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Reinforcement Learning of Beam Codebooks in
Millimeter Wave and Terahertz MIMO Systems

Yu Zhang, Muhammad Alrabeiah, and Ahmed Alkhateeb

Abstract—Millimeter wave (mmWave) and terahertz MIMO
systems rely on pre-defined beamforming codebooks for both
initial access and data transmission. These pre-defined codebooks,
however, are commonly not optimized for specific environments,
user distributions, and/or possible hardware impairments. This
leads to large codebook sizes with high beam training overhead
which makes it hard for these systems to support highly mobile
applications. To overcome these limitations, this paper develops
a deep reinforcement learning framework that learns how to
optimize the codebook beam patterns relying only on the receive
power measurements. The developed model learns how to adapt
the beam patterns based on the surrounding environment, user
distribution, hardware impairments, and array geometry. Fur-
ther, this approach does not require any knowledge about the
channel, RF hardware, or user positions. To reduce the learning
time, the proposed model designs a novel Wolpertinger-variant
architecture that is capable of efficiently searching the large
discrete action space. The proposed learning framework respects
the RF hardware constraints such as the constant-modulus and
quantized phase shifter constraints. Simulation results confirm
the ability of the developed framework to learn near-optimal
beam patterns for line-of-sight (LOS), non-LOS (NLOS), mixed
LOS/NLOS scenarios and for arrays with hardware impairments
without requiring any channel knowledge.

I. INTRODUCTION

Millimeter wave (mmWave) and terahertz (THz) MIMO
systems adopt large antenna arrays to compensate for the
significant path loss and ensure sufficient receive signal power.
Because of the high cost and power consumption of the
mixed-circuit components, however, these systems normally
rely either fully or partially on analog beamforming, where
transceivers employ networks of phase shifters [2], [3]. This
makes the basic MIMO signal processing functions, such
as channel estimation and beamforming design, challenging
as the channels are seen only through the RF lens. This
motivates mmWave/THz massive MIMO systems to rely on
pre-defined beamforming codebooks for both initial access
and data transmission [4], [5]. The classical pre-defined
beamforming/beamsteering codebooks normally consist of a
large number of single-lobe beams, each of which can steer
the signal towards one direction. These classical codebooks,
though, have several drawbacks: (i) To cover all the possible
directions, these codebooks consist of a large number of
beams, which makes the search over them associated with high
beam training overhead. (ii) The second issue is a blowback
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from the directivity blessing; classical beamsteering codebooks
employ single-lobe beams to maximize directivity, which, in
many cases, may not be optimal, especially for Non-Line-of-
Sight (NLOS) users. (iii) Further, the design of the classical
codebooks normally assume that the array is calibrated and its
geometry is known, which associates this design processing
with high cost (due to the need for expensive calibration) and
makes it hard to adapt to systems with unknown or arbitrary
array geometries.

Another look at the aforementioned drawbacks reveals
that they stem from the lack of environment and hardware
adaptability. A mmWave/THz system that has a sense of
its environment could discover the most frequent signal di-
rections (for both single and multi-path cases) and accord-
ingly tailor its codebook beam patterns (directions, shapes,
number of lobes, etc.). Furthermore, the system can also
overcome the challenges with intrinsic hardware impairments
or unknown/arbitrary array geometries by learning how to
calibrate its beams to adapt to the given hardware. All
that awareness and adaptability can potentially be achieved
if the mmWave/THz system incorporates a data-driven and
artificially-intelligent component. Towards this goal, leverag-
ing machine learning tools, especially reinforcement learning,
is particularly promising. Reinforcement learning models can
efficiently learn from the observed data and responses obtained
from both the hardware and environment, which may po-
tentially reduce the channel knowledge requirements. Hence,
the focus of this work is on developing a reinforcement
learning based approach that learns how to adapt the
codebook beams to the environment and hardware without
requiring explicit channel knowledge.

A. Prior Work:

Designing efficient beamforming and combining is essential
for realizing the potential of MIMO communications, and it
has been an important research topic in the literature of MIMO
signal processing [2], [6]–[9]. For MIMO systems with no
hardware constraints, i.e., with fully-digital processing and no
constraints on the RF hardware, maximum ratio transmission
and combining maximize the achievable SNR with single-
stream transmission/reception [6]. To realize these solutions,
however, the MIMO system should be able to control the
magnitude and phase of the signal at each antennas. When only
the phase can be controlled, equal-gain transmission solutions
have been developed to maximize the SNR or diversity gains
[7]. This is particularly interesting for mmWave and terahertz
systems where the beamforming/precoding processing is fully
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or partially done in the RF domain using analog phase shifters
[2]. In these systems, however, the phase shifters can normally
take only quantized phase shift values. This associates the
search over the large space of quantized phase shift values with
high complexity (e.g., for a 32-element antenna array with 2-
bit phase shifters, there are 432 possible beamforming vectors)
[2], [8], [9]. Further, in analog beamforming architectures, the
channel is seen through the RF lens, which makes it hard to
acquire at the baseband, especially for systems with arbitrary
or unknown array geometries. To address these challenges,
the first objective of this paper is to design a reinforcement
learning based approach to efficiently learn the analog beam-
forming patterns that adapt to the surrounding environment
and the adopted hardware/array geometry without requiring
explicit channel knowledge.

Given the high complexity/training overhead associated with
the beamforming design for quantized analog/hybrid architec-
tures, these architectures normally rely on using pre-defined
beam codebooks [3], [10]–[12]. These classical codebooks,
however, are normally designed to have a large number of
narrow beams; each beam has a single lobe and points to one
direction. This has several limitations: (i) The large number of
beams in these classical codebooks leads to large beam train-
ing overhead, which makes it hard for these mmWave/terahertz
systems to support highly-mobile applications, (ii) single-
lobe beams may not be optimal in scenarios with more than
one dominant path such as NLOS situations, (iii) classical
codebook design approaches normally rely on the knowledge
of the channels, which is hard to achieve in architectures
with analog beamforming, especially if these systems adopt
imperfect hardware or deploy arrays with unknown/arbitrary
array geometries, and (iv) the classical codebooks typically
assume fully-calibrated arrays, which is an expensive process.
All the aforementioned limitations have motivated the search
for adaptive codebook designing methods that leverage ma-
chine learning tools to adapt the learned beams based on the
environment and hardware. In [13], the beam codebook learn-
ing approaches based on neural networks were proposed and
shown to achieve good gain compared to the classical beam
steering codebooks. The solutions in [13], though, still require
full or partial channel knowledge, which is not simple to obtain
in mmWave/THz systems. This motivates the development of
environment and hardware aware codebook learning approach
that does not require explicit channel knowledge, which is the
main focus of this paper.

B. Contribution:
Developing environment and hardware awareness using

machine learning is not straightforward when the mmWave
system constraints are considered, e.g., channels are not
available, phase shifters have finite and limited resolution,
and hardware envelops unknown impairments. In this paper,
we develop a deep reinforcement learning based framework
that can efficiently learn mmWave beam codebooks while
addressing all these challenges. The main contributions of this
paper can be summarized as follows:

• Designing a deep reinforcement learning based frame-
work that can learn how to optimize the beam pattern

for a set of users with similar channels. The developed
framework relies only on receive power measurements
and does not require any channel knowledge. This
framework adapts the beam pattern based on the sur-
rounding environment and learns how to compensate for
the hardware impairments. This is done by utilizing a
novel Wolpertinger architecture [14] which is designed to
efficiently explore the large discrete action space. Further,
the proposed model accounts for key hardware constraints
such as the phase-only, constant-modulus, and quantized-
angle constraints [2].

