
Journal of Computational Physics 432 (2021) 110134
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Bayesian sparse learning with preconditioned stochastic

gradient MCMC and its applications

Yating Wang a, Wei Deng a, Guang Lin b,∗
a Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA
b Department of Mathematics, School of Mechanical Engineering, Department of Statistics (Courtesy), Department of Earth, Atmospheric, and
Planetary Sciences (Courtesy), Purdue University, West Lafayette, IN 47907, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 26 January 2021

Keywords:
Bayesian sparse learning
Preconditioned stochastic gradient MCMC
Deep learning
Deep neural network
Adaptive hierarchical posterior
Stochastic approximation

Deep neural networks have been successfully employed in an extensive variety of research
areas, including solving partial differential equations. Despite its significant success,
there are some challenges in effectively training DNN, such as avoiding overfitting in
over-parameterized DNNs and accelerating the optimization in DNNs with pathological
curvature. In this work, we propose a Bayesian type sparse deep learning algorithm. The
algorithm utilizes a set of spike-and-slab priors for the parameters in the deep neural
network. The hierarchical Bayesian mixture will be trained using an adaptive empirical
method. That is, one will alternatively sample from the posterior using preconditioned
stochastic gradient Langevin Dynamics (PSGLD), and optimize the latent variables via
stochastic approximation. The sparsity of the network is achieved while optimizing the
hyperparameters with adaptive searching and penalizing. A popular SG-MCMC approach
is Stochastic gradient Langevin dynamics (SGLD). However, considering the complex
geometry in the model parameter space in nonconvex learning, updating parameters using
a universal step size in each component as in SGLD may cause slow mixing. To address
this issue, we apply a computationally manageable preconditioner in the updating rule,
which provides a step-size parameter to adapt to local geometric properties. Moreover,
by smoothly optimizing the hyperparameter in the preconditioning matrix, our proposed
algorithm ensures a decreasing bias, which is introduced by ignoring the correction term
in the preconditioned SGLD. According to the existing theoretical framework, we show
that the proposed algorithm can asymptotically converge to the correct distribution with a
controllable bias under mild conditions. Numerical tests are performed on both synthetic
regression problems and learning solutions of elliptic PDE, which demonstrate the accuracy
and efficiency of the present work.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Deep neural networks have attracted extensive attention in recent times. Due to their strong potential in approximating
high-dimensional nonlinear maps and the universal approximation property to represent a rich class of functions, DNNs have
been successfully employed in problems from various research areas. However, effectively training DNN is still challenging

* Corresponding author.
E-mail address: guanglin@purdue.edu (G. Lin).
https://doi.org/10.1016/j.jcp.2021.110134
0021-9991/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jcp.2021.110134
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2021.110134&domain=pdf
mailto:guanglin@purdue.edu
https://doi.org/10.1016/j.jcp.2021.110134

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
due to the difficulty of escaping local minima in nonconvex optimization and avoiding overfitting in over-parameterized
networks.

Bayesian learning is appealing because of its ability to capture uncertainties in the model parameters, and MCMC sam-
pling helps to address the overfitting issue. There has been extensive work bringing the Bayesian methods to the context of
DNN optimization. The stochastic gradient Langevin dynamics (SGLD) [37] is first proposed and becomes a popular approach
in the family of stochastic gradient MCMC algorithms [7,23,21]. SGLD is the first-order Euler discretization of Langevin diffu-
sion with stationary distribution on Euclidean space. It can be viewed as adding some noise to a standard stochastic gradient
optimization algorithm. Since it resembles SGD, SGLD inherits the advantage of SGD where the gradients are stochastically
approximated using mini-batches. This makes MCMC scalable and provides a seamless transition between stochastic opti-
mization and posterior sampling. It was shown that samples from SGLD will converge to samples from the true posterior
distribution with annealed step size [5,37].

In DNN, the underlying models may have complicated geometric properties and possess non-isotropic target density
functions [12,21,7]. When the components of parameters have different curvature, generating samples using a universal
step size for every model parameter may cause slow mixing and can be inefficient. In the optimization literature, there
are many approaches to accelerate the gradient descent, such as preconditioning and Newton’s method [11,39,4,3]. How-
ever, naively borrowing this idea and using a preconditioning matrix in SGLD fails to produce a proper MCMC scheme, the
Markov chain does not target the underlying posterior except for a few cases [21,30]. Considering that a Langevin diffusion
with invariant measure can be directly defined on a Riemannian manifold, and the expected Fisher information is one typ-
ical choice for the Riemannian metric tensor [17], SGRLD is proposed [25]. Built-up from Riemannian Langevin dynamics,
SGRLD is a discretization of the Riemannian Langevin dynamics and the gradients are approximated stochastically. It in-
corporates local curvature information in the parameter updating scheme, such that a constant step size is adequate along
with all directions. However, the full expected Fisher information is usually intractable. A more computationally efficient
preconditioner is needed to approximate second-order Hessian information. Preconditioned SGLD adopts the same precon-
ditioner as introduced in RMSprop [31] as discussed in [21] which reduces the computational and storage cost. One can
update the preconditioner sequentially taking into account the current gradient and the previous preconditioning matrix.
The preconditioner is in a diagonal form and can handle scale differences in the target density. However, the algorithm in
[21] introduces a permanent bias on the MSE due to ignoring a correction term in the updating equation.

On the other hand, DNN models are usually over-parameterized and require extensive storage capacity as well as a lot of
computational power. The over specified models may also lead to bad generalization and large prediction variance. Enforcing
sparsity in the network is necessary. In [13], the authors propose an adaptive empirical Bayesian method for sparse learn-
ing. The idea is to incorporate an adaptive empirical Bayesian model selection technique with SG-MCMC sampling algorithm
(SGLD-SA). In SGLD-SA algorithm [13], one adopts a spike-and-slab prior and obtains a Bayesian mixture DNN model. The
model parameters are sampled from the adaptive hierarchical posterior using SG-MCMC, and the hyperparameters in the
priors are optimized via stochastic approximation adaptively. The algorithm automatically searches and penalizes the low
probability parameters and identifies promising sparse high posterior probability models [29]. One can also apply a pruning
strategy to cut off model parameters with small magnitudes to further enforce sparsity in the network [24,22]. The per-
formance of the sparse approach is demonstrated with numerous examples, and the method is also shown to be robust to
adversarial attacks. Theoretically, the authors show that the proposed algorithm can asymptotically converge to the correct
distribution.

In support of the advantages and considering the issues of the above-mentioned methods, we incorporate the precon-
ditioned SGLD methods with sparse learning. We will apply the proposed method to learn solutions of partial differential
equations with heterogeneous coefficients. Numerous approaches have been proposed to numerically solve ODEs and PDEs
with deep neural networks, for example, parametric PDEs [19], ODE systems driven by data [6,26], time-dependent mul-
tiscale problems [34,33] and physical informed DNN ([27,28,38,40]). Moreover, various types of network architectures are
constructed to achieve efficient learning based on existing fast numerical solvers. These approaches include designing multi-
grid neural networks [15,18], constructing multiscale models [32,34,35], learning surrogate reduced-order models by deep
convolution networks [40,36,8] and so on.

