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Abstract
This article focuses on the problem of kernel regression estimation in the presence of
nonignorable incomplete data with particular focus on the limiting distribution of the
maximal deviation of the proposed estimators. From an applied point of view, such a
limiting distribution enables one to construct asymptotically correct uniform bands,
or perform tests of hypotheses, for a regression curve when the available data set
suffers from missing (not necessarily at random) response values. Furthermore, such
asymptotic results have always been of theoretical interest in mathematical statistics.
We also present some numerical results that further confirm and complement the
theoretical developments of this paper.

Keywords Kernel regression · Maximal deviation · Nonignorble missing · Uniform
bands

1 Introduction

This paper deals with the problem of kernel regression estimation for incomplete data,
with particular focus on the asymptotic distribution of the maximal deviation of the
corresponding estimators under the Not-Missing-At-Random (NMAR) mechanism,
also called the nonignorable missing mechanism. This is generally acknowledged to
be a challenging problem in the missing data literature. Such limiting distributions
have always been of both theoretical and applied interest in statistics and probability;
see, for example, the classical results of Wandl (1980), Johnston (1982), Liero (1982),
Konakov and Piterbarg (1984), Härdle (1989), and Muminov (2011, 2012) for the
case of fully observable data. From an applied point of view, the limiting distribution
of such statistics makes it possible to carry out various types of global inference
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for an unknown regression curve over connected compact sets. These include tests
of hypotheses as well as the construction of asymptotically correct uniform bands
for an unknown regression curve. Uniform bands can be used to study particular
characteristics such as the appearance, shape, and the overall variability of the unknown
regression curve. In the case of fully observablle data, results along these lines appear
in the work of Johnston (1982), Härdle (1989), Eubank and Speckman (1993), and
Xia (1998), Dehuvels andMason (2004), Massé andMeiniel (2014), Cai et al. (2014),
and Proksch (2016). Other relevant results along these lines include the work of Sun
and Loader (1994), Neumann and Polzehl (1998), Sun and Zhou (1998), Claeskens
and Van Keilegom (2003), Song et al. (2012), Härdle and Song (2010), Nemouchi and
Mohdeb (2010),Withers and Nadarajah (2012),Wang et al. (2013), Lütkepohl (2013),
Sabbah (2014), Gu and Yang (2015), Lu and Kuriki (2017), Wojdyla and Szkutnik
(2018), Yang and Barber (2019), Gardes (2020), Zhou et al. (2020), and Gu et al.
(2021).

Virtually all of these papers address the situations where there are no missing
data. In practice, some data values may be missing. Unobservable or missing data
are widespread in survey data, public opinion polls, medical research data as well
as the data collected in many other areas of scientific activities. Here, we assume
that for various reasons some of the response values (i.e., Y ) may be unavailable or
unobservable. More formally, let (X ,Y ) be a random pair and consider the problem
of estimating the regression function m(x) = E(Y |X = x), based on the independent
and identically distributed (iid) data (Xi ,Yi ), i = 1, . . . , n. Let mn(x) be the popular
Nadaraya-Watson kernel estimator of the true regression function m(x), i.e.,

mn(x) =
∑n

i=1 Yi K((x − Xi )/hn)
∑n

i=1K((x − Xi )/hn)
, (1)

where, in general, K : Rd → R+ is the kernel used with the smoothing parameter
hn . A particularly important measure of the global (uniform) accuracy of mn(·), as an
estimator of m(·), is the maximal deviation statistic, supx∈C |mn(x) −m(x)|, where C
is a connected and compact set. The limiting distribution of the properly normalized
versions of this statistic has been well studied by many authors. The focus of this
paper is to pursue such studies for the more realistic setup where the response variable
Y may be unobservable or missing. More importantly, we assume a NMAR missing
mechanism, also called the nonignorable missing pattern, where unlike the so-called
Missing-At-Random scenarios, here the probability that Y is missing is allowed to
depend on both Y and X (and not just X alone). The nonignorable missing pattern
is generally acknowledged to be a far more challenging problem in the missing data
literature; see, for example, Shao and Wang (2016).

In the case of predictive models such as regression, where the response variable Y
has to be predicted based on the predictor X , Kim and Yu (2011) considered a rather
flexible logistic missing probability model that works as follows. Define the indicator
variable � = 1 if Y is not missing (and � = 0 otherwise). Then, Kim and Yu (2011)
proposed and studied the flexible model
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πγ (x, y) := E
[
�
∣
∣X = x,Y = y

] = 1

1 + exp
{
g(x) + γ y

} , (2)

where g is a completely unknown function of the predictor X , and γ is an unknown
parameter. The missing probability model (2) has been explored and exploited exten-
sively in the literature; see, for example, Zhao and Shao (2015), Shao and Wang
(2016), Morikawa et al. (2017), Uehara and Kim (2018), Morikawa and Kim (2018),
Morikawa and Kano (2018), Fang et al. (2018), O’Brien et al. (2018), Maity et al.
(2019), Sadinle and Reiter (2019), Zhao et al. (2019), Yuan et al. (2020), Chen et al.
(2020), Liu andYuan (2020),Mojirsheibani (2021), andLiu andYau (2021).Of course,
one may decide to consider more general nonparametric models instead of (2), but the
estimation of such general models will become a difficult (if not impossible) issue.
In fact, in view of the recent widespread use of the nonignorable model (2) in the
literature, there appears to be the tacit consensus that (2) is versatile enough to be
used in predictive models such as regression, and this will also be the direction of the
current paper. In passing, we also note that if γ = 0, then (2) reduces to the simpler
case of missing at random assumption.

We also note that under the unrealistic assumptions that πγ (x, y), the density f (x)
of X , or the conditional variance Var(Y |X = x) are known, one may still be able to
study the limiting distribution of the maximal deviation of the estimator mn(x) with
nonignorable missing Y ’s and construct asymptotically correct bands for m(x). But
such assumptions are not warranted in practice and will not be addressed here.

The paper is organized as follows. In Sect. 2.2 we develop a kernel regression esti-
mator that takes into account the nonignorable missing mechanism that causes the
absence of information in terms of the response variable Y . Our main result (Theo-
rems 2 and 3) deal with the limiting distribution of the properly normalized version
of the maximal deviation of the proposed kernel estimator, under standard conditions,
without making any parametric assumptions about the underlying density of X or
the the conditional variance Var(Y |X = x). The numerical results of Sect. 3 further
confirm the good finite-sample performance of the proposed estimator.

2 Main results andmethodology

2.1 The basic framework and preliminaries

We start by giving a brief overview of the standard setup where there are no missing
data. More specifically, let mn(x) defined in (1) be the kernel regression estimator of
the true regression function m(x) = E[Y |X = x]. Additionally, let

ν2n (x) =
∑n

i=1 Y
2
i K((x − Xi )/hn)

∑n
i=1K((x − Xi )/hn)

− [mn(x)]2 (3)

be the kernel estimator the conditional variance ν20 (x) = E[Y 2|X = x] − m2(x).
The asymptotic distribution of the statistic supx∈[0,1]

√
fn(x)/ν2n (x)

∣
∣mn(x)−m(x)

∣
∣,

where fn(x) is the usual kernel density estimator of the density f of X , has been
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extensively studied by a number of authors (see the references in the introduction sec-
tion). Here, the interval [0, 1] over which the supremum is taken, can be any connected
compact subset of the interior of the support of f . To present our main results, we
first state a number of assumptions, virtually all of which are as in Liero (1982). More
specifically,

Assumption (A) Thevector (X ,Y )has a probability density function (pdf)with respect
to the Lebesguemeasure, denoted by g(x, y). The response variable Y is boundedwith
probability one, i.e., P{B1 ≤ Y ≤ B2} = 1 for constants −∞ < B1 < B2 < ∞.