• Developing a reinforcement learning framework that is
capable of learning a codebook of beam patterns opti-
mized to serve the users in the surrounding environment.
The proposed framework autonomously optimizes the
codebook beam patterns based on the environment,
user distribution, hardware impairments, and array
geometry. Further, it relies only on the receive power
measurements, does not require any position or channel
knowledge (which relaxes the synchronization/coherence
requirements), and does not require the users to be
stationary during the learning process. This is achieved by
developing a novel pre-processing approach that relies on
SNR-based feature matrices to partition/assign the users
into clusters based on which parallel neural networks are
trained.

• Extensively evaluating the performance of the proposed
codebook learning approach based on the publicly-
available DeepMIMO dataset [15]. These experiments
adopt both outdoor and indoor wireless communication
scenarios and learn codebooks with different sizes. Fur-
ther, this evaluation is done both for perfect uniform
arrays and for arrays with arbitrary geometries and hard-
ware impairments. These experiments provide a compre-
hensive evaluation of the proposed reinforcement learning
based codebook learning approach.

The simulation results show that the proposed approach
is capable of learning optimized beam patterns and beam
codebooks without the need of providing any channel state
information. Instead, based solely on the receive combining
gains, the deep reinforcement learning solution adjusts the
phases of the beamforming vectors to increase the receive gain
and finally yields significant improvements over the classical
beamsteering codebooks.

II. SYSTEM AND CHANNEL MODELS

In this section, we introduce in detail our adopted system
and channel models. We also describe how the model consid-
ers arbitrary arrays with possible hardware impairments.

A. System Model

We consider the system model shown in Fig. 1 where a
mmWave massive MIMO base station with M antennas is
communicating with a single-antenna user. Given the high
cost and power consumption of mixed-signal components [3],
[16], we consider a practical system where the base station has
only one radio frequency (RF) chain and employs analog-only
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Fig. 1. A mmWave/massive MIMO base station with an arbitrary antenna array serving users with a beam codebook W . The objective is to develop
a learning approach for adapting the codebook W to match the given hardware and environment based only on SNR measurements (which relaxes the
coherence/synchronization requirements).

beamforming using a network of r-bit quantized phase shifters.
To facilitate the system operation and respect the hardware
constraints, mmWave and massive MIMO systems typically
use beamforming codebooks in serving their users. Let W
denote the beam codebook adopted by the base station and
assume that it contains N beamforming/combining vectors,
each of which takes the form

w =
1√
M

[
ejθ1 , ejθ2 , . . . , ejθM

]T
, (1)

where each phase shift θm is selected from a finite set Θ with
2r possible discrete values drawn uniformly from (−π, π]. In
the uplink transmission, if a user u transmits a symbol x ∈ C
to the base station, where the transmitted symbol satisfies the
average power constraint E

[
|x|2
]
= Px, the received signal at

the base station after combining can be expressed as

yu = wHhux+wHn, (2)

where hu ∈ CM×1 is the uplink channel vector between the
user u and the base station antennas and n ∼ NC

(
0, σ2

nI
)

is
the receive noise vector at the base station.

B. Channel Model

We adopt a general geometric channel model for hu [16],
[17]. Assume that the signal propagation between the user u
and the base station consists of L paths. Each path ℓ has a
complex gain αℓ and an angle of arrival ϕℓ. Then, the channel
vector can be written as

hu =
L∑

ℓ=1

αℓa(ϕℓ), (3)

where a(ϕℓ) is the array response vector of the base station.
The definition of a(ϕℓ) depends on the array geometry and
hardware impairments. Next, we discuss that in more detail.

C. Hardware Impairments Model

Most of the prior work on mmWave signal processing has
assumed uniform antenna arrays with perfect calibration and
ideal hardware [2], [3], [10], [11]. In this paper, we consider a
more general antenna array model that accounts for arbitrary
geometry and hardware imperfections, and target learning
efficient beam codebooks for these systems. This is very
important for several reasons: (i) there are scenarios where
designing arbitrary arrays is needed, for example, to improve
the angular resolution or enhance the direction-of-arrival esti-
mation performance [18], [19], (ii) the fabrication process of
large mmWave arrays normally has some imperfections, and
(iii) the calibration process of the mmWave phased arrays is an
expensive process that requires special high-performance RF
circuits [20]. While the codebook learning solutions that we
develop in this paper are general for various kinds of arrays
and hardware impairments, we evaluate them in Section VII
with respect to two main characteristics of interest, namely
non-uniform spacing and phase mismatch between the antenna
elements. For linear arrays, the array response vector can be
modeled to capture these characteristics as follows

a(ϕℓ) =
[
ej(kd1 cos(ϕℓ)+∆θ1), ej(kd2 cos(ϕℓ)+∆θ2),

. . . , ej(kdM cos(ϕℓ)+∆θM )
]T
, (4)

where dm is the position of the m-th antenna, and ∆θm is
the additional phase shift incurred at the m-th antenna (to
model the phase mismatch). Without loss of generality, we
assume that dm and ∆θm are fixed yet unknown random
realizations, obtained from the distributions N

(
(m− 1)d, σ2

d

)
and N

(
0, σ2

p

)
, respectively, where σd and σp model the

standard deviations of the random antenna spacing and phase
mismatch. Besides, we impose an additional constraint d1 <
d2 < · · · < dM to make sure the generated antenna positions
physically meaningful.
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Fig. 2. The proposed beam pattern design framework with deep reinforcement learning. The schematic shows the agent architecture, and the way it interacts
with the environment.

III. PROBLEM DEFINITION

In this paper, we investigate the design of mmWave beam-
forming codebooks that are adaptive to the specific deployment
(surrounding environment, user distribution, etc.) and the given
base station hardware (array geometry, hardware imperfec-
tions, etc.). Given the system and channel models described in
Section II, the SNR after combining for user u can be written
as

SNRu =

∣∣wHhu

∣∣2
|w|2

ρ, (5)

with ρ = Px

σ2
n

. Besides, we define the beamforming/combining
gain of adopting w as a transmit/receive beamformer for user
u as

gu =
∣∣wHhu

∣∣2 . (6)

If the combining vector w is selected from a codebook W ,
with cardinality |W | = N , then, the maximum achievable
SNR for user u is obtained by the exhaustive search over W
as

SNR⋆
u = ρ max

w∈W

∣∣wHhu

∣∣2, (7)

where ∥w∥2 = 1 as the combining weights are implemented
using phase shifters with constant magnitudes of 1/

√
M , as

described in (1). The objective of this paper is to design
the beam codebook W to maximize the SNR given by (7)
averaged over the set of the users served by the base station.
Let H represent the set of channel vectors for all the users
that can be served by the considered base station, the beam
codebook design problem can be formulated as

Wopt = argmax
W

1

|H|
∑

hu∈H

(
max

wn∈W

∣∣wH
n hu

∣∣2) , (8)

s. t. wmn =
1√
M
ejθmn , ∀m = 1, ...,M, n = 1, ..., N,

(9)
θmn ∈ Θ, ∀m = 1, ...,M, n = 1, ..., N, (10)

where wmn = [wn]m is the m-th element of the n-th
beamforming vector in the codebook, |H| = K is the total
number of users, Θ is the set that contains the 2r possible

phase shifts. It is worth mentioning that the constraint in (9)
is imposed to uphold the adopted model where the analog
beamformer can only perform phase shifts to the received
signal, and the constraint in (10) is to respect the quantized
phase-shifters hardware constraint.