This work attempts to design an efficient sparse deep learning algorithm and apply it to learn the solution of elliptic PDE
with heterogeneous coefficients. Numerical simulations for these problems are challenging since it naturally contains het-
erogeneity at various scales as well as uncertainties. Based on the model reduction idea, for example, generalized multiscale
finite element method (GMsFEM) [14,9,10], the authors [35] design an appropriate sparse DNN structure to learn the map
from the heterogeneous permeability to velocity fields in Darcy’s flow. The idea is to apply locally connected/convolutional
layers which can be an analogy to the upscaling and downscaling procedures in multiscale methods. However, the network
is still over-parameterized. In particular, the last decoding step joins neurons representing features on the coarser level to
the neurons representing the fine-scale solutions and is realized by a fully connected layer. Due to the large degrees of free-
dom in the fine grid solution, the number of parameters in the network will be very large and result in inefficient training.
Our main contribution is to bring together preconditioned SGLD and stochastic approximation to achieve efficient and sparse
learning. We propose an adaptive empirical Bayesian algorithm, where the neural network parameters are sampled from a
Bayesian mixture model using PSGLD method, and the latent variables are smoothly optimized during stochastic approxi-
mation. PSGLD incorporates local curvature information in the parameter updating scheme, thus it is suitable to deal with
our problem which possesses multiscale nature. More importantly, we will sequentially update the preconditioning matrix
2

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
under the framework of stochastic approximation, such that the bias formed by ignoring the correction term in the sampling
approaches to zero asymptotically. We theoretically show the convergence of the proposed algorithm and demonstrate its
performance in several numerical experiments.

The paper is organized as follows. In Section 2, we review some basic ideas in SGLD, SGRLD. In Section 3, the sparse
adaptive empirical Bayesian approach is reviewed. Our main algorithm which combines preconditioned SGLD with sparse
learning is explored in Section 4. Its convergence is discussed in Section 5. Applying the proposed method to a large-p-
small-n regression problem, and to learn solutions of elliptic problems with heterogeneous coefficients, its performances are
presented in Section 6. A conclusion is made in the last Section 7.

2. Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Riemann Langevin dynamics (SGRLD)

Throughout the paper, we denote by β the model parameters with p(β) as a prior distribution, and D = {di}N
i=1 the entire

dataset, where di = (xi, yi) is an input-output pair for the model. Let p(d|β) be the likelihood, the posterior is then p(β|D) ∝
p(β)

∏N
i=1 p(di |β). SGLD combines the idea of stochastic gradient algorithms and posterior Bayesian sampling using Langevin

dynamics. The loss gradient is approximated efficiently using mini-batches of data in SGLD, and the uncertainties in the
model parameters can be captured through Bayesian learning to avoid overfitting. Let εk be the learning rate at epoch k and
τ > 0 be the inverse temperature, the model parameters update as follows:

βk+1 = βk + εk∇β L̃(βk) +N (0,2εkτ
−1)

where for a subset of n data points dk = {dk1, · · · , dkn}

∇β L̃(β) = ∇β log p(β) + N

n

n∑
i=1

∇β log p(dki |β)

is the stochastic gradient computed using a minibatch, which is used to approximate the true gradient ∇β L(β).
Complicated posterior distributions often exhibit pathological curvatures with different scales of model parameters, and

any uniform learning rate may maximize the efficiency in one direction but fails entirely in exploring other regions with
large curvature and small scales. Stochastic Gradient Riemann Langevin Dynamics (SGRLD) [25] is a generalization of SGLD
on a Riemannian manifold. In this case, consider the probability model on a Riemann manifold with some metric tensor
G−1(β), the parameter updates can be guided by the geometric information of this manifold as follows:

βk+1 = βk + εk

[
G(βk)∇β L̃(βk) + �(βk)

]
+N (0,2εkτ

−1G(βk)) (1)

where �(βk) is an additional drift term and �i(βk) =
∑

j
∂Gij(βk)

∂β j
. The expected Fisher information can be used as a natural

metric tensor, however it is intractable in many cases. One can choose a more practical metric tensor and use it as a
preconditioning matrix.

3. SGLD with stochastic approximation (SGLD-SA)

To achieve sparse learning in DNN, in [13], the authors propose an adaptive empirical Bayesian method. It assumes that
the weight parameter βl j , the j-th neuron in the l-th layer, follows spike-and-slab Gaussian Laplace prior

π(βl j|σ 2, γl j) = (1 − γl j)Lp(0,σ v0) + γl jN (0,σ 2 v1)

where γl j ∈ {0, 1} are the latent binary variable selection indicators, Lp is the Laplace distribution, and N is the Normal
distribution. The variance parameters v0 and v1 are constants which can control the variance of Laplace and Gaussian dis-
tribution, resulting in spike-and-slab priors. The error variance σ 2 follows an inverse gamma prior π(σ 2) = IG(ν/2, νλγ /2),
where λγ is usually set to be constant in practice [16]. The prior for γ follows a Bernoulli distribution, π(γl|δl) =
(δl)|γl |(1 − δl)pl−|γl | , which incorporate uncertainty regarding which variables βl j need be included in the model. Here, pl is
the number of model parameters in the l-th sparse layer. |γl | =∑

j γl j , and δl follows π(δl) = δa−1
l (1 − δl)b−1 where a, b

are some positive constants.
Let dm be the m-th minibatch of the dataset. The likelihood for a regression problem can be rewritten as

π(dm|β,σ 2) = 1

(2πσ 2)n/2
exp

{−

∑
xm

i ∈dm
(ym

i −F(xm
i ;β))2

2σ 2

}
where F denotes a map describing the input-output relationship from xm

i to ym
i .

Then, the posterior follows

π(β,σ 2, δ,γ |dm) ∝ π(dm|β,σ 2)
N
n π(β|σ 2,γ)π(σ 2|γ)π(γ |δ)π(δ) (2)
3

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Algorithm 1 SGLD-SA.
INPUT: Initialize β1, ρ1, κ1, δ1, σ1. Given target sparse rate s, step size ωk

1: for all k ← 1 : #iterations do
2: βk+1 ← βk + εk∇β Q (·|dk) +N (0,2εkτ

−1)

3: alj ← π(β
l j
k |γl j = 1)δl

k , blj ← π(β
l j
k |γl j = 0)(1 − δl

k)

4: ρ
l j
k+1 ← (1 − ωk+1)ρ

l j
k + ωk+1

alj

alj + blj

5: κ
l j
k+1,0 ← (1 − ωk+1)κ

l j
k,0 + ωk+1

1 − ρ
l j
k+1

v0

6: κ
l j
k+1,1 ← (1 − ωk+1)κ

l j
k,1 + ωk+1

ρ
l j
k+1

v1
7: σk+1 ← (1 − ωk+1)σk + ωk+1 R

8: δk+1 ← (1 − ωk+1)δl
k + ωk+1

∑
j ρ

jl
k+1 + alj − 1

alj + blj + p − 2
9: if Pruning then

10: Prune the last s% weights with smallest magnitude
11: Increase the sparse rate

Since there are P = ∑
l∈LD

pl number of model parameters, this results in 2P choices of γ . For large P , the binary
variable γ is hard to optimize directly. We adopt the idea of expectation and maximization approach as introduced in [29]
to build a continuous approximation from probabilistic considerations. Here the latent variables γ are unknown parameters
and will be treated as missing data. At every iteration, the expected conditional probability for γ is computed given D,
current parameters β and other latent variables. At iteration k, instead of sampling from true posterior with respect to the
whole dataset D, one needs to sample from Q with respect to a mini-batch B

Q (β,σ , δ|βk,σk, δk) = EB
[
Eγ |D[logπ(β,σ , δ,γ)|B]]

and it can be separated as

Q (β,σ , δ|βk,σk, δk) = Q 1(β,σ |βk,σk, δk) + Q 2(δ|βk,σk, δk) + C

where

Q 1(β,σ |βk,σk, δk) = N

n
logπ(dm|β) −

∑
l∈LD

∑
j∈pl

(βl j)2

2σ 2
0

− p + ν + 2

2
log(σ 2)−

∑
l∈L S

∑
j∈pl

{ |βl j|
σ

E[1

v0(1 − γl j)
] + β2

l j

2σ 2
E[1

v1γl j
]}− νλ

2σ 2

Q 2(δ|βk,σk, δk) =
∑
l∈L S

∑
j∈pl

log(
δl

1 − δl
)E[γl j] + (a − 1) log(δl) + (pl + b − 1) log(1 − δl)

Here, we partition all model parameters β into two groups, one group are from dense layers LD , another group are from
sparse layers L S . For the model parameters in sparse layers, we assume they have spike and slab Laplace-Gaussian priors
as mentioned before. For the model parameters in dense layers, we assume they simply have Gaussian prior with zero
mean and standard deviation σ0 = 1. We remark that the full Bayesian hierarchical model is theoretically appealing, but
is computationally slow. To speed up the inference, the priors are inferred from the empirical data without considering
uncertainty.

