
1

Neural Networks Based Beam Codebooks:
Learning mmWave Massive MIMO Beams that

Adapt to Deployment and Hardware
Muhammad Alrabeiah, Yu Zhang, and Ahmed Alkhateeb

Abstract—Millimeter wave (mmWave) and massive MIMO sys-
tems are intrinsic components of 5G and beyond. These systems
rely on using beamforming codebooks for both initial access and
data transmission. Current beam codebooks, however, generally
consist of a large number of narrow beams that scan all possible
directions, leading to large training overhead. Further, these
codebooks do not normally account for hardware impairments
or possible non-uniform array geometries, and their calibration
process is expensive. To overcome these limitations, this paper
develops an efficient online machine learning framework that
learns how to adapt the codebook beam patterns to the specific
deployment, surrounding environment, user distribution, and
hardware characteristics. This is done by designing a novel
complex-valued neural network architecture in which the neuron
weights directly model the beamforming weights of the analog
phase shifters, accounting for the key hardware constraints.
This model learns the codebook beams through online and
self-supervised training avoiding the need for explicit channel
state information. This respects the practical situations where
the channel is imperfect or hard to obtain. Simulation results
highlight the capability of the proposed solution in learning
environment and hardware aware beam codebooks, which reduce
the training overhead and improve the robustness against possible
hardware impairments.

Index Terms—Beam codebook learning, online learning, self-
supervised, neural networks, beyond 5G, millimeter wave, mas-
sive MIMO.

I. INTRODUCTION

Millimeter wave (mmWave) MIMO is an essential ingre-
dient of the future wireless communication networks—from
5G to IEEE 802.11ay and beyond [2]–[4]. These systems
use large antenna arrays to obtain enough beamforming gains
and guarantee sufficient receive signal power. Due to the
cost and power consumption of the mixed-signal circuits at
the high frequency bands, though, fully-digital transceiver
architectures that assign an RF chain per antenna are not
feasible [5]. Instead, these mmWave systems resort to analog-
only or hybrid analog/digital architectures [6] to implement
the beamforming/combining functions. Further, because of the
hardware constraints on these large-scale MIMO systems and
the difficulty in channel estimation and feedback, they typ-
ically adopt pre-defined single-lobe beamforming codebooks
(such as DFT codebooks [7]) that scan all possible directions
for both initial access and data transmission. Examples of

Muhammad Alrabeiah, Yu Zhang and Ahmed Alkhateeb are with Arizona
State University (Email: malrabei, y.zhang, alkhateeb@asu.edu). This work is
supported by the National Science Foundation under Grant No. 1923676. A
conference version of this paper has been published in [1].

using these codebooks include the Synchronization Signal
Block (SSB) beam sets and Channel State Information Refer-
ence Signal (CSI-RS) codebooks in 5G [4], and hierarchical
beam patterns in IEEE 802.11ad [8]. The classical beam-
steering codebooks, however, have several drawbacks: (i) They
incur high beam training overhead by scanning all possible
directions even though many of these directions may never
be used, (ii) they normally have single-lobe beams which
may not be optimal, especially in non-line-of-sight (NLOS)
scenarios, and (iii) they are typically predefined and do not
account for possible hardware imperfections (such as phase
mismatch or arbitrary array geometries) with very expensive
calibration processes [9]. To overcome these limitations, we
propose a novel online machine learning framework that
learns how to adapt the codebook beam patterns to the
surrounding environment, the user distribution, and the
given hardware of the specific base station deployment—
building what we call environment and hardware aware beam
codebooks.

A. Prior Work:
Designing MIMO beamforming codebooks has been an

important research and development topic for a long time at
both academia and industry [10]–[17]. The motivation for all
this prior work has been mainly to enable efficient limited-
feedback operation in MIMO systems. For example, the au-
thors of [10], [11] investigated the design of beamforming
codebooks for MISO communication systems with Rayleigh
channels. The same problem was then considered in [12], [13]
for spatially and temporally correlated channels. For systems
with multiple antennas at both the transmitters and receivers,
[14], [15] developed precoding/combining codebooks and an-
alyzed the system performance under various channel models.
The use of beam codebooks have been also adopted by several
cellular and wireless LAN standards [16], [17]. The codebook
approaches in [10]–[17], however, were generally designed to
optimize the feedback of small-scale MIMO and are hard to
extend to massive MIMO systems without the requirement
of huge codebook sizes and large training overhead. Further,
the codebooks in [10]–[17] adopted fully-digital architectures
and did not consider the hardware constraints at the trans-
mitter/receiver arrays which could highly affect the design of
these codebooks. Incorporating these constraints is essential
for the development of efficient mmWave MIMO codebooks.

For mmWave systems, [6], [7], [18], [19] developed a
set of new beamforming codebooks for analog-only and

2

hybrid analog/digital architectures. Besides, as beam align-
ment and tracking play a pivotal role in mmWave systems
[20], [21], in [18], narrow-beam codebooks were developed
to aid the beam training processing mmWave systems. The
narrow beams, however, may lead to large training overhead.
This motivated designing hierarchical codebooks in [6], [7],
[22] that consist of different levels of beam widths. For
frequency selective channels, [19] developed iterative hybrid
analog/digital beamforming codebooks. The codebooks in [6],
[7], [18], [19], however, have several limitations. First, they
were generally designed for unconstrained architectures and
then approximated for these constraints, i.e., they were not
particularly optimized for these hardware constraints. Second,
they were mainly designed to have single-lobe narrow beams
that cover all the angular directions and are not adaptive to
the particular deployment characteristics (surrounding environ-
ment, user distributions, etc.), which requires large training
overhead. Further, these codebooks assumed fully-calibrated
uniform arrays and experience high distortion in practical
hardware with fabrication impairments. All that motivated the
development of environment and hardware aware codebook
learning strategies, which is the focus of this paper.

B. Contribution:

In this paper, we consider hardware-constrained large-scale
MIMO systems and propose an artificial neural network based
framework for learning environment and hardware adaptable
beamforming codebooks. The main contributions of the paper
can be summarized as follows
• First, we design a supervised machine learning model

that can learn how to adapt the patterns of the codebook
beams based on the surrounding environment and user
distribution. This is done by developing a novel complex-
valued neural network architecture in which the weights
directly model the beamforming/combining weights of
the analog phase shifters. The proposed model accounts
for the key hardware constraints such as the phase-
only, constant-modulus, and quantized-angle constraints
[5]. The training process was designed to approach the
performance of equal-gain transmission/combining [23],
which is the upper bound of the analog-only beamforming
solutions.

• Then, we develop a second neural network architecture
that relies on online and self-supervised learning and
avoids the need for explicit channel state information.
This respects the practical situations where the channel
state information is either unavailable, imperfect, or hard
to obtain, especially in the presence of hardware impair-
ments. The developed architecture learns in an online and
self-supervised fashion how to adapt the codebook beam
patterns to suit the surrounding environment, user dis-
tribution, hardware impairments, and unknown antenna
array geometry.

• Finally, we extensively and comprehensively evaluate
the performance of the proposed codebook learning ap-
proaches based on the publicly-available DeepMIMO
dataset [24]. These experiments adopt both outdoor and

indoor wireless communication scenarios at different
signal-to-noise ratios (SNRs) and codebook sizes. The
evaluation is done for both uniform-perfect arrays and
arrays with arbitrary geometries and hardware impair-
ments. It focuses on demonstrating the performance of
the proposed solutions (supervised and self-supervised),
empirically studying the convergence of those solutions,
and benchmarking them to a classical codebook design
approach that requires a form of channel estimation.

The simulation results verify the effectiveness of the pro-
posed solutions in providing the sought-after environment and
hardware awareness. In particular, the proposed solutions show
significant improvements compared to classical beam-steering
codebooks in several cases: (i) For arbitrary user distributions
in which our approaches learn how to adapt the beams to focus
on where the users are and significantly reduce the required
beam training overhead, (ii) for NLOS scenarios with multiple
equally-strong paths where the developed codebook learning
solutions learn multi-lobe beams that achieve much higher
data rates, and (iii) for arrays with hardware impairments or
unknown geometries, where our neural networks learn how
to adapt the beam patterns for the given arrays and mitigate
the impact of hardware impairments. All that highlights a
promising direction where machine learning can be integrated
into the communication systems to develop deployment and
hardware specific beam codebooks. Moreover, it is worth
pointing out that the developed solutions could be leveraged
for the analog precoding part of the hybrid architectures.
However, by better leveraging the existence of more than
one RF chain in the hybrid architectures, there might be
more advanced beam codebook design solutions, which is an
interesting topic for future extensions.

II. SYSTEM AND CHANNEL MODELS

In this section, we describe in detail our adopted system and
channel model. Further, we describe how the model considers
arbitrary arrays with possible hardware impairments.