Due to the unknown array geometry and possible hard-
ware impairments, the accurate channel state information is
generally hard to acquire. This means that all the channels
hu ∈ H in the objective function are possibly unknown.
Instead, the base station may only have access to the beam-
forming/combining gain gu (or equivalently, the Received
Signal Strength Indicator (RSSI) reported by each user if a
downlink setup is considered). Therefore, problem (8) is hard
to solve in a general sense for the unknown parameters in
the objective function, the non-convex constraint (9), and the
discrete constraint (10). Given that this problem is essentially
a search problem in a huge yet finite and discrete space,
we consider leveraging the powerful exploration capability
of deep reinforcement learning to efficiently search over the
space to find the optimal or near-optimal solution. Since
the number of beams in the codebook is far less than the
number of channels in H, users sharing similar channels are
expected to be served by the same beam that achieves the
best average beamforming gain compared to the other beams
in W . As such, we consider solving the original problem (8)
in two steps. First, we investigate the problem of learning an
optimized beam pattern for a single user or a group of users
that share similar channels in Section IV, which we refer to as
the beam pattern learning problem and it can be formulated
as

wopt =argmax
w

1

|Hs|
∑

hu∈Hs

∣∣wHhu

∣∣2 , (11)

s. t. wm =
1√
M
ejθm , θm ∈ Θ, ∀m = 1, ...,M,

(12)

where wm is the m-th element of the beamforming vector
and Hs is the channel set that contains a single channel
or multiple similar channels. In Section V, we address the
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codebook design problem (8) by introducing a joint clustering,
assignment, and beam pattern learning approach.

IV. BEAM PATTERN LEARNING

In this section, we present our proposed deep reinforcement
learning based algorithm for addressing the beam pattern
design problem (11), which aims at maximizing the (averaged)
beamforming gain of a single user (or a group of users that
share the similar channels). Given constraint (12), the design
problem is essentially a search problem over a finite yet
dauntingly huge discrete feasible set. For example, for a base
station equipped with 32 antennas and 3-bit phase shifters,
there are over 7.9×1028 legitimate beamforming vectors. With
this huge space, finding the optimal beamforming vector by
using methods like exhaustive search is definitely infeasible.
In order to achieve an efficient search process, we resort to
reinforcement learning where the agent (base station) is able to
learn from what it has experienced (receive power or feedbacks
from users) and try to proceed towards a better direction
(beamforming/combining vector). However, when viewing the
problem from a reinforcement learning perspective, it features
finite yet very high dimensional action space. This makes the
traditional learning frameworks (such as deep Q-learning, deep
deterministic policy gradient, etc.) hard to apply. To deal with
that, we propose a learning framework based on Wolpertinger
architecture [14] to narrow the size of the action space and
avoid missing the optimal policy at the same time.

A. Wolpertinger Architecture Overview

It is commonly known that deep Q-networks [21], [22]
are very difficult to apply when the size of the action space
(referred to as the dimension of the action space) is huge. This
is because the dimension of the output of the deep Q-network
relates directly to the number of possible actions, meaning
that the size of the neural network grows as the number of
actions increases. However, for problems approaching real life
complexity, it is highly likely to encounter applications that
involve a huge action space, different from that in Atari games
[21] where only several actions are considered. For example,
in our problem, the possible actions in the case of a base
station with 32 antennas and adopting 3-bit phase shifters are
in the order of 1028. The number can increase further with
more antennas and higher resolution phase shifters. This is
definitely intractable for the deep Q-network framework. With
this motivation, the Wolpertinger architecture is proposed as
a way of reasoning in a space with large number of discrete
actions [14]. The Wolpertinger architecture is based on the
actor-critic [23] framework and is trained using Deep Deter-
ministic Policy Gradient (DDPG) [24]. This novel architecture
utilizes a K-Nearest Neighbor (KNN) classifier to make DDPG
suitable for tasks with discrete, finite yet very high dimensional
action space. We briefly introduce the basic components of the
architecture as follows.

1) Actor Network: We assume an action space A ⊆ Rn

that is discrete and finite (but possibly with large number of
actions), from which the agent selects an action to execute. We
also assume a state space S ⊆ Rm that contains all the possible

states of an environment. We will define the action and state
spaces in the context of the beam pattern learning problem
in Section IV-B. The actor network is then constructed as a
function approximator parameterized by θµ mapping from the
state space to the Rn, that is

µ(·|θµ) : S → Rn. (13)

Due to the discrete and finite nature of A, the action predicted
by the actor network is probably not within A. In other words,
for any state s ∈ S , we can get a predicted proto-action

µ(s|θµ) = â, (14)

where â is highly likely not a “legitimate” action, i.e. â /∈ A.
Therefore, the proto-action â needs to be transformed (quan-
tized) to a valid action in A, where the KNN classifier plays
a role in.

2) K-Nearest Neighbor: Since the predicted proto-action of
the actor network is possibly not a valid action, we need to
map â to valid actions in A. One natural solution could be a
KNN function, i.e., finding closest k actions in A to â using
some distance metric (L2 distance to name one). In particular,
we assume there is a function denoted by ξk that takes in the
proto-action â and returns the k nearest neighbors of â in A
according to L2 distance, formally

ξk(â) =
nearest k
argmin

a∈A
∥a− â∥2. (15)

The output of ξk(â) is a set of k actions in A that are the
top k nearest neighbors to â, which is denoted by Ak =
{a1,a2, . . . , ak}.

3) Critic Network: The critic network is constructed as a
function approximator parameterized by θQ mapping from the
joint state space S and action space A to R, that is

Q(·, ·|θQ) : S ×A → R. (16)

The critic network essentially plays the role of a Q function
that takes in the state and action and outputs a predicted
Q value of this particular state-action pair. Since k actions
are obtained from the KNN function, the critic network then
evaluates k state-action pairs (note that they share the same
state) and selects the action that achieves the highest Q value

at = argmax
al∈Ak

Q(st,al|θQ). (17)

4) Network Update: The actor network aims at maximizing
the output of the critic network (the predicted Q value) given a
particular state, the objective of which can be simply expressed
as J(θµ) = E

[
Q(s, a|a=µ(s|θµ))

]
. Thus, the actor policy is

updated using the deep deterministic policy gradient, which is
given by

−∇θµJ(θµ) ≈ −E [∇aQ(s, a)∇θµµ(s|θµ)] (18)

≈ − 1

B

B∑
b=1

∇aQ(s, a)|s=sb,a=µ(sb|θµ)∇θµµ(s|θµ)|s=sb .

(19)

The objective of the critic network is to estimate the Q value of
the input state-action pair. Thus, the target can be constructed
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in the exactly same way that is adopted in the deep Q-
networks, which is given by

y = E
[
r + γmax

at+1

Q(st+1,at+1|θQ)
]
. (20)

The parameters of the critic network θQ is then updated based
on the mean squared error over a particular mini-batch, which
is given by 1

B

∑B
b=1

(
yb −Q(sb,ab|θQ)

)2
.

For the sake of computational stability, the actor and critic
networks have duplicates, referred to as the target actor and
target critic networks. They are not trainable like the actor and
critic networks, but they are utilized for calculating the targets.
Despite them being not trainable, the parameters of the target
actor and critic networks get updated using the parameters of
the critic and actor networks after a certain number of training
iterations. Formally, it can be expressed as

θQ
′
←τθQ + (1− τ)θQ

′
, (21)

θµ
′
←τθµ + (1− τ)θµ

′
, (22)

where θµ
′

and θQ
′

are the parameters of target actor network
and target critic network, τ is a non-negative hyper-parameter
usually taking a value far less than 1.

B. DRL Based Beam Pattern Design

In this subsection, we detail our proposed DRL based
beam pattern design approach. We adopt the Wolpertinger
architecture described above as our learning framework.

1) Reinforcement Learning Setup: To solve the problem
with reinforcement learning, we first specify the corresponding
building blocks of the learning algorithm.

• State: We define the state st as a vector that consists of
the phases of all the phase shifters at the t-th iteration,
that is, st = [θ1, θ2, . . . , θM ]

T . This phase vector can be
converted to the actual beamforming vector by applying
(1). Since all the phases in st are selected from Θ, and all
the phase values in Θ are within (−π, π], (1) essentially
defines a bijective mapping from the phase vector to
the beamforming vector. Therefore, for simplicity, we
will use the term “beamforming vector” to refer to both
this phase vector and the actual beamforming vector (the
conversion is by (1)), according to the context.

