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Deep neural networks have been successfully employed in an extensive variety of research 
areas, including solving partial differential equations. Despite its significant success, 
there are some challenges in effectively training DNN, such as avoiding overfitting in 
over-parameterized DNNs and accelerating the optimization in DNNs with pathological 
curvature. In this work, we propose a Bayesian type sparse deep learning algorithm. The 
algorithm utilizes a set of spike-and-slab priors for the parameters in the deep neural 
network. The hierarchical Bayesian mixture will be trained using an adaptive empirical 
method. That is, one will alternatively sample from the posterior using preconditioned 
stochastic gradient Langevin Dynamics (PSGLD), and optimize the latent variables via 
stochastic approximation. The sparsity of the network is achieved while optimizing the 
hyperparameters with adaptive searching and penalizing. A popular SG-MCMC approach 
is Stochastic gradient Langevin dynamics (SGLD). However, considering the complex 
geometry in the model parameter space in nonconvex learning, updating parameters using 
a universal step size in each component as in SGLD may cause slow mixing. To address 
this issue, we apply a computationally manageable preconditioner in the updating rule, 
which provides a step-size parameter to adapt to local geometric properties. Moreover, 
by smoothly optimizing the hyperparameter in the preconditioning matrix, our proposed 
algorithm ensures a decreasing bias, which is introduced by ignoring the correction term 
in the preconditioned SGLD. According to the existing theoretical framework, we show 
that the proposed algorithm can asymptotically converge to the correct distribution with a 
controllable bias under mild conditions. Numerical tests are performed on both synthetic 
regression problems and learning solutions of elliptic PDE, which demonstrate the accuracy 
and efficiency of the present work.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Deep neural networks have attracted extensive attention in recent times. Due to their strong potential in approximating 
high-dimensional nonlinear maps and the universal approximation property to represent a rich class of functions, DNNs have 
been successfully employed in problems from various research areas. However, effectively training DNN is still challenging 
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due to the difficulty of escaping local minima in nonconvex optimization and avoiding overfitting in over-parameterized 
networks.

Bayesian learning is appealing because of its ability to capture uncertainties in the model parameters, and MCMC sam-
pling helps to address the overfitting issue. There has been extensive work bringing the Bayesian methods to the context of 
DNN optimization. The stochastic gradient Langevin dynamics (SGLD) [37] is first proposed and becomes a popular approach 
in the family of stochastic gradient MCMC algorithms [7,23,21]. SGLD is the first-order Euler discretization of Langevin diffu-
sion with stationary distribution on Euclidean space. It can be viewed as adding some noise to a standard stochastic gradient 
optimization algorithm. Since it resembles SGD, SGLD inherits the advantage of SGD where the gradients are stochastically 
approximated using mini-batches. This makes MCMC scalable and provides a seamless transition between stochastic opti-
mization and posterior sampling. It was shown that samples from SGLD will converge to samples from the true posterior 
distribution with annealed step size [5,37].

In DNN, the underlying models may have complicated geometric properties and possess non-isotropic target density 
functions [12,21,7]. When the components of parameters have different curvature, generating samples using a universal 
step size for every model parameter may cause slow mixing and can be inefficient. In the optimization literature, there 
are many approaches to accelerate the gradient descent, such as preconditioning and Newton’s method [11,39,4,3]. How-
ever, naively borrowing this idea and using a preconditioning matrix in SGLD fails to produce a proper MCMC scheme, the 
Markov chain does not target the underlying posterior except for a few cases [21,30]. Considering that a Langevin diffusion 
with invariant measure can be directly defined on a Riemannian manifold, and the expected Fisher information is one typ-
ical choice for the Riemannian metric tensor [17], SGRLD is proposed [25]. Built-up from Riemannian Langevin dynamics, 
SGRLD is a discretization of the Riemannian Langevin dynamics and the gradients are approximated stochastically. It in-
corporates local curvature information in the parameter updating scheme, such that a constant step size is adequate along 
with all directions. However, the full expected Fisher information is usually intractable. A more computationally efficient 
preconditioner is needed to approximate second-order Hessian information. Preconditioned SGLD adopts the same precon-
ditioner as introduced in RMSprop [31] as discussed in [21] which reduces the computational and storage cost. One can 
update the preconditioner sequentially taking into account the current gradient and the previous preconditioning matrix. 
The preconditioner is in a diagonal form and can handle scale differences in the target density. However, the algorithm in 
[21] introduces a permanent bias on the MSE due to ignoring a correction term in the updating equation.

On the other hand, DNN models are usually over-parameterized and require extensive storage capacity as well as a lot of 
computational power. The over specified models may also lead to bad generalization and large prediction variance. Enforcing 
sparsity in the network is necessary. In [13], the authors propose an adaptive empirical Bayesian method for sparse learn-
ing. The idea is to incorporate an adaptive empirical Bayesian model selection technique with SG-MCMC sampling algorithm 
(SGLD-SA). In SGLD-SA algorithm [13], one adopts a spike-and-slab prior and obtains a Bayesian mixture DNN model. The 
model parameters are sampled from the adaptive hierarchical posterior using SG-MCMC, and the hyperparameters in the 
priors are optimized via stochastic approximation adaptively. The algorithm automatically searches and penalizes the low 
probability parameters and identifies promising sparse high posterior probability models [29]. One can also apply a pruning 
strategy to cut off model parameters with small magnitudes to further enforce sparsity in the network [24,22]. The per-
formance of the sparse approach is demonstrated with numerous examples, and the method is also shown to be robust to 
adversarial attacks. Theoretically, the authors show that the proposed algorithm can asymptotically converge to the correct 
distribution.

In support of the advantages and considering the issues of the above-mentioned methods, we incorporate the precon-
ditioned SGLD methods with sparse learning. We will apply the proposed method to learn solutions of partial differential 
equations with heterogeneous coefficients. Numerous approaches have been proposed to numerically solve ODEs and PDEs 
with deep neural networks, for example, parametric PDEs [19], ODE systems driven by data [6,26], time-dependent mul-
tiscale problems [34,33] and physical informed DNN ([27,28,38,40]). Moreover, various types of network architectures are 
constructed to achieve efficient learning based on existing fast numerical solvers. These approaches include designing multi-
grid neural networks [15,18], constructing multiscale models [32,34,35], learning surrogate reduced-order models by deep 
convolution networks [40,36,8] and so on.

