiased estimator for Zf\il L(x;]3™). By decomposing the variance, we have
Var(L(B|3™)) = Var (L(B\g“”)) + ¢*Var (L(B|B<h>)) + 2¢Cov (L(B|B(h>),L(B|B(h))) .

In such a case, Var(L(B|3™)) achieves the minimum variance (1 — p2)Var(L(B|B™)) given
x . _ Cov(L(BIB™),L(BIB™))

- Var(L(B|B(M)) ~
coefficient of L(B|B™) and L(B|B™). To propose a correlated control variate, we follow Johnson

c , where Cov(-,-) denotes the covariance and p is the correlation

& Zhang| (2013)) and update B(h) = ﬂf:i x| Every m iterations. Moreover, the optimal c* is often

unknown in practice. To handle this issugl, a well-known solution (Johnson & Zhang, [2013)) is to
fix ¢ = —1 given a high correlation |p| of the estimators and then we can present the VR-reSGLD
algorithm in Algorithm Since the exact variance for correcting the stochastic swapping rate
is unknown and even time-varying, we follow |Deng et al|(2020) and propose to use stochastic
approximation (Robbins & Monro, [1951) to adaptively update the unknown variance.

Variants of VR-reSGLD The number of iterations m to update the control variate B(h) gives
rise to a trade-off in computations and variance reduction. A small m introduces a highly correlated
control variate at the cost of expensive computations; a large m, however, may yield a less correlated
control variate and setting ¢ = —1 fails to reduce the variance. In spirit of the adaptive variance in
Deng et al.|(2020) to estimate the unknown variance, we explore the idea of the adaptive coefficient
¢x = (1 — k) Cr—m + YiCr such that the unknown optimal ¢* is well approximated. We present the
adaptive VR-reSGLD in Algorithm 2]in Appendix and show empirically later that the adaptive
VR-reSGLD leads to a significant improvement over VR-reSGLD for the less correlated estimators.

A parallel line of research is to exploit the SAGA algorithm (Defazio et al., 2014)) in the study of
variance reduction. Despite the most effective performance in variance reduction (Chatterji et al.,
2018), the SAGA type of sampling algorithms require an excessively memory storage of O(Nd),
which is too costly for big data problems. Therefore, we leave the study of the lightweight SAGA
algorithm inspired by Harikandeh et al.| (2015); [Zhou et al.|(2019) for future works.

Related work Although our VR-reSGLD is, in spirit, similar to VR-SGLD (Dubey et al., 2016;
Xu et al.} [2018), it differs from VR-SGLD in two aspects: First, VR-SGLD conducts variance re-
duction on the gradient and only shows promises in the nearly log-concave distributions or when the
Markov process is sufficiently converged; however, our VR-reSGLD solely focuses on the variance
reduction of the energy estimator to propose more effective swaps, and therefore we can import the
empirical experience in hyper-parameter tuning from M-SGD to our proposed algorithm. Second,
VR-SGLD doesn’t accelerate the continuous-time Markov process but only focuses on reducing the
discretization error; VR-reSGLD possesses a larger acceleration term in the Dirichlet form (2) and
shows a potential in exponentially speeding up the convergence of the continuous-time process in
the early stage, in addition to the improvement on the discretization error. In other words, our al-
gorithm is not only theoretically sound but also more empirically appealing for a wide variety of
problems in non-convex learning.
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Algorithm 1 Variance-reduced replica exchange stochastic gradient Langevin dynamics (VR-
reSGLD). The learning rate and temperature can be set to dynamic to speed up the computations. A
larger smoothing factor «y captures the trend better but becomes less robust. T is the thinning factor
to avoid a cumbersome system.

Input The initial parameters ,6(()1) and 582), learning rate 7), temperatures (1) and 7(2), correction
factor F' and smoothing factor .
repeat

Parallel sampling Randomly pick a mini-batch set By, of size n.

B =8 —n wa,w )+ V2T e forhe {1,2). @)
’LEBk

Variance-reduced energy estimators Update L = > L (xl( g™ ) every m iterations.

L(By|BM) = % Z [L(xilﬂ,(ch)) —L (Xz‘

i€ By,

m| k|

(h) T(h)
ﬁm%)} +IM forh e {1,2}. (5

if K mod m = 0 then B _

Update 53 = (1 — ¥)s_,, + 70}, where o7 is an estimate for Var (L(Bk|ﬁ,(cl)) - L(Bk\,ﬂff))).
end if _ _
Bias-reduced swaps Swap /6k+1 and ,@kJrl if w < Sy m,n, where u ~ Unif [0, 1], and S}, 1., follows

gmm,n = exp{(ﬁ - ﬁ) ( (Bk+1‘ﬁk+1) (Bk+1‘5k+1) % (ﬁ - ﬁ) &fntﬁj)}(é)

until £ = kax.

Output: The low-temperature process {3, 1)} L Fmas /T

, where T is the thinning factor.

4 THEORETICAL PROPERTIES

The large variance of noisy energy estimators directly limits the potential of the acceleration and
significantly slows down the convergence compared to the replica exchange Langevin dynamics. As
a result, VR-reSGLD may lead to a more efficient energy estimator with a much smaller variance.

Lemma 1 (Variance-reduced energy estimator) Under the smoothness and dissipativity assump-

tions |I| and 2| in Appendix @ the variance of the variance-reduced energy estimator E(B\ B,
where h € {1,2}, is upper bounded by

Var (E(Blﬂ(’”)) < min{(’) (m 77) Var( ZL 18 )—I—Var( ZL ,G(h) )}

where the detailed O(-) constants is shown in Lemmam the appendix.

The analysis shows the variance-reduced estimator E(B |B(")) yields a much-reduced variance given
a smaller learning rate 1 and a smaller m for updating control variates based on the batch size

n. Although the truncated swapping rate S, ,, , = min{1l S,] m,nt still satisfies the “stochastic”

detailed balance given an unbiased swapping-rate estimator S77 m.n (Deng et al., [2020) || it doesn’t
mean the efficiency of the swaps is not affected. By contrast, we can show that the number of swaps
may become exponentially smaller on average.

Lemma 2 (Variance reduction for larger swapping rates) Given a large enough batch size n, the
variance-reduced energy estimator L(By,| ﬁ,(ch)) yields a truncated swapping rate that satisfies

E[S,).m.n] ~ min {1, S(BW, @) ((’)(%) + e*o(’"f”iﬁ))}, )

flAndrieu & Roberts (2009); |Quiroz et al.| (2019) achieve a similar result based on the unbiased likelihood
estimator for the Metropolis-hasting algorithm. See section 3.1 (Quiroz et al.} 2019) for details.
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where S(3(1), 3?) is the deterministic swapping rate defined in Appendlx l The proof is shown
in Lemmal/B2] in Appendix [B] Note that the above lemma doesn’t require the normahty assump-
tion. As m goes to infinity, where the asymptotic normality holds, the RHS of (/) changes to

min {1, S(BW, ,3(2))6_(9(%) }, which becomes exponentially larger as we use a smaller up-

date frequency m and learning rate 1. Since the continuous-time reLD induces a jump operator
in the infinitesimal generator, the resulting Dirichlet form potentially leads to a much larger accel-
eration term which linearly depends on the swapping rate S, , and yields a faster exponential
convergence. Now we are ready to present the first main result.

Theorem 1 (Exponential convergence) Under the smoothness and dissipativity assumptions[Ijand
the probability measure associated with reLD at time t, denoted as vi, converges exponentially
fast to the invariant measure m:

Wa (v, m) < Doexp {—t (1+ s, ...) /cLs} (8)

Ey (V) HE)

£V T
depends on Sn m,n Esn m.n and E are the Dirichlet forms based on the swapping rate Spmn and
are defined in ([Z]) crs is the constant of the log-Sobolev inequality for reLD without swaps.

where Dy is a constant depending on the initialization, dg = inf;>o —1>0

n,m,n °

We detail the proof in Theorem in Appendix [B| Note that S, ,,,,, = 0 leads to the same perfor-
mance as the standard Langevin diffusion and dg, ., ,, is strictly positive when % is asymmetric
(Chen et al., 2019); given a smaller n and m or a large n, the variance becomes much reduced
according to Lemma [T} yielding a much larger truncated swapping rate by Lemma [2] and a faster

exponential convergence to the invariant measure m compared to reSGLD.

Next, we estimate the upper bound of the 2-Wasserstein distance W(fix, Vky,), Where 1, denotes
the probability measure associated with VR-reSGLD at iteration k. We first bypass the Gronwall
inequality and conduct the change of measure to upper bound the relative entropy D 1, (i |Vin)
following (Raginsky et al.,[2017). In addition to the approximation in the standard Langevin diffu-
sion [Raginsky et al.| (2017)), we also consider the change of Poisson measure following [Yin & Zhu
(2010); |Gikhman & Skorokhod| (1980) to handle the error from the stochastic swapping rate. We
then extend the distance of relative entropy D 1, ({tx|Vky) to the Wasserstein distance W (pg, Viry)
via a weighted transportation-cost inequality of Bolley & Villani| (2005)).