• Action: We define the action at as the element-wise
changes to all the phases in st. Since the phases can
only take values in Θ, a change of a phase means the
phase shifter selects a value from Θ. Thus, the action is
directly specified as the next state, i.e. st+1 = at.

• Reward: We define a ternary reward mechanism, i.e. the
reward rt takes values from {+1, 0,−1}. We compare the
beamforming gain achieved by the current beamforming
vector, denoted by gt, with two values: (i) an adaptive
threshold βt, and (ii) the previous beamforming gain
gt−1. The reward is computed using the following rule

– gt > βt, rt = +1;
– gt ≤ βt and gt > gt−1, rt = 0;
– gt ≤ βt and gt ≤ gt−1, rt = −1.

We adopt an adaptive threshold mechanism that does not
rely on any prior knowledge of the channel distribution. The

threshold has an initial value of zero and keeps being updated
by the value of the highest beamforming/combining gain
identified so far. At the same time, the base station also records
the beamforming vector that triggers the threshold updating
event. As can be seen in this process, in order to evaluate the
quality of a beam (or equivalently, calculate the reward), the
system always tracks two quantities, which are the previous
beamforming/combining gain and the threshold.

Algorithm 1 DRL Based Beam Pattern Learning
1: Initialize actor network µ(s|θµ) and critic network
Q(s, a|θQ) with random weights θµ and θQ

2: Initialize target networks µ′ and Q′ with the weights of
actor and critic networks’ θµ

′ ← θµ and θQ
′ ← θQ

3: Initialize the replay memory D, minibatch size B, dis-
count factor γ

4: Initialize adaptive threshold β = 0 and the previous
average beamforming gain g1 = 0

5: Initialize a random process N for action exploration
6: Initialize a random beamforming vector w1 as the initial

state s1
7: for t = 1 to T do
8: Receive a proto-action from actor network with explo-

ration noise ât = µ(st|θµ) +Nt

9: Quantize the proto-action to a valid beamforming vector
at according to (24)

10: Execute action at, observe reward rt and update state
to st+1 = at

11: Update the threshold β and the previous beamforming
gain gt

12: Store the transition (st,at, rt, st+1) in D
13: Sample a random mini batch of B transitions

(sb,ab, rb, sb+1) from D
14: Calculate target yb = rb + γQ′(sb+1, µ

′(sb+1|θµ
′
)|θQ′

)

15: Update the critic network by minimizing the loss L =
1
B

∑
b(yb −Q(sb,ab|θQ))2

16: Update the actor network using the sampled policy
gradient given by (19)

17: Update the target networks every C iterations by (21)
and (22)

18: end for

2) Environment Interaction: As mentioned in Sections I
and III, due to the possible hardware impairments, accurate
channel state information is generally unavailable. Therefore,
the base station can only resort to the receive power (or beam-
forming gain feedback reported by the users in a downlink
setup) to adjust its beam pattern in order to achieve a better
performance. To be more specific, upon forming a new beam
w̃, the base station uses this beam to receive the symbols
transmitted by every user. Then, it averages all the combining
gains as follows

ḡ =
1

|Hs|
∑

hu∈Hs

∣∣w̃Hhu

∣∣2 , (23)

where Hs represents the targeted user channel set. Recall
that (23) is the same as evaluating the objective function of
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(11) with the current beamforming vector w̃. Depending on
whether or not the new average beamforming/combining gain
surpasses the previous beamforming/combining gain as well
as the current threshold, the base station gets either reward
or penalty, based on which it can judge the “quality” of the
current beam and decide how to move.

3) Exploration: The exploration happens after the actor
network predicts the proto-action ât+1 based on the current
state (beam) st. Upon obtaining the proto-action, an additive
noise is added to ât+1 for the purpose of exploration, which is
a customary way in the context of reinforcement learning with
continuous action spaces [23], [24]. In our problem, we use
temporally correlated noise samples generated by an Ornstein-
Uhlenbeck process [25], which is also used in [14], [24]. It
is worth mentioning that a proper configuration of the noise
generation parameters has significant impact on the learning
process. Normally, the extent of exploration (noise power)
is set to be a decreasing function in the iteration number,
commonly known as exploration-exploitation tradeoff [23].
Furthermore, the exact configuration of noise power should
relate to the application. In our problem, for example, the noise
is directly added to the predicted phases. Thus, at the very
beginning, the noise should be strong enough to perturb the
predicted phase to any other phases in Θ. By contrast, when
the learning process approaches saturation (the learned beam
already performs well), the noise power should be decreased
to a small value only capable of perturbing the predicted phase
to its adjacent phases in Θ.

4) Quantization: The “proto” beam (with exploration
noise) is quantized in order to be a valid new beam. To this
end, we apply a KNN classifier as described in Section IV-A2.
We specify k = 1 in (15), which is basically a nearest neighbor
lookup. Therefore, each quantized phase in the new vector can
be simply calculated as

[st+1]m = argmin
θ∈Θ

|θ − [̂st+1]m| , ∀m = 1, 2, . . . ,M. (24)

5) Forward Computation and Backward Update: The cur-
rent state st and the new state st+1 (recall that we directly
set st+1 = at) are then fed into the critic network to
compute the Q value, based on which the targets of both actor
and critic networks are calculated. This completes a forward
pass. Following that, a backward update is performed to the
parameters of the actor and critic networks. A pseudo code of
the algorithm can be found in Algorithm 1.

V. BEAM CODEBOOK LEARNING

In this section, we propose a multi-network DRL approach
for solving (8) and learning a beam codebook. The approach
is built around two ideas: (i) some users in the wireless
environment experience similar channels, and (ii) the beam
pattern learning approach described in Section IV. It could be
briefly described as a pipeline of three key stages, namely
clustering, assignment, and beam pattern learning. These
stages collectively learn to break down the codebook learning
problem into several beam-pattern learning problems, each of
which is performed by a separate DRL network. The first stage
learns to partition the users in the environment into clusters
based on how similar their channels are (without explicitly
estimating those channels). These clusters are, then, assigned
to different DRL networks in the second stage. Finally, the
third stage is where the beam pattern learning happens. Each
of the DRL networks is expected to learn a beam pattern, and
the collection of those patterns constructs the beam codebook.

The proposed approach operates in two modes, namely
learning and deployment. The first is where the three-stages
are executed to learn a codebook. It is envisioned to run in the
background and learns from users with established links with
the base station with minimal impact on the wireless system
performance. During this mode, the base station is assumed
to operate with some classical codebook and occasionally
uses the learned beams. Only when a codebook is learned
does the base station switch to the deployment mode, where
the learned codebook replaces the classical one. Further, note
that during the deployment stage, although users that have
similar channels will probably be assigned to the same beam,
these users are assumed to be scheduled at different time or
frequency resources to avoid the possible interference between
them. For example, the same beam can serve multiple users
at different sub-bands or in different time slots.

A. User Clustering

Following into the footsteps of [26], users sharing similar
channels are served by the same beam in the codebook. The
question then becomes how to cluster the users’ channels with-
out knowing them, i.e., without performing expensive channel
estimation. As a result of the constant modulus and limited
resolution phase shifters, the set of feasible beamforming
vectors for (8) forms a huge yet finite subset of CM , and
all those vectors live on the surface of the M -dimensional
unit hypersphere. The proposed clustering method here relies
on utilizing a random subset of those vectors, henceforth
referred to as the sensing beams, for the purpose of gathering
sensing information in the form of receive combining gain.
This information is used to cluster those users, developing a
rough sense of their distribution in the environment.