Assumption (B) Themarginal pdf, f , of X is strictly positive on (−ε, 1+ε), for some
ε > 0, and vanishes outside of a finite interval [a, b], (thus [0, 1] ∈ (a, b)).

Assumption (C) The functions ν20 (x) = E[(Y −m(X))2|X = x], m(x), and f (x) are
twice differentiable with bounded derivatives. Also, ν20 (x) is strictly positive on [0, 1].

Next, put Z = Y − m(X) and let G̃(x, z) and g̃(x, z) be, respectively, the cdf and
the pdf of the vector (X , Z). Define H(z|x) and h(z|x) to be the conditional cdf and
the conditional pdf of Z given X , respectively.

Assumption (D) The function g̃1/2(x, z), where g̃ is as defined above, is differen-
tiable with respect to both x and z, and the partial derivatives are bounded. Also,
the inverse functions H−1 and F−1 of H and F exist and ∂

∂x H
−1
(
z|F−1(x)

)
and

∂
∂z H

−1
(
z|F−1(x)

)
are bounded; here F is the cdf of the univariate random variable

X .

Assumption (E) The kernelK is a density function with the bounded support [−A, A]
for some A > 0, it is continuously differentiable on (−A, A), and satisfies∫
x K(x) dx = 0.

The following result can be found in Liero (1982).

Theorem 1 Let hn = n−δ , 1
5 < δ < 1

3 , and suppose that assumptions (A)–(E) hold.
Then

√
2δ log n

{√
nhn
cK

sup
x∈[0,1]

√
fn(x)

ν2n (x)

∣
∣
∣
∣mn(x) − m(x)

∣
∣
∣
∣− ϕ(n)

}

−→d U ,

as n → ∞, (4)

where P{U ≤ u} = exp
(−2 e−u

)
, cK = ∫

K 2(t) dt, and the term ϕ(n) is given by
(15).

The result in (4) can be used to construct confidence bands for m(x). In fact, in
view of (4),

mn(x) ±
(

cK · ν2n (x)

nhn · fn(x)

)1/2
⎛

⎝ x (α)

√

2 log h−1
n

+ ϕ(n)

⎞

⎠ , x ∈ [0, 1], (5)
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is an asymptotically correct (1−α)100% confidence band for the regression function
m(x), where x (α) is the solution of the equation exp{−2 exp(−x)} = 1 − α. One can
also carry out a test of hypothesis such as H0:m = m0, for a known functionm0, using
the statistic τn := supx∈[0,1]

√
fn(x)/ν2n (x)

∣
∣mn(x) − m0(x)

∣
∣. Such a test rejects H0

at level α, if τn >
√
cK /(nhn)

{(
2 log h−1

n

)−1/2[ log 2 − log log
(

1
1−α

) ]+ ϕ(n)
}
.

2.2 The proposed estimators and their maximal deviation

Suppose that the response variable is allowed to be missing nonignorably. Then, it
is straightforward to see that the usual kernel regression estimator mn in (1) is no
longer available. At this stage, one may decide (by mistake) to consider an estimator
based on the complete cases only, i.e., the estimator mCC

n (x) := ∑n
i=1 �i Yi K((x −

Xi )/hn)
/∑n

i=1 �iK((x − Xi )/hn). Unfortunately, this is the kernel estimator of
the quantity E(�Y |X = x)

/
E(�|X = x) which is in general different from the

regression function m(x)= E(Y |X = x) under the nonignorable missing mechanism
(2).

To effectively deal with the presence of nonignorably missing response values,
first consider the hypothetical situation where the function πγ (x, y), defined in (2), is
completely known (unrealistic) and define

mπ,n(x) =
∑n

i=1
�i Yi

πγ (Xi ,Yi )
K((x − Xi )/hn

)

∑n
i=1K

(
(x − Xi )/hn

) . (6)

Clearly, mπ,n(x) is the kernel regression estimator of E
[
�Y

/
πγ (X ,Y )

∣
∣X = x

]
=

E[Y |X = x]=m(x), which follows from the simple argument that

E
[
�Y/πγ (X ,Y )

∣
∣X
] = E

(
E
[
�Y/πγ (X ,Y )

∣
∣X ,Y

] ∣
∣ X

) via (2)= m(X). (7)

Of course, in practice, πγ (x, y) is virtually always unknown and must be replaced
by some estimator. Unfortunately, the problem is compounded by the fact that even
if the selection probability πγ (x, y) is completely known, one cannot anticipate to be
able to establish the conclusion of Theorem 1 for the maximal deviation of mπ,n(x)
in (6) from m(x). The reason is that mπ,n(x) is the kernel estimator of E[Y ∗|X = x],
where Y ∗ := �Y/πγ (X ,Y ) fails to have a density with respect to the Lebesgue
measure (because P{Y ∗ = 0} �= 0), and this in turn implies that Assumption (A)
cannot hold for the response variable Y ∗. To overcome this issue, we start by adding
to �Y

/
πγ (X ,Y ) a continuous random variable ε with finite support and E(ε) = 0;

here, ε is independent of (X ,Y ,�). The use of ε (in estimation) as well as the choice
of its probability distribution will be discussed in Remarks 1 and 2. The independence
of ε and X implies that E

[
�Y

/
πγ (X ,Y )+ε

∣
∣X = x

] = m(x). Now, let ε1, . . . , εn be
independent copies of ε, independent of (X1,Y1,�1), . . . , (Xn,Yn,�n), and define
the revised version of (6) by
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m̃π,n(x) =
n∑

i=1

{[
�i Yi

πγ (Xi ,Yi )
+ εi

]

K
(
x − Xi

hn

)}/ n∑

i=1

K
(
x − Xi

hn

)

. (8)

Since the function πγ in (8) is completely unknown, it has to be replaced with an
estimator. To this end, for each fixed γ , consider the following kernel-type estimator
of πγ (x, y)

π̃γ (x, y) =
[

1 +
∑n

j=1

[
1 − (� j + ε j )

]K((x − X j )/λn)
∑n

j=1

[
(� j + ε j ) exp{γY j }

]K((x − X j )/λn)
· exp{γ y}

]−1

,(9)

where ε j ’s are as in (8) and λn is the smoothing parameter used here. We observe that
the right side of (9) is justified, as a kernel estimator of πγ (x, y), by the fact that the
term exp{g(x)} in (2) can alternatively be written as

exp{g(x)} = E
[
1 − �

∣
∣X = x

]

E
[
� exp{γY }∣∣X = x

] = E
[
1 − (� + ε)

∣
∣X = x

]

E
[
(� + ε) exp{γY }∣∣X = x

] , (10)

where the second equality in (10) follows because the zero-mean random variable ε

is independent of (X ,Y ,�). Now, let γ̂ be any estimator of γ . This could be, for
example, the estimator proposed by Kim and Yu (2011). In general, here we do not
require γ̂ to be independent of the data (X1,Y1,�1), . . . , (Xn,Yn,�n). In view of
(9) and (8), we propose the following estimator of the true regression function m(x)

m̂n(x) =
n∑

i=1

{[
�i Yi

π̃γ̂ (Xi ,Yi )
+ εi

]

K
(
x − Xi

hn

)}/ n∑

i=1

K
(
x − Xi

hn

)

, (11)

where π̃γ̂ (Xi ,Yi ) is obtained from π̃γ (Xi ,Yi ) by substituting γ̂ for γ everywhere in
(9). Next, to establish the limiting distribution of the maximal deviation of m̂n(x) from
m(x), let

Y ∗ = �Y/πγ (X ,Y ) + ε and Z = Y ∗ − E[Y ∗|X ]
(

a.s.= Y ∗ − m(X)
)
. (12)

Now, define Ğ(x, z) and ğ(x, z) to be the joint cdf and the joint pdf of the random pair
(X , Z). Also, let Q(z|x) and q(z|x) be the conditional cdf and the conditional pdf of
Z given X and consider the following revised version of Assumption (D):

Assumption (D′) The function ğ1/2(x, z) has bounded partial derivatives with respect
to both x and z. Additionally, Q−1 and F−1 (i.e., the inverse functions of Q and F)
exist and both ∂

∂x Q
−1
(
z|F−1(x)

)
and ∂

∂z Q
−1
(
z|F−1(x)

)
are bounded. Here, F is the

cdf of the univariate random variable X .

