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ABSTRACT: The Golgi apparatus (GA) is the hub of intracellular trafficking, but selectively targeting GA remains a challenge. We
show an unconventional types of peptide thioesters, consisting of an aminoethyl thioester and acting as substrates of thioesterases,
for instantly targeting the GA of cells. The peptide thioesters, above or below their critical micelle concentrations, enter cells mainly
via caveolin-mediated endocytosis or macropinocytosis, respectively. After being hydrolyzed by GA-associated thioesterases, the
resulting thiopeptides form dimers and accumulate in the GA. After saturating the GA, the thiopeptides are enriched in the
endoplasmic reticulum (ER). Their buildup in ER and GA disrupts protein trafficking, thus leading to cell death via multiple
pathways. The peptide thioesters target the GA of a wide variety of cells, including human, murine, and Drosophila cells. Changing -
diphenylalanine to L-diphenylalanine in the peptide maintains the GA-targeting ability. In addition, targeting GA redirects protein
(e.g, NRAS) distribution. This work illustrates a thioesterase-responsive and redox-active molecular platform for targeting the GA

and controlling cell fates.

he Golgi apparatus (GA)"” is an important hub for

different signaling pathways.”™> As an essential compo-
nent of the secretory pathway used by all eukaryotic cells to
distribute membrane and secretory proteins,’ GA is emerging
as important target for understanding and treating illnesses
such as cancer’ and Alzheimer’s disease.® The increasing
understanding of the protein trafficking to and from the GA,
such as the sophisticated delivery of proteins from the
endoplasmic reticulum (ER) to GA,” also highlights a unique
opportunity to develop molecules to target the GA for
modulating cell functions. Although there are several existing
molecular probes for imaging the GA,'”"" they still require
pretreatment,10 take a relativel?r long incubation time," "% or
only respond to certain cells.'"” Thus, there is still an unmet
need to develop molecules for targeting the GA.

Our recent work on thiophosphopeptides instantly targeting
the GA and selectively killing cancer cells'’ reveals two
important insights: (i) an enzymatic reaction enables instant
and efficient GA targeting and (ii) a redox reaction enables the
proper thiopeptides to accumulate in the GA of cells by self-
assembly, dimerization, and a plausible reaction with cysteine-
rich proteins (CRPs). On replacing thiophosphate group with
other sulfur-containing moieties, we unexpectedly found that
fluorescent peptide thioesters instantly target the GA of a wide
variety of cells. Consisting of an aminoethyl thioester as the
enzyme-responsive cap at a terminal of self-assembling p-
diphenylalanine (ff)'* and nitrobenzoxadiazole (NBD) as the
fluorophore at the other end of ff, the peptide thioesters (1 and
3, Scheme 1) fail to undergo an S to N acyl shift'® of the
conventional peptide thioesters used for protein synthesis.'*”"*
The peptide thioester (1 or 3), above or below its critical
micelle concentration (CMC), enters cells mainly via caveolin-
mediated endocytosis or macropinocytosis, respectively
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(Scheme 1). After being hydrolyzed by Golgi-associated
thioesterases, such as PPT1,"” LYPLAL,”® and LYPLA2*
the resulting thiopeptide (2 or 4) (Scheme 1 and Scheme S4)
forms dimers and likely reacts with CRPs in GA, thus
accumulating in the GA. After they saturate the GA, the
peptide thiols are enriched in the ER. At about 5—10 times of
the concentrations used for imaging the GA, the peptide
thioesters build up in the ER and GA, resulting in ER stress,
and disrupt protein trafficking (e.g, NRAS trafficking), thus
resulting in cell death via multiple pathways. While changing ff
to L-diphenylalanine (FF) maintains the GA-targeting ability of
the peptide thioester (5), additional controls (7—13, Scheme
SS), such as replacing the thioester by methylsulfonyl group or
thioether, switching the thioester to a carboxyl ester or amide,
or mutating the p-phenylalanine to D-alanine, fail to target the
GA. 1 instantly targets the GA of a variety of cells, including
human, murine, and Drosophila cells. In addition, 1 redirects
the distribution of NRAS. This work illustrates an unconven-
tional type of self-assembling peptide thioesters as a new and
facile molecular platform for targeting the GA and controlling
cell fates via enzymatic activation and redox reactions in cells.