Theorem 2 (Diffusion approximation) Assume the smoothness, the dissipativity and the gradient
assumptions[I} 2| and 3| hold. Given a large enough batch size n, a small enough m and 1, we have

Wi (s Vi) < o(dk3/2n(n1/4 oA (m;n)l/s)), )

where 0 is a constant that characterizes the scale of noise caused in mini-batch settings and the

detail is given in Theorem [2| in Appendix . Here the last term O((mTzn)l/ 8) comes from the
error induced by the stochastic swapping rate, which disappears given a large enough batch size n
or a small enough update frequency m and learning rate n. Note that our upper bound is linearly
dependent on time approximately, which is much tighter than the exponential dependence using
the Gronwall inequality. Admittedly, the result without swaps is slightly weaker than the diffusion
approximation (3.1) in Raginsky et al.| (2017) and we refer readers to Remark 3]in Appendix [C|

Applying the triangle inequality for Wa (ju, Vir,) and Wa (v, m) leads to the final result

Theorem 3 Assume the smoothness, the dissipativity and the gradient assumptions [I} 2| and[3| hold.

Given a small enough learning rate n, update frequency m and a large enough batch size n, we have
—En(148g5, . ) >

Wi (g, ) < O(dk?’”n(nl/‘* + 84 4 (%277)1/8)) + (’)(e s

This theorem implies that increasing the batch size n or decreasing the update frequency m not
only reduces the numerical error but also potentially leads to a faster exponential convergence of the
continuous-time dynamics via a much larger swapping rate .S, ,,, 1.
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Figure 2: Trace plots, KDEs of 3(1), and sensitivity study of &2 with respect to m, 1 and n.

5 EXPERIMENTS

5.1 SIMULATIONS OF GAUSSIAN MIXTURE DISTRIBUTIONS

We first study the proposed variance-reduced replica exchange stochastic gradient Langevin dynam-
ics algorithm (VR-reSGLD) on a Gaussian mixture distribution (Dubey et al.l2016). The distribu-
tion follows from z;|3 ~ 0.5N(83,02) + 0.5N(¢ — 3,02), where ¢ = 20, 0 = 5and 3 = —5. We
use a training dataset of size N = 10° and propose to estimate the posterior distribution over 3. We
compare the performance of VR-reSGLD against that of the standard stochastic gradient Langevin
dynamics (SGLD), and replica exchange SGLD (reSGLD).

In Figs[2(a)land[2(b)} we present trace plots and kernel density estimates (KDE) of samples generated
from VR-reSGLD with m = 40, 7(1) = 10[[] 7(2) = 1000, 5y = 1e — 7, and F = 1; reSGLD adopt
the same hyper-parameters except for F' = 100 because a smaller F' may fail to propose any swaps;
SGLD uses n = le — 7 and 7 = 10. As the posterior density is intractable, we consider a ground
truth by running replica exchange Langevin dynamics with long enough iterations. We observe that
VR-reSGLD is able to fully recover the posterior density, and successfully jump between the two
modes passing the energy barrier frequently enough. By contrast, SGLD, initialized at 5y = 30,
is attracted to the nearest mode and fails to escape throughout the run; reSGLD manages to jump
between the two modes, however, F' is chosen as large as 100, which induces a large bias and
only yields three to five swaps and exhibits the metastability issue. In Figure [2(c), we present the
evolution of the variance for VR-reSGLD over a range of different m and compare it with reSGLD.
We see that the variance reduction mechanism has successfully reduced the variance by hundreds
of times. In Fig we present the sensitivity study of G2 as a function of the ratio n/N and the
learning rate n; for this estimate we average out 10 realizations of VR-reSGLD, and our results agree
with the theoretical analysis in Lemmal[]

5.2 NON-CONVEX OPTIMIZATION FOR IMAGE DATA

We further test the proposed algorithm on CIFAR10 and CIFAR100. We choose the 20, 32, 56-layer
residual networks as the training models and denote them by ResNet-20, ResNet-32, and ResNet-
56, respectively. Considering the wide adoption of M-SGD, stochastic gradient Hamiltonian Monte
Carlo (SGHMC) is selected as the baseline. We refer to the standard replica exchange SGHMC
algorithm as reSGHMC and the variance-reduced reSGHMC algorithm as VR-reSGHMC. We also
include another baseline called cyclical stochastic gradient MCMC (cycSGHMC), which proposes
a cyclical learning rate schedule. To make a fair comparison, we test the variance-reduced replica
exchange SGHMC algorithm with cyclic learning rates and refer to it as cVR-reSGHMC.

We run M-SGD, SGHMC and (VR-)reSGHMC for 500 epochs. For these algorithms, we follow

a setup from |Deng et al.| (2020). We fix the learning rate 7],(@1) = 2e-6 in the first 200 epochs and
decay it by 0.984 afterwards. For SGHMC and the low-temperature processes of (VR-)reSGHMC,

we anneal the temperature following 7,51) = 0.01/1.02* in the beginning and keep it fixed after the

burn-in steps; regarding the high-temperature process, we set n,(f) = 1-5771(:) and Tng) = 57’,&1). The
initial correction factor Fj is fixed at 1.5e5. The thinning factor T is set to 256. In particular for

fWe choose 7(*) = 10 instead of 1 to avoid peaky modes for ease of illustration.
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Figure 3: Variance reduction on the noisy energy estimators on CIFAR10 & CIFAR100 datasets.

cycSGHMC, we run the algorithm for 1000 epochs and choose the cosine learning rate schedule
with 5 cycles; g is set to le-5; we fix the temperature 0.001 and the threshold 0.7 for collecting the
samples. Similarly, we propose the cosine learning rate for cVR-reSGHMC with 2 cycles and run
it for 500 epochs using the same temperature 0.001. We only study the low-temperature process for
the replica exchange algorithms. Each experiment is repeated five times to obtain the mean and 2
standard deviations.

We evaluate the performance of variance reduction using VR-reSGHMC and compare it with reS-
GHMC. We first increase the batch size n from 256 to 512 for reSGHMC and notice that the re-
duction of variance is around 2 times (see the red curves in FigEkc,d)). Next, we try m = 50 and
n = 256 for the VR-reSGHMC algorithm, which updates the control variates every 50 iterations.
As shown in Fig[3|(a,b), during the first 200 epochs, where the largest learning rate is used, the vari-
ance of VR-reSGHMC is slightly reduced by 37% on CIFAR100 and doesn’t make a difference on
CIFAR10. However, as the learning rate and the temperature decrease, the reduction of the variance
gets more significant. We see from Fig[3|c,d) that the reduction of variance can be up ro 10 times on
CIFARI0 and 20 times on CIFAR100. This is consistent with our theory proposed in Lemmal[I] The
reduction of variance based on VR-reSGHMC starts to outperform the baseline with n = 512 when
the epoch is higher than 370 on CIFARI0 and 250 on CIFAR100. We also try m = 392, which
updates the control variates every 2 epochs, and find a similar pattern.

For computational reasons, we choose m = 392 and n = 256 for (c)VR-reSGHMC and compare
them with the baseline algorithms. With the help of swaps between two SGHMC chains, reSGHMC
already obtains remarkable performance (Deng et al.,|2020) and five swaps often lead to an optimal
performance. However, VR-reSGHMC still outperforms reSGHMC by around 0.2% on CIFAR10
and 1% improvement on CIFAR100 (Table[T)) and the number of swaps is increased to around a
hundred under the same setting. We also try cyclic learning rates and compare cVR-reSGHMC with
cycSGHMC, we see cVR-reSGHMC outperforms cycSGHMC significantly even if cycSGHMC is
running 1000 epochs, which may be more costly than cVR-reSGHMC due to the lack of mechanism
in parallelism. Note that cVR-reSGHMC keeps the temperature the same instead of annealing it as
in VR-reSGHMC, which is more suitable for uncertainty quantification.

TABLE 1: PREDICTION ACCURACIES (%) BASED ON BAYESIAN MODEL AVERAGING. IN PAR-
TICULAR, M-SGD AND SGHMC RUN 500 EPOCHS USING A SINGLE CHAIN; CYCSGHMC RUN
1000 EPOCHS USING A SINGLE CHAIN; REPLICA EXCHANGE ALGORITHMS RUN 500 EPOCHS
USING TWO CHAINS WITH DIFFERENT TEMPERATURES.

CIFAR10 CIFAR100
RESNET20 RESNET32 RESNET56 RESNET20 RESNET32 RESNET56

M-SGD 94.07+£0.11  95.11£0.07 96.05+0.21 | 71.93+0.13  74.65+0.20 78.76+0.24
SGHMC 94.16£0.13  95.17£0.08 96.04+0.18 | 72.09+0.14 74.80+0.19 78.95+0.22
reSGHMC 94.56+0.23  95.444+0.16 96.15+0.17 | 73.944+0.34 76.38+0.23  79.86+0.26
VR-reSGHMC | 94.84+0.11 95.62+0.09 96.32+0.15 | 74.83+0.18 77.40+£0.27 80.62+0.22
cycSGHMC 94.61+0.15 95.56+0.12 96.194+0.17 | 74.21£0.22 76.60£0.25 80.39£0.21
cVR-reSGHMC | 94.91+0.10 95.64+0.13 96.36+0.16 | 75.02+0.19 77.58+0.21 80.50+0.25
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Regarding the training cost and the treatment for improving the performance of variance reduction
using adaptive coefficients in the early period, we refer interested readers to Appendix

For the detailed implementations, we release the code at https://github.com/WayneDW/
Variance_Reduced_Replica_Exchange_Stochastic_Gradient_MCMC.