Assumption (E′) The kernel K satisfies Assumption (E). Also, K(x) = K(−x).
To state the next assumption, let πγ (x, y) = E[�|X = x,Y = y] be as in (2) and put
ψ(x) = E[Y 2eγY |X = x]. Then
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Assumption (F) The functions πγ (x, y) and ψ(x) are twice differentiable in x , with
bounded derivatives. Furthermore, infx,y πγ (x, y) =: πmin > 0 for some πmin ∈
(0, 1]. Throughout the paper, the responseY can bemissing but X is always observable.

Assumption (G) The iid bounded random variables ε, ε1, . . . , εn have mean zero and
a density function that vanishes outside an interval (a0, b0), for some −∞ < a0 <

b0 < ∞. Additionally, εi ’s are independent of the data (Xi ,Yi ,�i ), i = 1, . . . , n.

Here, the second part of assumption (F) is standard in missing data literature; see, for
example, Kim and Yu (2011), Tang et al. (2014), or Shao and Wang (2016). Now, let
π̃γ̂ (Xi ,Yi ) be the quantity that appears in the definition of m̂n(x) in (11) and define

ν̂2π̃ (x) =
{

n∑

i=1

[
�i Yi

π̃γ̂ (Xi ,Yi )
+ εi

]2
K
(
x − Xi

hn

)/ n∑

i=1

K
(
x − Xi

hn

)}

−[m̂n(x)
]2

. (13)

We note that, in view of (7) andAssumption (G), (13) is the kernel regression estimator
of the conditional variance

ν2(x) = E
[(

�Y
/
πγ (X ,Y ) + ε

)2 ∣∣
∣ X = x

]

−
(
E
[
�Y

/
πγ (X ,Y ) + ε

∣
∣
∣ X = x

])2
. (14)

To state our main result for the estimator (11), define the quantity

ϕ(n) = √
2δ log n +

{[
log(C1/

√
π) + 1

2 log(log n
δ)
]
/
√
2δ log n, if C1 > 0,[ 1

2 log(C2/(2π2))
]
/
√
2δ log n, if C1 = 0,

(15)

where

C1 = 1

2cK

[
K2(A) + K2(−A)

]
,

C2 = 1

2cK

∫

[K′(t)]2 dt, and cK =
∫

K2(t) dt, (16)

with A as in assumption (E). Then, we have the following result for the proposed kernel
regression estimator in the presence of nonignorable missing response variables.

Theorem 2 Let m̂n(x) and ν̂2π̃ (x), be as in (11) and (13), respectively, and put hn =
n−δ and λn = (log n)1/2n−β for any δ and β satisfying 1/5 < β < δ < 1/3. Let γ̂

be any estimator of γ in (9) satisfying

√
nhn log n

∣
∣γ̂ − γ

∣
∣ →p 0. (17)
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Then, under assumptions (A), (B), (C), (D′), (E′), (F), and (G), one has

P

{
√
2δ log n

(√
nhn
cK

sup
x∈[0,1]

√
fn(x)

ν̂2π̃ (x)

∣
∣
∣
∣m̂n(x) − m(x)

∣
∣
∣
∣− ϕ(n)

)

≤ z

}

−→ exp
(−2 e−z) ,

as n → ∞, where ϕ(n) is as in (15), cK = ∫ K2(t) dt, and fn(x) =
(nhn)−1∑n

i=1K((x − Xi )/hn) is the kernel estimator of f .

Condition (17) on the rate of consistency of γ̂ is rather minimal as it is much
weaker than the usual

√
n-consistency that many estimators enjoy in practice (this

because
√
nhn log n diverges much slower than

√
n, as n → ∞). In fact, several

√
n-

consistent estimators of γ have already been proposed and studied in the literature;
for more on this see, for example, Kim and Yu (2011) and Shao and Wang (2016).
In passing, we also note that Theorem 2 can be used to construct asymptotically
correct (1−α)100% uniform confidence bands for the regression functionm(x) in the
presence of nonignorable missing response variables. These bands can be expressed
as

m̂n(x) ±
(
cK · ν̂2π̃ (x)

nhn fn(x)

)1/2
⎛

⎝ x (α)

√

2 log h−1
n

+ ϕ(n)

⎞

⎠ ,

with x (α) = −{ log log
(

1

1 − α

)

− log 2
}
. (18)

Remark 1 The use of auxiliary random variables, ε1, . . . , εn , in our proposed approach
is merely a technical device and is not necessary in practice. In fact, as our numerical
results of Sect. 3 shows, in practice one can consider the more appealing choice of
ε=0 and still expect virtually the same numerical results. The use of auxiliary or
artificial random variables in estimation and inference is not new and has a long
and successful history in statistical literature. Examples along these lines include
the important problem of nearest-neighbor classification and pattern recognition for
the cases where the p-dim covariate vectors do not have a density with respect to
the Lebesgue measure. In such situations, the dimension is artificially increased to
p + 1 by including an additional random variable ε that has a pdf, and this makes
it possible to establish the strong consistency of the nearest-neighbor classifier. Such
auxiliary random variables are also used to perform tie-breaking in classification (see,
for example, Devroye et al. 1996, pp 175–176). Perhaps, an even more important
example of the use of auxiliary random variables is for the problem of weighted
bootstrap approximation; see, for example, Praestgaard and Wellner (1993), Janssen
and Pauls (2003), Janssen (2005), Horváth et al. (2000), Horváth (2000), Burke (1998,
2000), and Kojadinovic and Yan (2012).

Remark 2 The choice of the auxiliary random variables ε1, . . . , εn in our estimation
methodology is at the discretion of the practitioner. However, since the conditional
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variance ν2(x) in (14) may be represented as E
[
Y 2/πγ (X ,Y )

∣
∣X = x

] + E(ε2) −
m2(x), choosing ε to have a large variance yields an inflated estimator ν̂2π̃ (x) in (13).
In other words, ε should be chosen to have a small variance. This is why we have
taken ε to have a truncated N

(
0, σ 2

)
distribution (truncated at ±3σ ) with σ=0.001

in our numerical studies of Sect. 3. Fortunately, our numerical work also illustrates
that even if ε is replaced by zero (which is more appealing in practice), one can still
expect to obtain virtually the same numerical results. This further confirms the fact
that the presence of a non-zero ε in our estimation methodology is only for theoretical
considerations.