1 instantly enters the cells, and the fluorescence resulting
from 1 overlaps with that of Golgi-RFP (Figure 1A).
Fluorescence appears in the cytosolic region and at the GA
immediately after the addition of 1, and the GA becomes
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Scheme 1. Enzyme-Responsive Peptide Thioesters
Targeting GAs
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Figure 1. (A) CLSM of Golgi-RFP transfected HeLa treated with 1
(10 #M, 30 min). (B) Single-cell analysis of fluorescence inside and
outside the GA of HeLa treated with 1 (10 #M, 60 min). (C) CMC
of 1. (D) CLSM of HeLa treated with 1 (10 or 2 uM) for 30 min
(scale bar 20 pm).

distinguishable in less than 1 min (Figures S1 and S2 and
Video S1). A single-cell imaging analysis (Figure 1B) confirms
a faster fluorescence increase inside rather than outside the
GA: the fluorescence plateaus in less than 15 min or for longer
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than 45 min at the GA or outside the GA, respectively, and the
plateaus of the fluorescence are higher at the GA in
comparison to those outside the GA. An LC/MS analysis of
the lysate of HeLa cells incubated with 1 for 24 h reveals that
about 60% of the peptide thioester (1) turns into the
corresponding thiol (2) and around 55% of 2 forms a dimer
(Figure S3). The dimers, resulting from intracellular oxidants
that oxidize 2, enhance the accumulation of 2 at the GA. These
results indicate that 1, being deacetylated to give 2,
accumulates primarily at the GA.

1 enters HeLa cells differently below and above its critical
micelle concentration (CMC = 2.1 uM, Figure 1C). mpCD,**
a caveolin-mediated endocytosis (CME) inhibitor, significantly
slows down the fluorescence buildup at the GA of the cell
treated with 10 uM of 1; CytD,”’ a macropinocytosis inhibitor,
dramatically decreases the fluorescence at GA of the cells
incubated with 2 yuM of 1 (Figure S4). Single-cell analyses
(Figures S5—S7) confirm that mfCD is more potent at
inhibiting the GA accumulation in comparison to CytD when
HeLa cells are treated with 10 uM of 1, while CytD is more
potent in the case of 2 yuM of 1. Treating the HeLa cells with
chlorpromazine suggests that 1 hardly or only slightly depends
on clathrin-mediated endocytosis (Figure S8) at 2 and 10 uM,
respectively. These results suggest that the assemblies and
monomers of 1 enter cells mainly via CME and macro-
pinocytosis, respectively.

Thioesterase inhibitors, ML211**7° and DC661,”” by
themselves or in combination, efficiently block 1 accumulating
at the GA (Figures S4, S9, and S10). Meanwhile, neither
inhibitor can block the GA accumulation of a commercial
Golgi dye, C6-NBD-Ceramide™® (Figures S11 and S12).
However, carboxylesterase (CES1) is able to catalyze the
hydrolysis of 1 in a cell-free assay (Figure S13) and pretreating
HeLa cells with the nonspecific esterase inhibitor bis(p-
nitrophenyl) phosphate® hardly decreases the rate of
fluorescence increase from 1 at the GA (Figure S14). These
results suggest that thioesterases (i.e., LYPLA1, LYPLA2, and
PPT1) contribute to the deacetylation of 1 to form 2 and act
as a main control for 1 to target GA.

Fluorescence appears instantly inside cells in less than 1 min
after adding 1 in the culture of HeLa cells (Figure 2A). The
fluorescence at GA increases significantly with the time of
incubation of 1, and the GA can be easily distinguished from
the background in less than 4 min (Figure 2A). There is at
least a 3 times enhancement of the fluorescence intensity at
GA from 1 to 8 min (Figure S15). The fluorescence outside
the GA increases significantly after 16 min, likely due to the
retrograde Golgi to ER trafficking.’® While C6-NBD-
ceramide® shows dim fluorescence over 16 min (Figure
S16), 1 exhibits a superior ability for targeting the GA. Unlike
the thiophosphopeptide,m 1 is able to target the GA of various
cells from different organisms (Figure 2B), such as Homo
sapiens (HeLa, Saos-2, HEK293, MCF-7, HS-5, SJSA-1, and
HepG2), Mus musculus (B16F10), and Drosophila (S2). Single-
cell analyses of fluorescence at the GA (Figure S17) and
CLSM images (Figures S18—S23) of different cell lines
confirm that 1 accumulates at the GA of these cells swiftly. 1
also rapidly enters primary cells, such as neutrophils
(polymorphonuclear leukocytes), and localizes at the GA
(Figure S24). These results establish that 1 is able to target the
GA of a wide variety of cells, likely due to the fact that
thioesterases are essential and ubiquitous.”'

https://doi.org/10.1021/jacs.2c02238
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Figure 2. CLSM images of (A) HeLa treated with 1 for 1, 4, 8, and 16
min and (B) different cells (Saos-2, HEK293, MCF-7, HS-S, SJSA-1,
HepG2, B16F10, and S2) treated with 1 for 8 min ([1] = 10 uM,
scale bar 20 um).

Above 20 uM, 1 significantly inhibits HeLa, HEK293, Saos-
2, MCF-7, and HS-S cells (Figure 3A) with ICy, values of 15.0,
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Figure 3. (A) Cytotoxicity and (B) ICy, of 1 against different cell
lines (HeLa, HEK293, Saos-2, MCE-7, HS-S, SJSA-1, and HepG2).
(C) ICC staining of MCF-7 with NRAS antibody after pretreatment
with or without 1 (10 M, 30 min; scale bar 20 ym).