This work attempts to design an efficient sparse deep learning algorithm and apply it to learn the solution of elliptic PDE 
with heterogeneous coefficients. Numerical simulations for these problems are challenging since it naturally contains het-
erogeneity at various scales as well as uncertainties. Based on the model reduction idea, for example, generalized multiscale 
finite element method (GMsFEM) [14,9,10], the authors [35] design an appropriate sparse DNN structure to learn the map 
from the heterogeneous permeability to velocity fields in Darcy’s flow. The idea is to apply locally connected/convolutional 
layers which can be an analogy to the upscaling and downscaling procedures in multiscale methods. However, the network 
is still over-parameterized. In particular, the last decoding step joins neurons representing features on the coarser level to 
the neurons representing the fine-scale solutions and is realized by a fully connected layer. Due to the large degrees of free-
dom in the fine grid solution, the number of parameters in the network will be very large and result in inefficient training. 
Our main contribution is to bring together preconditioned SGLD and stochastic approximation to achieve efficient and sparse 
learning. We propose an adaptive empirical Bayesian algorithm, where the neural network parameters are sampled from a 
Bayesian mixture model using PSGLD method, and the latent variables are smoothly optimized during stochastic approxi-
mation. PSGLD incorporates local curvature information in the parameter updating scheme, thus it is suitable to deal with 
our problem which possesses multiscale nature. More importantly, we will sequentially update the preconditioning matrix 
2
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under the framework of stochastic approximation, such that the bias formed by ignoring the correction term in the sampling 
approaches to zero asymptotically. We theoretically show the convergence of the proposed algorithm and demonstrate its 
performance in several numerical experiments.

The paper is organized as follows. In Section 2, we review some basic ideas in SGLD, SGRLD. In Section 3, the sparse 
adaptive empirical Bayesian approach is reviewed. Our main algorithm which combines preconditioned SGLD with sparse 
learning is explored in Section 4. Its convergence is discussed in Section 5. Applying the proposed method to a large-p-
small-n regression problem, and to learn solutions of elliptic problems with heterogeneous coefficients, its performances are 
presented in Section 6. A conclusion is made in the last Section 7.

2. Stochastic gradient Langevin dynamics (SGLD) and stochastic gradient Riemann Langevin dynamics (SGRLD)

Throughout the paper, we denote by β the model parameters with p(β) as a prior distribution, and D = {di}N
i=1 the entire 

dataset, where di = (xi, yi) is an input-output pair for the model. Let p(d|β) be the likelihood, the posterior is then p(β|D) ∝
p(β) 

∏N
i=1 p(di |β). SGLD combines the idea of stochastic gradient algorithms and posterior Bayesian sampling using Langevin 

dynamics. The loss gradient is approximated efficiently using mini-batches of data in SGLD, and the uncertainties in the 
model parameters can be captured through Bayesian learning to avoid overfitting. Let εk be the learning rate at epoch k and 
τ > 0 be the inverse temperature, the model parameters update as follows:

βk+1 = βk + εk∇β L̃(βk) +N (0,2εkτ
−1)

where for a subset of n data points dk = {dk1, · · · , dkn}

∇β L̃(β) = ∇β log p(β) + N

n

n∑
i=1

∇β log p(dki |β)

is the stochastic gradient computed using a minibatch, which is used to approximate the true gradient ∇β L(β).
Complicated posterior distributions often exhibit pathological curvatures with different scales of model parameters, and 

any uniform learning rate may maximize the efficiency in one direction but fails entirely in exploring other regions with 
large curvature and small scales. Stochastic Gradient Riemann Langevin Dynamics (SGRLD) [25] is a generalization of SGLD 
on a Riemannian manifold. In this case, consider the probability model on a Riemann manifold with some metric tensor 
G−1(β), the parameter updates can be guided by the geometric information of this manifold as follows:

βk+1 = βk + εk

[
G(βk)∇β L̃(βk) + �(βk)

]
+N (0,2εkτ

−1G(βk)) (1)

where �(βk) is an additional drift term and �i(βk) =
∑

j
∂Gij(βk)

∂β j
. The expected Fisher information can be used as a natural 

metric tensor, however it is intractable in many cases. One can choose a more practical metric tensor and use it as a 
preconditioning matrix.

3. SGLD with stochastic approximation (SGLD-SA)

To achieve sparse learning in DNN, in [13], the authors propose an adaptive empirical Bayesian method. It assumes that 
the weight parameter βl j , the j-th neuron in the l-th layer, follows spike-and-slab Gaussian Laplace prior

π(βl j|σ 2, γl j) = (1 − γl j)Lp(0,σ v0) + γl jN (0,σ 2 v1)

where γl j ∈ {0, 1} are the latent binary variable selection indicators, Lp is the Laplace distribution, and N is the Normal 
distribution. The variance parameters v0 and v1 are constants which can control the variance of Laplace and Gaussian dis-
tribution, resulting in spike-and-slab priors. The error variance σ 2 follows an inverse gamma prior π(σ 2) = IG(ν/2, νλγ /2), 
where λγ is usually set to be constant in practice [16]. The prior for γ follows a Bernoulli distribution, π(γl|δl) =
(δl)|γl |(1 − δl)pl−|γl | , which incorporate uncertainty regarding which variables βl j need be included in the model. Here, pl is 
the number of model parameters in the l-th sparse layer. |γl | =∑

j γl j , and δl follows π(δl) = δa−1
l (1 − δl)b−1 where a, b

are some positive constants.
Let dm be the m-th minibatch of the dataset. The likelihood for a regression problem can be rewritten as

π(dm|β,σ 2) = 1

(2πσ 2)n/2
exp

{−

∑
xm

i ∈dm
(ym

i −F(xm
i ;β))2

2σ 2

}
where F denotes a map describing the input-output relationship from xm

i to ym
i .

