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Were astronauts forced to land on the surface of Mars using manual control of their
vehicle, they would not have familiar gravitational cues because Mars’ gravity is only
0.38 g. They could become susceptible to spatial disorientation, potentially causing
mission ending crashes. In our earlier studies, we secured blindfolded participants into
a Multi-Axis Rotation System (MARS) device that was programmed to behave like an
inverted pendulum. Participants used a joystick to stabilize around the balance point.
We created a spaceflight analog condition by having participants dynamically balance
in the horizontal roll plane, where they did not tilt relative to the gravitational vertical and
therefore could not use gravitational cues to determine their position. We found 90%
of participants in our spaceflight analog condition reported spatial disorientation and all
of them showed it in their data. There was a high rate of crashing into boundaries that
were set at + 60° from the balance point. Our goal was to see whether we could use
deep learning to predict the occurrence of crashes before they happened. We used
stacked gated recurrent units (GRU) to predict crash events 800 ms in advance with an
AUC (area under the curve) value of 99%. When we prioritized reducing false negatives
we found it resulted in more false positives. We found that false negatives occurred
when participants made destabilizing joystick deflections that rapidly moved the MARS
away from the balance point. These unpredictable destabilizing joystick deflections,
which occurred in the duration of time after the input data, are likely a result of spatial
disorientation. If our model could work in real time, we calculated that immediate human
action would result in the prevention of 80.7% of crashes, however, if we accounted for
human reaction times (~400 ms), only 30.3% of crashes could be prevented, suggesting
that one solution could be an Al taking temporary control of the spacecraft during
these moments.

Keywords: spaceflight analog, crash prediction, spatial disorientation (SD), dynamic balance, vehicle control,
deep learning—artificial neural network (DL-ANN), vestibular

INTRODUCTION

Spatial disorientation occurs when pilots have an inaccurate perception of their position, motion or
attitude and is caused by a variety of factors (Poisson and Miller, 2014). Studies have estimated that
90-100% of pilots have experienced it (Newman, 2007; Gibb et al., 2011). A majority of fatal aircraft
accidents caused by spatial disorientation occur when pilots are unaware that they are disoriented
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(Braithwaite et al., 1998). Astronauts will similarly be susceptible
to spatial disorientation during gravitational transitions such
as when landing on the surface of a planet or the Moon
(Shelhamer, 2015; Clément et al., 2020) because they will not
have access to familiar gravitational cues and they will have
previously undergone sensorimotor adaptions to weightlessness
which are not fully understood. Long duration spaceflight will
also add multiple simultaneous stressors, such as radiation,
psychological problems (e.g., isolation, anxiety, depression),
physiological changes (cardiovascular, bone, muscle, visual, and
vestibular systems), which may heighten the effects of spatial
disorientation (Clément et al., 2020). Despite improvements in
technology, rates of spatial disorientation are not significantly
reducing (Daiker et al., 2018). There are very few studies that have
attempted to develop an alerting system that can predict crashes
when a pilot is disoriented. Daiker et al. (2018) proposed a proof-
of-concept idea for NASAs Cost Effective Devices for Alerting
Research (CEDAR), where they used a model of the vestibular
system, aircraft dynamics, and sensors to create a predictive
alerting model. Though deep learning has been used successfully
in predicting the outcome of manual control errors (Zgonnikova
et al., 2016), no study has used deep learning methods such as
artificial neural networks to predict crashes in situations where
participants are spatially disoriented. Our study is in line with
the NASA Human Research Program Roadmap revised July
2021 (NASA, 2021) that lists “Sensorimotor Manual Control
Countermeasure Development” as a critical task and designates
two critical research gaps: (1) “Characterize the effects of short
and long-duration weightlessness on manual control (fine motor
control) after G transitions.” (SM-102), and (2) “Develop and test
manual control countermeasures, such as vibrotactile assistance
vest, and other human factors aids” (SM-202). The Roadmap
citation describing such countermeasures explicitly mentions the
use of Al targeting human-automation task sharing. Attempts to
address these gaps under operational spaceflight conditions have
been hampered by the limited access to astronauts close to the
G transition of landing (Moore et al., 2019), and the Roadmap
explicitly calls for studies like ours with relevant partial analogs.
We created a spaceflight analog task that led to disorientation
by securing blindfolded participants into our Multi-axis Rotation
System Device (MARS) in the horizontal roll plane (Figure 1).
In this plane, participants do not tilt relative to the gravitational
vertical and as a result cannot use gravity dependent otolith and
somatosensory shear forces to obtain a sense of their angular
position. To determine their angular position, they can only
use motion cues detected by the semicircular canals and rapidly
adapting somatosensory receptors. We programmed the MARS
with inverted pendulum dynamics because of its relevance to
unstable vehicle control. Participants were instructed to use an
attached joystick to stabilize themselves around the balance point
(6 = 0°) (Panic et al., 2015, 2017; Vimal et al., 2016, 2017, 2018,
2019). Crash boundaries were set at &= 60° from the balance
point, and when it was reached the MARS would reset back to
the balance point. In this condition, 90% of participants reported
spatial disorientation and all of them showed it in their data
as a pattern of positional drifting. Compared to the control
condition (Vertical Roll Plane, where gravitational cues from