10.9, 9.5, 14.5, and 14.9 uM, respectively. Several commonly
used inhibitors (Z-VAD-FMK, NAc, Nec-1, DFO, disulfiram,
and PD150606)** of cell death hardly rescue these four cell
lines (Figure S25), indicating that 1 results in cell death via
multiple pathways or possibly a new mechanism. 1 shows
slightly mild cytotoxicity against SJSA-1 cells (IC, = 22.5 M)
and exhibits a rather low inhibitory activity against HepG2
cells, with IC, values of above 100 uM (Figure 3B). These
results c01nc1de with the high level of glutathione (GSH) in
hepatocytes® and in SJSA-1,>* as GSH compromises the
cytotoxicity of the redox-active 2. Depletion of GSH in HepG2
cells by vr-buthionine-sulfoximine (BSO)*® significantly in-
creases the cytotoxicity of 1 against HepG2 cells (ICs, drops to
13.45 uM; Figure S26), which supports the notion that GSH
antagonizes the peptide thioesters.

Because the trafficking of oncogenic NRAS between the GA
and plasma membrane is essential for tumor growth,®® we
determined the intracellular distribution of NRAS of MCF-7
cells. NRAS, being overexpressed in MCEF-7,%" relocates from
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mainly the plasma membrane to overwhelmingly the GA after
the pretreatment of 1 for 30 min (Figure 3C left and middle).
No fluorescence in the NBD channel (green, Figure 3C) after
the standard immunocytochemistry staining excludes the
notion that the redistribution of NRAS is due to bleed-
through. As S-palmitoylation is a critical process for protein
trafﬁcking,38 this result suggests that 1 disrupts GA functions
and interferes with the secretory pathway, which likely
contributes to its cytotoxicity when the accumulation of 1 at
GA reaches a certain threshold.

3, behaving similarly to 1, enters cells in a concentration-
dependent manner (Figures $27—529) and swiftly accumulates
at the GA (Figure S30A and Video S2). Thioesterase inhibitors
slow the GA accumulation of 3 (Figures S31 and S32). The
cytotoxicity of 3 is slightly lower than that of 1, but with a
similar trend (Figure S30B), indicating that (i) the acetyl
thioester is enzyme-responsive on either the C- or N-terminal
of the peptide thioester and (ii) 1 and 3 likely enter and
accumulate at GA via similar mechanisms. S, having FF instead
of ff, accumulates at the GA at a rate similar to that of 1
(Figures S30A and S33 and Video S3). These results suggest
that the cellular uptake of 1, 3, or § and the rapid GA
accumulation of 2, 4, or 6 depend instead on the enzyme
response of the thioester group rather than on their
configurations. The cytotoxicity of § is much lower than that
of 1 (Figure S30B), in agreement with the proteolysis of 5. On
replacement of the thioester with a methylsulfonyl group or a
methyl thioether, respectively (Scheme SS), there is resistance
to enzymatic cleavage (Figure S34) and 7 or 8 fails to
accumulate at the GA (Figures S35—S37). Analogues with the
thioester being replaced with an ester (9) or amide (10)
(Scheme SS) are unable to accumulate at the GA (Figures S35,
$38, and S39). Although cells cleave the ester bond of 9
(Figure S40A), there is little fluorescence at the GA,
confirming that a redox-active thiol is crucial for GA targeting.
When p-dialanine replaces diphenylalanine (11; Scheme S5),
though 11 is enzymatically responsive (Figure S40B), it hardly
enters cells and accumulates at the GA (Figures S35 and S41).
When the ff motif is omitted from 1 (12; Scheme S5) 12
exhibits the intracellular behavior similar to that of 11, not
targeting the GA (Figures S35, S41, and S42). TEM shows that
11 hardly self-assembles while 1 self-assembles into nano-
particles and nanofibers at 20 uM (Figure S43). These results
indicate that self-assembly is essential for the peptide thioesters
to target the GA. 13, with a thioester on a cysteine residue
(Scheme SS) as the enzymatically responsive thioester bond
(Figure S40C), fails to target the GA (Figures S35 and S44).
7—13 exhibits low cytotoxicity against HeLa cells (Figure
S30C), in agreement with their inability to target the GA.

In summary, this work illustrates that several peptide
thioesters undergo enzymatic hydrolysis and instantly accu-
mulate at the GA. Although 2 also accumulates slowly at the
GA,"’ the thioester group, acting as a preform of thiol and one
type of high-energy bond in vivo,”” is a unique and useful
building block for an enzymatic response. This instant GA-
targeting process not only allows the imaging of ER and GA
trafficking®® but also provides new insights into developing
supramolecular assemblies”' ~** for disrupting protein traffick-
ing and further controlling cell fates. Although the detailed
mechanism remains to be further elucidated, dimerization of
the thiopeptides and the likely reaction with CRPs in GA™
contribute to the GA accumulation, providing a new way for
modulating GA signaling cascades.

https://doi.org/10.1021/jacs.2c02238
J. Am. Chem. Soc. 2022, 144, 67096713
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