Then, the posterior follows

π(β,σ 2, δ,γ |dm) ∝ π(dm|β,σ 2)
N
n π(β|σ 2,γ )π(σ 2|γ )π(γ |δ)π(δ) (2)
3
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Algorithm 1 SGLD-SA.
INPUT: Initialize β1, ρ1, κ1, δ1, σ1. Given target sparse rate s, step size ωk

1: for all k ← 1 : #iterations do
2: βk+1 ← βk + εk∇β Q (·|dk) +N (0,2εkτ

−1)

3: alj ← π(β
l j
k |γl j = 1)δl

k , blj ← π(β
l j
k |γl j = 0)(1 − δl

k)

4: ρ
l j
k+1 ← (1 − ωk+1)ρ

l j
k + ωk+1

alj

alj + blj

5: κ
l j
k+1,0 ← (1 − ωk+1)κ

l j
k,0 + ωk+1

1 − ρ
l j
k+1

v0

6: κ
l j
k+1,1 ← (1 − ωk+1)κ

l j
k,1 + ωk+1

ρ
l j
k+1

v1
7: σk+1 ← (1 − ωk+1)σk + ωk+1 R

8: δk+1 ← (1 − ωk+1)δl
k + ωk+1

∑
j ρ

jl
k+1 + alj − 1

alj + blj + p − 2
9: if Pruning then

10: Prune the last s% weights with smallest magnitude
11: Increase the sparse rate

Since there are P = ∑
l∈LD

pl number of model parameters, this results in 2P choices of γ . For large P , the binary 
variable γ is hard to optimize directly. We adopt the idea of expectation and maximization approach as introduced in [29]
to build a continuous approximation from probabilistic considerations. Here the latent variables γ are unknown parameters 
and will be treated as missing data. At every iteration, the expected conditional probability for γ is computed given D, 
current parameters β and other latent variables. At iteration k, instead of sampling from true posterior with respect to the 
whole dataset D, one needs to sample from Q with respect to a mini-batch B

Q (β,σ , δ|βk,σk, δk) = EB
[
Eγ |D[logπ(β,σ , δ,γ )|B]]

and it can be separated as

Q (β,σ , δ|βk,σk, δk) = Q 1(β,σ |βk,σk, δk) + Q 2(δ|βk,σk, δk) + C

where

Q 1(β,σ |βk,σk, δk) = N

n
logπ(dm|β) −

∑
l∈LD

∑
j∈pl

(βl j)2

2σ 2
0

− p + ν + 2

2
log(σ 2)−

∑
l∈L S

∑
j∈pl

{ |βl j|
σ

E[ 1

v0(1 − γl j)
] + β2

l j

2σ 2
E[ 1

v1γl j
]}− νλ

2σ 2

Q 2(δ|βk,σk, δk) =
∑
l∈L S

∑
j∈pl

log(
δl

1 − δl
)E[γl j] + (a − 1) log(δl) + (pl + b − 1) log(1 − δl)

Here, we partition all model parameters β into two groups, one group are from dense layers LD , another group are from 
sparse layers L S . For the model parameters in sparse layers, we assume they have spike and slab Laplace-Gaussian priors 
as mentioned before. For the model parameters in dense layers, we assume they simply have Gaussian prior with zero 
mean and standard deviation σ0 = 1. We remark that the full Bayesian hierarchical model is theoretically appealing, but 
is computationally slow. To speed up the inference, the priors are inferred from the empirical data without considering 
uncertainty.

The adaptive empirical Bayesian algorithm samples β from Q and iteratively optimize Q with respect to σ 2, γ , δ via 
stochastic approximation as in Algorithm 1. We note that the update formulas of latent variables ρ, κ, δ, σ are motivated by 
EM approach to Bayesian variable selection (EMVS) [29] In Algorithm 1, ρl j = E[γl j], ωk is the step size in updating latent 
variables, κ l j

k,0 = E[ 1
v0(1−γl j)

] and κ l j
k,1 = E[ 1

v1γl j
], R is the positive root to the following quadratic formula:

{
N +

∑
l∈Ls

pl + ν
}
σ 2 + {||∑

l∈Ls

κ l
k,0 ◦ βl

k+1||1
}
σ

+ {N

n

∑
xm

i ∈dm

(ym
i −F(xm

i ;β))2 + ||
∑
l∈Ls

κ l
k,1 ◦ βl

k+1||22 + νλ
}= 0

where ◦ denotes the point-wise product, || · ||1 and || · ||2 are the vector l1 and l2 norm correspondingly.
4
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4. Preconditioned SGLD with stochastic approximation (PSGLD-SA)

As seen in Section 2, all model parameters β are updated using the same learning rate εk in SGLD. If the loss function 
has very different scales in different directions, the sampling procedure will take larger steps in directions where the model 
parameter has small variance, and smaller steps in directions of large variance during sampling. This causes slow mixing 
and slows down the convergence of sampling. However, a small enough learning rate is required to avoid divergence in the 
largest positive curvature direction.

Here, we will introduce a preconditioning matrix G(β) to guide the updating directions during sampling. In gradient 
descent algorithms, the optimization can be improved using the second-order information, i.e., the inverse of the Hessian 
matrix, as the preconditioning matrix. However, it is too computationally expensive to store and invert the full Hessian 
during the training. An efficient approximation is to use the same preconditioner as in RMSprop [31]. The idea is to scale 
the gradient using a moving average of its recent norm in each iteration, so that one can adapt the step size separately for 
each weight. By keeping a moving average for each weight parameter from the previous step, one can control the changes 
between adjacent mini batches. We propose a sequentially updated preconditioner using the stochastic approximation idea 
as follows

G(βk) = diag−1(η +√V (βk)) (3)

V (βk) = αk V (βk−1) + (1 − αk)g(βk) ◦ g(βk) (4)

where η is a regularization constant, and αk = (1 −ωk), g(βk) = ∇β Q . Here the operation diag−1(v) means taking element-
wise reciprocal of the vector v and forming a diagonal matrix. Importantly, we note that the weight parameter αk is a 
sequence approaching 1 as the time step k increases, which is different from the constant α in [21]. The change in the 
parameters will then be

�βk = εk
(
G(βk)g(βk) + �(βk)

)+N (0,2εkτ
−1G(βk)) (5)

where �i(βk) =
∑

j
∂Gij(βk)

∂β j
.