The adaptive empirical Bayesian algorithm samples β from Q and iteratively optimize Q with respect to σ 2, γ , δ via
stochastic approximation as in Algorithm 1. We note that the update formulas of latent variables ρ, κ, δ, σ are motivated by
EM approach to Bayesian variable selection (EMVS) [29] In Algorithm 1, ρl j = E[γl j], ωk is the step size in updating latent
variables, κ l j

k,0 = E[1
v0(1−γl j)

] and κ l j
k,1 = E[1

v1γl j
], R is the positive root to the following quadratic formula:

{
N +

∑
l∈Ls

pl + ν
}
σ 2 + {||∑

l∈Ls

κ l
k,0 ◦ βl

k+1||1
}
σ

+ {N

n

∑
xm

i ∈dm

(ym
i −F(xm

i ;β))2 + ||
∑
l∈Ls

κ l
k,1 ◦ βl

k+1||22 + νλ
}= 0

where ◦ denotes the point-wise product, || · ||1 and || · ||2 are the vector l1 and l2 norm correspondingly.
4

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
4. Preconditioned SGLD with stochastic approximation (PSGLD-SA)

As seen in Section 2, all model parameters β are updated using the same learning rate εk in SGLD. If the loss function
has very different scales in different directions, the sampling procedure will take larger steps in directions where the model
parameter has small variance, and smaller steps in directions of large variance during sampling. This causes slow mixing
and slows down the convergence of sampling. However, a small enough learning rate is required to avoid divergence in the
largest positive curvature direction.

Here, we will introduce a preconditioning matrix G(β) to guide the updating directions during sampling. In gradient
descent algorithms, the optimization can be improved using the second-order information, i.e., the inverse of the Hessian
matrix, as the preconditioning matrix. However, it is too computationally expensive to store and invert the full Hessian
during the training. An efficient approximation is to use the same preconditioner as in RMSprop [31]. The idea is to scale
the gradient using a moving average of its recent norm in each iteration, so that one can adapt the step size separately for
each weight. By keeping a moving average for each weight parameter from the previous step, one can control the changes
between adjacent mini batches. We propose a sequentially updated preconditioner using the stochastic approximation idea
as follows

G(βk) = diag−1(η +√V (βk)) (3)

V (βk) = αk V (βk−1) + (1 − αk)g(βk) ◦ g(βk) (4)

where η is a regularization constant, and αk = (1 −ωk), g(βk) = ∇β Q . Here the operation diag−1(v) means taking element-
wise reciprocal of the vector v and forming a diagonal matrix. Importantly, we note that the weight parameter αk is a
sequence approaching 1 as the time step k increases, which is different from the constant α in [21]. The change in the
parameters will then be

�βk = εk
(
G(βk)g(βk) + �(βk)

)+N (0,2εkτ
−1G(βk)) (5)

where �i(βk) =
∑

j
∂Gij(βk)

∂β j
.

We note that in [21], �(βk) is ignored in practice, and α is a constant. This produces a permanent bias O
(

(1−α)2

α3

)
on

the MSE. To address this issue, we let αk gradually approach 1 during the adaptive optimization of the latent variables, then
the bias mentioned before will decrease. To be specific, for the i-th main diagonal entries, we have

∣∣∣∣∣
K∑

k=1

�i(βk)

∣∣∣∣∣=
∣∣∣∣∣

K∑
k=1

(1 − αk)V
− 3

2
i (βk)gi(βk)

∂ gi(βk)

∂βi

∣∣∣∣∣
=
∣∣∣∣∣

K∑
k=1

(1 − αk)gi(βk)
[
αk−1 V i(βk−1) + (1 − αk−1)gi(βk−1)gi(βk−1)

]− 3
2
∂ gi(βk)

∂βi

∣∣∣∣∣
≤
∣∣∣∣∣

K∑
k=1

(1 − αk)gi(βk)/

(
α

3
2

k−1 V
3
2

i (βk−1)

)
∂ gi(βk)

∂βi

∣∣∣∣∣
≤
∣∣∣∣∣

K∑
k=1

(1 − αk)gi(βk)/

(
α

3
2

1 V
3
2

i (βk−1)

)
∂ gi(βk)

∂βi

∣∣∣∣∣
Then we have

∣∣∣∣∣
K∑

k=1

�i(βk)

∣∣∣∣∣≤ M

∣∣∣∣∣∣
K∑

k=1

(1 − αk)

α
3
2

1

∣∣∣∣∣∣ (6)

due to the assumption that the derivatives of the gradients are bounded, |V − 3
2

i (βk−1)gi(βk)
∂ gi(βk)

∂β | ≤ M for some constant
M > 0.

Typically, let αk be in the form of αk = 1 − c1(c2 + k)−ζ for some ζ ∈ (0.5, 1], and constants c1, c1, we can see that the
bias introduced

∑K
k=1

(1−αk)
2

α3
1

on the MSE will approach 0 as K → ∞.

Thus, our proposed adaptive preconditioned SGLD samples β and optimizes σ 2, γ , δ as in Algorithm 2.
5

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Algorithm 2 PSGLD-SA.
INPUT: Initialize β1, ρ1, κ1, δ1, V 1, let α1 = 0.9, η = 10−3

1: for all k ← 1 : #iterations do
2: g(βk) ← ∇β Q (·|dk)

3: if k == 1 then
4: V (βk) ← g(βk) ◦ g(βk)

5: else
6: V (βk) ← (1 − αk)V (βk−1) + αk g(βk) ◦ g(βk)

7: G(βk) ← diag−1(η +√V (βk))

8: βk+1 ← βk + εk
(
G(βk)g(βk)

)+ G
1
2 (βk)N (0,2εkτ

−1)

9: Updating hyperparameters by running steps 3-11 in Algorithm 1

5. Convergence results

Now, we will discuss the weak convergence of our proposed algorithm PSGLD-SA. First, we will take a look at the
hyperparameters. Denote by θ all the hyperparameters (ρ, κ, σ , δ). The stochastic approximation attempts to get the optimal
θ∗ based on the asymptotically target distribution π(β, θ∗). Define H(θ, β) = fθ (β) − θ , where fθ (β) represents a function
to obtain optimal θ given current model parameters β . Denote by its mean field function h(θ) = E[H(θ, β)]. SA aims to

solve the fixed point equation
∫

fθ (β)π(β, θ)dβ = θ , which is to find the root θ∗ of the equation h(θ) = 0. As described in

Algorithm 2, in each iteration, we first sample βk+1 using reconditioned SGLD based on θk , then update the latent variables
using

θk+1 = θk + ωk+1 H(θk,βk+1),

where the map fθ is motivated by EMVS. However, we only use a small set of data of n samples instead of the full set
in the computation of obtaining optimal latent variables. This will result the bias �(n, θ i, β i+1) at each step. That is, we
actually use θk+1 = θk + ωk+1 H̃(θk, βk+1) with

H̃(β, θ) = H(β, θ) + �(n, θ i,β i+1), (7)

and we assume E||�(n, θ i, β i+1)||2 ≤ C2 for some constant C .
Following a similar proof in [13], under suitable assumptions, the adaptive empirical Bayesian method for sparse approx-

imation algorithm has the following convergence results. The details of the proof are in Appendix A.

Theorem 1. For a sufficiently large k0, there exists a constant λ such that

E
[
||θk − θ∗||2

]
= O(λωk + sup

i≥k0

E||�(n, θ i,β i+1)||).

Next, we present a weak convergence result of the model parameters.

Corollary 1. Under Assumption 2 in [5], the bias and MSE of PSGLD-SA for K steps with decreasing step size εk is bounded, the distri-
bution of βk converges weakly to the target posterior with a controllable bias, as εk → 0 and k → ∞.