2.2.1 The estimator without noise terms

The presence of the noise terms ε1, . . . , εn in the construction of our regression esti-
mator is undesirable. However, as explained in Remark 1, and shown via simulations,
the inclusion of such terms is only for technical purposes and not needed in practice.
It is, nevertheless, still possible to eliminate these noise terms from the methodol-
ogy if we adopt the approach of Konakov and Piterbarg (1984). This approach uses
kernels that can be negative on some parts of R, which may lead to negative density
estimators. To present our alternative estimators, we start by defining the following
noise-free counterparts of the estimators in (9) and (11):

π̃γ (x, y) =
[

1 +
∑n

j=1

[
1 − � j

]K((x − X j )/λn)
∑n

j=1

[
� j exp{γY j }

]K((x − X j )/λn)
· exp{γ y}

]−1

, (19)

and

m̂n(x) =
n∑

i=1

{[
�i Yi

π̃γ̂ (Xi ,Yi )

]

K
(
x − Xi

hn

)}/ n∑

i=1

K
(
x − Xi

hn

)

, (20)

where π̃γ̂ (Xi ,Yi ) is obtained from π̃γ (Xi ,Yi ) by replacing γ in (19) by any estimator
γ̂ . Similarly, consider the following counterpart of (13)

ν̂2π̃ (x) =
{

n∑

i=1

[
�i Yi

π̃γ̂ (Xi ,Yi )

]2
K
(
x − Xi

hn

)/ n∑

i=1

K
(
x − Xi

hn

)}

− [
m̂n(x)

]2
.(21)

To study the limiting distribution of the estimator in (20), we also need the following
revised versions of our earlier assumptions.
Assumption (A′) The response variable Y is bounded: P{B1 ≤ Y ≤ B2} = 1, where
−∞ < B1 < B2 < ∞.
Assumption (B′) The function

(
f (x) ν20 (x)

)1/2 is strictly positive on [0, 1] and sat-
isfies a Lipschitz condition of order 1, where ν20 (x) = E[(Y − m(X))2|X = x] and
f (x) is the marginal density of X .
To state the next assumption, let

Y ∗ = �Y/πγ (X ,Y ) and Z = Y ∗ − E[Y ∗|X ] (22)
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and observe that in view of Assumption (A′) above, and Assumption (F), there are
constants −∞ < B ′

1 < B ′
2 < ∞ such that P(B ′

1 ≤ Z ≤ B ′
2) = 1.

Assumption (C′) The density f (x) is strictly positive on an open interval (a, b) 

[0, 1] and vanishes outside [a, b]. Furthermore, the distribution G̃(x, z) of (X , Z) has
a density g̃(x, z)with respect to Lebesgue measure satisfying ess supx,z g̃(x, z) < ∞.
Additionally, for the inverse function, T−1, of the Rosenblatt (1952) transformation
T : R2 → [0, 1]2, the function pn,t (T−1(x ′, z′)), where (t ′, x ′)∈ [0, 1]2, t ∈ [0, 1], is
twice continuously differentiable, where pn,t (x, z) = (

√
cK hn)−1

(
f (x) ν20 (x)

)−1/2 ·
zK ((t − x)/hn) and cK is as in (16).
Assumption (D′′) Both f (x) and m(x) have partial derivatives of order τ ≥ 2 that
are bounded in (a, b), where (a, b) is as in Assumption (C′).
Assumption (E′′).ThekernelK is finite,

∫ K(x)dx = 1,K′(x) is continuous,K(x) →
0 as |x | → ∞, and K(−x) = K(x). Furthermore, K satisfies the orthogonality
condition

∫
usK(u)du = 0, for s = 1, . . . , τ , where τ is as in Assumption (D′′).

Now, put

ρ(n) =
√

2 log(1/hn) + log
( 1

cK

∫

(K′(u))2du
)+ 2 log(1/(2π)), (23)

where cK is as in (16). Then we have the following counterpart of Theorem 2.

Theorem 3 Let m̂n(x) and ν̂2π̃ (x) be as in (20) and (21), respectively, and put hn = n−δ

and λn = (log n)1/2n−β for any δ and β satisfying 1/5 < β < δ < 1/3. Let γ̂ be any
estimator of γ in (9) satisfying (17). Then, under assumptions (A′), (B′), (C ′), (D′′),
(E′′), and (F), one has

P

{

ρ(n)

(√
nhn
cK

sup
x∈[0,1]

√
fn(x)

ν̂2π̃ (x)

∣
∣
∣
∣m̂n(x) − m(x)

∣
∣
∣
∣− ρ(n)

)

≤ z

}

−→ exp
(−2 e−z) ,

as n → ∞, where ρ(n) is as in (23), and cK = ∫ K2(t) dt.

In passing, we note that the orthogonality condition
∫
usK(u)du = 0, s = 2,

appearing under Assumption (E′′), implies that the kernel K can take negative values
which is not desirable from a practical point of view as it might lead to negative density
estimators.

3 Numerical examples

In this section we carry out some simulation studies to assess the finite-sample per-
formance of the methods discussed in this paper. The results show that, in general, the
proposed estimators perform well. We also take a close look at the performance of the
complete-case estimator that is constructed based on the complete cases only. More
specifically, in what follows we consider random samples (Xi ,Yi ), i = 1, . . . , n, of
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sizes n = 200, 400, and 800 from the model

Y = 2 + log(X + 2) cos(π (X + 1)1.2) + exp{−X2} + ν0(X) · E,

with E ∼ N (
0, 0.12

)
,

where X ∼ Unif(−1, 2) is independent of the random error E , and ν20 (x) = 1 +
exp

{−(x + 1)2
}
. Here, the response variable Yi is allowed to be missing according

to the mechanism (2) with πγ (x, y) := [
1 + exp

{
a0 + a1x + γ y

}]−1. Two models
are considered:

Model 1 (a0, a1, γ ) = (−1.5, 0.7, 0.2). This choice results in approximately 35%
missing data.

Model 2 (a0, a1, γ ) = (0.3, −1.6, 0.7). This choice yields approximately 70%miss-
ing data.

For the estimators π̃γ (x, y) and m̂n(x) (in (9) and (11)) and the bandwidth hn = n−δ

we used the cross-validation approach of Racine and Li (2004) with the Epanechnikov
kernel K (u) = (0.75)(1 − u2) · I {|u| ≤ 1}, which is available in the R package “np”
(Racine andHayfield 2008). In the case ofλn = (log n)1/2n−β , a pilot study shows that
larger values of λn perform better; therefore we took β to be very close to 0.2 which
is in line with the requirement of Theorem 2. Regarding the choice of ε1, . . . , εn used
in (9) and (11), they are iid truncatedN (0, σ 2) with σ = 0.001, where the truncation
is at ±3σ . However, we also considered the more natural and appealing choice of
εi = 0, i = 1, . . . , n. To estimate γ in πγ (x, y), we employed the method of Kim
and Yu (2011) based on a 15% follow-up sample of Yi ’s; for details, see formula (23)
in Sec. 4 of the cited reference. Next, for each of the three sample sizes, we computed
the following quantity that appears in Theorem 2

Wn := √
2δ log n

⎛

⎝
√
nhn/cK · sup

x∈[0,1]

√
√
√
√ f̂n(x)

ν̂2p̂n (x)

∣
∣
∣m̂n(x) − m(x)

∣
∣
∣− ϕ(n)

⎞

⎠ , (24)

where the supremum functional in (24) was approximated by themaximum over a grid
of 200 equally spaced values of x in the interval [0, 1]. Our initial pilot study shows that
increasing the grid size to as large as 500 does not make any noticeable changes. Next,
we observe that by Theorem 2, for large n, the quantity W = exp{−2 exp(−Wn)}
is approximately a Uniform random variable on [0, 1]. Repeating the whole process
above 400 times (each time based on a new data set of size n) yieldsW1, . . . ,W400.We
also computed the above statistic based on the complete cases only, i.e., the statistic
in Theorem 4, but with mn(x), ν2n (x), and fn(x) all computed based on the complete
cases only. Repeating this process a total of 400 times, we obtain the counterparts of
W1, . . . ,W400 for the complete cases; these will be denoted by V1, . . . , V400. Figure 1
gives plots of the empirical distribution functions of W1, . . . ,W400 and V1, . . . , V400
for each of the three sample sizes. The 45◦ line appearing in these plots represents the
cumulative distribution function (CDF) of the Unif [0, 1] random variable. A compar-
ison of the plots (a) and (b) clearly shows that the proposed estimator performs much
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 1 Plots of empirical cdf’s of W1, . . . ,W400 (based on the proposed estimator) and V1, . . . , V400
(complete-case estimator). Here, εi ’ are iid N (0, σ 2) with σ=0.001 in (9) and (11)

better than the one based on complete cases at 35%missing rate; this follows from the
fact that the empirical CDF of W1, . . . ,W400 is much better aligned with the 45◦ line.
Similar conclusions hold at every sample size (200, 400, 600) and both missing rates
(35% and 70%). Of course, in practice, the presence of the auxiliary random variables
εi , i = 1, . . . , n, in (9) and (11) is a nuisance. They are used only as a technical device
in our work. The fact that εi ’s are chosen to have a very small variance (σ 2 = 0.0012)
suggests that, in practice, one should be able to replace them with the more realistic
and appealing choice of ε = 0. To verify this, we also performed the same simulation
study with εi = 0, i = 1, . . . , n. The results, which appear in Fig. 2, are virtually
indistinguishable from those in Fig. 1.