We note that in [21], �(βk) is ignored in practice, and α is a constant. This produces a permanent bias O
(

(1−α)2

α3

)
on 

the MSE. To address this issue, we let αk gradually approach 1 during the adaptive optimization of the latent variables, then 
the bias mentioned before will decrease. To be specific, for the i-th main diagonal entries, we have

∣∣∣∣∣
K∑

k=1

�i(βk)

∣∣∣∣∣=
∣∣∣∣∣

K∑
k=1

(1 − αk)V
− 3

2
i (βk)gi(βk)

∂ gi(βk)

∂βi

∣∣∣∣∣
=
∣∣∣∣∣

K∑
k=1

(1 − αk)gi(βk)
[
αk−1 V i(βk−1) + (1 − αk−1)gi(βk−1)gi(βk−1)

]− 3
2
∂ gi(βk)

∂βi

∣∣∣∣∣
≤
∣∣∣∣∣

K∑
k=1

(1 − αk)gi(βk)/

(
α

3
2

k−1 V
3
2

i (βk−1)

)
∂ gi(βk)

∂βi

∣∣∣∣∣
≤
∣∣∣∣∣

K∑
k=1

(1 − αk)gi(βk)/

(
α

3
2

1 V
3
2

i (βk−1)

)
∂ gi(βk)

∂βi

∣∣∣∣∣
Then we have

∣∣∣∣∣
K∑

k=1

�i(βk)

∣∣∣∣∣≤ M

∣∣∣∣∣∣
K∑

k=1

(1 − αk)

α
3
2

1

∣∣∣∣∣∣ (6)

due to the assumption that the derivatives of the gradients are bounded, |V − 3
2

i (βk−1)gi(βk)
∂ gi(βk)

∂β | ≤ M for some constant 
M > 0.

Typically, let αk be in the form of αk = 1 − c1(c2 + k)−ζ for some ζ ∈ (0.5, 1], and constants c1, c1, we can see that the 
bias introduced 

∑K
k=1

(1−αk)
2

α3
1

on the MSE will approach 0 as K → ∞.

Thus, our proposed adaptive preconditioned SGLD samples β and optimizes σ 2, γ , δ as in Algorithm 2.
5
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Algorithm 2 PSGLD-SA.
INPUT: Initialize β1, ρ1, κ1, δ1, V 1, let α1 = 0.9, η = 10−3

1: for all k ← 1 : #iterations do
2: g(βk) ← ∇β Q (·|dk)

3: if k == 1 then
4: V (βk) ← g(βk) ◦ g(βk)

5: else
6: V (βk) ← (1 − αk)V (βk−1) + αk g(βk) ◦ g(βk)

7: G(βk) ← diag−1(η +√V (βk))

8: βk+1 ← βk + εk
(
G(βk)g(βk)

)+ G
1
2 (βk)N (0,2εkτ

−1)

9: Updating hyperparameters by running steps 3-11 in Algorithm 1

5. Convergence results

Now, we will discuss the weak convergence of our proposed algorithm PSGLD-SA. First, we will take a look at the 
hyperparameters. Denote by θ all the hyperparameters (ρ, κ, σ , δ). The stochastic approximation attempts to get the optimal 
θ∗ based on the asymptotically target distribution π(β, θ∗). Define H(θ, β) = fθ (β) − θ , where fθ (β) represents a function 
to obtain optimal θ given current model parameters β . Denote by its mean field function h(θ) = E[H(θ, β)]. SA aims to 

solve the fixed point equation 
∫

fθ (β)π(β, θ)dβ = θ , which is to find the root θ∗ of the equation h(θ) = 0. As described in 

Algorithm 2, in each iteration, we first sample βk+1 using reconditioned SGLD based on θk , then update the latent variables 
using

θk+1 = θk + ωk+1 H(θk,βk+1),

where the map fθ is motivated by EMVS. However, we only use a small set of data of n samples instead of the full set 
in the computation of obtaining optimal latent variables. This will result the bias �(n, θ i, β i+1) at each step. That is, we 
actually use θk+1 = θk + ωk+1 H̃(θk, βk+1) with

H̃(β, θ) = H(β, θ) + �(n, θ i,β i+1), (7)

and we assume E||�(n, θ i, β i+1)||2 ≤ C2 for some constant C .
Following a similar proof in [13], under suitable assumptions, the adaptive empirical Bayesian method for sparse approx-

imation algorithm has the following convergence results. The details of the proof are in Appendix A.

Theorem 1. For a sufficiently large k0, there exists a constant λ such that

E
[
||θk − θ∗||2

]
= O(λωk + sup

i≥k0

E||�(n, θ i,β i+1)||).

Next, we present a weak convergence result of the model parameters.

Corollary 1. Under Assumption 2 in [5], the bias and MSE of PSGLD-SA for K steps with decreasing step size εk is bounded, the distri-
bution of βk converges weakly to the target posterior with a controllable bias, as εk → 0 and k → ∞.

Proof. With geometric information for probability models, the Langevin diffusion on the manifold is described by

dβ(t) = G(β(t))∇β L(β(t), θ∗) + �(β(t)) + G
1
2 (β(t))dBt (8)

where Bt is the Brownian motion.
Denote by L the generator for (8), then

L = [G(βk)∇β L(βk, θ∗) + �(βk)
] · ∇β + 2G

1
2 (β)G

1
2 (βk)T : ∇βk

∇T
β (9)

The generator L is associated with the backward Kolmogorov equation

E[φ(βk)] = etLφ(β0)

In PSGLD-SA, one will sample from the adaptive hierarchical posterior using (3) (5), and gradually optimize the latent 
variables through stochastic approximation.

Write the local generator of our proposed algorithm as

L̃k = [G(βk)g̃k
] · ∇β + 2G

1
2 (β)G

1
2 (βk)T : ∇β ∇T (10)
k β

6
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where L̃k =L + �Vk , and

�Vk = [G(βk)
(∇β L(βk, θ∗) − g̃k

)+ �(βk)
] · ∇β .

Thus

g̃k = ∇β L(βk) + ξk +O(k−ζ + sup
i≥k0

E||�(n, θ i,β i+1)||)

where ξk is a random vector denoting the difference between the true gradient and stochastic gradient, and O(k−γ +
supi≥k0

E||�(n, θ i, β i+1)||) is the bias term generated by SA.
Given a test function φ of interest, let φ̄ be the posterior average of φ under the invariant measure of the SDE (8). Let 

βk be the numerical samples, and define φ̂ =∑K
k=1

εk
S K

φ(βk), where S K =∑K
k=1 εk . Let ψ be a functional which solves the 

Poisson equation

Lψ(βk) = φ(βk) − φ̄.