FIGURE 1 | MARS in the horizontal roll plane with the balance point at 6 = 0°.

tilt were available), the rate of crashes was significantly higher
and collectively participants in the horizontal roll plane showed
poor performance and minimal learning across trials (Vimal
et al, 2017, 2019). Our goal was to train and compare recurrent
neural networks (RNN) and non-RNN deep learning models to
predict the occurrence of crashes before they happened in our
disorienting spaceflight analog task.

MATERIALS AND METHODS

Data Collection
To build the deep learning models we used data from Vimal et al.
(2017; 2019; 2020).

Participants

34 healthy adult participants (18 females and 16 males, 20.4 & 2.0
years old) gave written consent to participate in the experiments
approved by the Brandeis Institutional Review Board. In our
prior work (Vimal et al., 2020) we showed that these participants
span a large range of learning and performance and could
be clustered into three groups: Proficient, Somewhat Proficient
and Not Proficient. The Proficient group showed significant
learning across trials for majority of our metrics, whereas the
Not-Proficient group acquired a suboptimal strategy that led to
worsening performance in most metrics over time.

Equipment

The MARS was programmed with inverted pendulum dynamics
about a horizontal roll axis (Figure 1) using the equation, 6 =
kpsin®, where 6 is the angular deviation from the direction of
balance (DOB) in degrees, and kp is the pendulum constant.
To make the task challenging, we used a pendulum constant of
600°/s* (*0.52 Hz) based on our prior work (Vimal et al., 2016,
2017, 2018, 2019). “Crash” boundaries were set at &= 60° from the
direction of balance. Angular velocity was limited to 4= 300°/s,
and angular acceleration to 4 180°/s2. At every time step (~0.02
s), a velocity increment proportional to the joystick deflection
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was added to the MARS velocity and computed by a Runge-Kutta
RK4 solver (Lambert, 1973) to calculate the new MARS angular
position and velocity.

Procedure
Participants were blindfolded and wore noise canceling
headphones that played white noise. They were secured
in the MARS with a five-point harness, a lap belt, lateral
support plates and foot straps (Figure 1). Their heads were
stabilized using a U-shaped frame cushioned with foam that
was attached to the MARS. To prevent visual or auditory cues,
they were blindfolded and wore earplugs and noise canceling
headphones that played white noise. A Logitech Freedom 2.4
cordless joystick was attached to the right arm rest and a “kill
switch” that the participant could press to stop the experiment
was attached to the left arm rest. No participant ever used
the kill switch.

Prior to data collection, participants watched a video of
a person balancing the MARS in the horizontal roll plane
and of the MARS reaching the “crash boundaries” at £ 60°
from the balance point and then resetting. They were told
that the MARS behaved like an inverted pendulum and they
were instructed to use the joystick to minimize oscillations
about the balance point, which was always at 0° (their starting
position). The trial started with an auditory “begin” and
whenever participants reached the crash boundaries, they heard
“lost control, resetting.” As the MARS automatically reset to
the start position at a rate of 5°/s, the joystick was disabled.
Once at the reset position, which was always 0°, they heard an
auditory “begin” command and the joystick was simultaneously
enabled. Participants balanced in two sessions conducted on
consecutive days. On each day they underwent five blocks of
four trials, with each trial consisting of 100 cumulative seconds
of balancing, excluding the reset times after crashes, or a total
elapsed time of 150 s. After every four trials participants were
brought to an upright orientation and were given a 2 min
break during which they were questioned about any symptoms
of motion sickness. They were given no verbal feedback about
their performance.