A. System Model

We consider the communication system shown in Fig. 1
where a base station (BS) with M antennas is deployed in a
certain environment and is capable of serving both the LOS
and NLOS mobile users in this environment. For simplicity,
we assume that the users have single antennas. The proposed
solutions in this paper, however, could be extended to the
case with multi-antenna users. Next, considering the uplink
transmission, if the user transmits a symbol s ∈ C, then the
received signal at the BS after combining can be expressed as

y = wHhs+ wHn, (1)

where the transmitted symbol satisfies the average power
constraint E

[
|s|2
]

= Ps and n ∼ NC
(
0, σ2

nI
)

is the receive
noise vector at the BS. The M × 1 vector h ∈ CM×1

denotes the uplink channel between the mobile user and the
BS antennas and w represents the BS combining vector.
Given the cost and power consumption of the mixed-signal
components at the mmWave frequencies, it is hard to dedicate

3

Fig. 1. The adopted system model where a base station of M antennas can communicate with LOS or NLOS users using a beam codebook. The proposed
machine learning model in this paper learns how to efficiently adapt the codebook beams based on the given deployment, user distributions, and hardware
characteristics.

an RF chain for each antennas and apply fully-digital pre-
coding/combining at mmWave massive MIMO systems. Alter-
natively, mmWave base stations adopt analog-only or hybrid
analog-digital beamforming approaches that move all or some
of the beamforming/combining processing to the RF domain
[5]. To account for that, we assume that the BS employs an
analog-only architecture where the beamforming/combining is
implemented using a network of phase shifters as depicted in
Fig. 1. With this architecture, the combining vector w can be
written as

w =
1√
M

[
ejθ1 , ejθ2 , . . . , ejθM

]T
, (2)

which can only perform phase shift to the signal received by
each antenna.

B. Channel Model

We adopt a general geometric channel model for h [25],
[26]. Assume that the signal propagation between the mobile
user and the BS consists of L paths. Each path ` has a complex
gain α` (that includes the path-loss) and an angle of arrival
φ`. Then, the channel can be written as

h =
L∑
`=1

α`a(φ`), (3)

where a(φ`) is the array response vector of the BS. The defi-
nition of a(φ`) depends on the array geometry and hardware
impairments, which will be discuss in the next subsection.
Without loss of generality, the first path in (3), i.e., ` = 1,
is always assumed to represent a direct path from the user to
the base station. Hence, to model LOS and NLOS channels

in this paper, (3) is modified to incorporate a binary vector
b = [b1, . . . , bL] as follows

h =
L∑
`=1

b` [α`a(φ`)] , (4)

where b` ∈ {0, 1}, ∀` ∈ {1, . . . , L}. According to (4), h is
considered LOS when b1 = 1 and NLOS otherwise.

C. Arbitrary Array Geometry and Hardware Impairments

Most of the prior work on mmWave signal processing has
assumed uniform antenna arrays with perfect calibration and
ideal hardware [5]–[7], [18]. In this paper, we consider a
more general antenna array model that accounts for arbitrary
geometry and hardware imperfections. We show that our
online beam codebook learning approaches can efficiently
learn beam patterns for these arrays and adapt to their par-
ticular characteristics. This leads to several advantages for
these systems since (i) there are scenarios where designing
arbitrary arrays is needed, for example, to improve the an-
gular resolution or enhance the direction-of-arrival estimation
performance [27], [28], (ii) the fabrication process of large
mmWave arrays normally has some imperfections, and (iii)
because the calibration process of the mmWave phased arrays
is an expensive process that requires special high-performance
RF circuits [9]. While the codebook learning solutions that we
develop in this paper are general for various kinds of arrays
and hardware impairments, we evaluate them in Section VIII
with respect to two main characteristics of interest, namely
non-uniform spacing and phase mismatch between the antenna

4

elements. For linear arrays, the array response vector can be
modeled to capture these characteristics as follows

a(φ`) =
[
ej(kd1 cos(φ`)+∆θ1), ej(kd2 cos(φ`)+∆θ2),

. . . , ej(kdM cos(φ`)+∆θM)
]T
, (5)

where k is the wave number, dm is the position of the m-th an-
tenna, and ∆θm is the additional phase shift incurred at the m-
th antenna (to model the phase mismatch). Without loss of gen-
erality, we assume that dm and ∆θm are fixed yet unknown
random realizations, obtained from a truncated Gaussian dis-
tribution denoted as Ñ

(
(m− 1)d, σ2

d; (m− 3
2)d, (m− 1

2)d
)

and a Gaussian distribution N
(
0, σ2

p

)
, respectively. The prob-

ability density function (PDF) of the truncated Gaussian
distribution Ñ is given by

f(x) =
1

σd

φ
(
x−(m−1)d

σd

)
Φ
(

d
2σd

)
− Φ

(
− d

2σd

) , (6)

where (m − 3
2)d ≤ x ≤ (m − 1

2)d. φ(ξ) = 1√
2π
e−

1
2 ξ

2

is
the PDF of the standard Gaussian distribution and Φ(·) is its
cumulative distribution function.

III. PROBLEM DEFINITION

In this paper, we investigate the design of mmWave beam-
forming codebooks that are adaptive to the specific deployment
(surrounding environment, user distribution/traffic, etc.) and
the given hardware (array geometry, hardware imperfections,
etc.), as shown in Fig. 1. Next, we formulate the beam
codebook optimization problem before showing in Sections
IV-V how neural network based machine learning can provide
efficient approaches for learning adaptive codebooks. Given
the system and channel models described in Section II, the
SNR after combining for user u can be written as

SNRu =

∣∣wHh
∣∣2

‖w‖22
ρ, (7)

with ρ = Ps
σ2
n

. If the combining vector w is selected from a
codebook W , with cardinality |W | = N , then, the maximum
achievable SNR for use u is obtained by the exhaustive search
over the beam codebook as

SNR?u = ρ max
w∈W

∣∣wHh
∣∣2, (8)

where we set ‖w‖22 = 1 as these combining weights are im-
plemented using only phase shifters with constant magnitudes
of 1/

√
M , as described in (2). Our objective in this paper is

to design the codebook W to maximize the SNR averaged
over the candidate set of user channels H, which are the
channels of the candidate users in the environment surrounding
the deployed BS. This problem can then be written as

Wopt = arg max
W

∑
h∈H

 max
wn∈W,
n=1,...,N

∣∣wH
n h
∣∣2 , (9)

s. t. |[wn]m| =
1√
M
, ∀m = 1, . . . ,M, n = 1, . . . , N,

(10)

where the constraint in (10) is imposed to uphold the phase-
shifters constraint, i.e., the analog beamformer can only per-
form phase shifts to the received signal but is not capable of
adapting the gain. It is worth mentioning here that while we
are focusing on receive beamforming design in this paper, the
same solution can be used for transmit codebook design by
acquiring SNR feedback from the users. Moreover, in order
to obtain the up-to-date codebooks, in practice, the channel
dataset is expected to be refined and updated over time to
match the large time-scale changes in the environment and
use traffic statistics.

The objective of problem (9) is to find the beam codebook
that maximizes the average SNR gain for all the candidate
users. Since we only have a finite beamforming codebook,
which is far less than the number of users, it is impossible to
achieve the maximum combining SNR for each user (which
is given by the equal-gain combining [23]). In this sense, we
might expect to find a codebook such that each beamformer
serves a group of users that share similar channels. Due to
the large number of channels in H as well as the non-convex
constraints (10), problem (9) in general is very hard to solve
by using the classical optimization methods and beamforming
design approaches [6], [19], [29], [30]. Therefore, and moti-
vated by the powerful learning and optimization capabilities of
neural networks, we consider leveraging neural network based
machine learning to efficiently solve the optimization problem
(9). Depending on whether the channel state information is
available or not, two different machine learning frameworks
are designed, namely supervised and self-supervised solutions,
in Sections IV and V to learn beam codebooks that adapt to
the given deployment and hardware—generating what we call
environment and hardware aware beam codebooks.

IV. SUPERVISED MACHINE-LEARNING SOLUTION

Designing environment-aware mmWave beam codebooks
requires an adaptive and data-driven process. Data collected
from the environment surrounding a base station, like channels
and/or user-received power, is a powerful source of informa-
tion as it encodes information on user distributions and users’
multi-path signatures. Such data could be used to tailor the
beamforming codebook to those users and that environment.
The challenge here is the need for a system capable of sifting
through the data, analyzing it, and designing the codebook in a
manner that respects the phase-shifter constraint. This clearly
calls for a system with a sense of intelligence.

This section addresses that challenge and proposes an
elegant solution that is environmentally adaptable, data-driven,
and hardware compatible. In its core, this solution relies on
machine learning and, in particular, artificial neural networks
[31]. It follows a supervised learning approach to analyze
the channel structure and learn the phases of the suitable
beamforming vectors. Its elegance stems from the way it learns
the codebook; the weights of the neural network directly relate
to the angles of the phased arrays, making them the actual
parameters of the network. Therefore, during every training
cycle (forward and backward passes) the codebook will be
updated directly.

5

Beamforming

Codebook

Compute EGC

Power

MSE loss

Fully-Connected Layer
Power

Computation Layer

Power
Unit

Power
Unit

Power
Unit

M
a
x
 P

o
o
li

n
g

Phase to Complex

Fig. 2. This schematic shows the overall architecture of the neural network
used to learn the beamforming codebooks. It highlights the network architec-
ture and the auxiliary components, equal-gain-combining and MSE-loss units,
used during the training process. It also gives a slightly deeper dive into the
inner-workings of the cornerstone of this architecture, the complex-valued
fully-connected layer.

A. Model Architecture

Before going into the details of how a codebook is learned,
it is important to explain the architecture of the proposed
neural network and its relation to the optimization problem
in (9). This architecture consists of three main components,
as depicted in Fig. 2. Those components are the complex-
valued fully-connected layer, the power-computation layer, and
finally the max-pooling layer. A forward pass through these
three layer is equivalent to evaluating the cost function of (9)
over a single channel h.