Following a similar proof as in [5], one can obtain the following results. The bias of PSGLD-SA is

|Eφ̂ − φ̄| ≤ 1

S K
|Eψ(βK ) − ψ(β0)| +

K∑
k=1

εk

S K
E||�Vkψ(βk−1)|| + C

K∑
k=1

ε2
k

Formally, we note that in the above bound for the bias, the term 
∑K

k=1
εk
S K
E||�Vkψ(βk−1)|| is important. It is related 

to the bias introduced by stochastic approximation and ignoring �(βk). By Assumption 2 in [5] on the smoothness and 
boundedness of the functional ψ , and the boundedness of the preconditioner, it is easy to see that the bias introduced 

by stochastic approximation can be decomposed into (1) the term 
K∑

k=1

εkk−ζ

S K
in the bias, which approaches 0 as K → ∞, 

and (2) 
K∑

k=1

εk

S K
sup
i≥k0

E||�(n, θ i,β i+1)|| = sup
i≥k0

E||�(n, θ i, β i+1)|| which is a controllable bias. The bias introduced by ignoring 

�(β(t)) can be bounded by 
K∑

k=1

(1 − αk)α
− 3

2
1 =O(

K∑
k=1

k−ζ ) according (6), which goes to 0 as K → ∞.

The MSE of PSGLD-SA can be bounded by

E(φ̂ − φ̄)2 ≤ C

(
K∑

k=1

1

S2
K

+
K∑

k=1

ε2
k

S2
K

E||�Vkψ(βk−1)||2 + (
∑K

k=1 εk)
2

S2
K

)

which converges as long as supk E||�Vkψ(βk−1)||2 is bounded.
Thus, we conclude that, as εk → 0 and k → ∞, the distribution of βk converges weakly to the target posterior with a 

controllable bias. The bias is expected to decrease if we enlarge the minibatch size to approximate the gradient. �
6. Numerical example

6.1. Small n large p problem

We first test on a linear regression problem, where the model parameters β ∈Rp , and predictors X ∈Rn×p . We take a 
dataset with n = 100 observations and p = 200 predictors.

For the first test (section 6.1 test 1), we use Np(0, �) with �i j = 0.6|i− j| to simulate predictor values X . The responses 
y = Xβ + ε , and ε ∼ Nn(0, 3In). β1 ∼ N (3, 0.2), β2 ∼ N (1, 0.2), and β j = 0, for j = 1, · · · , p. The hyperparameters used 
for SGLD-SA and PSGLD-SA are both: v0 = 0.05, v1 = 5, δ = 0.5, b = p, a = 1, λ = 1, ν = 1. For the preconditioner used for 
PSGLD-SA, we choose α = 0.999. The learning rate for SGLD is εk = 0.001, for the other three methods is εk = 0.01. The step 
size to update latent variables is ωk = 10 × (k + 100)−0.7. The performances of SGLD, SGLD-SA, PSGLD and PSGLD-SA are 
compared and presented in Fig. 1. It shows that both SGLD-SA and PSGLD-SA work better compared with SGLD and PSGLD 
in terms of detecting the sparsity in model parameters. The true variances in the model parameters β1 and β2 are both 
0.2, and they can be captured correctly in both SGLD-SA and PSGLD-SA. However, PSGLD-SA gives the best approximation 
for the mean of each component of β . Moreover, Fig. 1 (c)-(d) shows the testing error curves. It can be seen that PSGLD 
converges faster compared to vanilla SGLD, and PSGLD-SA gives better results compared to SGLD-SA.

In the second test (section 6.1 test 2), we use Np(0, �) with �i j = 0.81/2|i− j| to simulate predictor values X . The model 
parameters are now β1 ∼N (3, 0.2), β2 ∼N (1, 0.8) with different scales in variance. The hyperparameters used for SGLD-SA 
and PSGLD-SA are both: v0 = 0.1, v1 = 100, δ = 0.5, b = p, a = 1, λ = 1, ν = 1, α = 0.999. The learning rates for SGLD-SA 
7
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Fig. 1. Section 6.1 test 1. Large p small n regression for parameters with uniform scale. In sub-figures (c)-(d), the x-axes are in log scale. (For interpretation 
of the colors in the figure(s), the reader is referred to the web version of this article.)

and PSGLD-SA are εk = 0.01, εk = 0.05 correspondingly. The response values y and the true regression coefficients are set 
to be similar as before. In this case. We also compare the performance of SGLD, SGLD-SA, PSGLD, and PSGLD-SA and present 
them in Fig. 2. In this example, we see that PSGLD-SA outperforms other approaches clearly in quantifying the uncertainties 
of β . However, SGLD, and SGLD-SA cannot capture the uncertainties properly. Preconditioned methods provide better results 
according to the testing error.

6.2. Elliptic problem with heterogeneous coefficients

Next, we apply the proposed approach to solve the elliptic problem with heterogeneous coefficients. The mixed formu-
lation of the elliptic problem reads:

κ−1u + ∇p = 0 in �

div(u) = f in �

u · n = uN on �N

p = pD on �D

where κ represents the heterogeneous permeability field which can be generated using Karhunen-Loeve expansion. f = 1
is a constant source term, � is a squared computational domain [0, 1] × [0, 1], and �N ∪ �D = ∂�. The boundary conditions 
are uN = 0 at [0, 1] × {0} and [0, 1] × {1}, pD = 1 at {0} × [0, 1], and pD = 0 at {1} × [0, 1].

Specifically, the permeability field κ(x; μ) can be constructed as follows:

κ H (x;μ) = κ0 +
p∑

j=1

μ j
√

ξ j� j(x)

where κ0 is a constant permeability, denotes the mean of the random field. 
p∑

j=1

μ j
√

ξ j� j(x) corresponds to a random con-

tribution obtained from Karhunen-Loeve expansion, and describes the uncertainty in the permeability field. μ j are random 
numbers drawn from i.i.d. N(0, 1). (

√
ξ j, � j(x)) are the eigen-pairs obtained from a Gaussian covariance kernel:
8



Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
Fig. 2. Section 6.1 test 2. Large p small n regression for parameters with different scale.