Next, we used our simulation results to construct confidence bands for the true
regression function m(x) over the unit interval [0, 1]. Three confidence levels are
considered: 90%, 95%, and 99%. Table 1 presents these results for the 90% bands.

The coverage probabilities reported in this table represent the proportion of the
400 confidence bands that contain m(x) for all x ∈ [0, 1]. This table also reports the
average area of these confidence bands (averaged over 400 bands). There are a number
of important facts to notice in Table 1, the most important of which is that the results
are virtually identical regardless of whether εi ’s areN (0, σ 2), σ = 0, or the intuitively
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2 Plots of empirical cdf’s of W1, . . . ,W400 (based on the proposed estimator) and V1, . . . , V400
(complete-case estimator). Here, ε1, . . . , εn=0 in (9) and (11)

more practical choice of εi=0. This is of course in line with the results in Figs. 1 and 2.
The second important fact to notice in Table 1 is that the coverage of the complete-
case-based bands deteriorates significantly as the missing rate changes from 35% to
70%, indicating that the proposed methods handles higher missing rates quite well.
Table 1 also shows that the average areas of the confidence bands for the proposed
method are higher than those of the complete-case bands. This does not imply that
the proposed method’s bands are unrealistically or unreasonably wider than what the
theory prescribes. In fact, both Figs. 1 and 2, and the assertion of our main results in
Theorem 2, confirm the fact that the proposed bands are precisely those that are backed
up by the theory. It should also bementioned that the bands based on the complete cases
are actually not correct. This is because a kernel estimator of the regression function
m(x), based on the complete cases alone will replace

∑n
i=1 Yi K((x − Xi )/hn) by the

quantity
∑n

i=1 �i Yi K((x − Xi )/hn) in the numerator of (1) in order to account for
the missing Yi ’s. But this mean that the new version of (1) will be the kernel regression
estimator of E[�Y |X = x], instead of E[Y |X = x], and the two will not be the same
under a nonignorable missing mechanism.
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Tables 2 and 3 present the corresponding results for 95%and 99%confidence bands,
respectively. The results in these tables show that all conclusions are essentially the
same as those in Table 1.
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Appendix: Proofs

To prove our main results, we first state a number of lemmas.

Lemma 1 Let π̃γ̂ (x, y) be the estimator obtained from π̃γ (x, y) upon replacing γ by
any estimator γ̂ in (9). Then, under the conditions of Theorem 2, one has

sup
x∈[0,1]

max
1≤i≤n

∣
∣
∣
∣

1

π̃γ̂ (Xi ,Yi )
− 1

π̃γ (Xi ,Yi )

∣
∣
∣
∣ · I

{
x − Ahn ≤ Xi ≤ x + Ahn

}

= op

(
1√

nhn log n

)

(25)

sup
x∈[0,1]

max
1≤i≤n

∣
∣
∣
∣

1

π̃γ (Xi ,Yi )
− 1

πγ (Xi ,Yi )

∣
∣
∣
∣ · I

{
x − Ahn ≤ Xi ≤ x + Ahn

}

= Op

(√
log n

nλn

)

(26)

Lemma 2 Let m̃π,n(x) and m̂n(x) be as in (8) and (11), respectively. Then,

sup
x∈[0,1]

∣
∣
∣m̂n(x) − m̃π,n(x)

∣
∣
∣ = op

(
1√

nhn log n

)

+ Op

(√
log n

nλn

)

. (27)

To state our next lemma, we first need to define the following auxiliary quantities,
which may be viewed as particular estimates of ν2(x) defined in (14)

ν̃2π (x) =
n∑

i=1

{[
�i Yi

πγ (Xi ,Yi )
+ εi

]2
K
(
x − Xi

hn

)}/ n∑

i=1

K
(
x − Xi

hn

)

−[m̃π,n(x)
]2 (28)
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ν̃2π̃ (x) =
n∑

i=1

{[
�i Yi

π̃γ (Xi ,Yi )
+ εi

]2
K
(
x − Xi

hn

)}/ n∑

i=1

K
(
x − Xi

hn

)

−[m̃π̃ ,n(x)
]2

, (29)

where π̃γ (x, y) is as in (9) and

m̃π̃ ,n(x) =
n∑

i=1

{[
�i Yi

π̃γ (Xi ,Yi )
+ εi

]

K
(
x − Xi

hn

)}/ n∑

i=1

K
(
x − Xi

hn

)

. (30)

Lemma 3 Let ν̂2π̃ (x), ν2(x), ν̃2π̃ (x), and ν̃2π (x) be as in (13), (14), (29), and (28),
respectively. Then

sup
x∈[0,1]

∣
∣
∣̂ν2π̃ (x) − ν̃2π̃ (x)

∣
∣
∣ = op

(
1/
√
nhn log n

)
, (31)

sup
x∈[0,1]

∣
∣
∣̃ν2π̃ (x) − ν̃2π (x)

∣
∣
∣ = Op

(√
(nλn)−1 log n

)
, (32)

sup
x∈[0,1]

∣
∣
∣̃ν2π (x) − ν2(x)

∣
∣
∣ = Op

(√
(nhn)−1 log n

)

. (33)

Proof of Theorem 2 ToproveTheorem2,wefirst consider the following simple decom-
position

sup
x∈[0,1]

√
fn(x)

ν̂2π̃ (x)

∣
∣
∣
∣m̂n(x) − m(x)

∣
∣
∣
∣ = sup

x∈[0,1]

√
fn(x)

ν̃2π (x)

∣
∣
∣
∣m̃π,n(x) − m(x)

∣
∣
∣
∣ + Rn

(34)

where the remainder term, Rn , is given by

Rn = sup
x∈[0,1]

√
fn(x)

ν̂2π̃ (x)

∣
∣
∣
∣m̂n(x) − m(x)

∣
∣
∣
∣− sup

x∈[0,1]

√
fn(x)

ν̃2π (x)

∣
∣
∣
∣m̃π,n(x) − m(x)

∣
∣
∣
∣

≤ sup
x∈[0,1]

√
fn(x)

ν̂2π̃ (x)

∣
∣
∣
∣m̂n(x) − m̃π,n(x)

∣
∣
∣
∣

+ sup
x∈[0,1]

√
ν̃2π (x)

ν̂2π̃ (x)

√
fn(x)

ν̃2π (x)

∣
∣
∣
∣m̃π,n(x) − m(x)

∣
∣
∣
∣

− sup
x∈[0,1]

√
fn(x)

ν̃2π (x)

∣
∣
∣
∣m̃π,n(x) − m(x)

∣
∣
∣
∣

≤ sup
x∈[0,1]

√
fn(x)

ν̂2π̃ (x)

∣
∣
∣
∣m̂n(x) − m̃π,n(x)

∣
∣
∣
∣
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+
[

sup
x∈[0,1]

√
ν̃2π (x)

ν̂2π̃ (x)
− 1

]

· sup
x∈[0,1]

√
fn(x)

ν̃2π (x)

∣
∣
∣
∣m̃π,n(x) − m(x)

∣
∣
∣
∣

=: Rn(i) + Rn(i i) (35)

To deal with the first term on the r.h.s of (34), first observe that m̃π,n(x) and ν̃2π,n(x)
that appear in this supremum term are, respectively, the kernel regression estimator
of E(Y ∗|X = x) and the kernel estimator of the conditional variance of Y ∗ based
on the iid “data” (Xi ,Y ∗

i ), i = 1, . . . , n, where Y ∗ = �Y
/
πγ (X ,Y ) + ε; see (12).