5.3 UNCERTAINTY QUANTIFICATION FOR UNKNOWN SAMPLES

A reliable model not only makes the right decision among potential candidates but also casts doubts
on irrelevant choices. For the latter, we follow [Lakshminarayanan et al.| (2017) and evaluate the
uncertainty on out-of-distribution samples from unseen classes. To avoid over-confident predictions
on unknown classes, the ideal predictions should yield a higher uncertainty on the out-of-distribution
samples, while maintaining the accurate uncertainty for the in-distribution samples.

Continuing the setup in Sec[5.2] we collect the ResNet20 models trained on CIFAR10 and quantify
the entropy on the Street View
House Numbers (SVHN) dataset,
which contains 26,032 RGB test-
ing images of digits instead of ob-
jects. We compare cVR-reSGHMC

1.00 1.00

o
3
a

Empirical CDF
o
o
o
Empirical CDF
o
o
o

with M-SGD, SGHMC, reSGHMC, M-SGD — M-SGD
. — SGHMC — SGHMC
apd C.SGHM.C‘ Ideally, the predlg- 0.25 e 0.25 i Ll
tive distribution should be the uni- cycSGHMC cycSGHMC
form distribution and leads to the 0.00 — CVR-reSGHMC 0.00 — CVR-reSGHMC
: 20 15 10 05 00 20 15 10 05 00
hlgheSt entropy. We present the em- Entropy (before calibration) Entropy (after calibration)

pirical cumulative distribution func-
tion (CDF) of the entropy of the pre-
dictions on SVHN and report it in
Figll As shown in the left figure,
M-SGD shows the smallest probability for high-entropy predictions, implying the weakness of
stochastic optimization methods in uncertainty estimates. By contrast, the proposed cVR-reSGHMC
yields the highest probability for predictions of high entropy. Admittedly, the standard ResNet mod-
els are poorly calibrated in the predictive probabilities and lead to inaccurate confidence. To alleviate
this issue, we adopt the temperature-scaling method with a scale of 2 to calibrate the predictive dis-
tribution (Guo et all, 2017) and present the entropy in Figl] (right). In particular, we see that 77%
of the predictions from cVR-reSGHMC yields the entropy higher than 1.5, which is 7% higher than
reSGHMC and 10% higher than cSGHMC and much better than the others.

Figure 4: CDF of entropy for predictions on SVHN via CI-
FAR10 models. A temperature scaling is used in calibrations.

For more discussions of uncertainty estimates on both datasets, we leave the results in Appendix [F]

6 CONCLUSION

We propose the variance-reduced replica exchange stochastic gradient Langevin dynamics algorithm
to accelerate the convergence by reducing the variance of the noisy energy estimators. Theoretically,
this is the first variance reduction method that yields the potential of exponential accelerations
instead of solely reducing the discretization error. In addition, we bypass the Gronwall inequality
to avoid the crude numerical error and consider a change of Poisson measure in the generalized
Girsanov theorem to obtain a much tighter upper bound. Since our variance reduction only conducts
on the noisy energy estimators and is not applied to the noisy gradients, the standard hyper-parameter
setting can be also naturally imported, which greatly facilitates the training of deep neural works.
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A PRELIMINARIES

Notation We denote the deterministic energy based on the parameter 3 by L(83) = Zfil L(x;|8)
using the full dataset of size N. We denote the unbiased stochastic energy estimator by
NN s L(x;|B) using the mini-batch of data B of size n. The same style of notations is also
applicable to the gradient for consistency. We denote the Euclidean L2 norm by || - ||. To prove the
desired results, we need the following assumptions:

Assumption 1 (Smoothness) The energy function L(x;|) is Cn-smoothness if there exists a con-
stant Oy > 0 such that VB, 82 € RY, i € {1,2,--- , N}, we have

[VL(xi|81) — VL(x:|B2)[| < Cn||B1 — B2]. (10)
Note that the above condition further implies for a constant C = NCy and V31, 32 € R we have
IVL(B1) — VL(B2)|| < C||B1 — B2 (11)

The smoothness conditions (I0) and (TT) are standard tools in studying the convergence of SGLD
in (Xu et al., |2018)) and |Raginsky et al.| (2017), respectively.

Assumption 2 (Dissipativity) The energy function L(-) is (a, b)-dissipative if there exist constants
a > 0andb > 0 such that VB € R%, (3, VL(B)) > a|B||* — b.

The dissipativity condition implies that the Markov process is able to move inward on average
regardless of the starting position. It has been widely used in proving the geometric ergodicity of
dynamic systems (Mattingly et al.l 2002} Raginsky et al.,2017; |Xu et al., 2018).

Assumption 3 (Gradient oracle) There exists a constant § € [0, 1) such that for any 3, we have
E[|VL(B) — VL(B)|’] < 26(C7|B]* + @), (12)

where ® is a positive constant. The same assumption has been used in |Raginsky et al.| (2017) to
control the stochastic noise from the gradient.

B EXPONENTIAL ACCELERATIONS VIA VARIANCE REDUCTION

We aim to build an efficient estimator to approximate the deterministic swapping rate S(3 SN (2))

S(BD, @) = (77~ ) (Bl Louls®) -2, Loxils®)) (13)

In big data problems and deep learning, it is too expensive to evaluate the energy Zf\; 1 L(x;|8) for
each (3 for a large N. To handle the computational issues, a popular solution is to use the unbiased
stochastic energy & 3. _ . L(x;|3) for a random mini-batch data B of size n. However, a niive

replacement of vazl L(x;]8) by &> L(x;|3) leads to a large bias to the swapping rate. To
remove such a bias, we follow |Deng et al.| (2020) and consider the corrected swapping rate
380, 3@ = (77 ) (¥ Cien LexlBD)= 8 Ticp L) - (=) %) (14)

where o denotes the variance of NN ien L(xi [,6(?)) DI L(xi|,6(2)). Empirically, 82. is
quite large, resulting in almost no swaps and insignificant accelerations. To propose more effective
swaps, we consider the variance-reduced estimator

EBuse =~ 3 (exlB) ~ I (x
i€B

SFEP

N
Bis))) + ;L (x

| is updated every m iterations. Denote the variance of L(B|BW) -

ﬁmL%J) o 19

where the control variate 3,,| «

Z(B| B®) by 2. The variance-reduced stochastic swapping rate follows

S (B, B?) = () (TBIB)-LBIBD) - (- ) &) (16)

*We only consider the case of F' = 1 in the stochastic swapping rate for ease of analysis.
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Using the strategy of variance reduction, we can lay down the first result, which differs from the ex-
isting variance reduction methods in that we only conduct variance reduction in the energy estimator
for the class of SGLD algorithms.

Lemma B1 (Variance-reduced energy estimator) Under the smoothness and dissipativity as-

sumptions |I| and @ the variance of the variance-reduced energy estimator E(Bk|ﬁ,(€h)), where
h € {1,2}, is upper bounded by

~ 2 2
vm(uBHmP»g71”D§(g@0%5ﬂ%amﬁaQ%+4#%O. (17)

where Dp = CR+maxX;eq12.... Ny N||[VL(x|B.)[ + €Y and R is the radius of a sufficiently large
ball that contains ,B,Eh) forh e {1,2}.

Proof

ﬂ<thJ)}+§;L( m) ZL XJ',B(h)>2]
Wﬁ) §<2L< ng iu&ﬁmﬂ>1

ZN: L (Xa' ‘@:EAJ) ZN: L(x; ﬁ(h)))] ) 2]

_E [(f sz [L(xi\ﬁffh (XZ

L(Xz‘B](gh)) (XL

Lixi|B™) - (xi

(h) 1
ﬂMﬁ)+N(
Jj=1

N2
i€By,

N? () (h) 1 () ()
:nz_ZE[<L xq|B}, xi|B ol & | ZL x84, )—ZL x;|8 Lk
1€ By, Jj=1 Jj=1
NS g | (L™ - L ()
S (xilB") = L x|, & |
i€ By,
D3? 2
<ZEE ?’ﬁﬁmu

(18)

where the last equality follows from the fact that E[(>"", z;)?] = Y1, E[2?] for 1ndependent
variables {z;}™_; with mean 0. The first inequality follows from E[(z — E[x])? ] < E[2?] and the
last inequality follows from Lemma where D = CR+max;e( 2. ny N||[VL(x] 8| + <

and R is the radius of a sufficiently large ball that contains ﬁ,gh) for h € {1,2}.

2
Next, we bound E [H ﬁz(g ﬁ } as follows

2 k—1 k—1
oo, | <= || X wti-a) < 5 sfl@n-a0f] oo
j=ml k| j=ml &)

m| k]
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For each term, we have the following bound

2
U } =E 77— Z VL( 1|,3(h )+ V 2777'(h)£k

h (h
’6](+)1 6] :

1€ By
2n°N? ON& 2
< .ZE[HVL(xiﬁk )H + 4T d o0)
2
S%@CQ 1817 +2Q) + 4nr®d
2n

7(20 Uy, cap +2Q%) +dnrd,

where the first inequality follows by E[||a + b||?] < 2E[||a||?] + 2E[||b]|?], the i.i.d of the data points
and 7)) < 7 for h € {1, 2}; the second inequality follows by Lemma the last inequality
follows from Lemma

Combining (T8), (T9) and (20), we have
~ 2 2
Var (L(Bk|ﬁ,§h>)) < ypg (:(202%77@%07@,(, +2Q%) + 4T<2>d> . 1)
|

Since Var (E(Bkmfj‘))) < Var (¥ 5,5 L(x:|By)) + Var (g SienL (xi ﬁmﬁo) by defi-

nition, Var (E(Bk| ,Bl(gh))) is upper bounded by O (min{c?2, ”ﬁ—j"}) which becomes much smaller

using a small learning rate 77, a shorter period m and a large batch size n.