Proof. With geometric information for probability models, the Langevin diffusion on the manifold is described by

dβ(t) = G(β(t))∇β L(β(t), θ∗) + �(β(t)) + G
1
2 (β(t))dBt (8)

where Bt is the Brownian motion.
Denote by L the generator for (8), then

L = [G(βk)∇β L(βk, θ∗) + �(βk)
] · ∇β + 2G

1
2 (β)G

1
2 (βk)T : ∇βk

∇T
β (9)

The generator L is associated with the backward Kolmogorov equation

E[φ(βk)] = etLφ(β0)

In PSGLD-SA, one will sample from the adaptive hierarchical posterior using (3) (5), and gradually optimize the latent
variables through stochastic approximation.

Write the local generator of our proposed algorithm as

L̃k = [G(βk)g̃k
] · ∇β + 2G

1
2 (β)G

1
2 (βk)T : ∇β ∇T (10)
k β

6

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
where L̃k =L + �Vk , and

�Vk = [G(βk)
(∇β L(βk, θ∗) − g̃k

)+ �(βk)
] · ∇β .

Thus

g̃k = ∇β L(βk) + ξk +O(k−ζ + sup
i≥k0

E||�(n, θ i,β i+1)||)

where ξk is a random vector denoting the difference between the true gradient and stochastic gradient, and O(k−γ +
supi≥k0

E||�(n, θ i, β i+1)||) is the bias term generated by SA.
Given a test function φ of interest, let φ̄ be the posterior average of φ under the invariant measure of the SDE (8). Let

βk be the numerical samples, and define φ̂ =∑K
k=1

εk
S K

φ(βk), where S K =∑K
k=1 εk . Let ψ be a functional which solves the

Poisson equation

Lψ(βk) = φ(βk) − φ̄.

Following a similar proof as in [5], one can obtain the following results. The bias of PSGLD-SA is

|Eφ̂ − φ̄| ≤ 1

S K
|Eψ(βK) − ψ(β0)| +

K∑
k=1

εk

S K
E||�Vkψ(βk−1)|| + C

K∑
k=1

ε2
k

Formally, we note that in the above bound for the bias, the term
∑K

k=1
εk
S K
E||�Vkψ(βk−1)|| is important. It is related

to the bias introduced by stochastic approximation and ignoring �(βk). By Assumption 2 in [5] on the smoothness and
boundedness of the functional ψ , and the boundedness of the preconditioner, it is easy to see that the bias introduced

by stochastic approximation can be decomposed into (1) the term
K∑

k=1

εkk−ζ

S K
in the bias, which approaches 0 as K → ∞,

and (2)
K∑

k=1

εk

S K
sup
i≥k0

E||�(n, θ i,β i+1)|| = sup
i≥k0

E||�(n, θ i, β i+1)|| which is a controllable bias. The bias introduced by ignoring

�(β(t)) can be bounded by
K∑

k=1

(1 − αk)α
− 3

2
1 =O(

K∑
k=1

k−ζ) according (6), which goes to 0 as K → ∞.

The MSE of PSGLD-SA can be bounded by

E(φ̂ − φ̄)2 ≤ C

(
K∑

k=1

1

S2
K

+
K∑

k=1

ε2
k

S2
K

E||�Vkψ(βk−1)||2 + (
∑K

k=1 εk)
2

S2
K

)

which converges as long as supk E||�Vkψ(βk−1)||2 is bounded.
Thus, we conclude that, as εk → 0 and k → ∞, the distribution of βk converges weakly to the target posterior with a

controllable bias. The bias is expected to decrease if we enlarge the minibatch size to approximate the gradient. �
6. Numerical example

6.1. Small n large p problem

We first test on a linear regression problem, where the model parameters β ∈Rp , and predictors X ∈Rn×p . We take a
dataset with n = 100 observations and p = 200 predictors.

For the first test (section 6.1 test 1), we use Np(0, �) with �i j = 0.6|i− j| to simulate predictor values X . The responses
y = Xβ + ε , and ε ∼ Nn(0, 3In). β1 ∼ N (3, 0.2), β2 ∼ N (1, 0.2), and β j = 0, for j = 1, · · · , p. The hyperparameters used
for SGLD-SA and PSGLD-SA are both: v0 = 0.05, v1 = 5, δ = 0.5, b = p, a = 1, λ = 1, ν = 1. For the preconditioner used for
PSGLD-SA, we choose α = 0.999. The learning rate for SGLD is εk = 0.001, for the other three methods is εk = 0.01. The step
size to update latent variables is ωk = 10 × (k + 100)−0.7. The performances of SGLD, SGLD-SA, PSGLD and PSGLD-SA are
compared and presented in Fig. 1. It shows that both SGLD-SA and PSGLD-SA work better compared with SGLD and PSGLD
in terms of detecting the sparsity in model parameters. The true variances in the model parameters β1 and β2 are both
0.2, and they can be captured correctly in both SGLD-SA and PSGLD-SA. However, PSGLD-SA gives the best approximation
for the mean of each component of β . Moreover, Fig. 1 (c)-(d) shows the testing error curves. It can be seen that PSGLD
converges faster compared to vanilla SGLD, and PSGLD-SA gives better results compared to SGLD-SA.

In the second test (section 6.1 test 2), we use Np(0, �) with �i j = 0.81/2|i− j| to simulate predictor values X . The model
parameters are now β1 ∼N (3, 0.2), β2 ∼N (1, 0.8) with different scales in variance. The hyperparameters used for SGLD-SA
and PSGLD-SA are both: v0 = 0.1, v1 = 100, δ = 0.5, b = p, a = 1, λ = 1, ν = 1, α = 0.999. The learning rates for SGLD-SA
7

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Fig. 1. Section 6.1 test 1. Large p small n regression for parameters with uniform scale. In sub-figures (c)-(d), the x-axes are in log scale. (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

and PSGLD-SA are εk = 0.01, εk = 0.05 correspondingly. The response values y and the true regression coefficients are set
to be similar as before. In this case. We also compare the performance of SGLD, SGLD-SA, PSGLD, and PSGLD-SA and present
them in Fig. 2. In this example, we see that PSGLD-SA outperforms other approaches clearly in quantifying the uncertainties
of β . However, SGLD, and SGLD-SA cannot capture the uncertainties properly. Preconditioned methods provide better results
according to the testing error.

6.2. Elliptic problem with heterogeneous coefficients

Next, we apply the proposed approach to solve the elliptic problem with heterogeneous coefficients. The mixed formu-
lation of the elliptic problem reads:

κ−1u + ∇p = 0 in �

div(u) = f in �

u · n = uN on �N

p = pD on �D

where κ represents the heterogeneous permeability field which can be generated using Karhunen-Loeve expansion. f = 1
is a constant source term, � is a squared computational domain [0, 1] × [0, 1], and �N ∪ �D = ∂�. The boundary conditions
are uN = 0 at [0, 1] × {0} and [0, 1] × {1}, pD = 1 at {0} × [0, 1], and pD = 0 at {1} × [0, 1].

Specifically, the permeability field κ(x; μ) can be constructed as follows:

κ H (x;μ) = κ0 +
p∑

j=1

μ j
√

ξ j� j(x)

where κ0 is a constant permeability, denotes the mean of the random field.
p∑

j=1

μ j
√

ξ j� j(x) corresponds to a random con-

tribution obtained from Karhunen-Loeve expansion, and describes the uncertainty in the permeability field. μ j are random
numbers drawn from i.i.d. N(0, 1). (

√
ξ j, � j(x)) are the eigen-pairs obtained from a Gaussian covariance kernel:
8

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Fig. 2. Section 6.1 test 2. Large p small n regression for parameters with different scale.