1) Complex-valued fully-connected layer: The first layer
consists of N neurons that are capable of performing complex-
valued multiplications and summations. Each neuron, as
shown in Fig. 2, learns one beamforming vector and performs
inner product with the input channel vector. Formally, this is
described by the following matrix multiplication

z = WHh, (11)

where W = [w1, . . . ,wN] ∈ CM×N is the beamforming
codebook, h is a user’s channel vector, and z ∈ CN×1 is the
vector of the combined received signal. This equation could
be re-written in the following block matrix form[

zr

zim

]
=

[
Wr −Wim

Wim Wr

]T [
hr

him

]
, (12)

where zr, zim ∈ RN×1 are the real and imaginary parts of
z, Wr,Wim ∈ RM×N are matrices containing the real and
imaginary components of the elements of W, and finally,
hr,him ∈ RM×1 are the real and imaginary components of
the channel vector h. What is interesting about (12) is that it
provides a peek behind the curtains to the inner-workings of
the complex-valued fully-connected layer.

Contrary to the norm in designing neural networks, the
elements of the beamforming matrix W are not the weights
of the fully-connected layer. Instead, they are derived from

the actual neural network weights, which are the phase shifts
making up the beamforming codebook. This is done through
an embedded layer of phase-to-complex operations, as shown
in Fig. 2. This layer transforms the phase shifts into unit-
magnitude complex vectors by applying elements-wise cos and
sin operations and scale them by 1/

√
M as follows

W =
1√
M

(cos (Θ) + j ∗ sin (Θ)) , (13)

where Θ = [θ1, . . . , θN] is an M ×N matrix of phase shifts,
and θn = [θ1n, . . . , θMn]T , ∀n ∈ {1, . . . , N} is a single phase
vector. The use of this embedded layer is the network’s way of
learning beamforming vectors that respect the phase shifter
constraint.

2) Power-computation layer: The output of the complex-
valued fully-connected layer is fed into the power-computation
layer. It performs element-wise absolute square operation and
outputs a real-valued vector q given by

q = [q1, q2, . . . , qN]
T

=
[
|z1|2, |z2|2, . . . , |zN |2

]T
, (14)

which has the received power of each beamformer in the
codebook.

3) Max-pooling layer: The power of the best beamformer
is, finally, found by the last layer, the max-pooling layer. It
performs the following element-wise max operation over the
elements of q

g = max {q1, q2, . . . , qN} , (15)

and outputs g, which is the power of the best beamformer.
This value is used to assess the quality of the codebook by
comparing it to a desired receive power value. The details on
what this desired value is and how the quality is assessed are
detailed in the following subsection.

B. Learning Codebooks

With the neural network architecture in mind, it is time
to delve into the details of how a codebook is learned.
This first proposed solution, as its name states, follows a
supervised learning approach. In such approach, a machine
learning model is trained using pairs of inputs and their desired
responses, which constitute the training dataset.

1) Desired response: For the beamforming problem in
hand, the inputs to the model are the users’ channels as they
are the communication quantity that drives the beamforming
design process. As training targets, there are many possible
desired responses that could be used, and the choice between
them should be made based on what the models needs to learn.
In this paper, equal gain combining (EGC) is adopted as the
desired response. This choice is based on the fact that equal
gain combining respects the phase shifters constraint. It is the
beamforming that achieves optimal SNR performance when
there are no restrictions on the codebook size. Further, equal
gain combining constitutes an upper bound for the received
power of fully-analog transceivers. The equal-gain combining
beamformer is obtained using the phase component of every
user’s channel as follows

wEGC =
1√
M

[
ej∠h1 , ej∠h2 , . . . , ej∠hM

]T
, (16)

6

where ∠ stands for the phase of a complex number. Using
equal gain combining beamformers, the desired response for
each user can be computed as follows

p =
∣∣wH

EGCh
∣∣2 =

1

M
‖h‖21 , (17)

where ‖ · ‖1 is the L1 norm. Putting the users’ channels and
their equal-gain combining gains together provides the training
dataset St.

2) Model background training: Using the set St, the model
is trained in the background by undergoing multiple forward-
backward cycles. In each cycle, a mini-batch of complex
channel vectors and their equal-gain combining responses
is sampled from the training set. The channels are fed se-
quentially to the model and a forward pass is performed as
describe in Section IV-A. For each channel vector in the
batch, the model combines it with the currently available
N beamforming vectors and outputs the power of the best
beamformer for that channel. The quality of the best combiner
is assessed by measuring how close its beamforming gain to
that of the channel equal-gain combiner, obtained by (17).
A Mean-Squared Error (MSE) loss is used as a metric to
assess the quality of the codebook over the current mini-batch.
Formally,

L =
1

B

B∑
b=1

(gb − pb)2, (18)

where gb is the output of the max-pooling layer for the b-
th data pair in the mini-batch, and B is the mini-batch size.
The error signal (derivative of the loss (18) with respect to
each phase vector θn ∈ Θ) is propagated back through the
model to adjust the phases of the combining vectors [32] [33],
making up what is usually referred to as the backward pass
or backpropagation. This is formally expressed by the chain
rule of differentiation:(

∂L
∂θn

)T
=
∂L
∂g
·
(
∂g

∂q

)T
· ∂q

∂z
· ∂z

∂θn
. (19)

In mathematical terms, ∂L
∂θn

does not exist, for the factor ∂q
∂z

does not satisfy the Cauchy-Riemann equations [34], meaning
that q as a function of the complex vector z is not complex
differentiable (holomorphic). However, the issue could be
resolved to enable backpropagation. The details of that and
how the derivatives are computed are discussed in Appendices
A and B. Computing the partial derivative of the loss with
respect to phase vector θn allows the backward pass to modify
the codebook Θ and make it adaptive to the environment. The
update equation generally depends on the solver used to carry
out the training, e.g., Stochastic Gradient Descent (SGD) and
ADAptive Moment estimation (ADAM) to name two, but in
its simplest form, it could be given by

θnnew = θncur − η ·
∂L
∂θn

(20)

where η is the optimization step size, commonly known as
the learning rate in machine learning, and θnnew and θncur
are, respectively, the new and current n-th phase vector of the
codebook.

C. Learning Quantized Codebook

Restriction on the resolution of the phase shifter is common
in many mmWave implementations. This imposes limits on the
number of phase vectors that could be realized by a system,
giving rise to learning quantized codebooks. The proposed
solution is actually capable of learning such codebooks. This
could be achieved using a quantize-while-training approach,
similar to that in [35] [36]. The training process, presented as
forward and backward passes in Sections IV-A and IV-B, re-
spectively, is tweaked to incorporate a k-means quantizer. The
quantizer is implemented right after updating the parameters
of the network in (20). It takes the phase-vector codebook and
vectorize it Θ̃ =

[
θT1 , . . . , θ

T
N

]
1×NM

, and then, it applies k-

means on the elements of Θ̃. The returned cluster centroids,
which are a set of scalars, define the new finite set of angles
the phase shifters need to realize. The size of that set (number
of centroids) is determined by the phase shifter resolution, Q
bits.

Remark: the proposed quantizer is transparent to the back-
ward operation described in Section IV-B. This means it does
not change the backpropagation equation in (19), and the
quantized values of the phases are directly substituted into
the partials ∂z/∂θn, ∀n ∈ {1, . . . , N}.

V. SELF-SUPERVISED MACHINE LEARNING SOLUTION

In this section, an alternative neural network architecture
is proposed to perform the same codebook learning process
without requiring accurate channel knowledge. The motiva-
tions for developing this model are two fold: (i) The existence
of hardware impairments prevents accurate channel acquisition
in mmWave systems as obtaining them could be a difficult
process that requires very large training overhead [6], and (ii)
the need for channel information implies that the codebook
learning process has to be performed offline, which may not
be favorable for swift adaptability. To address these problems,
we propose a novel self-supervised learning solution. This
solution, as the name suggests, works in a self-sufficient
fashion instead of requiring the supply of a desired response
for every training channel.

A. Self-supervision via Clustering

Before diving into the details of the new proposed architec-
ture, it is helpful to first illustrate the basic idea of this design.
The motivations for this new model are rooted in the lack of
desired responses and the need for online learning. As a result,
the model should only rely on itself to learn how to adjust the
codebook beams such that the performance is improved. This
is accomplished by tapping into an intrinsic feature the final
codebook must have, channel space partitioning; as explained
in Section III, the codebook has fixed size, and, therefore,
each beamformer is ultimately expected to be optimized to
serve a set of users in the environment. This is mathematically
equivalent to partitioning H into subsets of channels

H = H1 ∪H2 ∪ · · · ∪HN , (21)

7

RF Chain

argmax

Cross Entropy
Loss (L)

Register

Po
w

er
 C

om
pu

ta
tio

n

Channel
Estimator

C
od

eb
oo

k

Update

Baseband Proceessing

Current Codebook

Virtual Complex-Valued
Fully-Connected Layer

softmax

Fig. 3. The proposed self-supervised framework as it is envisioned in practice. The solution is integrated into the different components of a mmWave base
station with analog architecture. The phase shifters with the combiner all together form a fully-connected layer, and the rest of the layers are implemented
into the base-band processing unit.

where

Hn′ ∩Hn = ∅, ∀n′ 6= n and n′, n ∈ {1, . . . , N}. (22)

From a machine learning perspective, this partitioning could be
translated into channel clustering where each beamformer is a
cluster representative. Under this new view of the problem,
the machine learning model generates its labels using the
following strategy: For the received signal of an uplink pilot, it
identifies the best beamforming vector in the current codebook,
say wn where n ∈ {1, . . . , N}. Then, it adjusts the direction
of that beamformer such that it results in higher beamforming
gain with the current channel. Therefore, when a similar
channel form the same partition, say Hn, is experienced, wn

is expected to be the best beamformer again, increasing its
chance to be the representative for Hn. The technical details
on how this is done are presented in the following couple of
subsections, in which the model components, forward pass,
and backward pass are explored.