Crash Prediction by Deep Learning

Our goal was to predict the occurrence of crashes before they
happened. We used a classification approach where we took
windows of data (MARS angular position and velocity, and
joystick deflection) and then predicted whether a crash would
happen later or not (i.e., classified the data segment as leading to a
crash or non-crash). We trained deep learning models, which is a
machine learning method that uses models consisting of artificial
neural networks. Deep learning models can automatically extract
often obscured patterns in intricate, high-dimensional data of
large quantity (LeCun et al., 2015), thereby qualifying as excellent
choices for our classification task.

Preprocessing Data Into Episodes

First we extracted all of the segments of data (angular position,
velocity, and joystick deflection) that were continuous, under
human control, and did not have any crashes. We refer to these

segments of data as episodes and Figure 2 provides an example,
which shows the characteristic pattern of positional drifting (in
black) where a representative participant oscillates away from
the balance point at 0° until they hit the crash boundary at 60°.
By this definition, there were 21,469 episodes in total. We split
all of the episodes so that 90% of them (19,322 in total) were
used as the training set to train the deep learning models and
the rest (2,147 in total) were used as the test set to evaluate the
effectiveness of the models.

For every episode, to generate training samples, we slid a
fixed size window from a crash event to the next one and
extracted the MARS angular position, MARS angular velocity
and joystick deflections (Figure 3). This process excluded the
windows that overlapped with the MARS’ resetting times (after
a crash, the MARS resets to the 0° point and participants
have no control). A sample was labeled as a “crash” if a crash
happened within the “time-in-advance” interval, e.g., in Figure 3,
“sliding window 2” would be labeled as a crash. Otherwise, it
was labeled as a “non-crash,” e.g., sliding window 1 in Figure 3.
These windows were used as input and the labels as the correct
answer, in order to either train the model to predict the correct
label or to evaluate whether the trained model predicted the
label correctly.

Previous work found, unexpectedly, that a percentage of
joystick deflections were made in the same direction as MARS
angular position and velocity, accelerating the MARS toward
rather than away from the crash boundaries. These are called
“destabilizing joystick deflections” and are indicative of non-
proficient control patterns (Vimal et al., 2020). Because of their
importance, we engineered destabilizing joystick deflections as
an additional feature where it was defined as a Boolean feature
that was true if position, velocity, and joystick deflection all had
the same sign. That is, for any given sliding window, for every
time point, we extracted MARS angular position, velocity and
joystick deflections, and in addition, for every time point, we had
either a 0 (not a destabilizing joystick point) or a 1 (destabilizing
joystick point).

To prevent data leakage where portions of the same data were
used in both the training and testing phases, we made certain that
all sliding window samples from a given episode were either in
the training pool or the testing pool, but not both.

Deep Learning Algorithms

There exist a wide variety of deep learning models, each suitable
for a different range of tasks. For our classification task on
time-series data, to enable shorter latency in future real-world
implementations where computational resources may be limited,
we opted for models with lower complexity and implemented
multilayer perceptron (MLP), convolutional neural network
(CNN), long short-term memory (LSTM), gated recurrent unit
(GRU), stacked LSTM and stacked GRU. All models mentioned
in this paper were built with Keras and TensorFlow and used
binary cross-entropy as the loss function and sigmoid as the
activation function for the final output layer. The descriptions
of the hardware and the training procedure can be found in
Supplementary Material.
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FIGURE 2 | A segment of trial data from a representative participant showing angular position (black), angular velocity (red) and joystick deflection (blue). The
characteristic pattern of positional drifting can be seen to end with the participant hitting the crash boundary at 60°.
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FIGURE 3 | When training the model, sliding windows between crash events sent data to the model along with either a 0 or 1 to indicate whether a crash occurred
in the time-in-advance. During testing, the sliding window inputted data to the model and the model output whether a crash would occur or not in the

Multilayer Perceptron

The MLP is the classical type of deep learning neural network.
It usually contains a few feed-forward fully connected layers of
neurons (Rosenblatt, 1961).

After manual tuning, the chosen MLP consisted of five
layers—an input layer, three hidden layers, and an output layer.
The input layer flattens the input data matrix into a vector.
The vector is then passed through the hidden layers, which
each has 50 neurons and rectified linear unit (ReLU) as its
activation function.