The clustering method starts by constructing a matrix that
is comprised of receive combining gains using the sensing
beams. Formally, let F = {f1, f2, . . . , fS} be a set of S sensing
beams that are randomly sampled from the feasible set of
(8)1, where fs ∈ CM , ∀s ∈ {1, . . . , S}. Also, let Hsen =

1To clarify, we use W and w to denote the learned codebook and beam.
We use F and f to denote the sensing beam set and sensing beam.
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{h1,h2, . . . ,hK′} denote the channels of the K ′ users that
contribute to the clustering process, where Hsen ⊆ H. It is
worth mentioning that these K ′ users do not need to be present
in the environment at the same time. The receive combining
gains used in the clustering algorithm can be collected over a
relatively long period of time. The objective then is to collect
receive combining gains form the K ′ users for every beam
fs ∈ F and construct a sensing matrix P

P ≜


∣∣fH1 h1

∣∣2 · · ·
∣∣fH1 hk

∣∣2 · · ·
∣∣fH1 hK′

∣∣2∣∣fH2 h1

∣∣2 · · ·
∣∣fH2 hk

∣∣2 · · ·
∣∣fH2 hK′

∣∣2
...

. . .
...

. . .
...∣∣fHS h1

∣∣2 · · ·
∣∣fHS hk

∣∣2 · · ·
∣∣fHS hK′

∣∣2

 , (25)

where each column in P has the receive combining gains
from the same user for all sensing beams in F . It is worth
mentioning that since the receive combining gain is the only
information source to the base station, the sensing matrix P
actually incorporates all the information that the base station
can leverage from the outside environment.

The sensing matrix is used to extract feature vectors that
characterize the user distribution in the environment. Each
column in P represents the receive gains of a single user in the
environment. One could cluster the users by directly applying
a clustering algorithm (such as k-means) on the columns of P.
However, empirical evidence shows that this clustering does
not yield meaningful partitioning of the users. The reason for
that could be attributed to the fact that the columns of P are
restricted to the nonnegative orthant of the RS vector space;
this increases the likelihood of overlapping clusters, which are
hard to separate with k-means. As an alternative, we propose to
transform the column of P using pair-wise differences. More
precisely, the pair-wise differences of the elements of every
column are computed, scaled, and stacked in a column vector
as follows

uk =

(
1

S

S∑
s=1

∣∣fHs hk

∣∣2)−1


∣∣fH1 hk

∣∣2 − ∣∣fH2 hk

∣∣2∣∣fH1 hk

∣∣2 − ∣∣fH3 hk

∣∣2
...∣∣fHS−1hk

∣∣2 − ∣∣fHS hk

∣∣2

 ,
∀k = 1, 2, . . . ,K ′, (26)

where uk ∈ R
S(S−1)

2 is referred to as the feature vector of
user k. The column vectors of all K ′ users are organized
in a feature matrix U = [u1,u2, . . . ,uK′ ]. This choice of
transformation preserves the relation between the channel
vector of a user and the sensing vectors, i.e., the sense of
how close a channel vector to each sensing vector. However,
it expresses that relation using a feature vector that could
fall anywhere in the R

S(S−1)
2 vector space (not restricted to

the nonnegative orthant). The factor in (26) expresses each
elements in the columns of U as a ratio of a pair-wise
difference to the average power of the corresponding column
of matrix P.

The clustering is applied on the columns of the feature ma-
trix U to produce N clusters. The popular k-means algorithm
[27] is adopted to generate those clusters. It learns to partition

the K ′ users (or equivalently their channels Hsen) into N
disjoint subsets, i.e., Hsen = H1 ∪H2 ∪ · · · ∪HN , where
Hk ∩Hl = ∅, ∀k ̸= l and we assume that the subscript of
each user group is also the corresponding label of that group.
The trained k-means algorithm is used to classify any new
user coming into the environment as the learned user clusters
in this stage could be characterized as stationary or quasi-
stationary; they rely on channel similarity which is a function
in the wireless geometry and user distribution, among other
things. Both are slowly changing, and hence, the clustering
learned for a certain wireless environment could be argued
to be valid long enough for a codebook to be learned and
deployed.

B. Cluster Assignment

Since the clustering will be repeated whenever there is a
change in the environment, an important question arises: how
to assign the new clusters to the existing DRL networks, with
each of them learning one beam? The answer to this question
defines the second stage in our proposed codebook learning
approach. For the learning process to be meaningful, a network
should consistently be assigned channel clusters that exhibit
some form of similarity; the new cluster should be similar to
the previous one in the sense that the network can improve its
currently learned beam pattern but not change it completely. To
that end, we formulate this cluster assignment task as a linear
sum assignment problem, which can be solved efficiently using
the Hungarian algorithm [28].

To perform the cluster-network assignment, a cost needs to
be computed to measure suitability and guide the assignment
process. Let Ĥsen = Ĥ1 ∪ Ĥ2 ∪ · · · ∪ ĤN be the new
clusters obtained using the clustering algorithm described in
Section V-A. As described in Section IV-B2, the DRL network
always tracks the beamforming vectors that achieve the best
beamforming gain, which forms a set of “temporarily best”
beamforming vectors, denoted by Υ = {ŵ1, ŵ2, . . . , ŵN},
where the subscripts stand for the indices of the N DRL
networks. We propose to use the average beamforming gain
of each beamforming vector in Υ computed on each cluster as
the suitability measure. The result of that forms a cost matrix
Z, where the value at the intersection of n-th row and n′-th
column of Z stands for the average beamforming gain of the
n-th temporarily best beamforming vector in Υ on the n′-th
channel cluster in Ĥsen. This value is calculated as

Znn′ =
1

|Ĥn′ |

∑
h∈Ĥn′

∣∣ŵH
n h
∣∣2 . (27)

With the cost matrix, we formulate the cluster assignment
task as a linear sum assignment problem, which is given by

min
X
−

N∑
n=1

N∑
n′=1

Xnn′Znn′ (28)

s. t. X is a permutation matrix. (29)

This problem can be efficiently solved using the Hungarian
algorithm, the results of which are N association tuples
(ŵn, Ĥn′), n, n′ ∈ {1, 2, . . . , N}.. In other words, the cluster
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Fig. 4. The three considered communication scenarios. (a) shows the LOS scenario. It is chosen to be outdoor since the likelihood of LOS connection is higher
there. (b) shows the NLOS scenario. It is chosen for the high likelihood of having NLOS users indoors. (c) shows the perspective of the mixed LOS/NLOS
scenario based on the same indoor layout as (b).

assignment step forms a bijective mapping from Υ to the set
of channel groups

{ŵ1, ŵ2, . . . , ŵN} ⇐⇒ {Ĥ1, Ĥ2, . . . , ĤN}. (30)

Algorithm 2 User Clustering, Cluster Assignment and DRL
Based Codebook Learning

1: Initialize a sensing beam set F = {f1, f2, . . . , fS}
2: Initialize Υ = {ŵ1, ŵ2, . . . , ŵN}, the temporarily best

beam set
3: Construct sensing matrix P by (25)
4: Transform sensing matrix P to feature matrix U by

applying (26) to the columns of P
5: Use k-means algorithm to cluster the columns of U into
N clusters

6: while environment has not changed do
7: Randomly sample a subset of users Ĥ from H
8: Partition sampled channels using the trained k-means

classifier to Ĥ = Ĥ1∪Ĥ2∪· · ·∪ĤN channel clusters

9: Construct the matrix Z using Υ and the clustering result
of Ĥ based on (27)

10: Solve the optimization problem (28) by applying Hun-
garian algorithm

11: Assign the user clusters to DRL networks based on the
association relationship given by X in (28)

12: Train the N DRL networks (details given by Algo-
rithm 1), and update Υ

13: if training saturates then
14: Fine-tune the learned beam pattern using perturb-and-

quantize operations
15: end if
16: end while
17: Go to line 1

C. Neural Network Update and Fine-Tuning

Upon obtaining the clustered channels and their assignment
(30), the problem (8) is essentially decomposed into N in-
dependent sub-problems which is given by (11). Each DRL
network adjusts its own beam based on the assigned user
cluster. They only consider the receive combining gains from

their designated users. User clustering and cluster assignment
are two key stages that enable adaptability and empower the
proposed solution with capability of dealing with dynamic
environment. Practically speaking, it is impossible to fix all the
users until a good beam codebook is learned. Instead, we keep
learning cluster and assign the users as they change over time,
which partially reflects the dynamics of the environment. Our
proposed beam codebook approach accounts for such practical
considerations and is able to learn beam codebooks that adapt
to the environment. The complete beam codebook learning
algorithm is given in Algorithm 2.