B. Model Architecture
Fig. 3 presents a schematic of the proposed architecture

as it is envisioned in a mmWave communication system.
The following details a forward pass through the different
components of this architecture:

1) Complex-Valued Fully-Connected Layer: similar to
its supervised counterpart, the self-supervised network also
adopts complex-valued fully-connected layer as its first layer.
However, as integration into the communication system is in
the core of this solution, the layer is implemented using the
phase shifters, not a digital processor. As a result, it is referred
to in Fig. 3 as a virtual complex-valued fully-connected layer
(virtual layer for short). The function this layer implements
is the same as that in Section IV-A1, and as such, its output
is also given by (11). The main difference between this layer
and that in Section IV-A1 comes in the implementation of the
matrix vector multiplication. The virtual layer performs it by
requiring the user to send a sequence of pilots, each of which
is received with a different beamformer.

2) Register: the register buffers the received single of
each beamformer until a full sweep across the codebook is
completed. This temporary storage is essential as the following
layers need to operate on the outputs of the virtual layers
jointly.

3) Power-computation layer: once the system collects the
whole outputs (all the beams in the codebook have been tried),
those values are fed into the power-computation layer which
calculates the beamforming gain for each beamformer using
(14).

4) Softmax and argmax: this layer is where the self-
supervised solution really differs from the supervised one.
Instead of having a max-pooling layer, the output of power-
computation layer is fed into two different layers, a softmax
and an argmax. The former is employed to convert each
beamforming gain to a “probability”, which indicates how
likely a beamformer is the optimal one to receive the user’s
signal given the current channel. Formally, having (14) as
input, the n-th element of the output probability vector of the
softmax layer s = [s1, . . . , sN]T can be expressed as

sn =
e|zn|

2∑N
n=1 e

|zn|2
. (23)

The argmax layer, on the other hand, outputs a one-hot
vector c ∈ {0, 1}N , of the same dimension as s, with 1 at
the position where s attains its maximum value and with
0 at all other positions. This one-hot vector c is the self-
generated label. It declares the best beamforming vector the
representative of the cluster, and along with the output of
softmax, they help tweak this best beamformer to make sure it
has higher beamforming gain than other beamformers when it
receives a similar channel in the future. This is accomplished
by implementing a cross-entropy loss function. The following
subsection will elaborate more on that loss and its role.

C. Learning Codebooks
After a forward pass, the model must do backpropagation

to improve its performance, i.e., learning better beamforming

8

vectors. With the self-generated label and the probability
vector, it is a matter of using that label to increase the
probability of the currently selected beamformer.

1) Loss function: The first step to do backpropagation is
to define a loss function that captures the objective of the
model. As stated above, the model aims at clustering the
channels and having the beamforming vectors in the codebook
as representatives of those clusters. This is attained by a cross-
entropy loss function given as

L(s, c) = −
N∑
n=1

cn log sn, (24)

where s is the output of the softmax layer and c is the one-hot
vector generated by argmax layer. This loss function makes the
one-hot vector a target probability distribution for the model,
and hence, it is not adjustable; the value of L must only be
minimized by pushing the softmax distribution s to be as close
to c as possible.

2) Backpropagation: The error signal is generated by dif-
ferentiating the loss (24) with respect to each phase vector
θn ∈ Θ. This error is backpropagated through the network
to adjust the phases of all the beamforming vectors [32] [33]
using the chain rule as follows(

∂L
∂θn

)T
=

(
∂L
∂s

)T
· ∂s

∂q
· ∂q

∂z
· ∂z

∂θn
, (25)

and (20) is used to update the phase vectors of the codebook.
The implementation of this chain of derivatives is illustrated in
Fig. 3. There are two issues with the error signal in (25). The
first is similar to that issue encountered with the supervised
model; q as a function of z is not complex differentiable or
holomorphic, which implies that ∂q

∂z is not defined. The same
argument developed for (19) and presented in Appendices A
and B will be used here to obtain that partial. The second
issue comes from the partial ∂z

∂θn
. Referring to (11), it is clear

that computing ∂z
∂θn

requires channel information, which is not
explicitly available in this case. This is sidestepped with the
help of a simple channel estimator described in the following
subsection.

3) Channel Estimator: In order to complete the backprop-
agation of the error signal, the content of the register in
Fig. 3 is also fed to a channel estimator. This estimator
uses the received signals along with the currently available
beamforming codebook to reconstruct a rough estimate of the
channel. Based on (11), we notice that the output zn of each
combiner wn is essentially the projection of the channel h
onto the subspace spanned by the combiner wn. Thus, we
estimate a rough version of the channel through

ĥ =
(
WH

)†
z. (26)

This approach does not result in an accurate estimate of the
channel, yet it helps the learning process as shown in Appendix
B.

VI. PRACTICALITY OF PROPOSED SOLUTIONS

Both proposed solutions are developed with practicality
in mind. They are both geared towards handling different

challenges commonly faced in designing mmWave beam code-
books, especially with fully-analog architectures. However,
that does not mean they operate in the same way. They
approach the codebook learning problem from different angles,
as briefly discussed below.

The supervised learning solution relies on explicit channel
knowledge and follows a transparent leaning approach. It
requires the mmWave system to operate with some common
environment-independent codebook, like the DFT codebook
[7], and during its operation it collects channel information
from the surroundings. Such information is used to construct
the training dataset (St) as described in Section IV-B. Once
a dataset is available, the central unit trains the model in the
background, and upon the completion of the training phase, the
new environment-aware codebook is directly plugged into the
system. This method decouples the communication operation
from the codebook learning process, and allows the system to
function normally until a better codebook is learned. Its main
drawbacks, however, are the requirement of accurate (or good
quality) channel estimates to construct the training dataset, and
the relatively lengthy offline learning process.

The self-supervised solution, in contrast, trades explicit and
accurate channel knowledge for faster training and adaptation.
The need for accurate channel estimates in itself is a burden to
the mmWave system, especially when hardware impairments
are factored in. Hence, the self-supervised solution is designed
to transcend that need. As shown in Section V-C, the model
is implemented as an integral component of the mmWave
system and does not run in the background. The learning
instead is performed online while the system is operating.
This provides a more adaptable and faster training in terms
of implementation. However, this adaptability comes with
its own shortcomings. The first one is a subtle degradation
in the quality of the learned codebook compared to that
of the supervised solution (as will be discussed in Section
VIII). It is a direct consequence of implementing a simple
yet noisy channel estimator. The other issue is an unstable
communication performance at the beginning of the learning
process. Different to the transparent nature of the supervised
solution, the self-supervised solution learns on the job, and as
a results the codebook itself evolves over time.

VII. EXPERIMENTAL SETUP AND MODEL TRAINING

In order to evaluate the performance of the proposed
codebook learning solutions, two communication scenarios
are considered. They are designed to represent two different
communication settings. The first has all users experiencing
LOS connection with the base station while the other has them
experiencing NLOS connection. The following two sections
provide more details on the scenarios and the training and
testing processes.

A. Communication Scenarios and Datasets

Two communication scenarios are used for performance
evaluation. The first one is, as mentioned earlier, a LOS
scenario, see Fig. 4-(a). It is an outdoor scene where all users
have LOS connection with the mmWave base station. The

9

Selected User Grid

Buildings

BS 3

(a) LOS Scenario

User Grid

mmWave

Access Point

(b) NLOS Scenario

Fig. 4. Two perspective views of the considered communication scenarios.
(a) shows the LOS scenario. It is chosen to be outdoor since the likelihood
of LOS connection is higher there. (b) shows the NLOS scenario. Similar to
(a), this scenario has been chosen for the high likelihood of having NLOS
users indoors.