Furthermore,when assumptions (A), (F), and (G) hold,we have P{BL ≤ Y ∗ ≤ BU } =
1 for finite constants BL and BU . In fact, one can take BL = π−1

min min(0, B1)+a0 and
BU = π−1

minB2 + b0, where B1 and B2 are the constants in Assumption (A), the term
πmin is as in assumption (F), and a0 and b0 are given in Assumption (G). Therefore,
whenAssumption (A) holds for the distribution of (X ,Y ) then, in view of assumptions
(F) and (G), it also holds for the distribution of (X ,Y ∗) with B1 and B2 replaced by
BL and BU . Additionally, it is not hard to show that, in view of Assumption (F), if
ν20 (x) := E[(Y−m(X))2|X = x] satisfiesAssumption (C) then so does ν2(x). Hence,
in view of Theorem 1, and under assumptions (A), (B), (C), (D′), (E′), (F), and (G),
the first term on the r.h.s of (34) satisfies

P

{
√
2δ log n

(√
nhn
cK

sup
x∈[0,1]

√
fn(x)

ν̃2π (x)

∣
∣
∣m̃π,n(x) − m(x)

∣
∣
∣− ϕ(n)

)

≤ u

}

→ exp
(−2e−u) (36)

where cK = ∫
K 2(t) dt and ϕ(n) is as in (15). Now to finish the proof of Theorem 2,

we have to show that
√
nhn log nRn →p 0, as n → ∞. However, by (35), it is

sufficient to show that
√
nhn log n

∣
∣Rn(i)

∣
∣ →p 0 and

√
nhn log n

∣
∣Rn(i i)

∣
∣ →p 0. To

this end, first note that (36) yields

sup
x∈[0,1]

√
fn(x)

ν̃2π (x)

∣
∣
∣m̃π,n(x) − m(x)

∣
∣
∣ = Op

(√
log n

nhn

)

. (37)

We also note that

∣
∣
∣
∣
∣
sup

x∈[0,1]

√
ν̃2π (x)

ν̂2π̃ (x)
− 1

∣
∣
∣
∣
∣
≤ sup

x∈[0,1]

∣
∣
∣
∣
∣

√
ν̃2π (x)

ν̂2π̃ (x)
− 1

∣
∣
∣
∣
∣

≤ sup
x∈[0,1]

∣
∣̃ν2π (x) − ν̂2π̃ (x)

∣
∣

ν̂2π̃ (x)
. (38)

However, in view of (32) and (31),

sup
x∈[0,1]

∣
∣̃ν2π (x) − ν̂2π̃ (x)

∣
∣ = op

(
1√

nhn log n

)

+ Op

(√
log n

nλn

)

. (39)
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Also, observe that

inf
x∈[0,1] ν̂

2
π̃ (x) ≥ − sup

x∈[0,1]
∣
∣̂ν2π̃ (x) − ν̃2π̃ (x)

∣
∣− sup

x∈[0,1]
∣
∣̃ν2π̃ (x) − ν̃2π (x)

∣
∣

− sup
x∈[0,1]

∣
∣
∣̃ν2π (x) − ν2(x)

∣
∣
∣+ inf

x∈[0,1] ν
2(x) (40)

inf
x∈[0,1] ν̂

2
π̃ (x) ≤ sup

x∈[0,1]
∣
∣̂ν2π̃ (x) − ν̃2π̃ (x)

∣
∣+ sup

x∈[0,1]
∣
∣̃ν2π̃ (x) − ν̃2π (x)

∣
∣

+ sup
x∈[0,1]

∣
∣
∣̃ν2π (x) − ν2(x)

∣
∣
∣+ inf

x∈[0,1] ν
2(x). (41)

Now, taking the limit, as n → ∞, of both sides of (40) and (41) and taking into account
Lemma 3, we arrive at

0 < lim
n→∞ inf

x∈[0,1] ν̂
2
π̃ (x) < ∞. (42)

This together with (39), (38), and (37) yields

|Rn(i i)| = Op

(√
log n

nhn

)[

op

(
1√

nhn log n

)

+ Op

(√
log n

nλn

)]

,

from which we arrive at

√
nhn log n

∣
∣Rn(i i)

∣
∣ = op

(√
log n

nhn

)

+ Op

(
(log n)3/2√

nλn

)

= op(1).

To deal with the termRn(i) in (35), first note that by Lemma 2

√
nhn log n sup

x∈[0,1]

∣
∣
∣m̂n(x) − m̃π,n(x)

∣
∣
∣

= √
nhn log n

[

Op

(√
log n

nλn

)

+ op

(
1√

nhn log n

)]

= Op

(√
nβ−δ (log n)3/2

)
+ op(1) = op(1),

wherewehaveused the fact thatβ < δ. Furthermore, sinceby (42), supx∈[0,1]
∣
∣ fn(x)/̂ν2π̃

(x)
∣
∣ ≤ {

supx∈[0,1]
∣
∣ fn(x) − f (x)

∣
∣ + supx∈[0,1] f (x)

}/
inf x∈[0,1] ν̂2π̃ (x) = Op(1),

one finds

√
nhn log n

∣
∣Rn(i)

∣
∣ = op(1).

This completes the proof of Theorem 2. ��
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Proof of Theorem 3 The proof is similar to that of Theorem 2, but uses a result of
Konakov and Piterbarg (1984, Theorem 1.1) instead of that of Liero (1982). ��

Proof of Lemma 1 We start by defining the following quantities

φ̂1(x) =
n∑

j=1

[
1 − (� j + ε j )

]K
(
x − X j

λn

)/ n∑

j=1

K
(
x − X j

λn

)

(43)

φ̂2(x) =
n∑

j=1

(� j + ε j ) exp{γ̂Y j }K
(
x − X j

λn

)/ n∑

j=1

K
(
x − X j

λn

)

(44)

φ̃2(x) =
n∑

j=1

(� j + ε j ) exp{γY j }K
(
x − X j

λn

)/ n∑

j=1

K
(
x − X j

λn

)

. (45)

φ2(x) = E
[
(� + ε) exp{γY }∣∣X = x

]
. (46)

φ1(x) = E
[
1 − (� + ε)

∣
∣X = x

]
. (47)

Then it is straightforward to see

∣
∣
∣
∣

1

π̃γ̂ (x,Yi )
− 1

π̃γ (x,Yi )

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

− exp{γ̂Yi }φ̂1(x)

φ̂2(x)
· φ̂2(x) − φ̃2(x)

φ̃2(x)
+
[
exp{γ̂Yi } − exp{γYi }

]
φ̂1(x)

φ̃2(x)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

1

φ̃2(x)

∣
∣
∣
∣

[∣
∣
∣
∣
exp{γ̂Yi }φ̂1(x)

φ̂2(x)

∣
∣
∣
∣ ·
∣
∣φ̂2(x) − φ̃2(x)

∣
∣

+ ∣
∣
[
exp{γ̂Yi } − exp{γYi }

]
φ̂1(x)

∣
∣
]

(48)

Now, put c := max(|B1|, |B2|), where B1 and B2 are as in Assumption (A), and
observe that a one-term Taylor expansion gives

∣
∣φ̂2(x) − φ̃2(x)