Note that 57,,7,,,7”(6(1),,8(2)) is defined on the unbounded support [0,00] and
E[S)mn(BY,B3)] = S(BY,B?) regardless of the scale of 52. To satisfy the (stochas-

tic) reversibility condition, we consider the truncated swapping rate min{1, §n,m7n(ﬁ(1), B3},
which still targets the same invariant distribution (see section 3.1 (Quiroz et al., 2019)) for details).
We can show that the swapping rate may even decrease exponentially as the variance increases.

Lemma B2 (Variance reduction for larger swapping rates) Given a large enough batch size n,
the variance-reduced energy estimator L(By| ,Bl(ch)) yields a truncated swapping rate that satisfies

E[min{1, S, mm..(8", 8%)}] ~ min {l,S(ﬁ(l)ﬁ(?)) <0 (;2) + e—o(’"f”m%)) } (22)

Proof

By central limit theorem, the energy estimator & Y~ . L(x;|8)) converges in distribution to a
normal distributions as the batch size n goes to infinity. In what follows, the variance-reduced
estimator L(By|B;) also converges to a normal distribution, where the corresponding estimator is
denoted by L(By|Bx). Now the swapping rate S, ,, (-, -) based on normal estimators follows

Sy mn (B0, 32) = (=) (EEBD) BB~ (=) %), 23)

where 2 denotes the variance of L(B|31)) — L(B|B®). Note that S, ,, (81, 3®) fol-

lows a log—normal distribution with mean log S(3"),3?) — (A5 — ﬁ)z %2 and variance

(T<11) - .,-(2) )2 72 on the log-scale, and S(B(l),ﬁ(2)) is the deterministic swapping rate defined
in (13). Applying Lemma[D4] we have

‘ (1), 3@ — W 5@ ()
]E[Hlln{l, Sn,m,n (5 7ﬁ )}] - O S(ﬁ 7ﬁ ) eXp 8 . (24)

Moreover, 52 differs from 52, the variance of L(B|3™1)) — L(B|B®), by at most a bias of
O(i) according to the estimate of the third term of (S2) in |Quiroz et al.| (2019) and 72 <

n2
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Var (E(Bk\,@,(cl))) + Var (E(BM,B,@)), where both Var (E(Bk\,@,gl))) and Var (Z(Bk.|ﬁ,(§2)))
are upper bounded by mTZ”D% (22(202V 4 1) b + 2Q%) + 47d) by Lemma it follows that
Efmin{1, S, (80, 8O} < S(8D, 3@~ O (5+35) (25)
Applying min{1, A + B} < min{1,A} + |B|, we have
Efmin{1, Sy.mn (8", 89)}]
=E[min {1, Symn(B8Y, 82) = S n(BY, BD) +S, 1 n(BY, 32) }]

§ A (26)
< E Hgn’m,n(ﬂ(l),ﬂ@)) - Sn,m,n(/@(l)7 /6(2)) H + E[mln{l, Sn,m,n(,@(l)y /8(2))}]
z see formula

By the triangle inequality, we can further upper bound the first term Z
E [[80mn(8V.8%) = Sy (81, 8]
< [ELS)mn (B, B2)] = S8V, 82) | + |S(8Y, 8) ~ E[Symn(BY, B2)]
Il I2
1 1
1) 32 1) 32
= 58", 890 (Tﬂ) +5(80, 80 (712) ,

where Z; and Z follow from the proof of S1 without and with normality assumptions, respectively
(Quiroz et al.| [2019).

Combining and (27), we have
E[min{1, S, m.n (89, 32)}] ~ min {1,S(ﬁ(1)7ﬁ(2)) (0 (2) + e‘o<'"n"+iz)> } (28)
n

27)

This means that reducing the update period m (more frequent update the of control variable), the
learning rate 7 and the batch size n significantly increases min{1, S, ., } on average. W

The above lemma shows a potential to exponentially increase the number of effective swaps via
variance reduction under the same intensity r. Next, we show the impact of variance reduction in
speeding up the exponential convergence of the corresponding continuous-time replica exchange
Langevin diffusion.

Theorem 1 (Exponential convergence) Under the smoothness and dissipativity assumptions[Ijand
[2] the replica exchange Langevin diffusion associated with the variance-reduced stochastic swap-
ping rates Sy m n (-, ) = min{l, Sy m.n(-, )} converges exponential fast to the invariant distribu-
tion  given a smaller learning rate 1), a smaller m or a larger batch size n:

Wa(ve,m) < Doexp {—t (1+ s, ,...) /cLs} (29)

dug)

. & m,n ™ . .
where Do = +/2crsD(wol|), ds, .. = infiso % — 1 is a non-negative constant de-
o EW T
pending on the truncated stochastic swapping rate Sy, m (-, -) and increases with a smaller learning
rate m, a shorter period m and a large batch size n. crs is the standard constant of the log-Sobolev

inequality asscoiated with the Dirichlet form for replica exchange Langevin diffusion without swaps.

Proof Given a smooth function f : R? x R? — R, the infinitesimal generator £Lg associated

n,m,n
with the replica exchange Langevin diffusion with the swapping rate S, ., = min{l, Sy m n}
follows

Ls, BV, D) =~ (Vg f(BY, B2)), VL(BW)) — (Vge f(BY, BP), VL(B?))
+ 7MW AGw F(BD, BP) + 1P Age f(BY, BP)

+ Sy (B, B2) - (F(B2,80) = £(BY, 8))),
(30)
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where V gy and Ag,) are the gradient and the Laplace operators with respect to 3 (h) | respectively.
Next, we model the exponential decay of Wh (14, 7) using the Dirichlet form

gsn,'m,n (f) = /an,wn,7z (f)dﬂ-) (31)
where s, . (f) =1 -Ls,..(f*) = fLs, ...(f) is the Carré du Champ operator. In particular
for the first term $Lg, . . (f?), we have

1

5L5,., (F(BY.89)?)

— (f(BY, BV g0 f(BV, BP)), V50, L(BWY)) + 7|V g0, f(BY), B2
+7WF(BD, B2) A0 f(BY, BP)
- <f(5(1)75(2))Vg<2)f(ﬁ(1),B(2)), Vﬁ@)L(ﬁ(?))) + 7’(2)||Vg<2>f(ﬁ(1),ﬂ(2))||2
@ F(BY, 8)Age f(BY, 87)
+ gsn,m,n(,@(l)7,8(2))(f2(,8(2)7/8(1)) — 28, gY).

Combining the definition of the Carré du Champ operator, (30) and (B), we have
Ly (F(B", 7))
= L5y (B, 8) — 1B, B Ls, 0. (1B, B))

=7 VNVew F(B B + 72|V e S8, 8] >
+ 5 Snmn(BY, B (£(8%,8Y) — £(BY, BF))%.
Plugging @) into @), the Dirichlet form associated with operator Ls, . follows
E5nnD) = [ (FV IV 1B BN + 7PV g0 182, B am(82, )
vanilla term & ( ) (33)

/ Snmn(BV, B2) - (F(82,8) — 1(BY, 3?))2dn(8V, B2),

acceleration term

where f corresponds to W. Under the asymmetry conditions of W and Sy mn > 0,
the acceleration term of the Dirichlet form is strictly positive and linearly dependent on the
swapping rate S, . Therefore, &, . (f) becomes significantly larger as the swapping rate
Sp,m,n increases significantly. According to Lemma 5 (Deng et al., [2020), there exists a constant

dl/
Esym,n (V) T)

5( dut )
inequality for the unique 1nvariant measure 7 associated with variance-reduced replica exchange
Langevin diffusion {3; };>0

ds = inf;so — 1 depending on S, ,,,, that satisfies the following log-Sobolev

n,m,n

CLs dvy
D <2——M¢& —),
(nlim) = 25— Es, 0y )
where dg, .. increases rapidly with the swapping rate .S, ;,, .. By virtue of the exponential decay

of entropy (Bakry et al,[2014), we have
D(v||7) < D(wp||m)e 2t +0sn,mn)/cus

where cg is the standard constant of the log-Sobolev inequality asscoiated with the Dirichlet form
for replica exchange Langevin diffusion without swaps (Lemma 4 as in [Deng et al.| (2020))). Next,
we upper bound W (14, ) by the Otto-Villani theorem (Bakry et al., 2014)

Wa(vg, ) < /2csD(ve|) < \/QCLSD(/J0||7T)€_t(1+65"’”"")/m,
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where dg, .. . > 0 depends on the learning rate 7, the period m and the batch size n. =

dv
“"Sn,'m,n( Tﬂf) _ 1

£

depending on S, ,, ,, may increase significantly with a smaller learning rate 7, a shorter period m
and a large batch size n. For more quantitative study on how large dg, ., . is on related problems,
we refer interested readers to the study of spectral gaps in|Lee et al.| (2018)); |Dong & Tong|(2020);

Futami et al.| (2020).