Cov(xi, yi; x j, y j) = σ exp(
−|xi − x j|2

l2x
− |yi − y j|2

l2y
)

where we choose [lx, l y] = [0.2, 0.3], σ = 2 and p = 32, 64, 128 in our example.
In the discretized system, we use RT0 element for the velocity space Vh , and piecewise constant element P0 for the 

pressure solution space Q h .

a(u, v) + b(v, p) =
∫
��

pD v · nds for all v ∈ Vh

b(u,q) = −( f ,q) for all q ∈ Q h

where a(u, v) = ∫
�

κ−1u · v , and b(v, p) = − 
∫
�

p divv .
The discrete system has the following matrix formulation[

Ah(κ) BT
h

Bh 0

][
uh
ph

]
=
[

G D

−F

]
(11)

However, due to the multiscale nature of κ , a sufficiently fine mesh is required to resolve all scale properties. Thus, the 

fine scale matrix 
[

Ah(κ) BT
h

Bh 0

]
has a large size, leading to some difficulties in solving the linear system. To overcome these, 

one can develop a reduced order model as a surrogate. Numerous mixed multiscale methods have been explored [9,2,1]. For 
example, in [9], one aims to construct velocity multiscale basis in each local coarse region, and use the piecewise constant 
on coarse grid to approximate the pressure. Typically, let N H

u be the dimension of the multiscale velocity space, and denote 
by Ru the matrix assembled using multiscale velocity basis in every row, then Ru maps from RNh

u to RN H
u , where Nh

u is the 
fine degrees of freedom for the velocity. Similarly, denote by R p the matrix containing coarse grid piecewise constant basis 
for pressure which maps from RNh

p to RN H
p . Then one can rewrite the system (11) in the following form[

AH BT
H

B 0

][
uH

p

]
=
[

Ru 0
0 R

][
Ah(κ) BT

h
B 0

][
RT

u 0
0 RT

][
uH

p

]
=
[

0
−F

]
(12)
H H p h p H H

9
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Fig. 3. An illustration of the network architecture for flow approximation.

where 
[

Ru 0
0 R p

]
can be viewed as an encoder which maps from fine grid to coarse grid (upscaling), and 

[
RT

u 0
0 RT

p

]
acts 

as an decoder which maps from coarse grid to fine grid (downscaling).
The coarse grid solver reveals its efficiency when we need to solve flow problems with varying source or boundary 

conditions, while with a fixed permeability field. However, in a lot of applications, it is more interesting to solve for the 
velocity u given different κ . When the permeability fields vary, one needs to reconstruct the multiscale basis (reconstruct 
the matrix Ru) in the above-mentioned multiscale method framework, which is not practical.

As discussed in [35], we will construct an encoding-decoding type of network to approximate the relationship between 
the permeability fields κ and fine grid velocity solution uh . That is, u = N (κ; θ). The proposed network structure is in 
analogy to the coarse-scale solver but will take permeability fields as input without constructing a set of multiscale bases 
for each case.

The idea is to first apply a few convolution layers to extract features from the input permeability with size 
√

Nh
p ×

√
Nh

p , 
and then project the extracted features on a coarser mesh by employing an average pooling layer. The intermediate output 
is then flattened and is linked to N H

p neurons with a fully connected layer. This procedure is in analogy to upscaling. We 

will then reshape the hidden coarse grid features to an image with size 
√

N H
p ×

√
N H

p . A few locally connected layers or 
convolution layers are followed to mimic the coarse grid solver.

After that, the resulting hidden features are flattened again and are fully connected to N H
u neurons in the next layer, 

where N H
u is the degrees of freedom of the multiscale velocity space. It is natural to represent the coarse grid velocity 

using a vector since the degrees of freedom are not located at coarse grid centers, which makes it not obvious to reshape 
it as a square image. Finally, we decode the coarse level features using a densely connected layer, and we obtain a fine grid 
velocity output with dimension Nh

u . The network architecture is illustrated in Fig. 3.
However, the last downscaling layer is still fully connected. Due to the large degrees of freedom for the velocity solution, 

the last fully connected layer contributes a very large number of trainable weights. Here, we would like to use our proposed 
sparse learning method to tackle this difficulty.

The training and testing data can be generated by solving the equations with a mixed finite element method on the fine 
grid for various permeability fields. An illustration of the permeability fields for p = 32, 64, 128 and corresponding solutions 
are presented in 4. We can see that when p becomes larger, the velocity solutions exhibit much more scale features.

We generate 1500 samples pairs (κi, ui
h), and randomly pick 1300 samples to train the network, and take the rest of the 

samples for validation. The size of an input permeability is 50 ×50, an output velocity solution vector is 5, 100. The network 
first uses 2 convolution layers with window size 3 × 3, and 64 and 32 channels, respectively. Then, an average pooling layer 
with pool size 2 × 2 is followed by a flatten layer and then a fully connected layer with 100 nodes. This part of the network 
can be viewed as an encoder. Then, a reshaping layer, two convolution layers, a flatten layer, and a dense layer with 800
neurons are used to mimic the coarse grid solver. Finally, a dense layer is used as a decoder. The total number of parameters 
is 8, 252, 320 in the entire network, and the layers we choose to perform sparse learning contain 6, 110, 624 parameters.

The numerical results using SGLD, PSGLD, SGLD-SA and PSGLD-SA are presented in Table 1. Denote by e1 =
∥∥upred−utrue

∥∥
L2

‖utrue‖L2

and e2 =
∥∥upred−utrue

∥∥
L2
κ‖utrue‖L2

κ

where ||u||L2
κ

= ∫
�

κ−1|u|2. The mean relative errors e1 and e2 among 300 testing samples are 

shown. We can see that the results using PSGLD-SA outperform SGLD-SA in all three cases when p = 32, 64, 128. Some 
10



Fig. 4. Illustrations of the permeability fields when using different number of terms in KLE expansion and corresponding solutions. In each subplot, perme-
ability (upper left), pressure solution (upper right), horizontal velocity magnitude (lower left) and vertical velocity magnitude (lower right).

Fig. 5. Learning curves. In each sub-figure, there are comparison among test errors SGLD with sparse approximation, vanilla PSGLD, and PSGLD with sparse 
approximation.

predicted results for different values of p in KLE are presented in Figs. 6, 7 and 8. We can actually see that the predictions 
using SGLD-SA are very poor, but the results using PSGLD-SA are very similar to the ground truth.