The beam pattern learning proceeds as described in Section
IV-B with one optional step, a final perturb-and-quantize fine-
tuning step. This step is applied after the DRL agent reaches
training saturation, and it aims to explore the neighborhood
of the best phase vector learned by the DRL agent. It is
composed of three simple operations: perturb, quantize, and
evaluate. The first operation perturbs the best phase vector
using a random vector. The random vector is drawn from a
small-power (i.e., small variance) Ornstein-Uhlenbeck process
like that discussed in Section IV-B3. Then, the perturbed phase
vector is quantized to satisfy the constraint on the phase-shifter
resolution and evaluated on the assigned cluster of users.
Should it perform better than its un-perturbed counterpart, it
is picked as the best phase vector, replacing the un-perturbed
vector. Otherwise, it is discarded. The operations are repeated
until the performance saturates. This perturb-and-quantize
step fine-tunes the already-learned beam pattern without the
relatively expensive agent-training process.

VI. EXPERIMENTS SETUP AND NETWORK TRAINING

To evaluate the performance of the proposed solutions,
three scenarios are considered. The following two subsections
provide more details on the scenarios and the training process.

A. Communication Scenarios and Datasets

Three scenarios are used for performance evaluation, as
shown in Fig. 4. The first one is an outdoor LOS scenario
where all the users have LOS connection with the mmWave
BS, with an operating frequency of 60 GHz. The second one
is an indoor NLOS scenario where all the users have NLOS
connection with the mmWave BS, with an operating frequency
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TABLE I
HYPER-PARAMETERS FOR CHANNEL GENERATION

Parameter value
Name of scenario O1 60 I2 28B I4 28

Active BS 3 1 1
Active users 1101 to 1400 201 to 300 1 to 92

Number of antennas
(x, y, z) (1, 32, 1) (32, 1, 1) (32, 1, 1)

System BW 0.5 GHz 0.5 GHz 0.5 GHz
Antenna spacing 0.5 0.5 0.5

Number of OFDM
sub-carriers 1 1 1

OFDM sampling factor 1 1 1
OFDM limit 1 1 1

Number of multi paths 5 5 5

TABLE II
HYPER-PARAMETERS FOR MODEL TRAINING

Parameter value
Models Actor Critic

Total number of
parameters 295968 82977

Replay memory buffer
size 8192 8192

Mini-batch size 1024 1024
Optimizer Adam Adam

Learning rate 10−3 10−3

Weight decay 10−2 10−3

Noise start variance 1 1
Noise end variance 0.05 0.05
Noise decay period 1× 105 1× 105

of 28 GHz. The third scenario has the same indoor layout
as the second, but with two user grids, a LOS grid and a
NLOS grid. It is also operating at a frequency of 28 GHz.
All scenarios are part of the DeepMIMO dataset [15]. Using
the DeepMIMO scripts, three sets of channels, namely SLOS,
SNLOS, and SMIX are generated, one for each scenario. Table
I shows the data generation hyper-parameters. The datasets
taking into account the hardware impairments are generated
based on the LOS scenario. While our proposed solution
can deal with general impairments, we only consider antenna
spacing and phase mismatches. We generate multiple datasets
based on different levels of impairments, measured by the
standard deviations of antenna spacing and phase mismatches.
Without distinction of them, we denote those datasets with
impairments as ScLOS2.

Remark: please note that all generated datasets are used
to emulate a wireless system operating in a certain environ-
ment and with certain hardware impairments. The proposed
framework does not have access to those datasets; it merely
interacts with them to learn the target codebook.

B. Model Architecture and Implementation Specifications

While we generate multiple datasets, the learning architec-
ture is the same, which is based on the DDPG framework. It is
comprised of two networks, actor and critic. The input of the
actor network is the state, i.e., the phases of the phase shifters,
hence with a dimension of M . There are two hidden layers,
all comprising 16M neurons and followed by Rectified Linear
Unit (ReLU) activations. The output of the actor network is
the predicted action, which also has a dimension of M and
is followed by hyperbolic tangent (tanh) activations scaled by
π. For the critic network, the input is the concatenation of
the state and action, so it has a dimension of 2M . There are
also two hidden layers, all with 32M neurons and followed
by ReLU activations. The output of the critic network stands
for the predicted Q value of the input state-action pair, which
is a real scalar (hence with a dimension of 1).

The above architecture is developed using PyTorch [32] and
on a Window™-based machine running an NVIDIA™Titan
RTX GPU. The hyper-parameters for training can be found in
Table II. The training and evaluation processes start by data

2“cLOS” is a shorthand of corrupted LOS.

pre-processing [29]. It is worth pointing out that the data pre-
processing is mainly used for the sake of numerical stability,
as the channel values in the original dataset, and consequently
the absolute beamforming gain values, are very small (e.g., the
average channel element power in the original LOS dataset is
around 10−10). The reward used in the proposed algorithm is
only calculated based on the comparison between two beam-
forming gain values. Therefore, the channels are normalized
using the maximum absolute value in the dataset [26], [30].
Formally, the normalization factor is found as follows

∆ = max
hu∈S

|[hu]m| , (31)

where S ∈ {SLOS,SNLOS,SMIX,ScLOS} and [hu]m is the m-
th element of the channel vector hu. Using PyTorch and the
system above, a single training iteration (forward-backward
cycle) in the learning mode averages approximately 0.0084
seconds.

VII. SIMULATION RESULTS

In this section, we evaluate the performance of the pro-
posed solution using the scenarios described in Section VI.
In a nutshell, the numerical results show that our proposed
learning solutions can adapt to different environments, user
distributions as well as hardware impairments, without the
need to estimate the channels. We compare the performance
of the learned codebook with classical beamsteering codebook,
where the beamforming vectors are spatial matched filters for
the single-path channels. Therefore, they have the same form
of the array response vector and can be parameterized by a
simple angle [31]. In our simulation, depending on the adopted
size of the classical beamsteering codebook, those angles are
evenly spaced in the range of [0, π]. Next, we will first evaluate
the performance of the beam pattern learning solution in
Section VII-A, and then evaluate the beam codebook learning
solution in Section VII-B.