In the above analysis, we have established the relation that dg = inf;~q

n,m,n

C DISCRETIZATION ERROR

Consider a complete filtered probability space (2, 7, F = (F¢)+c[o,7], P) which supports all the ran-
dom subjects considered in the sequel. With a little abuse usage of notation, the probability measure
P (component wise if IP is joint probability measure with mutually independent components) would
always denote the Wiener measure under which the process (W;)o<;<7 is a P-Brownian motion.
To be precise, in what follows, we shall denote PP := PW x N, where PW is the infinite dimen-
sional Wiener measure and N is the Poisson measure independent of P and has some constant
jump intensity. In our general framework below, the jump process « is introduced by swapping the
diffusion matrix of the two Langevin dynamics and the jump intensity is defined through the swap-
ping probability in the following sense, which ensures the independence of PW and N* in each
time interval [in, (i + 1)n], for i € NT. The precise definition of the Replica exchange Langevin
diffusion (reLLD) is given as below. For any fixed learning rate > 0, we define

{ dB: = —VG(B:)dt + X()dWs,

P(a(t) = jla(t —dt) =1, B([t/nln) = B) = rS(B)nL(e=(t/njny + o(dt), for I #j,

(34)

VL(BW) . o . .
where VG(8) := VLB®) ) and 1;_|/yy is the indicator function, i.e. for every ¢ = in with

i € NT, given B(in) = 3, we have P (a(t) = jla(t — dt) = 1) = rS(B)n, where S(3) is defined
as min{1, S(8", )} and S(B1V), B(2)) is defined in (13). In this case, the Markov Chain a(t)
is a constant on the time interval [|¢/n]|n, [t/n|n+n) with some state in the finite-state space {0, 1}
and the generator matrix @ follows

0= —rS(B)nd(t — [t/n]n)  rS(B)né(t — [t/n]n)
rS(Bmé(t — [t/nln)  —rS(B)no(t — [t/nln))”

where §(-) is a Dirac delta function. The diffusion matrix () is thus defined as (3(0), (1)) :=
{ <\/2T(1)Id 0 ) (\/27(2)101 0

0 \% 2T(2)Id ’ 0 \ QT(I)Id
& Zhu| (2010)[Section 2.7], the generator matrix ) will depend on the initial value at each time
interval [in, (i + 1)n). The distribution of process (B3;)o<¢<r is denoted as vy := P x N*° which
is absolutely continuous with respect to the reference measure P := PW x N, under which W
is Brownian motion and «(-) is a Poisson process with some constant jump intensity. This fact
follows from the result in|Gikhman & Skorokhod|(1980)[VII, Section 6, Theorem 2] and|Yin & Zhu
(2010)[Section 2.5, formula (2.40)]. The motivation of only considering the positive swapping rate
inin, fori € N1, and zero elsewhere is due to our construction of the discretized process (3 as shown
below (see equation [33). A simple illustration of the idea can be seen from the auxiliary process
construction in|Yin & Zhu|(2010)[Section 2.5], following which we want to make sure the stopping
time of 3 and 3 happening at the same time. Otherwise, it is unlikely (and also unreasonable) to

derive the Radon-Nikodym derivative of the two process 3 and 3. Thus, we should think of the
process is concatenated on the time interval [in, (i + 1)n) up to time horizon 7. Similarly, we
consider the following Replica exchange stochastic gradient Langevin diffusion, for the same
learning rate > 0 as above, we have

> } . From our definition and following |Yin

dﬁ? = *Vé(~ft/njn)dt + 3(ae/n)n) AW,
N N o (35)
P (@(t) = It — dt) = 1, B(Lt/nln) = B) = 8B (1= (u/niny +olde), for L# ],
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VL(BW)
VL(B®)

shown in . The distribution of process (Bt)ogth is denoted as pur = IP’@ X Ng, where o is a

where VG(3) := ( > and 5(3) = min{1, §n,m,n(5<”, B@)} and gnvmyn(,é(l), B@)is

Poisson process with jump intensity 7S (8)nd(t — |t/n]n) on the time interval [[¢/n|n, [¢/n|n+1).

Note that 3 and 5 are defined by using the same P-Brownian motion W, but with two different
jump intensity on the time interval [|t/n]n, [t/n]n + n). Notice that, if there is no jump, the

construction of 5 based on (3 follows from the fact that they share the same marginal distributions
as shown in|Gyongy|(1986), where one can find the details in|Raginsky et al.|(2017). Given the jump

process « and « introduced into the dynamics of 3 and (3, the construction is more complicated.
Thanks to Bentata & Cont| (2009), we can carry on the similar construction in our current setting.
We then introduce the following Radon-Nikodym density for dvy/dur. In the current setting, the
change of measure can be seen as the combination of two drift-diffusion process and two jump
process simultaneously. We first introduce some notation. For each vector A € R", we denote
| A||? := A* A. Furthermore, we introduce a sequence of stopping time based on our definition of

process 3 and 3. For j € N*, we denote Cj’.s as a stopping times defined by ;11 := inf{t > (; :
a(t) # o)} and N(T') = max{n € N : ¢, < T}. Itis easy to see that for any stopping time
G, there exists [ € N such that {; = In. Similarly, we have the stopping time for the process 3
by (41 :=inf{t > (; : a(t) # a(¢;)} and &(t) follows the same trajectory of a(t). To serve the
purpose of our analysis, one should think of the process 3 as the auxiliary process to the process 3,
see similar constructions in~Yin & Zhu| (2010)[Section 2.5, formula (2.39)]. The difference is that
both of our process 3 and 3 are associated with jump process jumping at time 7, for some integer
i € NT, instead of jumping at any continuous time. We combine approximation method from |Yin
& Zhu| (2010)[Section 2.7] for non-constant generator matrix () and the density representation for
Markov process in|Gikhman & Skorokhod| (1980)[VII, Section 6, Teorem 2] to get the following

Lemma C1 Ler {(;|j € {0,1,---,N(T)}} be a sequence of stopping time defined by c.. Let
k € NT be an fixed integer such that kn < T < (k + 1)n. For each fixed learning rate n > 0 and
for any € > 0, the Radon-Nikodym derivative of dur /dvr is given as below,

N(T)  ¢.oq AT
du j+1 s ~ _
G =en (X [ [5GV - 5 el Ve[ aws

j=0 Fi
1 N(T) Cj1NT - - . 2
=P [=71@)VEB) - 57 (a(G)VEB)|| dt)
2 j=0 CJ‘

N(T))

CGriAT—e S S(B,)
X exp { — ;0 /cj ro(t = [t/n]n)[S(Bie/nn) — SBiesmin)indt o x HéV:(OT)S(Bi)'

Proof Recall that ¢; is stopping time defined by « (same as defined by @), i.e. {j4+1 := inf{t >
G aft) # a(g)}, forj =0,1,---, N(T'), and for each (j, there exists | € {0,1,--- ,k} such
that (; = In. We now follow (Gikhman & Skorokhod, (1980)[VII, Section 6, Theorem 2] to derive
the Radon-Nikodym density for du7 /dvr. In this case, if the generator matrix () is constant, i.e. the
jump intensity is constant, we can follow the similar construction from|Yin & Zhu|(2010)[Formula
(2.40)], see also Eizenberg & Freidlin|(1990)[Formula(3.13)]. Next, we adjust our setting to the case
that we can treat our generator matrix as constant on each time interval [;, (;+1), then the existing
results apply to our case for the density with respect to the Poisson measure (jump process « and

@), i.e. dN® /dN*®. Furthermore, once the generator matrix () is constant, then the measure P“ ( or
P%) is independent to N (or N). We show the following steps to give a clear outline of our proof.

Step 1: For each stopping time interval [(j, (;+1), no jump would occur after the initial point at
time (; and the diffusion matrix X and X keep the same, thus we can apply the generalized Girsanov
theorem to get the Randon-Nikodym derivative for dP“ /dP¢.

Step 2: In order to combine the the two density of dN*/ dN® and dP¢ / dIP’é, we need the inde-
pendent property of the two measures on the same time interval, then we directly get the density
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following from |Gikhman & Skorokhod| (1980)[VII, Section 6, Theorem 2]. Different from the work
mentioned above, we will first write all the density on each time interval [in, (i + 1)n) to incor-
porate the independent requirement mentioned above. Notice that the relative change of density

for dN¥ /dN* would only depends on the left end point, since the jump intensity would change
its values at the initial value of interval [in, (i + 1)n), which is a standard idea to deal with gen-
erator matrix () depending on the initial value instead of a constant matrix case. (See|Yin & Zhu
(2010p[Section2.7] for similar treatments).