Convolutional Neural Network

The CNN works well with data that has spatial relationship.
It was originally developed for image processing (LeCun et al.,
1989) and can also be applied to processing temporal sequences
(e.g., Kim, 2014). It uses convolution kernels to slide along input

sequences and pooling layers to down-sample kernel output;
CNN therefore can provide time-invariant responses, meaning
that it can be sensitive to similar input patterns that appear at
different time steps.

The structure of the optimized CNN in this experiment was as
follows: the first convolution layer (implemented with ConvlD)
had 128 filters of size 3 and a stride of 1, with ReLU as its
activation function, and padding such that the output had the
same length as the input; this convolution layer was then followed
by a max pooling layer of size 2. Then, the output of the first max
pooling layer was passed to another set of convolution layer and
max pooling layer that was the same as the first convolution layer
except for having 128 files of size 4. Before the final output layer,
the result of the second max pooling layer was then flattened and
passed to a feedforward neural network with 100 neurons and
ReLU as its activation function.
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Long Short-Term Memory

The LSTM model is one type of recurrent neural network
(RNN) which feeds the outputs, namely cell state and hidden
state, of previous time steps back onto itself (Hochreiter and
Schmidhuber, 1997). An LSTM module contains three gates
(i.e., input gate, output gate, and forget gate) which control the
information flow throughout the module and allow it to keep
track of longer-term dependencies in the input sequences in
contrast to classic recurrent neural networks.

The following describes the configuration of the LSTM model
after manual optimization. The LSTM had a hidden layer of
size 100, and the final hidden state output of the LSTM model
was passed to a dropout layer with a rate of 0.5, followed by
a fully connected layer of size 128 with Rectified Linear Unit
(ReLU) activations. The final output layer was added after the
tully connected layer.

Gated Recurrent Unit

The GRU model is another type of RNN, similar to LSTM in
terms of using gates to control its internal information flows.
Unlike LSTM, GRU does not have a separate cell state and only
has a hidden state (Cho et al., 2014). This simplification makes a
GRU have fewer parameters than a LSTM, and hence sometimes
easier to train.

The following describes the configuration of the GRU model
after manual optimization. Similar to the LSTM model in our
experiment, the GRU module had a hidden layer of size 100, and
its output was passed to a dropout layer with a rate of 0.5, followed
by a fully connected layer of size 128 with Rectified Linear Unit
(ReLU) activations and the final output layer.

Stacked Recurrent Neural Networks

In addition to using a single RNN module in the mode, we also
experimented with including additional modules stacked on top
of the original one, namely, stacked LSTM and stacked GRU.

A stacked LSTM stacks multiple LSTMs on top of one another
(Pascanu et al,, 2013; Sha and Hong, 2017; Peters et al., 2018).
A LSTM in a top layer takes the hidden state outputs of the
LSTM below it and feeds its outputs to another LSTM above it.
This arrangement allows the whole model to capture longer and
multiple-resolution time-dependencies.

We trained with a double-layer stacked LSTM, which had two
LSTM modules stacked as described. Both modules had hidden
states of size 100. We then took the hidden state output of the top-
layer LSTM and fed it to a fully connected layer of 128 neurons
with ReLU activations, followed by the final output layer.

A stacked GRU adopts the same stacked architecture of a
stacked LSTM but with two GRU modules (Sun et al., 2020).

The double-layer stacked GRU model trained in our
experiment was similar to the stacked LSTM model with both
modules having hidden states of size 100. The final hidden state
output passed to a 128-neuron, ReLU activated fully connected
layer, then eventually passed to the final output layer.

Non-deep Baseline Model

In addition to the deep learning algorithms, we also implemented
the simple linear classifier (Cox, 1958), which transforms a
simple linear combination of the input features to the output

by a sigmoid function. This model provides a baseline for our
comparisons. We will demonstrate that simple linear models
do not perform as well as deep learning models in complex
tasks such as our spaceflight analog condition. A significant
advantage of using deep learning approaches is that they
can be applied to the raw inputs and achieve similar or
better performance.