Cov(xi, yi; x j, y j) = σ exp(
−|xi − x j|2

l2x
− |yi − y j|2

l2y
)

where we choose [lx, l y] = [0.2, 0.3], σ = 2 and p = 32, 64, 128 in our example.
In the discretized system, we use RT0 element for the velocity space Vh , and piecewise constant element P0 for the

pressure solution space Q h .

a(u, v) + b(v, p) =
∫
��

pD v · nds for all v ∈ Vh

b(u,q) = −(f ,q) for all q ∈ Q h

where a(u, v) = ∫
�

κ−1u · v , and b(v, p) = −
∫
�

p divv .
The discrete system has the following matrix formulation[

Ah(κ) BT
h

Bh 0

][
uh
ph

]
=
[

G D

−F

]
(11)

However, due to the multiscale nature of κ , a sufficiently fine mesh is required to resolve all scale properties. Thus, the

fine scale matrix
[

Ah(κ) BT
h

Bh 0

]
has a large size, leading to some difficulties in solving the linear system. To overcome these,

one can develop a reduced order model as a surrogate. Numerous mixed multiscale methods have been explored [9,2,1]. For
example, in [9], one aims to construct velocity multiscale basis in each local coarse region, and use the piecewise constant
on coarse grid to approximate the pressure. Typically, let N H

u be the dimension of the multiscale velocity space, and denote
by Ru the matrix assembled using multiscale velocity basis in every row, then Ru maps from RNh

u to RN H
u , where Nh

u is the
fine degrees of freedom for the velocity. Similarly, denote by R p the matrix containing coarse grid piecewise constant basis
for pressure which maps from RNh

p to RN H
p . Then one can rewrite the system (11) in the following form[

AH BT
H

B 0

][
uH

p

]
=
[

Ru 0
0 R

][
Ah(κ) BT

h
B 0

][
RT

u 0
0 RT

][
uH

p

]
=
[

0
−F

]
(12)
H H p h p H H

9

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Fig. 3. An illustration of the network architecture for flow approximation.

where
[

Ru 0
0 R p

]
can be viewed as an encoder which maps from fine grid to coarse grid (upscaling), and

[
RT

u 0
0 RT

p

]
acts

as an decoder which maps from coarse grid to fine grid (downscaling).
The coarse grid solver reveals its efficiency when we need to solve flow problems with varying source or boundary

conditions, while with a fixed permeability field. However, in a lot of applications, it is more interesting to solve for the
velocity u given different κ . When the permeability fields vary, one needs to reconstruct the multiscale basis (reconstruct
the matrix Ru) in the above-mentioned multiscale method framework, which is not practical.

As discussed in [35], we will construct an encoding-decoding type of network to approximate the relationship between
the permeability fields κ and fine grid velocity solution uh . That is, u = N (κ; θ). The proposed network structure is in
analogy to the coarse-scale solver but will take permeability fields as input without constructing a set of multiscale bases
for each case.

The idea is to first apply a few convolution layers to extract features from the input permeability with size
√

Nh
p ×

√
Nh

p ,
and then project the extracted features on a coarser mesh by employing an average pooling layer. The intermediate output
is then flattened and is linked to N H

p neurons with a fully connected layer. This procedure is in analogy to upscaling. We

will then reshape the hidden coarse grid features to an image with size
√

N H
p ×

√
N H

p . A few locally connected layers or
convolution layers are followed to mimic the coarse grid solver.

After that, the resulting hidden features are flattened again and are fully connected to N H
u neurons in the next layer,

where N H
u is the degrees of freedom of the multiscale velocity space. It is natural to represent the coarse grid velocity

using a vector since the degrees of freedom are not located at coarse grid centers, which makes it not obvious to reshape
it as a square image. Finally, we decode the coarse level features using a densely connected layer, and we obtain a fine grid
velocity output with dimension Nh

u . The network architecture is illustrated in Fig. 3.
However, the last downscaling layer is still fully connected. Due to the large degrees of freedom for the velocity solution,

the last fully connected layer contributes a very large number of trainable weights. Here, we would like to use our proposed
sparse learning method to tackle this difficulty.

The training and testing data can be generated by solving the equations with a mixed finite element method on the fine
grid for various permeability fields. An illustration of the permeability fields for p = 32, 64, 128 and corresponding solutions
are presented in 4. We can see that when p becomes larger, the velocity solutions exhibit much more scale features.

We generate 1500 samples pairs (κi, ui
h), and randomly pick 1300 samples to train the network, and take the rest of the

samples for validation. The size of an input permeability is 50 ×50, an output velocity solution vector is 5, 100. The network
first uses 2 convolution layers with window size 3 × 3, and 64 and 32 channels, respectively. Then, an average pooling layer
with pool size 2 × 2 is followed by a flatten layer and then a fully connected layer with 100 nodes. This part of the network
can be viewed as an encoder. Then, a reshaping layer, two convolution layers, a flatten layer, and a dense layer with 800
neurons are used to mimic the coarse grid solver. Finally, a dense layer is used as a decoder. The total number of parameters
is 8, 252, 320 in the entire network, and the layers we choose to perform sparse learning contain 6, 110, 624 parameters.

The numerical results using SGLD, PSGLD, SGLD-SA and PSGLD-SA are presented in Table 1. Denote by e1 =
∥∥upred−utrue

∥∥
L2

‖utrue‖L2

and e2 =
∥∥upred−utrue

∥∥
L2
κ‖utrue‖L2

κ

where ||u||L2
κ

= ∫
�

κ−1|u|2. The mean relative errors e1 and e2 among 300 testing samples are

shown. We can see that the results using PSGLD-SA outperform SGLD-SA in all three cases when p = 32, 64, 128. Some
10

Fig. 4. Illustrations of the permeability fields when using different number of terms in KLE expansion and corresponding solutions. In each subplot, perme-
ability (upper left), pressure solution (upper right), horizontal velocity magnitude (lower left) and vertical velocity magnitude (lower right).

Fig. 5. Learning curves. In each sub-figure, there are comparison among test errors SGLD with sparse approximation, vanilla PSGLD, and PSGLD with sparse
approximation.

predicted results for different values of p in KLE are presented in Figs. 6, 7 and 8. We can actually see that the predictions
using SGLD-SA are very poor, but the results using PSGLD-SA are very similar to the ground truth.

In this example, we choose the sparse rate to be 50% and 70%. By choosing appropriate hyperparameters, we can achieve
similar accuracy for the dense network and sparse network as shown in Table 1. This indicates that enforcing sparsity using
our method can maintain accuracy while reducing storage/computational cost. However, if the sparse rate is too large, we
find it is hard to get comparable results since over sparse network may not be sufficient to represent the properties of the
target map of interest. On the other hand, comparing PSGLD and SGLD, we notice that applying preconditioners can provide
better results. The learning curves are presented in 5. It shows that PSGLD-SA converges faster than SGLD-SA or vanilla
PSGLD in all three cases.
Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
11

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134

Table 1
Mean errors between the true and predicted velocity solutions us-
ing SGLD, PSGLD, SGLD-SA, and proposed PSGLD-SA. Mean errors
of 300 testing cases.

Dense

PSGLD (e1/e2 %) SGLD(e1/e2 %)
KLE32 0.75/0.57 2.37/2.17
KLE64 0.82/0.63 2.38/2.25
KLE128 2.13/1.93 2.90/2.60

PSGLD-SA (e1/e2 %) SGLD-SA (e1/e2 %)

Sparse rate 50%

KLE32 0.59/0.56 2.67/2.35
KLE64 0.78/0.58 2.68/2.41
KLE128 1.60/1.31 3.47/3.00

Sparse rate 70%

KLE32 0.58/0.51 2.28/2.10
KLE64 0.76/0.61 2.40/2.97
KLE128 1.79/1.60 3.51/3.02

Fig. 6. KLE 32. True and prediction solutions. In each sub-figure, the first row represents horizontal velocity solution magnitude, the second row represents
vertical velocity solution magnitude. From left to right: true, PSGLD-SA prediction, SGLD-SA prediction.
12

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Fig. 7. KLE 64. True and prediction solutions. In each sub-figure, the first row represents horizontal velocity solution magnitude, the second row represents
vertical velocity solution magnitude. From left to right: true, PSGLD-SA prediction, SGLD-SA prediction.