In this example, we choose the sparse rate to be 50% and 70%. By choosing appropriate hyperparameters, we can achieve 
similar accuracy for the dense network and sparse network as shown in Table 1. This indicates that enforcing sparsity using 
our method can maintain accuracy while reducing storage/computational cost. However, if the sparse rate is too large, we 
find it is hard to get comparable results since over sparse network may not be sufficient to represent the properties of the 
target map of interest. On the other hand, comparing PSGLD and SGLD, we notice that applying preconditioners can provide 
better results. The learning curves are presented in 5. It shows that PSGLD-SA converges faster than SGLD-SA or vanilla 
PSGLD in all three cases.
Y. Wang, W. Deng and G. Lin Journal of Computational Physics 432 (2021) 110134
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Table 1
Mean errors between the true and predicted velocity solutions us-
ing SGLD, PSGLD, SGLD-SA, and proposed PSGLD-SA. Mean errors 
of 300 testing cases.

Dense

PSGLD (e1/e2 %) SGLD(e1/e2 %)
KLE32 0.75/0.57 2.37/2.17
KLE64 0.82/0.63 2.38/2.25
KLE128 2.13/1.93 2.90/2.60

PSGLD-SA (e1/e2 %) SGLD-SA (e1/e2 %)

Sparse rate 50%

KLE32 0.59/0.56 2.67/2.35
KLE64 0.78/0.58 2.68/2.41
KLE128 1.60/1.31 3.47/3.00

Sparse rate 70%

KLE32 0.58/0.51 2.28/2.10
KLE64 0.76/0.61 2.40/2.97
KLE128 1.79/1.60 3.51/3.02

Fig. 6. KLE 32. True and prediction solutions. In each sub-figure, the first row represents horizontal velocity solution magnitude, the second row represents 
vertical velocity solution magnitude. From left to right: true, PSGLD-SA prediction, SGLD-SA prediction.
12
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Fig. 7. KLE 64. True and prediction solutions. In each sub-figure, the first row represents horizontal velocity solution magnitude, the second row represents 
vertical velocity solution magnitude. From left to right: true, PSGLD-SA prediction, SGLD-SA prediction.

6.3. Elliptic problem with channelized media

Last, we employ the proposed algorithm to predict the solution of an elliptic problem with channelized media. The 
problem setup is the same as in section 6.2. However, the background permeability fields are images of channelized media. 
The image size for our problem is 50 × 50, which are patches cropped from the channelized media in [20]. An illustration 
of the permeability data and corresponding solutions are presented in Fig. 9. We generate 3000 data pairs and randomly 
split them into 80% and 20% for training and testing purposes, respectively.

We set the sparsity rate to be 30%, 50%, and 70%. The performance of our proposed method PSGLD-SA compared with 
vanilla SGLD, vanilla PSGLD, and SGLD-SA is shown in Table 2. We see that PSGLD-SA outperforms SGLD-SA in all three 
sparse cases. PSGLD-SA also results in more accurate results compared to vanilla PSGLD. The test learning curves are pre-
sented in Fig. 10. It shows that preconditioning helps to improve the convergence speed. With stochastic approximation, 
PSGLD-SA provides better results compared to PSGLD. Some samples are presented in Fig. 11. It is clear that the predicted 
velocity solutions using PSGLD-SA capture the heterogeneity in the underlying problem and look very close to the true 
solutions. However, the predicted solutions obtained from SGLD-SA are not reliable.

7. Conclusion

We propose a Bayesian sparse learning algorithm, where the model parameters are adaptively trained using a Bayesian 
mixture deep neural network, and the latent variables are smoothly learned through optimization. The Bayesian hierarchical 
model adopts SSGL priors, and samples are generated from the posterior using preconditioned Stochastic gradient descent 
Markov Chain Monte Carlo (PSGLD). PSGLD incorporates local curvature information in the parameter updating scheme, 
13
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Fig. 8. KLE 128. True and prediction solutions. In each sub-figure, first row represents horizontal velocity solution magnitude, second row represents vertical 
velocity solution magnitude. From left to right: true, PSGLD-SA prediction, SGLD-SA prediction.

Table 2
Channelized permeability fields. Mean errors between the true and pre-
dicted velocity using proposed SGLD, PSGLD, SGLD-SA, and PSGLD-SA. 
Mean errors among 600 testing samples.

PSGLD (e1/e2 %) SGLD (e1/e2 %)

Dense 3.31/2.73 6.39/4.94

PSGLD-SA (e1/e2 %) SGLD-SA (e1/e2 %)

Sparse rate 30% 2.73/2.13 3.94/3.12
Sparse rate 50% 2.75/2.16 3.91/3.05
Sparse rate 70% 2.71/1.95 4.46/3.57

such that a constant step size is adequate and slow mixing can be avoided. Due to the diagonal form of the preconditioning 
matrix, PSGLD needs less computational and storage cost compared to SGRLD. Moreover, we apply stochastic approximation 
techniques in the sequentially updated preconditioning matrix, the bias on the MSE introduced due to ignoring a correction 
term will approach zero. The convergence of the proposed algorithm is discussed. Numerical simulations are performed 
to learn the solutions of elliptic PDE with heterogeneous coefficients. Sparse learning with preconditioned SGLD sampling 
algorithm is helpful to accelerate the learning process and the trained sparse models, which can be used as computational 
efficient surrogates for solving the underlying PDE. The algorithm can also be extended to solve other heterogeneous prob-
lems and applied to the multi-fidelity framework. Moreover, we may construct an appropriate network structure and enforce 
sparsity according to physical information, such that we can interpret the sparse network obtained physically.
14
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Fig. 9. Illustrations of channelized permeability fields and corresponding solutions. In each subplot, permeability (upper left), pressure solution (upper right), 
horizontal velocity magnitude (lower left) and vertical velocity magnitude (lower right).

Fig. 10. Channelized media, learning curves. Comparison among test errors SGLD with sparse approximation, vanilla PSGLD, and PSGLD with sparse approx-
imation.
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Fig. 11. Channelized permeability field. True and prediction solutions. In each sub-figure, first row represents horizontal velocity solution magnitude, second 
row represents vertical velocity solution magnitude.