∣
∣ =

∣
∣
∣
∣
∣
∣

∑n
j=1(� j + ε j )

[
exp{γ̂Y j } − exp{γY j }

]K
(
x−X j

λn

)

∑n
j=1K

(
x−X j

λn

)

∣
∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
∣

c
∑n

j=1(1 + |ε j |)|γ̂ − γ | exp {|γ ∗ − γ |c + γ c
}K

(
x−X j

λn

)

∑n
j=1K

(
x−X j

λn

)

∣
∣
∣
∣
∣
∣
,

(γ ∗ is a point on the interior of the line joining γ̂ and γ )

≤ c
(
1 + |a0| ∨ b0

)|γ̂ − γ | exp {|γ ∗ − γ |c + γ c
}

(where a0 and b0 are as in Assumption (G))

≤ c0|γ̂ − γ | exp {c[γ + |γ̂ − γ |c},
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where c0 = c
(
1 + |a0| ∨ b0

)
,

= op

(
1√

nhn log n

)

· Op (1) , (49)

where the bound does not depend on x . Similarly, we note that

∣
∣
∣
∣

[
exp{γ̂Yi } − exp{γYi }

]
φ̂1(x)

∣
∣
∣
∣

≤
∣
∣
∣ exp{γ̂Yi } − exp{γYi }

∣
∣
∣

∑n
j=1

∣
∣1 − (� j + ε j )

∣
∣K

(
x−X j

λn

)

∑n
j=1K

(
x−X j

λn

)

≤ (
2 + |a0| ∨ b0

)
c |γ̂ − γ | exp {c[γ + |γ̂ − γ |]}

= op

(
1√

nhn log n

)

· Op (1) , (50)

where the bound in (50) does not depend on the particular x or Yi . Now, observe that

sup
x∈[0,1]

max
1≤i≤n

∣
∣
∣
∣

1

π̃γ̂ (Xi ,Yi )
− 1

π̃γ (Xi ,Yi )

∣
∣
∣
∣ · I

{
x − Ahn ≤ Xi ≤ x + Ahn

}

≤ max
1≤i≤n

sup
−hn≤ x ≤1+Ahn

{ ∣
∣
∣
∣

1

φ̃2(x)

∣
∣
∣
∣ ·
[∣
∣
∣
∣
exp{γ̂Yi } φ̂1(x)

φ̂2(x)

∣
∣
∣
∣ ·
∣
∣φ̂2(x) − φ̃2(x)

∣
∣

+
∣
∣
∣
[
exp{γ̂Yi } − exp{γYi }

]
φ̂1(x)

∣
∣
∣

]}

. (51)

To deal with the right side of (51), first note that

sup
−hn ≤x ≤1+Ahn

∣
∣
∣
∣
exp{γ̂Yi } φ̂1(x)

φ̂2(x)

∣
∣
∣
∣ (52)

≤ sup
−hn≤x≤1+Ahn

{[
∣
∣
[
exp{γ̂Yi } − exp{γYi }

]
φ̂1(x)

∣
∣+ ∣

∣
[
φ̂1(x) − φ1(x)

]
exp{γYi }

∣
∣

+∣∣φ1(x) exp{γYi }
∣
∣
]/ ∣

∣φ̂2(x)
∣
∣
}

Now, since the bound in (50) does not depend on any particular x or Yi , one finds

sup
x∈[0,1]

max
1≤i≤n

∣
∣
[
exp{γ̂Yi } − exp{γYi }

]
φ̂1(x)

∣
∣ = op

(
1√

nhn log n

)

. (53)
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Next, let n be large enough so that Ahn < ε, where ε is as in assumption (B), and
observe that by the results of Mack and Silverman (1982; Theorem B), one has

sup
x∈[0,1]

max
1≤i≤n

∣
∣
[
φ̂1(x) − φ1(x)

]
exp{γYi }

∣
∣ ≤ Op

(√
log n

nλn

)

× exp{γ c}

= Op

(√
log n

nλn

)

, (54)

where c := max(|B1|, |B2|) as before, and B1 and B2 are as in assumption (A).
Furthermore,

sup
x∈[0,1]

max
1≤i≤n

|φ1(x) exp{γYi }| ≤ (1 − πmin) exp{γ c} = O(1). (55)

We also need to deal with the infimum of the term
∣
∣φ̂2(x)

∣
∣ that appears in the denom-

inator of (52). To this end, we first note that
∣
∣φ̂2(x)

∣
∣ can be upper- and lower-bounded

as follows

|φ2(x)| − ∣
∣φ̃2(x) − φ2(x)

∣
∣− ∣

∣φ̂2(x) − φ̃2(x)
∣
∣

≤ ∣
∣φ̂2(x)

∣
∣ ≤ ∣

∣φ̂2(x) − φ̃2(x)
∣
∣+ ∣

∣φ̃2(x) − φ2(x)
∣
∣+ |φ2(x)|

Taking the infimum over x ∈ [−hn, 1 + Ahn], we find infx |φ2(x)| − supx
∣
∣φ̃2(x) −

φ2(x)
∣
∣ − supx

∣
∣φ̂2(x) − φ̃2(x)

∣
∣ ≤ infx

∣
∣φ̂2(x)

∣
∣ ≤ supx

∣
∣φ̂2(x) − φ̃2(x)

∣
∣ +

supx
∣
∣φ̃2(x) − φ2(x)

∣
∣ + supx

∣
∣φ2(x)

∣
∣. Therefore, taking the limit as n → ∞, one

finds

0 < ϕ0 ≤ lim
n→∞ inf−hn ≤x ≤1+Ahn

∣
∣φ̂2(x)

∣
∣ ≤ exp{γ c}, (56)

for a positive constant ϕ0 not depending on n. Here, (56) follows from (49) in con-
junction with Theorem B of Mack and Silverman (1982). Furthermore, similar (and
in fact easier) arguments can also be used to show that

0 < ϕ0 ≤ lim
n→∞ inf−hn ≤x ≤1+Ahn

∣
∣φ̃2(x)

∣
∣ ≤ exp{γ c}. (57)

Now (25) follows from (57), (56), (55), (54), (53), (51), and (48). The proof of (26) is
very similar to (and, in fact, easier than) that of (25) and therefore will not be given. ��
Proof of Lemma 2 Let m̃π̃ ,n(x) be as in (30), and note that

∣
∣
∣m̃π̃ ,n(x) − m̃π,n(x)

∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑n
j=1(� j + ε j )Y j

[
1

π̃γ (Xi ,Yi )
− 1

πγ (Xi ,Yi )

]
K
(
x−X j
hn

)

∑n
j=1K

(
x−X j
hn

)

∣
∣
∣
∣
∣
∣
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≤ max
1≤i≤n

{∣
∣
∣
∣

1

π̃γ (Xi ,Yi )
− 1

πγ (Xi ,Yi )

∣
∣
∣
∣ I
{
x − Ahn ≤ Xi ≤ x + Ahn

}
}

×
⎡

⎣
n∑

j=1

∣
∣
∣(� j + ε j )Y j

∣
∣
∣K

(
x − X j

hn

)/ n∑

j=1

K
(
x − X j

hn

)
⎤

⎦

≤ c2 max
1≤i≤n

{∣
∣
∣
∣

1

π̃γ (Xi ,Yi )
− 1

πγ (Xi ,Yi )

∣
∣
∣
∣ I
{
x − Ahn ≤ Xi ≤ x + Ahn

}
}

,

where c2 is a positive constant not depending on n. Therefore, in view of (26),

sup
x∈[0,1]

∣
∣
∣m̃π̃ ,n(x) − m̃π,n(x)

∣
∣
∣ = Op

(√
log n

nλn

)

. (58)

Similarly, one has

∣
∣
∣m̂n(x) − m̃π̃ ,n(x)