TABLE I
HYPER-PARAMETERS FOR CHANNEL GENERATION

Parameter value
Name of scenario O1 28 I2 28B

Active BS 3 1
Active users 800 to 1200 1 to 700

Number of antennas (x, y, z) (1, 64, 1) (64, 1, 1)
System BW 0.2 GHz 0.2 GHz

Antenna spacing 0.5 0.5
Number of OFDM sub-carriers 1 1

OFDM sampling factor 1 1
OFDM limit 1 1

Number of paths 5 5

second scenario, on the other hand, is chosen to be an indoor
NLOS scenario where all users have NLOS connection with
the mmWave base station. Both scenarios are for an operating
frequency of 28 GHz, and both are part of the DeepMIMO
dataset [24]. Using the data-generation script of DeepMIMO,
two sets of channels, namely SLOS and SNLOS, are generated
with |SLOS| ≈ 73 × 103 samples and |SNLOS| ≈ 150 × 103

samples. Table I shows the data-generation hyper-parameters.
For the supervised solution, both sets undergo processing to
generate the labels and create two sets of pairs as described
in Section IV-B2. The new datasets are henceforth referred
to as SLOS

t1 and SNLOS
t1 . For the self-supervised solution, on

the other hand, labels are not needed, and, therefore, the
two sets SLOS and SNLOS are used as they are. For the
sake of convenience, these two sets will be re-named SLOS

t2
and SNLOS

t2 . To evaluate the performance of the proposed
solutions, we will compare them with the DFT codebook;
we define the n-th beam of an M-point DFT codebook as

wDFT
n = 1√

M

[
1, ej

2πn
M , ..., ej

2πn(M−1)
M

]T
, n = 0, 1, ...,M − 1.

B. Model Training

The two models are trained and tested on their datasets
introduced in the earlier section, Section VII-A. The training
of both solutions follow the same strategy. It starts by data
pre-processing. The channels in each dataset are normalized to
improve the training experience [33], which is a very common
practice in machine learning. As in [37] [38], [39] and [40],
the channel normalization using the maximum absolute value
in the training dataset helps the network undergo a stable and

8 16 32 64 128

Number of beams in the codebook

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
c
h

ie
v
a

b
le

 r
a

te
 (

b
it
s
/s

/H
z
)

EGC (5 dB)

Supervised learning based (5 dB)

Clustering based with perfect CSI (5 dB)

64-beam DFT (5 dB)

EGC (0 dB)

Supervised learning based (0 dB)

Clustering based with perfect CSI (0 dB)

64-beam DFT (0 dB)

(a) LOS scenario

8 16 32 64 128

Number of beams in the codebook

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
c
h

ie
v
a

b
le

 r
a

te
 (

b
it
s
/s

/H
z
)

EGC (5 dB)

Supervised learning based (5 dB)

Clustering based with perfect CSI (5 dB)

64-beam DFT (5 dB)

EGC (0 dB)

Supervised learning based (0 dB)

Clustering based with perfect CSI (0 dB)

64-beam DFT (0 dB)

(b) NLOS scenario

Fig. 5. The achievable rate versus the number of beams of the codebook
using the supervised solution in: (a) LOS scenario and (b) NLOS scenario. It
shows the performance under two receive SNRs, 0 and 5 dB.

efficient training. Formally, the normalization factor is found
as follows

∆ = max
h∈S

|hm,u|2 (27)

where hm,u ∈ C is the mth element in the channel vector of
the uth user, and S ∈ {SLOS

t1 ,SNLOS
t1 ,SLOS

t2 ,SNLOS
t2 }. Using

the normalized channels, each solution is, then, trained on
70% samples of the dataset selected randomly and validated
on the rest. The other training hyper-parameters are: ADAM
[41] optimizer, 0.1 learning rate, 500 batch size, and 5 training
epochs. Example3 scripts of the developed codebook learning
solutions are available in [42] and [43].

VIII. SIMULATION RESULTS

In this section, we evaluate the performance of the proposed
solutions using the scenarios described in Section VII. The
evaluation starts with the supervised solution as it is a stepping
stone towards the self-supervised one. The numerical results
show that the proposed solutions have clear advantages com-
pared to classical approaches, and they can efficiently adapt

10

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8

1

(a) LOS

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8

1

(b) NLOS

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

0.4

(c) Single-beam, NLOS

0

30

60

90

120

150

180

210

240

270

300

330

0

0.1

0.2

0.3

0.4

(d) Single-beam, NLOS

Fig. 6. Beam patterns for the learned codebook using the supervised solution. (a) shows the codebook learned for the LOS scenario while (b) shows that
learned for the NLOS scenario. Two beams from the 64-beam NLOS codebook are singled out in (c) and (d). They clearly show that the proposed solution
is capable of learning multi-lobe beams.

Buildings

BS 3

Selected User Grids

(a) Non-uniform user distribution

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8

1

(b) Learned 16-beam codebook

8 16 32 64 128

Number of beams in the codebook

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
c
h
ie

v
a
b
le

 r
a
te

 (
b
it
s
/s

/H
z
)

EGC (5 dB)

Supervised learning based (5 dB)

DFT (5 dB)

EGC (0 dB)

Supervised learning based (0 dB)

DFT (0 dB)

(c) Performance vs. codebook size

Fig. 7. Performance of the proposed solution on an outdoor scenario where the users are non-uniformly distributed. (a) shows the selected user grids on the
adopted outdoor scenario. (b) shows the learned 16-beam codebook. (c) shows the performance versus codebook size and the comparisons with EGC and
DFT.

to different environments, user distributions, as well as array
imperfections.

A. Simulation Results for the Supervised Solution

The performance of the supervised solution is investigated
from different perspectives as shown below.

1) Performance in a LOS setting: Fig. 5(a) shows the
achievable rate versus the codebook size under 0 dB and 5
dB SNRs for the proposed solution and a classical clustering-
based approach that has been introduced in [44] (henceforth
referred to as the classical approach). The learned codebook
exhibits interesting behavior compared to a 64-beam DFT
codebook, an EGC receiver, as well as the classical approach.
With half the number of beams of a DFT codebook, the learned
codebook achieves more than 80% of the rate that the DFT
achieves and displays a clear advantage over the classical
approach. This is very important as smaller codebook sizes
mean less beam training overhead. Further, the figure shows
that when the learned codebook is allowed to grow in size and
match the size of the DFT codebook, its performance surpasses
that of the DFT codebook. This is quite intriguing as, typically,
a DFT codebook performs very well in a LOS setting. This
observation applies equally to the classical approach. Its

performance improves and gets closer to that of the proposed
solution with larger codebook sizes.

2) Performance in a NLOS setting: In such setting, a
codebook should be able to capture as much power as possible,
and, to do that, it might need to form multi-lobe beams.
Similar to the LOS case, Fig. 5(b) depicts the achievable rate
of the proposed solution and the classical approach versus
the number of beams. Two interesting observations to point
out here: (i) both learned codebooks, with supervised and
classical solutions, outperform the 64-beam DFT codebook
with a fraction of the number of beams; and (ii) the supervised
and classical codebooks exhibit similar performance. The first
observation is a direct consequence of the ability of both
solutions to adapt to the environment and users’ channels.
The second one, on the other hand, could be explained by
the geometry of the environment, see Fig. 4(b). As it will be
discussed in the next subsection and Fig. 6(b), the geometry
of the environment allows for two narrow angle spreads at
the base station, which are quite different in direction. This is
argued to result in two distinct and dense master clusters that
could readily be uncovered.

3) What does the learned codebook look like: To develop
a deeper understanding of the performance of the proposed

11

8 24 40 56 72 88 104 120

Number of beams in the codebook

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
A

c
h
ie

v
a
b
le

 r
a
te

 (
b
it
s
/s

/H
z
)

EGC (5 dB)

Supervised learning based (5 dB)

Self-supervised learning based (5 dB)

64-beam DFT (5 dB)

EGC (0 dB)

Supervised learning based (0 dB)

Self-supervised learning based (0 dB)

64-beam DFT (0 dB)

(a) LOS scenario

8 24 40 56 72 88 104 120

Number of beams in the codebook

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
c
h
ie

v
a
b
le

 r
a
te

 (
b
it
s
/s

/H
z
)

EGC (5 dB)

Supervised learning based (5 dB)

Self-supervised learning based (5 dB)

64-beam DFT (5 dB)

EGC (0 dB)

Supervised learning based (0 dB)

Self-supervised learning based (0 dB)

64-beam DFT (0 dB)

(b) NLOS scenario

Fig. 8. The achievable rate vs. number of beams in the codebook with
supervised and self-supervised learning solutions in: (a) a LOS scenario and
(b) NLOS scenario. Both figures have the results for 0 dB and 5 dB receive
SNR.

solution and verify its capability of learning beams that adapt
to the surrounding environment and user distributions, the
resulting beam patterns is plotted in Fig. 6. More specifically,
this figure shows different beam patterns of two different 64-
beam codebooks learned in LOS and NLOS settings. The
patterns in Fig. 6(a) are for the LOS case, and they explain
the improvement the learned 64-beam codebook experiences
compared to the DFT codebook; all the learned beams are
directive and have single-lobe, yet they do not spread across
the whole azimuth plane like the DFT beams do. Their spread,
instead, follows the user distribution in the scenario, the red
rectangle drawn in Fig. 4(a). This makes each beam in the
codebook tuned to serve a certain group of users and none of
the beams is “wasted” by any means. In the NLOS setting,
Fig. 6(b) shows how the solution captures the different NLOS
paths in the environment; the codebook is almost evenly split
between the two major scatterers, the two side walls of the
room. As a matter of fact, looking at Fig. 6(c) and Fig. 6(d)

reveals that the learned beams are not exclusively single-
lobe, as some beams have multiple lobes that adapt to
the main scatterers in the room. This is a quite important
property for a NLOS beam codebook, and it is evident in the
codebook performance in Fig. 5(b). It explains the clear gap
in performance between the learned and DFT codebooks, and
it hints to the reason why both the supervised and classical
solutions have similar performance.