Appendix A. Convergence of latent variables

Assumption 1. The step size {ωk} in the update formula for latent variables satisfies 
∑∞

k=1 ωk = +∞, 
∑∞

k=1 ω2
k < +∞, 

moreover,

lim infk→∞2δ
ωk

ωk+1
+ ωk+1 − ωk

ω2
k+1

> 0

In practice, one can choose ωk = c1(k + c2)
−ζ for ζ ∈ (0, 1]) and constants c1, c2.

Assumption 2. For all θ ∈ �, there exists a function μθ (β) that solves the Poisson equation μθ (β) − �θμθ (β) = H(θ, β) −
h(θ). There exists a constant C such that

E||�θμθ (β)|| ≤ C

E||�θμθ (β) − �θ ′μθ ′(β)|| ≤ C ||θ − θ ′||

Lemma 1. There exists λ0 and k0 such that ∀λ ≥ λ0 and ∀k ≥ k0 , the sequence {ψk}∞k=1 with ψk = λωk + 2C2/δ sup
i≥k0

�i satisfies

ψk+1 ≥ (1 − 2δωk+1 + C1ω
2 )ψk + C1ω

2 + 2C2�kωk+1 (13)
k+1 k+1
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Proof. Plug in ψk = λωk + 2C2/δ sup
i≥k0

�i in equation (13),

(λωk+1 + 2C2/δ sup
i≥k0

�i) ≥ (1 − 2δωk+1 + C1ω
2
k+1)(λωk + 2C2/δ sup

i≥k0

�i) + C1ω
2
k+1 + 2C2�kωk+1

Rearranging terms, we need to show

λ(ωk+1 − ωk + 2δωkωk+1 − C1ωkω
2
k+1) ≥ (−2δωk+1 + C1ω

2
k+1)2C2/δ sup

i≥k0

�i + C1ω
2
k+1 + 2C2�kωk+1

That is,

λ(2δ
ωk

ωk+1
+ ωk+1 − ωk

ω2
k+1

− C1ωk)ω
2
k+1 ≥ ω2

k+1(C1 + 2C1C2/δ sup
i≥k0

�i) − (sup
i≥k0

�i − �k)2C2ωk+1 (14)

Let M1 = lim infk→∞2
ωk

ωk+1
+ ωk+1 − ωk

ω2
k+1

, we see the left hand side of (14) is greater than equal to λ(M1 − C1ωk)ω
2
k+1. And 

use the fact that supi≥k0
�i −�k ≥ 0, we have the right hand side of (14) is less than equal to ω2

k+1(C1 +2C1C2/δ supi≥k0
�i). 

Now it suffices to show that

λ(M1 − C1ωk)ω
2
k+1 ≥ ω2

k+1(C1 + 2C1C2 sup
i≥k0

�i) (15)

By choosing λ0 and k0 such that ωk0 ≤ M1

2C1
, and λ0 = 4C1C2 supi≥k0

�i + 2C1

M1
, (14) holds, thus the desired inequality (13)

holds. �
Theorem 2. Suppose Assumptions 1-2 hold, with assumptions and Lemmas 1-2, Propositions 1-3 in [13], we have the sequence {θk}∞k=1
converge to θ∗ , and there exists a sufficiently large k0 such that

E||θk − θ∗||2 = O(λωk + sup
i≥k0

E||�(n, θ i,β i+1)||)

Proof. Denote by Ek = θk − θ∗ , we have

||Ek+1||2 = ||Ek||2 + ω2
k+1||H̃(βk+1, θk)||2 + 2ωk+1E〈Ek, H̃(βk+1, θk)〉 (16)

For the third term in (16), we have

〈Ek, H̃(βk+1, θk)〉 = 〈Ek, H(βk+1, θk) + �(n, θ i,β i+1)〉
≤ − ||Ek||2 + 〈Ek,μθk (βk+1) − �θkμθk (βk)〉 + 〈Ek,�θkμθk (βk) − �θk−1μθk−1(βk)〉

+ 〈Ek,�θk−1μθk−1(βk) − �θkμθk (βk+1)〉 + ||Ek||�k

where ||�(n, θk, βk+1)|| = �k . Following a similar proof as in [13], we have

2ωk+1E〈Ek, H̃(βk+1, θk)〉C2ωk+1

Thus,

E||Ek+1||2 ≤ (1 − 2δωk+1 + C1ω
2
k+1)E||Ek||2 + C1ω

2
k+1 + 2C2�kωk+1 + 2ωk+1E[zk − zk+1]〉

where we use the fact that ||H̃(βk+1, θk)||2 ≤ C1(1 + ||Ek||2).
According to Lemma 1, there exists λ0, k0 such that

E||Ek0 ||2 ≤ ψk0 = λ0ωk0 + 2C2/δ sup
i≥k0

�i

Thus,

E||Ek||2 ≤ ψk +E[
k∑

j=k0+1

�k
j(z j+1 − z j)] (17)

From Assumption 2 and that θ is uniformly bounded, there exists C3 > 0

E[|zk|] = E
[∣∣〈Ek,�θ μθ (βk)〉

∣∣]≤ E||Ek||E
[∣∣�θ μθ (βk)

∣∣]≤ C3
k−1 k−1 k−1 k−1

17
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Moreover, due to the fact that k0 is an integer satisfying

inf
k≥k0

ωk+1 − ωk

ωkωk+1
+ 2δ − C1ωk+1 > 0.

Then ∀k ≥ k0, the sequence {�K
k }K

k=k0
is increasing, where

�K
k =

⎧⎪⎪⎨
⎪⎪⎩

2ωk

K−1∏
j=k

(1 − 2ωk+1δ + C1ω
2
k+1), if k < K

2ωk, if k = K

Thus,

E

⎡
⎣
∣∣∣∣∣∣

k∑
j=k0+1

�k
j(z j+1 − z j)

∣∣∣∣∣∣
⎤
⎦= E

⎡
⎣
∣∣∣∣∣∣

k−1∑
j=k0+1

(�k
j+1 − �k

j)z j + �k
k0+1zk0 − �k

kzk

∣∣∣∣∣∣
⎤
⎦

≤ (�k
k − �k

k0+1)C3 + �k
k0+1C3 + �k

kC3

= 2�k
kC3 ≤ 4C3ωk

Then the inequality (17) can be further bounded as

E||Ek||2 ≤ λ0ωk + C2 sup
i≥k0

�i + 4C3ωk

= λωk + C2 sup
i≥k0

�i

where λ = λ0 + 4C3. �
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