∣
∣
∣

=
∣
∣
∣
∣
∣
∣

∑n
j=1(� j + ε j )Y j

[
1

π̃γ̂ (X j ,Y j )
− 1

π̃γ (X j ,Y j )

]
K
(
x−X j
hn

)

∑n
j=1K

(
x−X j
hn

)

∣
∣
∣
∣
∣
∣

≤ c2 max
1≤i≤n

{∣
∣
∣
∣

1

π̃γ̂ (Xi ,Yi )
− 1

π̃γ (Xi ,Yi )

∣
∣
∣
∣ I
{
x − Ahn ≤ Xi ≤ x + Ahn

}
}

,

which, together with (25), yields

sup
x∈[0,1]

∣
∣
∣m̂n(x) − m̃π̃ ,n(x)

∣
∣
∣ = op

(
1√

nhn log n

)

. (59)

The proof of Lemma 2 now follows from (58) and (59) and the fact that
∣
∣m̂n(x) −

m̃π,n(x)
∣
∣ ≤ ∣

∣m̂n(x) − m̃π̃ ,n(x)
∣
∣+ ∣

∣m̃π̃ ,n(x) − m̃π,n(x)
∣
∣. ��

Proof of Lemma 3 We start with the proof of (31). First observe that

∣
∣
∣̂ν2π̃ (x) − ν̃2π̃ (x)

∣
∣
∣

≤
∣
∣
∣
∣
∣

[
n∑

i=1

�i Y
2
i

[
1

[π̃γ̂ (Xi ,Yi )]2 − 1

[π̃γ (Xi ,Yi )]2
]

×K
(
x − Xi

hn

)]/ n∑

i=1

K
(
x − Xi

hn

)∣∣
∣
∣
∣

+2

∣
∣
∣
∣
∣

[
n∑

i=1

εi �i Yi

[
1

π̃γ̂ (Xi ,Yi )
− 1

π̃γ (Xi ,Yi )

]
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×K
(
x − Xi

hn

)]/ n∑

i=1

K
(
x − Xi

hn

)∣∣
∣
∣
∣

+
∣
∣
∣
(
m̃π̃ ,n(x) − m̂n(x)

)(
m̃π̃ ,n(x) + m̂n(x)

)∣∣
∣

=: ∣∣Un,1(x)
∣
∣+ ∣

∣Un,2(x)
∣
∣+ ∣

∣Un,3(x)
∣
∣. (60)

However, we have

∣
∣Un,1(x)

∣
∣ ≤ rn(x) · max

1≤i≤n

[∣
∣
∣
∣

1

π̃γ̂ (Xi ,Yi )
− 1

π̃γ (Xi ,Yi )

∣
∣
∣
∣

×
{∣
∣
∣
∣

1

π̃γ̂ (Xi ,Yi )
− 1

π̃γ (Xi ,Yi )

∣
∣
∣
∣

+2

∣
∣
∣
∣

1

π̃γ (Xi ,Yi )
− 1

πγ (Xi ,Yi )

∣
∣
∣
∣

+2

∣
∣
∣
∣

1

πγ (Xi ,Yi )

∣
∣
∣
∣

}

I
{
x − Ahn ≤ Xi ≤ x + Ahn

}
]

,

where rn(x) = ∑n
i=1 �i Y 2

i K((x−Xi )/hn)/
∑n

i=1K((x−Xi )/hn) ≤ (|B1|∨|B2|)2,
where B1 and B2 are as in assumption (A). Therefore, in view of (25) and (26), we
obtain

sup
x∈[0,1]

∣
∣Un,1(x)

∣
∣ = op

(
1√

nhn log n

){

op

(
1√

nhn log n

)

+ Op

(√
log n

nλn

)

+ Op(1)

}

= op

(
1√

nhn log n

)

.

Similarly, we have

sup
x∈[0,1]

∣
∣Un,2(x)

∣
∣ = op

(
1/
√
nhn log n

)
.

Next, to deal with the term
∣
∣Un,3(x)

∣
∣ in (60), we observe that

∣
∣Un,3(x)

∣
∣ ≤ ∣

∣m̃π̃ ,n(x)−
m̂n(x)

∣
∣×{∣∣m̃π̃ ,n(x)−m̂n(x)

∣
∣+2

∣
∣m̃π̃ ,n(x)−m̃π,n(x)

∣
∣+2

∣
∣m̃π,n(x)−m(x)

∣
∣+2|m(x)|}.

Consequently, in view of (58) and (59) and the result of Mack and Silverman (1982,
Theorem B), we get

sup
x∈[0,1]

∣
∣Un,3(x)

∣
∣

= op

(
1√

nhn log n

){

op

(
1√

nhn log n

)

+ Op

(√
log n

nλn

)

+ Op

(√
log n

nhn

)

+ Op(1)

}

= op

(
1√

nhn log n

)

.
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Now, (31) follows from the above bounds together with (60). The proof of (32) is
similar and goes as follows.

∣
∣
∣̃ν2π̃ (x) − ν̃2π (x)

∣
∣
∣

≤
∣
∣
∣
∣
∣

[
n∑

i=1

�i Y
2
i

[
1

[π̃γ (Xi ,Yi )]2 − 1

[πγ (Xi ,Yi )]2
]

×K
(
x − Xi

hn

)]/ n∑

i=1

K
(
x − Xi

hn

)∣∣
∣
∣
∣

+2

∣
∣
∣
∣
∣

[
n∑

i=1

εi �i Yi

[
1

π̃γ (Xi ,Yi )
− 1

πγ (Xi ,Yi )

]

×K
(
x − Xi

hn

)]/ n∑

i=1

K
(
x − Xi

hn

)∣∣
∣
∣
∣

+
∣
∣
∣
(
m̃π̃ ,n(x) − m̃π,n(x)

)(
m̃π̃ ,n(x) + m̃π,n(x)

)∣∣
∣

=: ∣∣Tn,1(x)
∣
∣+ ∣

∣Tn,2(x)
∣
∣+ ∣

∣Tn,3(x)
∣
∣. (61)

But

∣
∣Tn,1(x)

∣
∣ ≤ c3 max

1≤i≤n

[∣
∣
∣
∣

1

π̃γ (Xi ,Yi )
− 1

πγ (Xi ,Yi )

∣
∣
∣
∣ ·
{∣
∣
∣
∣

1

π̃γ (Xi ,Yi )
− 1

πγ (Xi ,Yi )

∣
∣
∣
∣

+2

∣
∣
∣
∣

1

πγ (Xi ,Yi )

∣
∣
∣
∣

}]

I
{
x − Ahn ≤ Xi ≤ x + Ahn

}
,

where c3 is a positive constant not depending on n. Therefore, by (26) and the second
part of assumption (F), we have

sup
x∈[0,1]

∣
∣Tn,1(x)

∣
∣ = Op

(√
log n

nλn

)

Op

(√
log n

nλn

)

+ Op

(√
log n

nλn

)

O(1)

= Op

(√
log n

nλn

)

.

Similarly, one has supx∈[0,1]
∣
∣Tn,2(x)

∣
∣ = Op

(√
log n/(nλn)

)
. Furthermore, since

∣
∣Tn,2(x)

∣
∣ ≤ ∣

∣m̃π̃ ,n(x) − m̃π,n(x)
∣
∣
[∣
∣m̃π̃ ,n(x) − m̃π,n(x)

∣
∣+ 2

∣
∣m̃π,n(x)

∣
∣
]
,

one finds (in view of (58)) supx∈[0,1]
∣
∣Tn,2(x)

∣
∣ = Op

(√
log n/(nλn)

)
. Now, (32)

follows from (61) together with the above bounds. The proof of (33) is straightforward
and, in fact, easier than those of (32) and (31), and hence will not be given. ��
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