4) Demonstration of the user distribution awareness: To
better demonstrate the user distribution awareness of the
proposed solution, we generate another dataset where the users
are non-uniformly distributed across the space, as shown in
Fig. 7(a). In Fig. 7(b), we show the learned 16-beam codebook,
where all the beams are pointing towards the users and there
is no beam wasted on the places where there is no user at
all. As a result, the learned codebook is able to outperform
DFT codebook with much smaller codebook size, as shown
in Fig. 7(c), which is tantamount to the significant reduction
on the latency incurred by beam training.

B. Simulation Results for the Self-supervised Solution

A good starting point for the discussion about the self-
supervised solution is to benchmark it to its supervised coun-
terpart. Fig. 8 does exactly that by plotting the achievable
rate versus the number of beams for both solutions in a LOS
and NLOS settings and under 5 dB SNR. Fig. 8(a) shows
that the self-supervised solution is slightly lagging behind the
supervised one; the self-supervised solution achieves over 90%
and 95% of the achievable rates obtained by the supervised
solution at 32 beams and 64 beams, respectively, and the gap
between the two solutions keeps shrinking as larger codebooks
are learned. In a NLOS setting, on the other hand, the gap
between the two almost disappears as shown in Fig. 8(b).
Similar to the discussion in Sections VIII-A2 and VIII-A3,
this could be attributed to the geometry of the environment.
Overall, the results in both settings are very intriguing
and promising, for the self-supervised solution achieves
this performance without explicit channel knowledge.

1) Online learning: Learning while the wireless system is
operating (i.e., online learning) is an important property for
the proposed self-supervised solution, as discussed in Section
VI. To demonstrate the value of such property, the proposed
solution is compared to the classical approach in an online
fashion with imperfect CSI, i.e., ĥ in (26). Multiple vectors
of combined received signals (11) from various users are
accumulated to form a batch, on which each solution is trained.
Fig. 9(a) shows that when the batch size is set to 50, the
self-supervised solution significantly outperforms the classical
solution. As the batch size is allowed to grow, the performance
of the classical approach improves. It gets close to that of the
proposed one with batch sizes that are greater than or equal to
300. For the self-supervised solution, however, batch size has
less impact; Fig. 9(b) shows how the self-supervised solution
maintains a very balanced performance under different batch
sizes. The observations from both figures could be attributed to
how the proposed solution learns from a batch, which will be
discussed at the end of the next subsection (Section VIII-B2).

12

20 40 60 80 100 120

Number of beams in the codebook

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

A
c
h
ie

v
a
b
le

 r
a
te

 (
b
it
s
/s

/H
z
)

Self-supervised with imperfect CSI (batch size 50)

Clustering with imperfect CSI (batch size 50)

Clustering with imperfect CSI (batch size 200)

Clustering with imperfect CSI (batch size 300)

(a) Achievable rate vs. codebook size

50 100 150 200 250 300

Batch size

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

A
c
h
ie

v
a
b
le

 r
a
te

 (
b
it
s
/s

/H
z
)

Self-supervised with imperfect CSI (32-beam)

Clustering with imperfect CSI (32-beam)

Self-supervised with imperfect CSI (64-beam)

Clustering with imperfect CSI (64-beam)

(b) Achievable rate vs. batch size

Fig. 9. The achievable rate under different batch sizes. Both results are based on LOS scenario and on 5 dB receive SNR.

0 1 2 3 4 5

Normalized iteration (epoch)

0.5

1

1.5

2

2.5

3

3.5

4

C
ro

s
s
-E

n
tr

o
p
y
 L

o
s
s

Training loss of self-supervised with batch size 50

Testing loss of self-supervised with batch size 50

(a) Convergence behavior (loss function)

0 1 2 3 4 5

Normalized iteration (epoch)

0

1

2

3

4

5

6

B
e
a
m

fo
rm

in
g
 g

a
in

Self-supervised with batch size 50

Clustering with batch size 50

Clustering with batch size 300

Clustering with batch size 1000

(b) Convergence behavior (beamforming gain)

Fig. 10. The convergence behaviors of the self-supervised approach and the clustering based approach: (a) Training and testing losses of the self-supervised
solution and (b) beamforming gain performance of both solutions on learning a 64-beam codebook.

2) Convergence of the self-supervised solution: Algorithm
convergence is an important aspect to investigate for an online
learning solution like the self-supervised one. Fig. 10(a) shows
the learning progress of the self-supervised solution on the task
of learning a 64-beam codebook using a batch size of 50. It
plots the training and validation losses versus the normalized
number of iterations per epoch1. The first observation from
the figure is how fast the proposed solution converges. With
less than 102 iterations (around 0.1 normalized iteration on
the x-axis), the proposed solution records a validation loss
of ≈ 1.3, only 0.1 away from saturation. This is translated
into wireless communication terms in Fig. 10(b), where the
solution achieves over 90% of the beamforming gain of the
final codebook with 102 training iterations.

Fig. 10(b) also benchmarks the convergence of the proposed
solution to that of the classical one on the validation set. The

1Iteration number divided by total number of iterations per epoch.

comparison is done using different batch sizes for the classical
approach. With a batch size of 50, the beamforming gain of the
classical approach is noisy and does not converge to anything
meaningful. As the batch size increases, the approach starts
exhibiting a sensible behavior, producing meaningful code-
books. This is the case because the classical approach relies
on a k-means-like algorithm that updates all centroids
(i.e., beams) from a single batch. Small batches, statistically
speaking, do not convey enough information about the wireless
channels in an environment as large batches do, which explains
the improvement in convergence observed in Fig. 10(b) as
well as the improvement in performance observed earlier in
Fig. 9(b). The situation is different for the proposed solution;
it only updates beams that are relevant to the combined
received-signal vectors in the batch and not all beams in the
codebook, which makes it more stable in terms of performance
and convergence.

13

8 24 40 56 72 88 104 120

Number of beams in the codebook

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
c
h

ie
v
a

b
le

 r
a

te
 (

b
it
s
/s

/H
z
)

EGC

self-supervised

DFT

(a) LOS scenario

8 24 40 56 72 88 104 120

Number of beams in the codebook

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
c
h
ie

v
a
b
le

 r
a
te

 (
b
it
s
/s

/H
z
)

EGC

self-supervised

DFT

(b) NLOS scenario

Fig. 11. The achievable rate versus number of beams for the self-supervised solution. The performance is evaluated under 5 dB SNR, antenna spacing
mismatch with σd = 0.1λ standard deviation, and phase mismatch with σp = 0.4π. (a) shows the performance in LOS setting while (b) considers NLOS
setting.

0 0.02 0.04 0.16 0.18 0.20.06 0.08 0.1 0.12 0.14
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

A
c
h

ie
v
a

b
le

 r
a

te
 (

b
it
s
/s

/H
z
)

EGC

learned codebook

DFT

Standard deviation of phase mis-match (rad)

(a) LOS scenario

0 0.02 0.04 0.16 0.18 0.20.06 0.08 0.1 0.12 0.14
3

3.5

4

4.5

5

5.5

6

6.5

7

7.5
A

c
h

ie
v
a

b
le

 r
a

te
 (

b
it
s
/s

/H
z
)

EGC

learned codebook

DFT

Standard deviation of phase mis-match (rad)

(b) NLOS scenario

Fig. 12. The achievable rate vs. the standard deviation of phase mismatch with self-supervised solution in: (a) LOS and (b) NLOS settings. The performance
is evaluated under 5dB receive SNR, antenna spacing mismatch with standard deviation of 0.1λ, and a 64-beams codebook.

C. Performance Evaluation Under Hardware Impairments

The performance of the self-supervised solution is evaluated
under hardware impairments using the model introduced in
Section II-C. The channels in datasets SLOS

t2 ,SNLOS
t2 , are

corrupted with antenna spacing and phase mismatches that,
respectively, have σd = 0.1λ and σp = 0.4π standard devia-
tions. Fig. 11(a) shows the simulation result of the proposed
solution in a LOS setting. It maintains a similar performance
to that presented in Fig. 8(a) and displays an intriguing
ability to combat the challenges imposed by the hardware
impairments. This indicates that the self-supervised solution
can efficiently adapt to the corrupted (and arbitrary)
array-response vectors, compensating for the antenna-
spacing and phase mismatches. The same performance can
also be observed in the NLOS case. With the same hardware
impairment settings, Fig. 11(b) depicts the achievable rate
versus the codebook size in a NLOS setting. The learned

codebook continues to maintain the same trend as that in the
LOS case. In fact, with 128 beams, the codebook learned can
attain over 90% of the achievable rate of the upper bound. Such
ability is lacking in classical beam steering codebooks such as
the DFT codebook. Compared to Fig. 8(a) and Fig. 8(b), the
performance of DFT codebooks degrades significantly when
impairments are present. The reason lies in the patterns of the
corrupted array response vectors, which lose their directivity
and experience critical distortion.