Step 3: In general, the stopping time interval could contain several time interval with length 7,
however the jump intensity should only depend on the left end point for each time interval [in, (i +
1)n). Based on the above set up, we now derive the Radon-Nikodym derivative. First notice that,
on each period [¢;, (j+1), the matrix ¥ is fixed and is evaluated at X(c((;)), which is the same
for ¥(a(¢;)). In particular, £((¢;)) = E(a(¢;)) is a constant diagonal matrix. According to our
definition dvy = dP® x dN* and dup = dPY x dN°, we write the Radon-Nikodym derivative on
each of the time interval [in), (i + 1)7) and concatenate them together. We consider the swapping of
the diffusion matrix first where a similar construction can be found in Yin & Zhu| (2010)[Formula
(2.40)], we get the following Radon-Nikodym derivative, for any € > 0,

dNS" N(T) (J+1)NAT —¢ o
INS = exp{ - Z / ro(t — [t/n] U)(S(BBW,,J,,) - 5(5Bw,,,,,,))77dt} (36)
j=0 “J"N
S(Be,)
N(T) G
= S8

Next, we show the density for dP“/ dPC as below. On each interval [¢j,Cj+1), given initial value
(8j,8;), the matrix 3(c({;)) and X(ca(¢;)) are always the same, since no jump would happen. In
particular, in this continuous case the integral on [(;,;+1) and [(j, (j+1] are the same. Thus we
have the following Radon-Nikodym derivative

aPC N(T) ;AT R N 3
m_exp(jzo /C [E*(a(éj))VG(ﬁt)fE (a(cj))va(ﬁt)}dwf
1 N(T) ¢, AT L _ ) )
P> [ rrawaie - o) ves ). o

Notice that matrix ¥ is diagonal square matrix, thus we have ¥ = X*. Recall that W is a P-
Brownian motion, assuming there is no jump in the dynamic for 3, then according to the Gir-
sanov theorem (see an example in Theorem 8.6.6 and Example 8.6.9 (@ksendall,[2003)) with Radon-
Nikodym derivative dP& /dP, we have the PG -Brownian motion, denoted as W&, which follows

t
WE = Wi+ [ 7 (a)(V6(B)s. (38)
0

This fact holds true on each of the time interval [(;, (j+1]. Multiplying the two density dP® / PS and
dN*® /dN*, we complete the proof.

Remark 1 Notice that, if we keep the constant diffusion matrix without jump, then the Randon-
Nikodym derivative dur /dvr has been used in the stochastic gradient descent setting, for example
Raginsky et al.|(2017). However; the notation of the Brownian motion has been used freely, we try
to make it consistent in the current setting. Namely, for constant diffusion matrix X, we have

dPG

e = exD (/OT [z—lvé(ﬁs) - z—lvc:(ﬂs)}dwf

1

T
’*/o Hg*lvé(ﬁs)—E*1VG(ﬁs)

5 ’2d5), 39)

where W is a PS-Brownian motion as shown in equati()n not a P-Brownian motion W.
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Remark 2 The density d“T that we derived above is so far the best we can do. If one would like

to use the continuous tlme control a(t) with continuous jump intensity S(3(t)) instead of jumping
at the initial point with a fixed rate, then we can not even write the Randon-Nikodym derivative
anymore, since o(t) and a(t) will define different stopping time, i.e. jump at different time and pr
is not absolutely continuous with respect to vr.

Based on the above lemma, we further get the following estimates.

Lemma C2 Given a large enough batch size n or a small enough m and n, we have the bound of
the KL divergence of Dy 1 (pr|vr) as below,

D r(prlvr) < (®o + ®1n)kn + N(T) P2,

2= (Vi) +

@ C2§kd
(2T 1) 4 2
— (C dT(l) + 5D [T+ 71 ]),

Dy=0 (\’}%ﬁd) .

Proof By the very definition of the KL-divergence, we have

d
DKL(NT‘VT) /dVT log d,U/T
vr

=—E,, [log(duT/dVT)‘(/@, B) = (B, E)}

We shall keep the convention below and denote E,. 3 = E,.[-|(8, B) = (8,5)], where 3

(8D, @) € R2 and 3 = (31, 3(2)) € R24 denotes the values at each time i, i = 0,1, - - , k.
Plugging Lemma[Cl|in the above equation and we unify the notation by using time intervals of th
type [in, (¢ + 1)n]. To be precise, we get

with
r6<I>2

G k— (i+1)n _
o= (3 [ [ @) V) - 3 ) Ve aw,

i=0 VN

n /k (27 @) VE(B,) — 57 (alkn) VG(B0)| aw;

n

(k+1)n
féz [ |5 @enyveae) - = awnvoe|a

n

"/ HE G (kn) VG (B) — S alkn) VG, || dt

The above equality follows from the fact that each time interval [(;, {;+1] always contain exactly
some sub-interval [in), (i + 1)n]. Namely, we have [(;, (1] = [in, i+ 1)n]U[( +1)n, (j +2)n] U

U [in, (I + 1)n], for some 4,1 € {0,1,--- ,k}. In particular, the matrix X keep the same on
each interval [in, (z + 1)n), for some i € {0,1,--- ,k}. Similarly, we expand the Radon-Nokodym

) . (40)

derivative for 4 dN &= on the time interval of length 7. Based on our definition of jump intensity, we get

s N(T) (j+1)nAT—e .
% - exp{ - Z / T(S(t - Lt/ﬁJn)(S(ﬁWm) — S(ﬁLt/an))Udt
3=0 Jn
' S(B g(EC])
k -~
=ex r N(T) 5(59)
) p{ ; SB0) =SB } o (5(69)) ' @D
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Without loss of generality, we shall only consider the sum Zf:ol and skip the interval [kn,T).
Notice that on each time interval [in, (i + 1)n), the control a(in) and &(in) are fixed, thus the
two component of the measure dvr g are independent. Taking into account the fact that WE is
P“-Brownian motion, thus we apply the martingale property and arrive at

Dk r(pr|vr)

Eafb Y [ [ @y v e - 2 ey vas| ol
i=0 7

k=1 N(T) o

+Eor [ S 15(Bin) — SBi)ly = Y (10gS(Be,) —log S(8c,))]
i=0 §=0

A5 w o[ [ | @G - 2 amyweis) o]

i=0 in

s

k—1 o N(T)
+ 3" Fuy 0 [115(Bin) — S(Binln] + 3 Burp[| 108 S(Be,) — o S(8c, )] -

i=0 j=0

J K

We then estimates the three terms Z, 7, K in order as below.

Estimate of Z: Due to the fact that every interval [in, (i + 1)n) C [(;,(j+1) for some
j € {0,1,--- ,N(T)}, we know that the control o and & are the same in the interval
[in, (i + 1)n] and the diffusion matrix ¥ is just constant matrix. Thus, we know that ma-
trix X~Ya(in)) = X7 (a(in)), which takes one of the form from (371(0),%71(1)) :=

S | 0 1 7 0
{< o d == li)’ = ' g, | - EET alin) = Z7H(0), we get
var® Varm

|5 @am)vas,) - - @am)vos)||
d 2d
=3 S IViG(B) - VGBI + 2; S [V,GB) — V,G(B) P
j=1 i=
2d
<o D IVCB) VGBI < 5|8~ V0@
Here VG(B) = (géggg%) and VG(B) := (g%EZE;;D The other matrix form of L 71(1)

will result in the same estimates. We thus get

regi >t [ |60 - o)

dt}

On each fixed interval, for t € [kn, (k + 1)n) , we have P-Brownian motion and PG -Brownian
motion (see examples in Theorem 8.6.6 and Example 8.6.9 (@ksendal, [2003)),

AWE =dW; + X7 () (VG(By))dt.
AWE =dW, + X (ay)(VG(By))dt.
Plugging the P“ (and Pé)-Brownian motions to the original dynamics and lb we have

B, = X(a)dWE, and dB; = X(ay)dWE.
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On each interval [i7), (i+1)n), £(c) is a constant matrix, thus we know that the probability distribu-
tion of {B+ }+e[kn, (k+1)n) and {ﬁt}te[k,,)(kﬂ) ) are the same and we denote as é(ﬂt) (Bt) The

difference is that 3; is driven by P“-Brownian motion and Et is driven by P“-Brownian motion,
which implies that, for ¢ € [in, (i + 1)n), we have

E...6[|vE®B) - Vo) | =&, 5[|[vE@) - va@)| ] “2)

Thus, we have the following estimates,

1k (i+1)n ~ _ 2
T< 5 ]EHTVB[/ VG(B) ~ VG (Bramsn)|| dt]
i=0 wn
k—1

* g B / NGB ag) ~ TC B 0]

1) Z w,ﬁ[/(zﬂ)n HVG(BLt/an) — V@(ﬁLt/an)Hth} Ty,

We now estimate the two terms Z; and Z, separately. Notice that, following our notation of P%-
Brownian motion, for ¢ € [in, (i + 1)n), we have

B — Biy = S(an)(WE = W) = S(a)(WE - W),
which implies that (recall that dur = dP¢ x NS and 3 € R24x2d),
]EHT,E[”’gt - Bin‘m < 2rWdn + 27 dn < 47D ap.