Cross Validation

To determine how well our models were performing against each
other on the training set and how the best model could perform
on an unseen test set, we evaluated the deep learning classifiers
with 10-fold cross-validation (CV). In 10-fold CV, the training
dataset is divided into 10 non-overlapping subsets. We used each
subset to evaluate a model trained on the other nine subsets.
Finally, we took the metrics averaged over 10 folds as an estimate
of how the model would perform on the entire training set. After
we identified the best model with the highest CV metrics, we
kept the model from the best performing fold for final evaluation
on the test set.

Evaluation of Model Performance

We evaluated model performance initially with “Area Under the
Receiver Operating Characteristic Curve” (AUC), a threshold
invariant metric for model selection during 10-fold CV. In our
case, AUC represents the probability that the model ranks a
random non-crash example as less likely to crash than a random
crash sample, which is the desired behavior. Therefore, a higher
AUC would mean that the model is better trained and separates
crash samples more clearly from non-crash samples.

While high AUC may reflect how well the model distinguishes
the positive and negative labels, it does not provide a full view
of how useful the model would be in practice, where cost-
driven threshold tuning is crucial. For example, in aviation and
spaceflight applications, false negatives will have much higher
costs than false positives. Table 1 illustrates the four types of
predictions. False negatives, where the model incorrectly predicts
that no crash will occur, may lead to death, depending on how
the algorithm decision is implemented (warning to pilots vs. pilot
override). In contrast, false positives, where the model incorrectly
predicts that a crash will occur, will result in the pilot being
on alert. Therefore, in our spaceflight analog task, we want to
minimize false negatives. There are two measures that allow us
to quantify these concepts:

Recall is defined by:

True Positive
Recall =

True Positive + False Negative

TABLE 1 | Definition of the four types of prediction.

Actual
non-crash

Actual crash

Model predicted crash True positive False positive

Model predicted non-crash False negative True negative
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Thus, a higher recall in our application means a higher percentage
of all crash samples being correctly classified as crashes by the
model, hence fewer missed crashes.

Precision is defined by:

. True Positive
Precision =

True Positive + False Positive

In our application, a higher precision means higher percentage of
the model’s crash predictions are correct.

When evaluating the same model, as we move the model’s
decision threshold to different values, we would have different
pairs of precision and recall values. One common way to
evaluate using these threshold sensitive metrics is to set a
predefined value on either precision or recall and calculate the
corresponding value of the other metric. Based on the cost
analysis and definitions above, when evaluating the performance
of our models, we prioritized minimizing false negatives and
we preferred models with a high recall value, which we set
to be 95%. At a recall of 95%, we then looked at which
models had greater precision and we refer to this selection
criteria as P@0.95R.

RESULTS

Model Selection

We applied 10-fold cross-validation, AUC, and precision at
recall to evaluate the performance of our approach. In addition
to prediction accuracy, we also wanted to predict crashes as
early as possible.

Table 2 shows the P@0.95R averaged over 10-fold CV
for each window size, time-in-advance duration, and model
type combination. We found that the simple linear model
performed extremely poorly when compared to the deep
learning models when there are only raw machine readings
(i.e., angular position and velocity, joystick deflection) and
one manually engineered Boolean feature (destabilizing joystick
deflections) available without extensive feature engineering.
The advantage of using deep learning models is that they
can automatically learn representations (i.e., features) from the
same raw data with minimal feature engineering and achieve
much better results.

Among the deep learning models in Table 2, we found lower
precision values for the set value of 95% recall for non-RNN
such as MLP and CNN. We determined stacked GRU to be
the best based on the following reasons. Overall, stacked-RNNs
performed somewhat better than single-layer RNNs in terms of
CV results. Furthermore, we chose stacked GRU for detailed
examination because the time to train a stacked GRU (average
12.63 h per 10-fold CV) is much shorter than stacked LSTM
(average 15.01 h per 10-fold CV), without notable degradation
in evaluation metrics. Therefore we chose stacked GRU because
it performed better than single layer RNNs and performed at
the same level as LSTM while taking less computational time.
Figure 4 shows the detailed architecture of the chosen stacked-
GRU model.

TABLE 2 | Precision at 0.95 recall (P@0.95R) scores averaged over 10-fold
cross-validation for each model type, window size, and time-in-advance
combinations.