A. Beam Pattern Learning

We first evaluate our proposed DRL-based beam pattern
learning solution on learning a single beam that serves a
single user with LOS connection to the BS. The selected
target user is highlighted in Fig. 4(a) with a red dot. In
Fig. 5, we compare the performance of the learned single



11

Iterations 10 4

0

2

4

6

8

10

12

14

16

B
ea

m
fo

rm
in

g 
ga

in

EGC upper bound
Learned beam pattern with 3-bit phase shifters
Classical beamsteering codebook (32 beams)0 0.5 1 1.5 2 2.5 3

Angle (Radian)

-70

-60

-50

-40

-30

-20

-10

0

G
ai

n 
(d

B
)

2 4 6 8 10 12 14

0 0.5 1 1.5 2 2.5 3
Angle (Radian)

-70

-60

-50

-40

-30

-20

-10

0

G
ai

n 
(d

B
)

EGC beam pattern
Learned beam pattern

EGC beam pattern
Learned beam pattern

0 0.5 1 1.5 2 2.5 3
Angle (Radian)

-70

-60

-50

-40

-30

-20

-10

0

G
ai

n 
(d

B
)

EGC beam pattern
Learned beam pattern

Fig. 5. The beam pattern learning results for a base station employing a uniform linear array with 32 antennas and 3-bit quantized phase shifters. In this
figure, we show the learning process and the beam patterns learned at three different stages during the iterations.
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Fig. 6. The beam patterns learned for a MIMO system. (a) shows the
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ing/combining vectors (red). (b) shows the learning process.

beam with a 32-beam classical beamsteering codebook. As
is known, classical beamsteering codebook normally performs
very well in LOS scenario. However, our proposed method
achieves higher beamforming gain than the best beam in the
classical beamsteering codebook, with only 2100 iterations.
More interestingly, with less than 4 × 104 iterations, the
proposed solution can reach more than 90% of the Equal Gain
Combining (EGC) upper bound. It is worth mentioning that the
EGC upper bound can only be reached when the user’s channel
is known and unquantized phase shifters are deployed. By
contrast, our proposed solution can finally achieve almost 95%
of the EGC upper bound with 3-bit phase shifters and without
any channel information. We also plot the learned beam
patterns at three different stages (iteration 1000, 5000, and
100000) during the learning process, which helps understand
how the beam pattern evolves over time. As shown in Fig. 5,
at iteration 1000, the learned beam pattern has very strong
side lobes, weakening the main lobe gain to a great extent.
At iteration 5000, the gain of the main lobe becomes stronger.
However, there are still multiple side lobes with relatively high
gains. Finally, at iteration 100000, it can be seen that the main
lobe has quite strong gain compared to the other side lobes,
having at least 10 dB gain over the second strongest side lobe.
And most of the side lobes are below −20 dB. Besides, the
learned beam pattern captures the EGC beam pattern very well,
which explains the good performance it achieves. The slight
mismatching is mainly caused by the use of quantized phase
shifters, which is with only 3-bit resolution.

We also study the situation where the same selected user
shown in Fig. 4(a) has multiple antennas. In this case,
two beams are learned, i.e., the beamforming vector at the
mobile user (acting as the transmitter) and the combining
vector at the base station (acting as the receiver). This is
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Fig. 7. The learning results of the proposed DRL-based codebook learning solution under a LOS scenario where the base station employs a perfect uniform
linear array. (a) shows the average beamforming gain versus the number of beams in the codebook. (b) shows the result of clustering users into 4 groups. (c)
shows the beam patterns for the learned 4-beam codebook in (a).

done by simply defining the state and action vectors in
our proposed DRL-based beam pattern learning algorithm
as the concatenated phase vectors at both sides, i.e., st =
[θ1, θ2, . . . , θMr , ψ1, ψ2, . . . , ψMt ]

T , where Mr and Mt are the
number of receive antennas and number of transmit antennas
respectively. The beamforming gain gt in this case is given by
gt =

∣∣wH
BSHwMS

∣∣2, where wBS is the combining vector at the
receiver, wMS is the beamforming vector at the transmitter, and
H ∈ CMr×Mt is the MIMO channel between the transmitter
and receiver. Based on the value of gt, the reward can be
generated in a similar fashion as before.

In Fig. 6(a), we show the learned beam patterns for a 16-
antenna base station and a 4-antenna mobile user, both having
a fully-analog architecture equipped with 4-bit quantized phase
shifters. We also plot the beam patterns of maximum ratio
transmission (MRT) and maximum ratio combining (MRC),
which are generated assuming a perfect channel knowledge
as well as a fully digital architecture. It is well-known that
MRT/MRC together achieve the upper bound in terms of
beamforming gain in a fully digital MIMO architecture, and,
hence, they can serve as upper bounds for the considered prob-
lem. Fig. 6(a) shows that the learned beams approximate the
optimal beams very well. With less than 2.5× 104 iterations,
Fig. 6(b) shows that the proposed algorithm is capable of
finding the beams that achieve better performance than two
classical beamsteering codebooks. As learning proceeds, the
proposed algorithm can finally find beam patterns that achieve
more than 90% of the MRT/MRC upper bound, with only 4-bit
quantized phase shifters and without estimating the channel.

B. Beam Codebook Learning

In this subsection, we evaluate our proposed beam codebook
learning solution in several scenarios. The task of learning a
beam codebook with multiple beams is significantly different
from learning a single beam (pattern) from computational
complexity perspective. For example, for a base station with
32 antennas and 4-bit discrete phase shifters, there are 1632

possible beamforming vectors, from which a single vector is
selected in the beam pattern learning case. However, learning

a codebook will further result in finding combinations out
of this huge pool. To address this problem, we propose a
clustering and assignment approach, given by Algorithm 2,
that essentially decomposes the huge task into N independent,
parallel and relatively lightweight sub-tasks. This makes the
problem of learning a codebook with multiple beams tractable.
Before we dive into the simulation results, it is important to
mention that due to the stationarity of our scenarios, cluster-
ing/assignment is performed only once in our simulations. If
the environment is more dynamic, the clustering/assignment
is expected to be done more frequently.

1) Evaluation on LOS Users: Fig. 7(a) plots the average
beamforming gain versus the number of beams in the code-
book under the LOS scenario shown in Fig. 4(a), where the BS
adopts an ideal uniform linear array. It shows that the average
beamforming gain is monotonically increasing as the number
of beams increases. Besides, with only 6 beams, the proposed
solution has almost the same performance as a 32-beam classi-
cal beamsteering codebook. And with 8 beams, it outperforms
the 32-beam classical beamsteering codebook. This exhibits
how our proposed approach adapts the beams based on the user
distributions. As a result, it significantly reduces the training
overhead by avoiding scanning directions where there is no
user at all. It is worth emphasizing that although the proposed
codebook learning algorithm has larger overhead during the
learning phase, the learning will not be repeated every time
when there are new users, as the codebook learned aims to
account for a certain environment and user distribution, not a
specific user. In other words, once the codebook is learned,
if an “unseen” user is coming into the field, there will be no
learning repeated and the learned codebook will be directly
used for beam training (i.e., to sweep over to determine which
beam in the current codebook is the best beam in serving
this new user). Therefore, only at the very beginning, the
system needs to spend extra overhead to learn the codebook
compared to the classical beamsteering codebooks. But the
learned codebook can save beam training overhead in the
long run. Furthermore, another important aspect is that with
a smaller codebook, the latency for initial access will also be
reduced, which is crucial for latency-critical applications such
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Fig. 8. The learning results of the proposed DRL-based codebook solution under a NLOS scenario. (a) shows the average beamforming gain versus the
number of beams in the codebook. (b) shows the beam patterns of the learned 16-beam codebook in (a) and it also shows how one of the learned beams with
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Fig. 9. Learning results of the proposed DRL-based codebook solution under a mixed LOS/NLOS scenario. (a) shows the result of SNR-based clustering.
(b) shows the average per-cluster spectral efficiency achieved by the 32-beam beamsteering codebook. (c) shows the average per-cluster spectral efficiency
achieved by the learned 16-beam codebook.

as vehicular communications, etc. In Fig. 7(b), we present the
clustering result for the users in this LOS scenario. This is
a very important step for learning multiple beams. As stated
at the end of Section III, the ultimately optimized codebook
should have a collection of beams, where each one of them is
optimized to serve a group of users with similar channels. The
clustering stage is the first step that our proposed solution takes
to attain that objective. Fig. 7(c) depicts the beam patterns of
the learned 4-beam codebook. As shown in the learning result,
the proposed solution can cluster users based on the similarity
of their channels, and form beams to cover the user grid in
order to achieve high beamforming gain.