6.3. Elliptic problem with channelized media

Last, we employ the proposed algorithm to predict the solution of an elliptic problem with channelized media. The
problem setup is the same as in section 6.2. However, the background permeability fields are images of channelized media.
The image size for our problem is 50 × 50, which are patches cropped from the channelized media in [20]. An illustration
of the permeability data and corresponding solutions are presented in Fig. 9. We generate 3000 data pairs and randomly
split them into 80% and 20% for training and testing purposes, respectively.

We set the sparsity rate to be 30%, 50%, and 70%. The performance of our proposed method PSGLD-SA compared with
vanilla SGLD, vanilla PSGLD, and SGLD-SA is shown in Table 2. We see that PSGLD-SA outperforms SGLD-SA in all three
sparse cases. PSGLD-SA also results in more accurate results compared to vanilla PSGLD. The test learning curves are pre-
sented in Fig. 10. It shows that preconditioning helps to improve the convergence speed. With stochastic approximation,
PSGLD-SA provides better results compared to PSGLD. Some samples are presented in Fig. 11. It is clear that the predicted
velocity solutions using PSGLD-SA capture the heterogeneity in the underlying problem and look very close to the true
solutions. However, the predicted solutions obtained from SGLD-SA are not reliable.

7. Conclusion

We propose a Bayesian sparse learning algorithm, where the model parameters are adaptively trained using a Bayesian
mixture deep neural network, and the latent variables are smoothly learned through optimization. The Bayesian hierarchical
model adopts SSGL priors, and samples are generated from the posterior using preconditioned Stochastic gradient descent
Markov Chain Monte Carlo (PSGLD). PSGLD incorporates local curvature information in the parameter updating scheme,
13

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Fig. 8. KLE 128. True and prediction solutions. In each sub-figure, first row represents horizontal velocity solution magnitude, second row represents vertical
velocity solution magnitude. From left to right: true, PSGLD-SA prediction, SGLD-SA prediction.

Table 2
Channelized permeability fields. Mean errors between the true and pre-
dicted velocity using proposed SGLD, PSGLD, SGLD-SA, and PSGLD-SA.
Mean errors among 600 testing samples.

PSGLD (e1/e2 %) SGLD (e1/e2 %)

Dense 3.31/2.73 6.39/4.94

PSGLD-SA (e1/e2 %) SGLD-SA (e1/e2 %)

Sparse rate 30% 2.73/2.13 3.94/3.12
Sparse rate 50% 2.75/2.16 3.91/3.05
Sparse rate 70% 2.71/1.95 4.46/3.57

such that a constant step size is adequate and slow mixing can be avoided. Due to the diagonal form of the preconditioning
matrix, PSGLD needs less computational and storage cost compared to SGRLD. Moreover, we apply stochastic approximation
techniques in the sequentially updated preconditioning matrix, the bias on the MSE introduced due to ignoring a correction
term will approach zero. The convergence of the proposed algorithm is discussed. Numerical simulations are performed
to learn the solutions of elliptic PDE with heterogeneous coefficients. Sparse learning with preconditioned SGLD sampling
algorithm is helpful to accelerate the learning process and the trained sparse models, which can be used as computational
efficient surrogates for solving the underlying PDE. The algorithm can also be extended to solve other heterogeneous prob-
lems and applied to the multi-fidelity framework. Moreover, we may construct an appropriate network structure and enforce
sparsity according to physical information, such that we can interpret the sparse network obtained physically.
14

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Fig. 9. Illustrations of channelized permeability fields and corresponding solutions. In each subplot, permeability (upper left), pressure solution (upper right),
horizontal velocity magnitude (lower left) and vertical velocity magnitude (lower right).

Fig. 10. Channelized media, learning curves. Comparison among test errors SGLD with sparse approximation, vanilla PSGLD, and PSGLD with sparse approx-
imation.

CRediT authorship contribution statement

Yating Wang and Wei Deng conceived the machine learning models, implemented the methods, designed the numerical
experiments, interpreted the results, and wrote the manuscript text. Guang Lin supported this study and edited the final
manuscript. All authors provided final approval for publication.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgement

We gratefully acknowledge the support from The National Science Foundation (DMS-1555072, DMS-1736364, CMMI-
1634832, and CMMI-1560834), and Brookhaven National Laboratory Subcontract 382247, ARO/MURI grant W911NF-15-
1-0562, and U.S. Department of Energy (DOE) Office of Science Advanced Scientific Computing Research program DE-
SC0021142. The authors would also like to acknowledge the support from NVIDIA Corporation for the donation of the
Titan Xp GPU used for this research.
15

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Fig. 11. Channelized permeability field. True and prediction solutions. In each sub-figure, first row represents horizontal velocity solution magnitude, second
row represents vertical velocity solution magnitude.

Appendix A. Convergence of latent variables

Assumption 1. The step size {ωk} in the update formula for latent variables satisfies
∑∞

k=1 ωk = +∞,
∑∞

k=1 ω2
k < +∞,

moreover,

lim infk→∞2δ
ωk

ωk+1
+ ωk+1 − ωk

ω2
k+1

> 0

In practice, one can choose ωk = c1(k + c2)
−ζ for ζ ∈ (0, 1]) and constants c1, c2.

Assumption 2. For all θ ∈ �, there exists a function μθ (β) that solves the Poisson equation μθ (β) − �θμθ (β) = H(θ, β) −
h(θ). There exists a constant C such that

E||�θμθ (β)|| ≤ C

E||�θμθ (β) − �θ ′μθ ′(β)|| ≤ C ||θ − θ ′||

Lemma 1. There exists λ0 and k0 such that ∀λ ≥ λ0 and ∀k ≥ k0 , the sequence {ψk}∞k=1 with ψk = λωk + 2C2/δ sup
i≥k0

�i satisfies

ψk+1 ≥ (1 − 2δωk+1 + C1ω
2)ψk + C1ω

2 + 2C2�kωk+1 (13)
k+1 k+1

16

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Proof. Plug in ψk = λωk + 2C2/δ sup
i≥k0

�i in equation (13),

(λωk+1 + 2C2/δ sup
i≥k0

�i) ≥ (1 − 2δωk+1 + C1ω
2
k+1)(λωk + 2C2/δ sup

i≥k0

�i) + C1ω
2
k+1 + 2C2�kωk+1

Rearranging terms, we need to show

λ(ωk+1 − ωk + 2δωkωk+1 − C1ωkω
2
k+1) ≥ (−2δωk+1 + C1ω

2
k+1)2C2/δ sup

i≥k0

�i + C1ω
2
k+1 + 2C2�kωk+1

That is,

λ(2δ
ωk

ωk+1
+ ωk+1 − ωk

ω2
k+1

− C1ωk)ω
2
k+1 ≥ ω2

k+1(C1 + 2C1C2/δ sup
i≥k0

�i) − (sup
i≥k0

�i − �k)2C2ωk+1 (14)

Let M1 = lim infk→∞2
ωk

ωk+1
+ ωk+1 − ωk

ω2
k+1

, we see the left hand side of (14) is greater than equal to λ(M1 − C1ωk)ω
2
k+1. And

use the fact that supi≥k0
�i −�k ≥ 0, we have the right hand side of (14) is less than equal to ω2

k+1(C1 +2C1C2/δ supi≥k0
�i).