We thus conclude that,

+(2)
I, < 02 kdn
As for the term 75, according to Assumption [3] we obtain that

- k-1
Lo < A7 (1) Eurﬁ[CQHﬁmHQ "'(1)2}
=0

Now, we just need to estimate £, 5[]| Bl [[l On each interval [in, (i + 1)7)], under the measure
duT 5 we have

B(i+1)n = Bin + E(a(in))(W(C;H)n —w),
which implies that
EuT,E[Hﬁ(iH)nHz]
:E/LT,E[”ﬁinHQ] + E/LT,EKﬁ’L"’]) W(Ci;-‘rl)'r] - W’L%” + IEHT75H|W(?+1)7] _ Wl%:HQ]
:EMT 5[”@‘17”2] + [27-(1) T 27-(2)]0577

The last equality follows from the independence of ﬁ;m and W€ W,g, and W€ is a PC-

(k+1)n
Brownian motion. By induction, we get

E,, gllBun|] < 20dlr®) + 72y < 2hdfr D + 72

In principle, the Wiener measure W under P€ is not a Brownian motion, thus the uniform L2 bound used
in Lemma.3 may not be appropriate. Instead, we estimate the upper bound using a slightly weaker result.
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‘We conclude that,

7, < M = (20200 + 7k + 92),
471

which implies that
kn 27_(1) (2) 2 2T @)
I< s (250 [r D 4 7 @)kdn + 50 ) + O Zshdn?,
Estimate 7: According to our definition of the swapping probability, we have, for each ¢,

S(Bin) = min{1, Sy (B, BN}, S(Biy) = min{1, S8, B2},

which means |§(5m) — S(Biy)| < 1. Denote C, = |T<11) — Té) |, we have

=2

Snman (BB = exp (Co(L(Bi|BY,) — L(BulBY)) — C27%)
S(8Ly). 82 =exp (C-(L(BS) — L(BY))).

Applying Taylor expansion for the exponential function at C'; (L(B,SI)) - L(,@,(j;)), we have

Eup g [|Snmn (Bl B) — 58 8]
By S8 BE)|Cr L (BilBY) — L(BilB2) ~ €25 — C,(L(BY) — L(B2)| + bigher orderterm
~ ~ =2
<Eurp|Cr (L(BIBY) — L(BulBY)) - €25 - €, (L(BL) - LB + 0]

where the last inequality follows from S (ﬂm , ﬁl(i ) < 1. Combining Lemma L we thus get the
following estimates,

J = Z Ev 8|7 { n,m, n(ﬁzn) (ﬁm) ‘77}

k—1
<03 o [|C (BB 1B — LB 1B - €22 - o (L(8Y) - L8|+ 0@)]
=0

m2 \?
< rknO(C,5 + &%) = rkn0O ((n) d)
n

where the last inequality follows from the Jensen’s inequality and the last order holds given a large
enough batch size n or a small enough m and 7.

Estimate K: We now estimate the last term /C, we have

N(T)
K=" B |[108 Symn(Be,) — log (B, )|
j=0
= = Wy 7 @) o’ a @)
<Cr Y Burp|IL(Be,185)) — LB, 182 - ¢ %1 - (8L - LB
§=0
N(T)
N(T)C2E,, pl6°/2] + C; Y Var[L(B,|8L) — L(B, 18]/
Jj=1
2<2
SN(T)# + N(T)C,5
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Combining Lemma [BT|again, we conclude with
N(T =2 ~ 2 1/2
k<20 | niyes = NO ((”;n> dl.

Combining the estimates of Z, 7, and /C, we complete the proof.

Remark 3 After the change of measure, the expectation is under the new measure PG (or PS)
instead of the Wiener measure P. In the estimate of term I, similar L? estimates of the term

E.. /3[”5(1“ yn||?] has been obtained in Raginsky et al.|(2017)[ Proof of Lemma 7] when there is no
swap. The difference is we write the dynamic of :6(1+1)n with respect to the PC_Brownian motion

W & instead of the P-Brownian motion W. In principle, W under PC is not a Brownian motion.

We then extend the distance of relative entropy Dgr(ur|vr) to the Wasserstein distance
W (T, vr) via a weighted transportation-cost inequality of Bolley & Villani (2005).

Theorem 2 Given a large enough batch size n or a small enough m and 7, we have

2\ /8
WQ(MT,VT) <O (dk3/277 <771/4 + §L/4 + (n:ln) )) . 43)

Proof Before we proceed, we first show in Lemma@] that v7 has a bounded second moment;
the Lo upper bound of p is majorly proved in Lemma.C2 (Chen et al. 2019) except that the slight
difference is that the constant in the RHS of (C.38)|Chen et al.|(2019) is changed to account for the
stochastic noise. Then applying Corollary 2.3 in Bolley & Villani| (2005)), we can upper bound the
two Borel probability measures p1 and v with finite second moments as follows

D 1/4
Wa(ur,vr) < Cy |/ Drr(pr|vr) + (KL(MTVT)> ] , (44)

2

Alw]? e -
where C,, = 2inf)~¢ 3 4+ log [pa v(dw) . Applying Lemma|D6} we have

W2, vr) < (12+8<n0+2b+4d7(2))kn) (DKL(MT|VT)+ DKL(MT|VT)).

Combining Lemma and \/N(T) < N(T) and taking n < 1, kn > 1, and A = 1, we have
W (ug 5o vrs) < (12 +8 (;m +ob+ 4d7(2))) kn ((50 + &y /m)kn + N(T)&>2) :
where ©; = ®; + V/®; fori € {0,1,2}. In what follows, we have
Wi (up g vr,s) < (Yo + Wiy/n) (kn)? + UaknN(T),

where U; = (12 + 8 (ko + 2b + 4d7?)) &, for i € {0,1,2}.
By the orders of @, ®; and P, defined in Lemma|C2] we have

2 1/4 2 1/4
2 _ 2132 [ . 1/2 1/2 m- N(T) m-
W2(NT757VT,ﬁ)§O<dk77 (n +4 +(nn) Ay wl all
2\ 1/4
<0 <d2k3n2 (nW +32 4 (”;n) )) :
(T)

where Nkn can be interpreted as the average swapping rate from time 0 to 7" and is of order O(1).
Taking square root to both sides of the above inequality lead to the desired result {3).

25



Published as a conference paper at ICLR 2021

D PROOF OF TECHNICAL LEMMAS

Lemma D1 (Local Lipschitz continuity) Given a d-dimensional centered ball U of radius R, L(-)
is Dp-Lipschitz continuous in that |L(x;|31) — L(x;|B2)| < B&|81 — Bal| for V61,82 € U and
anyi € {1,2,--- N}, where Dp = CR+ maXje(1,2,...,N} N VL(x;|8:)| + %.

Proof

For any (31, B2 € U, there exists 33 € U that satisfies the mean-value theorem such that

|L(xi|B1) — L(xi]B2)| = (VL(x:|B3), B1 — B2) < [|VL(x:i|B5)]| - |81 — B2,

Moreover, by Lemma[D2] we have

CR+Q

|L(xilB1) — L(xi|B2)| < [VL(x:lBs3)] - |81 = Bell < —7— 181 — Bo|. m

Lemma D2 Under the smoothness and dissipativity assumptions for any B € R, it follows
that

¢ Q
L(x; < = =, 4
IVLeIB) < 181+ 3)
where Q = max;cq12,... N}y N||VL(x;[8,) | + %.
Proof According to the dissipativity assumption, we have
(B, VL(B)) = al B** = b, (46)
where 3, is a minimizer of VL(-) such that VL(83,) = 0. In what follows, we have ||3, < .
Combining the triangle inequality and the smoothness assumption[I} we have
COnb 47
IVL(xilB)II SCNlIB = Bl + IVL(xil B)l| < Cn 1Bl + == + IVL(xilBo)ll. - &7)

Setting Oy = £ asin l| and Q = max;cq12,... N} [|VL(x:| B[ + ¢ completes the proof. W

The following lemma is majorly adapted from Lemma C.2 of (Chen et al.| (2019), except that the
corresponding constant in the RHS of (C.38) is slightly changed to account for the stochastic noise.
A similar technique has been established in Lemma 3 of |[Raginsky et al.| (2017).

Lemma D3 (Uniform L? bounds on replica exchange SGLD) Under the smoothness and dissi-
pativity assumptions Given a small enough learning rate 1 € (0,1 V &), there exists a

positive constant ¥ ; 2y ¢ 1, < 00 such that supys, E[[|BelI?] < ¥y,@) ¢ ap

Lemma D4 (Exponential dependence on the variance) Assume S is a log-normal distribution

02
with mean w — 302 and variance o on the log scale. Then E[min(1,S)] = O(e“~ %), which
is exponentially smaller given a large variance o>.