Models Window P@0.95R at time-in-advance (%)
size
300 ms 600 ms 1,000 ms
Simple linear model 500 ms 2.95 + 0.51 328 +0.21 525+0.33
1,000 ms 2.72 +£0.57 3.37 £ 0.15 5.4 +0.38
1,500 ms 2.82+0.6 35+0.16 543+0.27
MLP 500 ms 78.63+6.01 66.9+243 29.01+1.45
1,000 ms  85.98+531 67.14+299 30.99 + 1.17
1,500 ms 7423 +14.88 65.79 £3.71 31.19+ 1.67
CNN 500 ms 84.01 &+ 3.89 65.45+3 28724+ 1.71
1,000 ms 82.25+534 6576+4.86 3047 +1.32
1,500 ms 8525+596 67.58+395 3228+1.4
LST™M 500 ms 92.02+ 3.6 7541 +£391 31.71+1.62
1,000 ms  90.38+5.99 7516 +3.11 34.34 +2.49
1,500 ms 91.08+563 7294 +268 3424418
GRU 500 ms 91.94 4+ 573 75.05+3.26 3224227
1,000 ms  91.44 £3.32 7436 +323 34.05+217
1,500 ms  90.62 +£5.89 71.35+294 34.35+ 1.61
Stacked LSTM 500 ms 89.8+7.85 7521+248 3259+ 1.72
1,000 ms  93.34 £3.25 76.18 +£3.99 34.74 +2.36
1,500 ms 9246 +3.76 76.88+1.32 34.93+ 1.64
Stacked GRU 500 ms 89.7 £6.58 76.63+2.63 32.83+1.45
1,000 ms  92.02 +£498 76.47 £2.62 34.77 +£1.84
1,600 ms 9042 +6.73 7492 +1.74 3581 +1.87

Time-in-Advance Prediction

We chose a data window size of 1,000 ms to capture enough
joystick behavior because participants on average make full
joystick deflections at 1-2 Hz (Vimal et al., 2016, 2017, 2018).
Additionally, we did not find large changes in model performance
with different data window sizes (see Supplementary Figure 1).

We found a tradeoff between recall and precision in all
model types, where setting a higher recall empirically resulted
in a lower precision (e.g., stacked GRU as shown in Figure 5).
Greater time-in-advance durations resulted in lower values of
precision (Figure 5).

We wanted time-in-advance duration to be as long as possible,
so that crash prediction can be generated as soon as possible. As
a summary number for prediction capability, we chose 800 ms as
the best time-in-advance duration which resulted in a 10-fold CV
AUC of 0.9927 £ 0.0006 and P@0.95R of 0.5432 =+ 0.0203. The
model takes on average 30 ms to classify one data window on a
2.5 GHz Intel Xeon CPU, which should impose few latency issues
on real-time implementation.

Analysis of Results at High Recall

To further understand our model’s capabilities, we examined
those crashes that were misclassified as non-crash (i.e., false
negatives) by the model even at a recall as high as 95%. In
Figure 6, we plotted the rate of the model misclassifying crash
samples as non-crash (blue) and non-crash samples as crashes
(orange), grouped by the farthest the participant had been from

Frontiers in Physiology | www.frontiersin.org

January 2022 | Volume 13 | Article 806357



Wang et al.

Crash Prediction Using Deep Learning

A GRU Unit

h Vil

h

t-1

Hidden state of
previous time point

t

Hidden state at
time

'\‘_ i

Input at time ¢ X,

e Model unrolled

K, N

g
[ Gru, ]:.I GRU,
[

b,

!—.— v s {iﬂg

—h{ Fully Connected Layer ]

| Output Layer i

[

'ﬁ.l h‘ Jri:

[ oru, | Gru, R A Prediction
T e 3 -
X Xee1 Xebte1 Time(sec)

—

window size

FIGURE 4 | The final crash prediction model. (A) A close-up of the GRU cell; pink circles represent element-wise matrix operations, yellow blocks represent the
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the balance point in the data window, i.e., the largest magnitude
of angular position. We found that the crashes which were
the hardest for the model to correctly identify were those that
occurred when participants were near the balance point (0°)
where over 46% of crash samples were mislabeled as non-crashes.