Now it suffices to show that

λ(M1 − C1ωk)ω
2
k+1 ≥ ω2

k+1(C1 + 2C1C2 sup
i≥k0

�i) (15)

By choosing λ0 and k0 such that ωk0 ≤ M1

2C1
, and λ0 = 4C1C2 supi≥k0

�i + 2C1

M1
, (14) holds, thus the desired inequality (13)

holds. �
Theorem 2. Suppose Assumptions 1-2 hold, with assumptions and Lemmas 1-2, Propositions 1-3 in [13], we have the sequence {θk}∞k=1
converge to θ∗ , and there exists a sufficiently large k0 such that

E||θk − θ∗||2 = O(λωk + sup
i≥k0

E||�(n, θ i,β i+1)||)

Proof. Denote by Ek = θk − θ∗ , we have

||Ek+1||2 = ||Ek||2 + ω2
k+1||H̃(βk+1, θk)||2 + 2ωk+1E〈Ek, H̃(βk+1, θk)〉 (16)

For the third term in (16), we have

〈Ek, H̃(βk+1, θk)〉 = 〈Ek, H(βk+1, θk) + �(n, θ i,β i+1)〉
≤ − ||Ek||2 + 〈Ek,μθk (βk+1) − �θkμθk (βk)〉 + 〈Ek,�θkμθk (βk) − �θk−1μθk−1(βk)〉

+ 〈Ek,�θk−1μθk−1(βk) − �θkμθk (βk+1)〉 + ||Ek||�k

where ||�(n, θk, βk+1)|| = �k . Following a similar proof as in [13], we have

2ωk+1E〈Ek, H̃(βk+1, θk)〉C2ωk+1

Thus,

E||Ek+1||2 ≤ (1 − 2δωk+1 + C1ω
2
k+1)E||Ek||2 + C1ω

2
k+1 + 2C2�kωk+1 + 2ωk+1E[zk − zk+1]〉

where we use the fact that ||H̃(βk+1, θk)||2 ≤ C1(1 + ||Ek||2).
According to Lemma 1, there exists λ0, k0 such that

E||Ek0 ||2 ≤ ψk0 = λ0ωk0 + 2C2/δ sup
i≥k0

�i

Thus,

E||Ek||2 ≤ ψk +E[
k∑

j=k0+1

�k
j(z j+1 − z j)] (17)

From Assumption 2 and that θ is uniformly bounded, there exists C3 > 0

E[|zk|] = E
[∣∣〈Ek,�θ μθ (βk)〉

∣∣]≤ E||Ek||E
[∣∣�θ μθ (βk)

∣∣]≤ C3
k−1 k−1 k−1 k−1

17

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Moreover, due to the fact that k0 is an integer satisfying

inf
k≥k0

ωk+1 − ωk

ωkωk+1
+ 2δ − C1ωk+1 > 0.

Then ∀k ≥ k0, the sequence {�K
k }K

k=k0
is increasing, where

�K
k =

⎧⎪⎪⎨
⎪⎪⎩

2ωk

K−1∏
j=k

(1 − 2ωk+1δ + C1ω
2
k+1), if k < K

2ωk, if k = K

Thus,

E

⎡
⎣
∣∣∣∣∣∣

k∑
j=k0+1

�k
j(z j+1 − z j)

∣∣∣∣∣∣
⎤
⎦= E

⎡
⎣
∣∣∣∣∣∣

k−1∑
j=k0+1

(�k
j+1 − �k

j)z j + �k
k0+1zk0 − �k

kzk

∣∣∣∣∣∣
⎤
⎦

≤ (�k
k − �k

k0+1)C3 + �k
k0+1C3 + �k

kC3

= 2�k
kC3 ≤ 4C3ωk

Then the inequality (17) can be further bounded as

E||Ek||2 ≤ λ0ωk + C2 sup
i≥k0

�i + 4C3ωk

= λωk + C2 sup
i≥k0

�i

where λ = λ0 + 4C3. �
References

[1] J. Aarnes, Y. Efendiev, Mixed multiscale finite element for stochastic porous media flows, SIAM J. Sci. Comput. 30 (5) (2008) 2319–2339.
[2] T. Arbogast, Homogenization-based mixed multiscale finite elements for problems with anisotropy, Multiscale Model. Simul. 9 (2011) 624–653.
[3] A. Bordes, L. Bottou, P. Gallinari, SGD-QN: careful quasi-Newton stochastic gradient descent, J. Mach. Learn. Res. 10 (2009) 1737–1754.
[4] R.H. Byrd, S.L. Hansen, J. Nocedal, Y. Singer, A stochastic quasi-Newton method for large-scale optimization, SIAM J. Optim. 26 (2016) 1008–1031.
[5] C. Chen, N. Ding, L. Carin, On the convergence of stochastic gradient MCMC algorithms with high-order integrators, in: Advances in Neural Information

Processing Systems, 2015, pp. 2278–2286.
[6] R. Chen, Y. Rubanova, J. Bettencourt, D. Duvenaud, Neural ordinary differential equations, preprint, arXiv:1806 .07366, 2018.
[7] T. Chen, E. Fox, C. Guestrin, Stochastic gradient Hamiltonian Monte Carlo, in: International Conference on Machine Learning, 2014, pp. 1683–1691.
[8] S.W. Cheung, E.T. Chung, Y. Efendiev, E. Gildin, Y. Wang, J. Zhang, Deep global model reduction learning in porous media flow simulation, Comput.

Geosci. 24 (2020) 261–274.
[9] E. Chung, Y. Efendiev, C. Lee, Mixed generalized multiscale finite element methods and applications, Multiscale Model. Simul. 13 (2014) 338–366.

[10] E. Chung, Y. Efendiev, W.T. Leung, M. Vasilyeva, Y. Wang, Online adaptive local multiscale model reduction for heterogeneous problems in perforated
domains, Appl. Anal. 96 (2017) 2002–2031.

[11] Y. Dauphin, H. De Vries, Y. Bengio, Equilibrated adaptive learning rates for non-convex optimization, in: Advances in Neural Information Processing
Systems, 2015, pp. 1504–1512.

[12] Y.N. Dauphin, R. Pascanu, C. Gulcehre, K. Cho, S. Ganguli, Y. Bengio, Identifying and attacking the saddle point problem in high-dimensional non-convex
optimization, in: Advances in Neural Information Processing Systems, 2014, pp. 2933–2941.

[13] W. Deng, X. Zhang, F. Liang, G. Lin, An adaptive empirical Bayesian method for sparse deep learning, in: Advances in Neural Information Processing
Systems, 2019, pp. 5564–5574.

[14] Y. Efendiev, J. Galvis, T. Hou, Generalized multiscale finite element methods (GMsFEM), J. Comput. Phys. 251 (2013) 116–135.
[15] Y. Fan, L. Lin, L. Ying, L. Zepeda-Núnez, A multiscale neural network based on hierarchical matrices, Multiscale Model. Simul. 17 (2019) 1189–1213.
[16] E.I. George, R.E. McCulloch, Approaches for Bayesian variable selection, Stat. Sin. (1997) 339–373.
[17] M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc., Ser. B, Stat. Methodol. 73 (2011)

123–214.
[18] J. He, J. Xu, MgNet: a unified framework of multigrid and convolutional neural network, Sci. China Math. 62 (2019) 1331–1354.
[19] Y. Khoo, J. Lu, L. Ying, Solving parametric PDE problems with artificial neural networks, arXiv:1707.03351, 2017.
[20] E. Laloy, R. Hérault, D. Jacques, N. Linde, Training-image based geostatistical inversion using a spatial generative adversarial neural network, Water

Resour. Res. 54 (2018) 381–406.
[21] C. Li, C. Chen, D. Carlson, L. Carin, Preconditioned stochastic gradient Langevin dynamics for deep neural networks, in: Thirtieth AAAI Conference on

Artificial Intelligence, 2016.
[22] J. Lin, Y. Rao, J. Lu, J. Zhou, Runtime neural pruning, in: Advances in Neural Information Processing Systems, 2017, pp. 2181–2191.
[23] Y.-A. Ma, T. Chen, E. Fox, A complete recipe for stochastic gradient MCMC, in: Advances in Neural Information Processing Systems, 2015, pp. 2917–2925.
[24] P. Molchanov, S. Tyree, T. Karras, T. Aila, J. Kautz, Pruning convolutional neural networks for resource efficient inference, preprint, arXiv:1611.06440,