2) Evaluation on NLOS Users: We also evaluate the pro-
posed solution under a NLOS scenario shown in Fig. 4(b),
where all the users experience NLOS connection with an
indoor mmWave access point. As can be seen in Fig. 8(a), the
proposed solution surpasses a 32-beam classical beamsteering
codebook with only 4 beams. Further, the proposed solution
is gradually approaching the EGC upper bound as the size of
codebook increases. It should note that in order to achieve the
EGC upper bound: (i) The number of beams in the codebook
should be equal to the number of users, (ii) continuous phase
shifters should be adopted, and most importantly, (iii) accurate
channel state information is needed. By contrast, with only 16
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Fig. 10. The learning results of the proposed DRL-based solution under the same LOS scenario with hardware impairments being considered. (a) shows the
average beamforming gain versus the standard deviation of phase mismatch, where the antenna spacing mismatch has a fixed standard deviation of 0.1λ. (b)
shows the one of the learned beam pattern in the codebook together with the EGC beam patterns of two randomly selected users in the cluster that is served
by this beam. (c) shows the projections of randomly selected 4 beams in the learned 8-beam codebook onto the “corrupted” angular space.

beams and 4-bit phase shifters, the proposed solution can reach
80% of the EGC upper bound, relying only on the receive
combining gains. In other words, our approach not only
significantly reduces the beam training overhead, but also
avoids the prohibitive cost of estimating the channels. To
gain more insight, we plot the beam patterns of the learned
16-beam codebook in Fig. 8(b) and project one of the beams
on the adopted scene. It can be seen in Fig. 8(b) that the
learned beams have multi-lobes, different than the pointed
beams learned in the LOS scenario. However, such beams
achieve better performance compared to the pointed beam-
steering beams. The reason becomes clear when we observe
that because of the blockage in the considered scenario, the
signals transmitted by the users have to resort to reflections
to reach the access point, where the walls at both sides of the
room serve as major reflectors. This clearly shows how our
proposed solution adapts the beam pattern to the propagation
environment, gaining more power by receiving signals from
multiple directions.

3) Evaluation on Mixed LOS/NLOS Users: A more chal-
lenging and practical scenario would be the case where there
are mixed LOS and NLOS users in the same environment.
Therefore, we also evaluate our proposed codebook learning
approach on such scenario. As mentioned in Section V, the
quality of a learned codebook first relies on an accurate
clustering of the user channels. In Fig. 9(a), we show the result
of clustering 5512 mixed LOS/NLOS users into 16 groups (as
a 16-beam codebook is going to be learned). As can be seen,
the proposed approach produces 5 clusters for the NLOS grid
and 11 clusters for the LOS grid. Despite the large LOS and
NLOS channel variance (in terms of power and directivity),
the results show that our clustering algorithm is robust
against various channel conditions.

We evaluate the performance of the learned codebook in
this scenario using average spectral efficiency. In Fig. 9(b), we
plot the per-cluster average spectral efficiency achieved by the
32-beam beamsteering codebook. It shows that a beamsteering
codebook performs relatively well for some LOS-user clusters
but not so much for some other LOS-user clusters; there

is a visible spectral efficiency fluctuations across LOS-user
clusters. This is because the low-spectral-efficiency clusters
happen to be mis-aligned with the peak of their best beams
in the beamsteering codebook, i.e., each cluster falls close to
the null between two beams in the beamsteering codebook.
By contrast, Fig. 9(c) depicts how the learned codebook
overcomes that problem and produces an almost-uniform
spectral efficiency performance across clusters. For the NLOS
clusters, the learned codebook improves the coverage quality
for all clusters, achieving an average boost of 161% over the
beamsteering codebook. This improvement also includes those
two clusters in Fig. 9(c) close to the blockage (blue-colored
clusters). The improvement for those clusters, however, may
seem minimal or non-existent compared to Fig. 9(b), but this
is only because their channel conditions are quite bad as they
fall right behind the blockage. The learned codebook actually
achieves 88% and 70% of the EGC upper bound for those
two clusters and produces 140% and 224% boosts over the
beamsteering codebook.

4) Evaluation with Hardware Impairments: Learning code-
books that overcome the hardware impairments is one of the
most important application cases of our DRL-based code-
book learning approach. Therefore, we evaluate the proposed
solution under the same LOS scenario shown in Fig. 4(a),
with hardware impairments being considered. Furthermore,
we test our solution under different standard deviations of
the phase mismatch, where a fixed antenna spacing mismatch
with a standard deviation of 0.1λ is assumed. For each channel
dataset, we learn a 8-beam codebook and compare it with a 32-
beam classical beamsteering codebook. In Fig. 10(a), we plot
the average beamforming gain versus the standard deviation
of the phase mismatch. The result shows that as the standard
deviation of the phase mismatch increases, i.e. the hardware
impairments become more severe, the proposed DRL based
solution keeps a balanced performance. The slight fluctuation
is mainly caused by the uncertainty nature of solving the
highly non-convex problem (8). By contrast, the performance
of the 32-beam beamsteering codebook degrades drastically as
the level of hardware impairment increases. More specifically,
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the average beamforming gain of the 32-beam beamsteering
codebook degrades by more than 80% for a mismatch standard
deviation of 0.2 radian. This figure empirically shows the
extent to which the considered hardware impairments influence
the system performance when a beamsteering codebook is
deployed, and it reflects the robustness of the proposed code-
book learning approach; as the hardware impairment becomes
severe, e.g., when the phase mismatch has a standard deviation
of 0.2 radian, the learned codebook achieves more than
600% gain over the 32-beam beamsteering codebook with
only 8 beams, which reduces 75% of the beam training
overhead.

In Fig. 10(b), we plot one of the beam in the learned 8-beam
codebook (when the standard deviation of phase mismatch
is 0.2 radian) as well as two randomly selected users in
the cluster that are served by this beam. Fig. 10(b) reflects
three important points: (i) The two EGC beam patterns of
the randomly selected users are very similar, this shows the
effectiveness of our proposed SNR-based channel clustering
algorithm; (ii) Although it seems that the learned beam has
quite distorted beam pattern, it actually approximates the EGC
beams very well, which explains the performance it achieves;
(iii) It highlights one of the key points that the beam in the
learned codebook is not focusing on one specific user. Instead,
it aims to serve a group of users that share similar channels.
To show that the distorted beam pattern indeed matches the
hardware impairments, we plot 4 randomly selected beams in
the learned 8-beam codebook, and project them on the “cor-
rupted” angular space. As illustrated in Fig. 10(c), the learned
beams actually appear “clean” and pointy in the corrupted
angular space. This empirically verifies the capability of the
proposed solution in learning beams that adapt to the flawed
hardware.

VIII. CONCLUSIONS AND DISCUSSIONS

In this paper, we considered the problem of design-
ing environment and hardware aware beam codebooks for
mmWave/THz MIMO systems with hardware-constrained ar-
chitectures and without requiring channel knowledge. We
developed a DRL based framework that learns how to adapt the
beam patterns to the surrounding environment, user distribu-
tion and hardware impairments, relying only on receive power
measurements. We also introduced a clustering-assignment ap-
proach to efficiently learn beam codebooks without requiring
any knowledge about the user positions and without requiring
the users to be stationary during the learning process. The
developed approach is evaluated at various environments, as
well as different levels of hardware impairments. Simulation
results show promising capability of the proposed solution in
learning environment and hardware aware codebooks relying
only on the receive power measurements and with finite res-
olution phase shifters. The learned codebook outperforms the
classical beamsteering codebook with much smaller number
of beams in all studied scenarios. Further, the beams learned
by the proposed solution approach the beam shapes of the
ideal beams (characterized by unconstrained beamforming
vectors under full channel knowledge) and achieve similar

SNR performance. For the future work, it will be interesting
to extend the developed framework to other MIMO systems
that as those adopting hybrid analog/digital architectures.
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