To understand what caused a crash at such a seemingly safe
location of the 0° point, we examined the data in the 800 ms
time-in-advance duration following these false negative inputs,
i.e., outside of the 1,000 ms sliding window data available to the
model. We found that participants were making destabilizing
joystick deflections in the time-in-advance duration that led to
the crashes. Table 3 shows that the percentage of destabilizing
joystick deflections in the time-in-advance duration was the
greatest for false negatives (Table 3), meaning that participants
often made unexpected destabilizing joystick deflections in the
time-in-advance portion which was unavailable to the model.
This suggests that the reason the model predicted “no crash” was
because the participants were performing well near the balance

point but then unexpectedly initiated a destabilizing joystick
deflection because they were disoriented and did not have a
clear sense of their orientation. True positives had the smallest
percentage because critical errors had already been made which
would lead to a crash.

Figure 6 also revealed that false positives (model incorrectly
predicted a crash would happen) were more likely to occur
at large angular positions near the crash boundaries (£60°).
Because we prioritized reducing false negatives (having a high
recall), we had a higher rate of false positives (low precision). To
further understand when false positives occurred, in Figure 7,
we created a density map of angular position and velocity.
We found that false positives had higher angular position and
velocity, suggesting that the model was identifying dangerous
behavior as being potential places of crashes. Similar results
can be seen for true positives (model correctly predicts a crash
will occur) because the greatest danger was at high values of
position and velocity.
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DISCUSSION

Our objective was to create a model that could predict the
occurrence of crashes in a stabilization task where participants
were spatially disoriented similar to what astronauts may
experience. We used the angular position, velocity and joystick
deflections from the stabilization task to train a stacked GRU
model to predict whether a crash would occur at a certain
future time point. We chose stacked GRU over other models
because its recurrent neural network (RNN) structure gave it an
advantage for analyzing our time sequence data over non-RNN
methods. Within the RNN methods, stacked GRU performed
slightly more efficiently (Table 2). Based on the obtained AUC
(Area Under the Receiver Operating Characteristic Curve), we
found that our model performs well at predicting crashes as
early as 1,500 ms before (Supplementary Figure 1). However,
for aviation and spaceflight applications, false negative errors
(model incorrectly predicts no crash) would be considered much
worse than false positive errors (model incorrectly predicts that a
crash will occur). For this reason we prioritized minimizing false
negatives by setting the recall very high (95%), which resulted in
a higher rate of false positives (i.e., lower precision, Figure 5).
Please refer to the equations in section “Evaluation of Model
Performance” for the definitions of precision and recall.

TABLE 3 | Percentage of predictions containing unexpected destabilizing joystick
deflection in time-in-advance duration.

Type of prediction False False True True
negative positive negative positive
% of DJD 67.50% 58.92% 53.94% 33.64%

To understand and characterize the types of crashes the model
could not predict even at a high recall value, we plotted the rate
of the model misclassifying crash samples as being non-crashes
(Figure 6). We were surprised to find that many of the false
negative crashes started near the equilibrium point (0°) which
many would consider the safest place to be. We discovered that
the model’s inability to predict this group of false negative crashes
was because participants made unexpected destabilizing joystick
deflections in the time-in-advance duration (which the model did
not have access to) that caused the device to rapidly accelerate
away from the balance point (Table 3). These destabilizing
joystick deflections were likely made because participants in the
horizontal roll plane are often disoriented and have inaccurate
perception of their angular position (Vimal et al., 2021).

Because we chose to set a high recall (minimizing false
negatives) we had a high rate of false positives (Figure 5). We
were curious about when the model classified false positives.
Figure 6 reveals that false positives were occurring at large
values of angular position near the crash boundaries (+ 60°).
In Figure 7, we found that false positives occurred at very large
magnitudes of angular position and velocity. For this reason, it
is possible that false positives could serve as a warning signal
for pilots who may be disoriented and reach dangerous angular
deviations and velocities. Having too high a false positive rate
could result in pilots losing trust with the model. It is not well
understood what values of false positives will maintain trust
between pilots and Artificial Intelligence (AI), or what level of
trust in the AI is useful because case studies show that both
too much and too little trust in the technology can lead to fatal
accidents in ships and aircraft (Wickens, 1995; Dalcher, 2007;
Hoff and Bashir, 2015). Our future work will explore the role of
trust and the rate of acceptable false positives.
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Figure 5 shows that the model can predict a crash 800 ms in
advance at a high recall (0.95 recall and 0.50 precision). However,
would a warning signal at this point prevent any crashes? In
Figure 8 we plotted the angular position and velocity 800 ms
before all crashes. In our previous work, we had measured
boundaries, which if reached, would result in unavoidable crashes
(Vimal et al., 2016, 2017). All points in Figure 8 that are inside the
boundaries are therefore considered recoverable.