1

502 and variance o2 on the log scale, the

Proof For a log-normal distribution S with mean u —

probability density f5(S) follows that s\/ﬁ exp {— W } In what follows, we have
. Y e I 1 (log S —u+ 10°)?
E[min(1, 5)] 7/0 min(1, S) fs(S)dS = /0 min(1, S) Voot exp{— 557 ds
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. log S—u+210? ocytu—L1o2 u o - .
By change of variable y = —————=— where S = 7Y 27 andy = —7 + Z given S = 1, it
follows that
E[min(1,.5)]
1 1_2)2 oo 1_2\2
1 log§ —u+ 3 1 log S —u+ 3
:/ Sexp{—( & 5 27) }dS—i—/ exp{—( & 3 27°) }dS
o SV2mo? 20 1 SV2mo? 20
_MJ’_E
c T2 1

2 o 2
- e~ % get—4o gy | / L L e
-

I B N - D
<fle —|—; e 2 <evTEy

where the last equality follows from the change of variable z = o — y and the second last inequality
2

follows from the exponential tail bound of the standard Gaussian variable P(y > €) < ez . |

Lemma D5 (Uniform L? bound on replica exchange Langevin diffusion) For all n € (0,1 A
ﬁ), we have that

b+ 2dr®

(1) 3(2)
E[I(8, B2 < Bl 871 4 222

Proof Consider L;(3;) = ||3:]|?, where B; = ( El), §2)) € R24, The proof is marjorly adapted
from Lemma 3 in [Raginsky et al.[| (2017), except that the generalized Itd formula (formula 2.7 in
page 29 of [Yin & Zhu|(2010)) is used to handle the jump operator, which follows that

dL; = — 2(B:, VG(B1)) + 2d(r + 7@)dt + 28T S (a,)dW (1)
18y mn (B, B) - (L(B®), BV — LB, BV)) +Mi(t) + Ma(t),

Jump-inducing drift

VL(BY)
VL(B?)
inYin & Zhu|(2010)). Due to the definition of L;(83;), we have L,(8", 8'?) = L,(8'?, "),
which implies that the Jump-inducing drift actually disappears. Taking expectations and applying
the margingale property of the Itd integral, we have the almost the same upper bound as Lemma 3
in Raginsky et al. (2017). Combining E[||3,|2] < log E[e/lPoI] completes the proof.

where VG(3) := ( > and M, (t) and M(¢) are two martingales defined in formula 2.7

Lemma D6 (Exponential integrability of replica exchange Langevin diffusion) For all 7 < %

it follows that

log E[el BB < 10g B[l B8 -B51%) 12(b + 2dr )t

Ko

Proof The proof is marjorly adapted from Lemma 4 in Raginsky et al.[(2017). The only difference
is that the generalized Itd formula (formula 2.7 in |[Yin & Zhu (2010)) is used again as in Lemma

Consider L(t,3;) = ellBel* | where 8= t(l),ﬁt@)) € R2??. Due to the special structure that

L(t,3;) is invariant under the swaps of ( §” §2)), the generator of L(¢,3;) with swaps is the
same as the one without swaps. Therefore, the desired result follows directly by repeating the steps
from Lemma 4 in Raginsky et al.[(2017).
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Algorithm 2 Adaptive variance-reduced replica exchange SGLD. The learning rate and temperature
can be set to dynamic to speed up the computations. A larger smoothing factor « captures the trend
better but becomes less robust.

Input Initial parameters ,8(()1) and ,8(2) learning rate 7 and temperatures 7 and 7@, correction factor F.

repeat
Parallel sampling Randomly pick a mini-batch set By, of size n.
B =g Z VL(xi|B)) + /2 Mg for h € {1,2}).
1EBk

Variance-reduced energy estimators Update L) = >N I, (xl‘ B™ ) every m iterations.

m| k]

L(Bx|BY") = ZZZL(xiw,@HEk- %Z (

i€ By, i€By,

,6'(}1 kJ) — L™, forh e {1,2}.

if K mod m = 0 then _ B
Update 57 = (1 — 4)s_,, + y0}, where o7 is an estimate for Var (L(Bk|,6(1)) — (Bk\,Bff))).

Cov(L(B\ﬁ(h)> L(Blﬁ(hL k J))

AT
end if _ _
Bias-reduced swaps Swap ﬁk 4, and ,B,ﬁ)l if u < Sy, m,n, where u ~ Unif [0, 1], and Sy, m,» follows

Sy =exp{ (7 = 2 ) (LB lBL) — LBenlBE) — + (5 — ) o)) }-

until £ = kmax.
Output: {,3(1> 3t Lk"”" /™) where T is the thinning factor.

Update ¢ = (1 — v)Ck—m + 7yck, where ¢y, is an estimate for —

E MORE EMPIRICAL STUDY ON IMAGE CLASSIFICATION

E.1 TRAINING COST

The batch size of n = 512 almost doubles the training time and memory, which becomes too
costly in larger experiments. A frequent update of control variates using m = 50 is even more
time-consuming and is not acceptable in practice. The choice of m gives rise to a tradeoff between
computational cost and variance reduction. As such, we choose m = 392, which still obtains
significant reductions of the variance at the cost of 40% increase on the training time. Note that
when we set m = 2000, the training cost is only increased by 8% while the variance reduction can
be still at most 6 times on CIFAR10 and 10 times on CIFAR100.

E.2 ADAPTIVE COEFFICIENT

We study the correlation coefﬁcient of the noise from the current parameter [)’,(gh), where h € {1, 2},

and the control variate 6 As shown in FiglS| the correlation coefficients are only around -0.5

mlE]
due to the large learning rate in the early period. This implies that VR-reSGHMC may overuse the
noise from the control variates and thus fails to fully exploit the potential in variance reduction. In
spirit to the adaptive variance, we try the adaptive correlation coefficients to capture the pattern of

the time-varying correlation coefficients and present it in Algorithm 2]

As a result, we can further improve the performance of variance reduction by as much as 40% on
CIFAR10 and 30% on CIFAR100 in the first 200 epochs. As the training continues and the learning
rate decreases, the correlation coefficient is becoming closer to -1. In the late period, there is still
10% improvement compared to the standard VR-reSGHMC.
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In a nut shell, we can try adaptive coefficients in the early period when the absolute value of the
correlation is lower than 0.5 or just use the vanilla replica exchange stochastic gradient Monte Carlo
to avoid the computations of variance reduction.

S
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N
i
o
®

2

1UBI300 UoelRLI0)

i
4
©

Variance reductions (X times)
Variance reductions (X times)
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(a) CIFAR10 & m=50  (b) CIFAR100 & m=50 (c) CIFAR10 & m=392 (d) CIFAR100 & m=392

Figure 5: A study of variance reduction techniques using adaptive coefficient and non-adaptive
coefficient on CIFAR10 & CIFAR100 datasets.

F MORE EMPIRICAL STUDY ON UNCERTAINTY QUANTIFICATION

To avoid sacrificing the prediction power for the known classes, we also include the uncertainty
estimate on CIFAR10 using the Brier score (BS) |f| and compare it with the estimates on SVHN.
The optimal BS scores on the seen CIFAR10 dataset and the unseen SVHN dataset are 0 and 0.1,
respectively. As shown in Table[2] we see that the scores before calibration in the seen CIFAR10 is
much lower than the ones in the unseen SVHN. This implies that all the models perform quite well in
terms of what it knows, although cSGHMC are slightly better than the alternatives. To alleviate this
issue, we propose to calibrate the predictive probability through the temperature scaling (Guo et al.,
2017) and obtain much better results. Regarding the BS score on the unseen dataset, we see that M-
SGD still performs the worst for frequently making over-confident predictions; SGHMC performs
better but is far away from satisfying. reSGHMC obtains much better performance by allowing
interactions between different chains. However, the large correction term affects the efficiency of
the swaps significantly. In the end, our proposed algorithm increases the efficiency of the swaps via
variance reduction and further improves the highly-optimized BS score based on reSGHMC from
0.29 to 0.27, which is much closer to the ideal 0.1. Note that the accurate uncertainty estimates of
cVR-reSGHMC on the seen dataset is still maintained. Together with the lowest BS score in the
unseen SVHN dataset, cVR-reSGHMC shows its strength in uncertainty quantification.

TABLE 2: UNCERTAINTY ESTIMATES ON SVHN USING CIFAR10 MODELS.

BRIER SCORE (before calibration) | BRIER SCORE (after calibration)
CIFAR10 (seen) SVHN (unseen) CIFARI10 (seen)  SVHN (unseen)

M-SGD 0.090+0.001 0.48+0.02 0.098+0.001 0.33+0.02
SGHMC 0.089+0.001 0.47+0.02 0.099+0.001 0.31+0.02
reSGHMC 0.086+0.002 0.41+0.03 0.097+0.001 0.29+0.02
c¢SGHMC 0.084+0.001 0.43+0.02 0.092+0.001 0.30+0.02
c¢VR-reSGHMC | 0.08540.001 0.38+0.02 0.094+0.001 0.27+£0.02

METHOD

G MODIFIED EXAMPLE 5.1

We revisit Example and re-run the procedures with temperature 7() = 1.0. In Fig. @ we present
trace plots and kernel density estimates (KDE) of samples generated from VR-reSGLD, reSGLD,
and SGLD. In particular, we run VR-reSGLD with m = 40, 7(!) = 1, 7(2) = 500, » = le — 5, and
F = 1; reSGLD with the same hyper-parameters as VR-reSGLD except for F' = 500; and SGLD
with n = le — 5 and 7 = 1. Note that here, we run reSGLD with a greater I’ than in Example
[5.1] in order to prohibit the drastic reduction of the swapping rate which is caused by the pickier
target density. As in Example[5.] for the ground truth, we run replica exchange Langevin dynamics

BS = % Ef\; 1 Zf‘:l( fi; — 0i;)%, where f; is the predictive probability and o; is actual output of the
event which is 1 if it happens and O otherwise; N is the number of instances and R is the number of classes.
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Figure 6: Trace plots and KDEs of 5()

with long enough iterations. In Figs and we observe that, even though the distribution of
interest has a pickier density, our proposed algorithm VR-reSGLD was able to detect both modes
and acceptably jump between them. On the other hand, the competitor algorithm SGLD was trapped
in the first mode visited and never escaped. reSGLD was able to jump some times between modes
only after considering a substantial factor F' = 500 which, according to the theory, introduces bias.
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