It is important at this stage to pose the following question:
How robust is the self-supervised solution? The answer to
that question would provide some perspective on the capacity
of the proposed solution to endure hardware impairments. In
Fig. 12(a), we plot the achievable rates versus the standard
deviation of the phase mismatch. The figure considers a
LOS setting and a fixed antenna spacing mismatch with a
standard deviation of 0.1λ. As the standard deviation of the

14

(a) Learned 64-beam codebook

0

30

60

90

120

150

180

210

240

270

300

330

0

0.02

0.04

0.06

0.08

(b) Projection on clean space

0

30

60

90

120

150

180

210

240

270

300

330

0

0.2

0.4

0.6

0.8

1

(c) Projection on corrupted space

Fig. 13. Beam patterns for codebook with 64 beams learned by the self-supervised solution in LOS setting with hardware impairments (antenna spacing
and phase mismatches with, respectively, 0.1λ and 0.4π standard deviations). (a) shows all 64 beams (if plotted for a uniform array), (b) shows one of the
codebook beams (if plotted for a uniform array), and, finally, (c) shows the same beam in (b) when plotted for the corrupted array (i.e., the actual beam
pattern out of the corrupted array).

phase increases, the self-supervised solution keeps a balanced
performance. The DFT codebook, on the other hand, degrades
drastically as the level of corruption increases. This behavior
demonstrates the robustness of the proposed codebook
learning approach and its ability to adapt to the various
hardware impairments. The same test with the same antenna
spacing mismatch is repeated but in the NLOS setting, and the
performance is shown in Fig. 12(b). The proposed solution
exhibits a similar performance to that in the LOS setting,
which further emphasizes the conclusion on its robustness.

To visualize what the proposed solution is learning exactly,
Fig. 13 plots different beam patterns from a learned codebook
with hardware impairments and in a LOS setting. The first
figure on the left, namely Fig. 13(a), shows all beam patterns
in the learned codebook when projected on the angular space
of the uniform (uncorrupted) arrays. One of those beams in
plotted again separately in Fig. 13(b). While these beams
appear distorted with multiple lobes, they actually look this
way because they match the hardware impairments and mis-
matches. To prove that, we plotted the selected beam again
in Fig. 13(c) when projecting it on the angular space of the
corrupted beams. In other words, this is the actual far-field
beam pattern that the corrupted array will generate. This beam
is clearly depicting the supposed pattern, which is a single-
lobe beam pointing to the user’s direction. All that verifies
the interesting capability of the proposed solution in learning
beams that adapt to the surrounding environment and given
hardware.

IX. CONCLUSION

In this paper, we considered hardware-constrained mmWave
massive MIMO systems and developed machine learning
frameworks that learn environment and hardware aware beam
codebooks. Achieving that was through designing novel
complex-valued neural network architectures that use the neu-
ron weights to directly model the beamforming weights of
the phase shifters. Further, these architectures account for the
key hardware constraints such as the constant-modulus and
quantized-angles constraints. The proposed model is trained

online in a self-supervised manner, avoiding the need for
explicit channel state information. The developed approach
was extensively evaluated using DeepMIMO, in both LOS and
NLOS environments. Simulation results show that developed
solutions can learn codebook beams that adapt to the surround-
ing environment and user distribution, which can significantly
reduce the training overhead and improve the achievable
data rates. When benchmarked to a classical clustering-based
approach, the self-supervised solution shows clear advantages
over the classical one in terms of convergence and online
learning. Furthermore, the results demonstrate the capability
of the proposed self-supervised solution in adapting the beam
patterns to the hardware impairments and unknown array
geometry. This highlights the potential gains of leveraging
machine learning to develop deployment- and hardware-aware
beamforming codebooks.

APPENDIX

A. Complex Differentiability

The problem with (19) and (25) lies in their complex differ-
entiability, more specifically, the complex differentiability of
∂q
∂z and ∂z

∂θn
. We refer to the work of [45] where an argument is

presented to circumvent this limitation. It states that in order to
perform backpropagation in a complex-valued neural network,
a sufficient condition is to have a cost function and activations
that are differentiable with respect to the real and imaginary
parts of each complex parameter in the network. Formally,
let w = wr + jwim ∈ C and z = f(w) ∈ R such that it
does not satisfy Cauchy-Riemann equations. In this case, z is
not complex differentiable, and the suggested way around this
problem is to view wr and wim as two independent variables
such that wr, wim ∈ R. Then, the “gradient” of z is defined
as

∇z =

[
∂

∂wr
f(w),

∂

∂wim
f(w)

]T
. (28)

15

For instance, if z = (wr)2 + (wim)2 ∈ R, then

∇z =

[
∂

∂wr

[
(wr)2 + (wim)2

]
,

∂

∂wim

[
(wr)2 + (wim)2

]]T
,

(29)

= 2
[
wr, wim

]T
. (30)

B. Computing the Partials

Going back to (19) and (25), the factors ∂q
∂z and ∂z

∂θn
satisfy

the condition, and hence, we construct the Jacobian ∂q
∂z as

∂q

∂z
=


∂q1
∂zr1

0 . . . 0 ∂q1
∂zim1

0 . . . 0

0 ∂q2
∂zr2

. . . 0 0 ∂q2
∂zim2

. . . 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . ∂qN
∂zrN

0 0 . . . ∂qN
∂zimN

 .
(31)

The sparsity of the Jacobian follows from the fact that q is
the result of an element-wise operation, see (14). The reason
behind its shape, i.e., N×2N , will be explained shortly. Since
the output of the n-th combiner zn is only determined by the
n-th column of the matrix W (see (11)) and since the n-th
column of W is only a function in θn (see (13)), we can write
the other Jacobian, namely ∂z

∂θn
, as

∂z

∂θn
=


0 . . .

∂zrn
∂θ1n

. . . 0 . . .
∂zimn
∂θ1n

. . . 0

0 . . .
∂zrn
∂θ2n

. . . 0 . . .
∂zimn
∂θ2n

. . . 0
...

. . .
...

. . .
...

. . .
...

. . .
...

0 . . .
∂zrn
∂θMn

. . . 0 . . .
∂zimn
∂θMn

. . . 0


T

,

(32)
which has a shape of 2N ×M . Now, to calculate ∂zrn

∂θmn
or

∂zimn
∂θmn

, ∀m = {1, . . . ,M}, we recall (12) and write zr
n and

zim
n as functions of the n-th column of W as follows

zr
n =

M∑
m=1

wr
mnh

r
m + wim

mnh
im
m , (33)

zim
n =

M∑
m=1

(
−wim

mn

)
hr
m + wr

mnh
im
m , (34)

where

wr
mn =

1√
M

cos (θmn) , wim
mn =

1√
M

sin (θmn) . (35)

The partials now are computed as follows

∂zr
n

∂θmn
=

∂zr
n

∂wr
mn

· ∂w
r
mn

∂θmn
+

∂zr
n

∂wim
mn

· ∂w
im
mn

∂θmn
, (36)

=
1√
M

(
−hr

m sin (θmn) + him
m cos (θmn)

)
, (37)

and

∂zim
n

∂θmn
=

∂zim
n

∂ (−wim
mn)
·
∂
(
−wim

mn

)
∂θmn

+
∂zim
n

∂wr
mn

· ∂w
r
mn

∂θmn
, (38)

=
1√
M

(
−hr

m cos (θmn)− him
m sin (θmn)

)
. (39)

Evaluating (37) and (39) clearly relies on the channel es-
timates. This should not be a problem for the supervised
solution, but for the self-supervised solution, the estimate
obtained using (26), namely ĥ, is substituted for h.

Having found the partials, the reason behind the choice
of the matrix shapes in (31) and (32) could be explained.
The final objective of (19) and (25) is to propagate back the
error signal and update the parameters of the codebook as
in (20). The matrix forms of (31) and (32) guarantees that
the computation of ∂L

∂θn
could be performed in simple matrix

multiplication, which is critical for efficient implementation.

REFERENCES

[1] Y. Zhang, M. Alrabeiah, and A. Alkhateeb, “Learning beam codebooks
with neural networks: Towards environment-aware mmwave MIMO,”
in Proc. of IEEE International Workshop on Signal Processing Ad-
vances in Wireless Communications (SPAWC), arXiv e-prints, 2020, p.
arXiv:2002.10663.

[2] Y. Ghasempour and C. R. C. M. da Silva and C. Cordeiro and E. W.
Knightly, “IEEE 802.11ay: Next-Generation 60 GHz Communication
for 100 Gb/s Wi-Fi,” IEEE Communications Magazine, vol. 55, no. 12,
pp. 186–192, 2017.

[3] J. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. Soong, and
J. Zhang, “What will 5G be?” IEEE Journal on Selected Areas in
Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.

[4] M. Giordani, M. Polese, A. Roy, D. Castor, and M. Zorzi, “A tutorial
on beam management for 3gpp nr at mmwave frequencies,” IEEE
Communications Surveys Tutorials, vol. 21, no. 1, pp. 173–196, 2019.

[5] Alkhateeb, A. and Jianhua Mo and Gonzalez-Prelcic, N. and Heath,
R.W., “MIMO Precoding and Combining Solutions for Millimeter-Wave
Systems,” IEEE Communications Magazine, vol. 52, no. 12, pp. 122–
131, Dec. 2014.

[6] A. Alkhateeb, O. El Ayach, G. Leus, and R. Heath, “Channel estimation
and hybrid precoding for millimeter wave cellular systems,” IEEE
Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 831–
846, Oct. 2014.

[7] S. Hur, T. Kim, D. Love, J. Krogmeier, T. Thomas, and A. Ghosh,
“Millimeter wave beamforming for wireless backhaul and access in
small cell networks,” IEEE Transactions on Communications, vol. 61,
no. 10, pp. 4391–4403, Oct. 2013.