2016.
[25] S. Patterson, Y.W. Teh, Stochastic gradient Riemannian Langevin dynamics on the probability simplex, in: Advances in Neural Information Processing

Systems, 2013, pp. 3102–3110.
[26] T. Qin, K. Wu, D. Xiu, Data driven governing equations approximation using deep neural networks, preprint, arXiv:1811.05537, 2018.
18

http://refhub.elsevier.com/S0021-9991(21)00026-7/bibEFE19B9AB9589195083BB4D8CBEBC6B4s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib17E6C1AC8967A0876409AB2F4B8360E5s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib66D76A9FEBD69532B2E693D7D78A423Cs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibF0A1A2C1029E919BF709E5A67B0EFF64s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib34E9C84DD1294AB6C2EBF698FF0A306As1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib34E9C84DD1294AB6C2EBF698FF0A306As1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibAC3BDB887734D00DB864B3DB30F00568s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib238FB4947A024F4A8CAF7BD8A07AAB65s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibC9A691CEBBA91CC0767CD14BC5936EE7s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibC9A691CEBBA91CC0767CD14BC5936EE7s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibA0D265AFEAE044AF5E8774DA475087A8s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib0DA1127D95D7A4AD5C261606DBEF07DEs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib0DA1127D95D7A4AD5C261606DBEF07DEs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib936D631B42AFFA9F083E073244743EDDs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib936D631B42AFFA9F083E073244743EDDs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib56F17B2033181E1EAE10D316ABEE4AA4s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib56F17B2033181E1EAE10D316ABEE4AA4s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib316377F187D2AEB3AC72DE0FBCCEE1D1s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib316377F187D2AEB3AC72DE0FBCCEE1D1s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib4D1971C3B7E20D2A979CB3B5B60A1C79s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib98BBE682123FC04916715EB40BA8F8C4s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibFF1D05AA5B266AB2CF8039B533B22785s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibBDDBF99FBB1591DAF960D962EC5DE186s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibBDDBF99FBB1591DAF960D962EC5DE186s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib5EF2EBD17EC1BE006257E2BFC7A72682s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib4D2A7B70E4912F1D5E426B47C89B133Fs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib3B24C62D62518CA973C40467B67BC533s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib3B24C62D62518CA973C40467B67BC533s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib36A590EFF43688F9AA79EBB95E3502E0s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib36A590EFF43688F9AA79EBB95E3502E0s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibAB1FC767D5E3524202E503029788F24Fs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib61A1BAF4538A264612588E3E7E6FBFFAs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib203ED4A7A386FD6442D08473B388CCDCs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib203ED4A7A386FD6442D08473B388CCDCs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib0946A5BEDC46744A5AC26B879D593F37s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib0946A5BEDC46744A5AC26B879D593F37s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib56CFC2C665252307A7CA99DE746F25DFs1

Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
[27] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part I): data-driven solutions of nonlinear partial differential equations,
preprint, arXiv:1711.10561, 2017.

[28] M. Raissi, P. Perdikaris, G.E. Karniadakis, Physics informed deep learning (part II): data-driven discovery of nonlinear partial differential equations,
preprint, arXiv:1711.10566, 2017.

[29] V. Ročková, E.I. George, EMVS: the EM approach to Bayesian variable selection, J. Am. Stat. Assoc. 109 (2014) 828–846.
[30] U. Simsekli, R. Badeau, T. Cemgil, G. Richard, Stochastic Quasi-Newton Langevin Monte Carlo, 2016.
[31] T. Tieleman, G. Hinton, Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude, COURSERA, Neural Netw. Mach. Learn.

4 (2012) 26–31.
[32] M. Wang, S.W. Cheung, E.T. Chung, Y. Efendiev, W.T. Leung, Y. Wang, Prediction of discretization of gmsfem using deep learning, preprint, arXiv:

1810 .12245, 2018.
[33] M. Wang, S.W. Cheung, W.T. Leung, E.T. Chung, Y. Efendiev, M. Wheeler, Reduced-order deep learning for flow dynamics: the interplay between deep

learning and model reduction, J. Comput. Phys. 401 (2020) 108939.
[34] Y. Wang, S.W. Cheung, E.T. Chung, Y. Efendiev, M. Wang, Deep multiscale model learning, J. Comput. Phys. 406 (2020) 109071.
[35] Y. Wang, G. Lin, Efficient deep learning techniques for multiphase flow simulation in heterogeneous porous media, J. Comput. Phys. 401 (2020) 108968.
[36] E. Weinan, B. Yu, The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems, Commun. Math. Stat. 6 (2018)

1–12.
[37] M. Welling, Y.W. Teh, Bayesian learning via stochastic gradient Langevin dynamics, in: Proceedings of the 28th International Conference on Machine

Learning, ICML-11, 2011, pp. 681–688.
[38] D. Zhang, L. Lu, L. Guo, G.E. Karniadakis, Quantifying total uncertainty in physics-informed neural networks for solving forward and inverse stochastic

problems, J. Comput. Phys. 397 (2019) 108850.
[39] Y. Zhang, C.A. Sutton, Quasi-Newton methods for Markov chain Monte Carlo, in: Advances in Neural Information Processing Systems, 2011,

pp. 2393–2401.
[40] Y. Zhu, N. Zabaras, P.-S. Koutsourelakis, P. Perdikaris, Physics-constrained deep learning for high-dimensional surrogate modeling and uncertainty

quantification without labeled data, J. Comput. Phys. 394 (2019) 56–81.
19

http://refhub.elsevier.com/S0021-9991(21)00026-7/bib00C88BAD0052D7DBB7C280953F19BE6Ds1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib00C88BAD0052D7DBB7C280953F19BE6Ds1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibDECD556D49821AF9634670119F06AEBFs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibDECD556D49821AF9634670119F06AEBFs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibB458C2CACBCCA28C5DA0CD6181A91B80s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib084FC1D27FE9101F9F4E8AEA9C045809s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibEC5CBD2D01D70214A6F8E442072C149Ds1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibEC5CBD2D01D70214A6F8E442072C149Ds1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib3127DD75C9E2F943FE53E609084560C5s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib3127DD75C9E2F943FE53E609084560C5s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibBE2013A80A31E4160BD604EB33653AD5s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibBE2013A80A31E4160BD604EB33653AD5s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibFB3DD9C6E84E1EEB1E7E8B4B7D816E63s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib2A7FA9D790670D00D695D9D2C71695DFs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib5B65CF27F92577AF4A37B729E1F9C37Bs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib5B65CF27F92577AF4A37B729E1F9C37Bs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibDBF1E2FE408D35246DD08AE2058DE05Bs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibDBF1E2FE408D35246DD08AE2058DE05Bs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibAF4E87788B645CD56E3CB469CFE9B59Bs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibAF4E87788B645CD56E3CB469CFE9B59Bs1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib2B116314752D1AA3CB7DF6BA3CA4ADE4s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bib2B116314752D1AA3CB7DF6BA3CA4ADE4s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibBD735F4C39CB6E3F649171D7E136DE21s1
http://refhub.elsevier.com/S0021-9991(21)00026-7/bibBD735F4C39CB6E3F649171D7E136DE21s1

	Bayesian sparse learning with preconditioned stochastic gradient MCMC and its applications
	1 Introduction
	2 Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Riemann Langevin dynamics (SGRLD)
	3 SGLD with stochastic approximation (SGLD-SA)
	4 Preconditioned SGLD with stochastic approximation (PSGLD-SA)
	5 Convergence results
	6 Numerical example
	6.1 Small n large p problem
	6.2 Elliptic problem with heterogeneous coefficients
	6.3 Elliptic problem with channelized media

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgement
	Appendix A Convergence of latent variables
	References