In Table 4, we found that if immediate control were taken,
80.7% of crashes could be avoided. Humans can respond to
stimuli in 250 ms (Barnett-Cowan and Harris, 2009); however, to
respond to more complex cues that require joystick deflections,
participants would likely need 400 ms (Berryhill et al., 2005).
Table 4 shows that with increasing reaction times, receiving a
warning would not be sufficient to prevent crashes. Therefore
because of the low precision value and short reaction time, our
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model would not be deployable in a purely human controlled
situation. However, this could be resolved if the AI system took
temporary control of the spacecraft or aircraft. For example,
Figure 5 shows that with a 400 ms time-in-advance duration, we
can obtain a recall value of 95% and a precision value of 92%.
Additionally, as mentioned above, many false positives occur
at large values of angular position and velocity (Figure 7). In
future work, in addition to the deep learning crash detection
model, we will also create a warning system to detect dangerous
conditions such as large values of angular position and velocity,
which will further reduce the false positives and therefore
increase the precision.

Our current model is trained on data related to MARS
“crashes.” However when away from Earth, in a spaceflight
condition, astronauts will not be able to safely acquire significant
data on crashes. In future studies, we will train the model
to identify different levels of danger (as opposed to only
crashes), such as poor patterns of behavior (e.g., destabilizing
joystick deflections) and dangerous situations (e.g., high angular
positions and velocities). In practice, this would mean that
as astronauts acquire new data, which can include suboptimal
performance, our methodology could be used to train the model
and set parameters that identify poor performance or they
could label it themselves. In the future, we aim to communicate
the warnings generated from the deep learning model as well
as body orientation through vibrotactile feedback which has

TABLE 4 | Percentage of avoidable crashes reduces as prediction time elapses.

Time after 0ms 200 ms 400 ms 600 ms 800 ms
window ends
% savable 80.71% 55.42% 30.30% 8.54% 0%

been previously shown to be useful for preventing spatial
disorientation during air flight (Rupert, 2000).

CONCLUSION

Some studies estimate 90-100% of pilots have experienced
spatial disorientation and it is a leading cause of fatal aircraft
accidents (Newman, 2007; Gibb et al, 2011). In the present
study, we used data from a spaceflight analog balancing task
that reliably led to spatial disorientation and loss of control.
The deep learning and AI communities have explored problems
related to crash avoidance for conventional ground vehicles
(Peng et al, 2019), autonomous vehicles (Perumal et al,
2021), unmanned aerial vehicles (Gandhi et al., 2017), ships
(Perera, 2018), swarming systems (Lan et al., 2020), and aircraft
collisions with other aircraft (Julian et al., 2019). However,
no one to our knowledge has used deep learning to predict
the occurrence of crashes in a novel analog condition where
participants experience disorientation similar to what pilots and
astronauts may experience.

Space exploration will often demand astronauts to solve
problems independently because of factors such as time
delays in communication with Earth (Cooke and Hine,
2002). Additionally, because astronauts will be exploring novel
environments, optimal solutions to problems will not be known.
These problems can arise both in the short term, such as spatial
disorientation experienced during gravitational transitions and
in the longer term such as effects to the brain from sustained
long duration spaceflight (Roberts et al., 2017). The consequences
this will have on spaceflight are not fully understood especially
when combined with multiple simultaneous stressors caused by
factors such as radiation, psychological and physiological changes
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(Clément et al., 2020). Therefore, it is important to develop
countermeasures such as artificial intelligence systems that are
tested under a range of spaceflight analog conditions on Earth
and can learn and adapt as astronauts collect data in space.

In our approach we develop an artificial intelligence system
that does not have prior knowledge of the paradigm (such
as inverted pendulum dynamics and the human vestibular
system) and is not trained on optimal behavior (such as in
the vertical roll plane where participants have task relevant
gravitational cues). Instead our model is trained on data obtained
from our disorienting spaceflight analog task. Because our
model did not rely on detailed knowledge of the paradigm it
suggests that this methodology could be applied to other novel
and disorienting conditions such as drifting during brownout
(Gaydos et al., 2012), loss of control in human postural balancing
in artificial gravity (Bakshi et al., 2020) or from vestibular deficits
(Lawson et al., 2016).
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