[8] IEEE 802.11ad, “IEEE 802.11ad standard draft D0.1.” [Online].
Available: www.ieee802.org/11/Reports/tgadupdate.htm

[9] T. Moon, J. Gaun, and H. Hassanieh, “Online millimeter wave phased
array calibration based on channel estimation,” in 2019 IEEE 37th VLSI
Test Symposium (VTS), 2019, pp. 1–6.

[10] N. Jindal, “MIMO broadcast channels with finite-rate feedback,” IEEE
Transactions on Information Theory, vol. 52, no. 11, pp. 5045–5060,
Nov. 2006.

[11] C. K. Au-yeung and D. J. Love, “On the performance of random vector
quantization limited feedback beamforming in a MISO system,” IEEE
Transactions on Wireless Communications, vol. 6, no. 2, pp. 458–462,
2007.

[12] K. Huang, R. W. Heath, Jr., and J. G. Andrews, “Limited feedback
beamforming over temporally-correlated channels,” IEEE Transactions
on Signal Processing, vol. 57, no. 5, pp. 1959–1975, 2009.

[13] V. Raghavan and V. Veeravalli, “On quantized multi-user beamforming
in spatially correlated broadcast channels,” in Proc. of IEEE Interna-
tional Symposium on Information Theory (ISIT), June 2007, pp. 2041–
2045.

[14] D. J. Love and R. W. Heath, “Limited feedback unitary precoding
for spatial multiplexing systems,” IEEE Transactions on Information
Theory, vol. 51, no. 8, pp. 2967–2976, 2005.

www.ieee802.org/11/Reports/tgad update.htm

16

[15] V. Raghavan, V. Veeravalli, and A. Sayeed, “Quantized multimode pre-
coding in spatially correlated multiantenna channels,” IEEE Transactions
on Signal Processing, vol. 56, no. 12, pp. 6017–6030, Dec 2008.

[16] J. Lee, J.-K. Han, and J. Zhang, “MIMO technologies in 3GPP LTE
and LTE-advanced,” EURASIP Journal on Wireless Communications
and Networking, vol. 2009, pp. 3:1–3:10, Mar. 2009.

[17] IEEE 802.11n, “IEEE standard for information technology telecommuni-
cations and information exchange between systems local and metropoli-
tan area networks specific requirements part 11: Wireless lan medium
access control (MAC) and physical layer (PHY) specifications,” IEEE
Std 802.11-2012 (Revision of IEEE Std 802.11-2007), p. 12793, 2012.

[18] J. Wang, et al., “Beam codebook based beamforming protocol for multi-
Gbps millimeter-wave WPAN systems,” IEEE Journal on Selected Areas
in Communications, vol. 27, no. 8, pp. 1390–1399, Nov. 2009.

[19] A. Alkhateeb and R. W. Heath, “Frequency selective hybrid precoding
for limited feedback millimeter wave systems,” IEEE Transactions on
Communications, vol. 64, no. 5, pp. 1801–1818, May 2016.

[20] Zhang, Jianjun and Huang, Yongming and Zhou, Yu and You, Xiaohu,
“Beam Alignment and Tracking for Millimeter Wave Communications
via Bandit Learning,” IEEE Transactions on Communications, vol. 68,
no. 9, pp. 5519–5533, 2020.

[21] Li, Min and et al., “Explore and Eliminate: Optimized Two-Stage Search
for Millimeter-Wave Beam Alignment,” IEEE Transactions on Wireless
Communications, vol. 18, no. 9, pp. 4379–4393, 2019.

[22] Zhang, Jianjun and et al., “Codebook Design for Beam Alignment
in Millimeter Wave Communication Systems,” IEEE Transactions on
Communications, vol. 65, no. 11, pp. 4980–4995, 2017.

[23] D. Love and R. Heath Jr, “Equal gain transmission in multiple-input
multiple-output wireless systems,” IEEE Transactions on Communica-
tions, vol. 51, no. 7, pp. 1102–1110, 2003.

[24] A. Alkhateeb, “DeepMIMO: A generic deep learning dataset for
millimeter wave and massive MIMO applications,” in Proc. of
Information Theory and Applications Workshop (ITA), San Diego, CA,
Feb 2019, pp. 1–8. [Online]. Available: http://www.DeepMIMO.net

[25] M. Alrabeiah and A. Alkhateeb, “Deep Learning for TDD and FDD
Massive MIMO: Mapping Channels in Space and Frequency,” arXiv
e-prints, p. arXiv:1905.03761, May 2019.

[26] X. Li and A. Alkhateeb, “Deep learning for direct hybrid precoding
in millimeter wave massive mimo systems,” in Proc. of Asilomar
Conference on Signals, Systems, and Computers, 2019, pp. 800–805.

[27] P. Pal and P. P. Vaidyanathan, “Nested arrays: A novel approach to array
processing with enhanced degrees of freedom,” IEEE Transactions on
Signal Processing, vol. 58, no. 8, pp. 4167–4181, Aug 2010.

[28] M. Rubsamen and A. B. Gershman, “Direction-of-arrival estimation for
nonuniform sensor arrays: From manifold separation to fourier domain
music methods,” IEEE Transactions on Signal Processing, vol. 57, no. 2,
pp. 588–599, 2009.

[29] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[30] D. Love, R. Heath, V. Lau, D. Gesbert, B. Rao, and M. Andrews, “An
overview of limited feedback in wireless communication systems,” IEEE
Journal on Selected Areas in Commun., vol. 26, no. 8, pp. 1341–1365,
Oct. 2008.

[31] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT press,
2016.

[32] S. S. Haykin et al., Neural networks and learning machines/Simon
Haykin. New York: Prentice Hall,, 2009.

[33] Y. A. LeCun, et al., “Efficient backprop,” in Neural networks: Tricks of
the trade. Springer, 2012, pp. 9–48.

[34] F. Haslinger, Complex Analysis: A Functional Analytic Approach. Wal-
ter de Gruyter GmbH & Co KG, 2017.

[35] C. Zhu, S. Han, H. Mao, and W. J. Dally, “Trained ternary quantization,”
arXiv preprint arXiv:1612.01064, 2016.

[36] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[37] M. Alrabeiah and A. Alkhateeb, “Deep learning for TDD and FDD
massive MIMO: mapping channels in space and frequency,” CoRR, vol.
abs/1905.03761, 2019. [Online]. Available: http://arxiv.org/abs/1905.
03761

[38] A. Taha, M. Alrabeiah, and A. Alkhateeb, “Enabling large intelligent
surfaces with compressive sensing and deep learning,” arXiv preprint
arXiv:1904.10136, 2019.

[39] Y. Zhang, M. Alrabeiah, and A. Alkhateeb, “Deep learning for massive
MIMO with 1-bit ADCs: When more antennas need fewer pilots,” IEEE
Wireless Communications Letters, 2020.

[40] A. Alkhateeb, S. Alex, P. Varkey, Y. Li, Q. Qu, and D. Tujkovic, “Deep
learning coordinated beamforming for highly-mobile millimeter wave
systems,” IEEE Access, vol. 6, pp. 37 328–37 348, 2018.

[41] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[42] M. Alrabeiah. [Online]. Available: https://github.com/malrabeiah/
learningCB

[43] Y. Zhang. [Online]. Available: https://github.com/YuZhang-GitHub/
CBL Self Supervised

[44] Alkhateeb, Ahmed and Heath, Robert W., “Frequency Selective Hybrid
Precoding for Limited Feedback Millimeter Wave Systems,” IEEE
Transactions on Communications, vol. 64, no. 5, pp. 1801–1818, 2016.

[45] C. Trabelsi, et al., “Deep Complex Networks,” arXiv e-prints, p.
arXiv:1705.09792, May 2017.

http://www.DeepMIMO.net
http://arxiv.org/abs/1905.03761
http://arxiv.org/abs/1905.03761
https://github.com/malrabeiah/learningCB
https://github.com/malrabeiah/learningCB
https://github.com/YuZhang-GitHub/CBL_Self_Supervised
https://github.com/YuZhang-GitHub/CBL_Self_Supervised

	Introduction
	Prior Work:
	Contribution:

	System and Channel Models
	System Model
	Channel Model
	Arbitrary Array Geometry and Hardware Impairments

	Problem Definition
	Supervised Machine-Learning Solution
	Model Architecture
	Complex-valued fully-connected layer
	Power-computation layer
	Max-pooling layer

	Learning Codebooks
	Desired response
	Model background training

	Learning Quantized Codebook

	Self-Supervised Machine Learning Solution
	Self-supervision via Clustering
	Model Architecture
	Complex-Valued Fully-Connected Layer
	Register
	Power-computation layer
	Softmax and argmax

	Learning Codebooks
	Loss function
	Backpropagation
	Channel Estimator

	Practicality of Proposed Solutions
	Experimental Setup and Model Training
	Communication Scenarios and Datasets
	Model Training

	Simulation Results
	Simulation Results for the Supervised Solution
	Performance in a LOS setting
	Performance in a NLOS setting
	What does the learned codebook look like
	Demonstration of the user distribution awareness

	Simulation Results for the Self-supervised Solution
	Online learning
	Convergence of the self-supervised solution

	Performance Evaluation Under Hardware Impairments

	Conclusion
	Appendix
	Complex Differentiability
	Computing the Partials

	References

