
Model-free Control Design Using Policy Gradient Reinforcement
Learning in LPV Framework

Yajie Bao and Javad Mohammadpour Velni

Abstract— This paper presents an off-policy policy gradient
reinforcement learning (RL) approach to control nonlinear
systems in linear parameter-varying (LPV) framework. The
(parameter-varying) controller is learned from the closed-loop
trajectories using off-policy actor-critic methods for RL, instead
of being designed based on the system model. To decrease
constraint violation (and hence improve safety), exploration
around a valid control sequence is proposed to facilitate
learning before applying the real policy. Additionally, the valid
control sequence is used to determine the complexity of the
actor and critic neural networks (NN). The uncertainties in the
evolution of LPV scheduling variables are tackled by generating
episodes with varying scheduling trajectories. Adapting to
unseen scheduling signals is empirically investigated and fine-
tuning is used to refine the learned controller. Furthermore, the
prior knowledge of the control law (e.g., static state feedback) is
embedded in designing the structure of actor NN. Experiments
using two numerical examples and a control moment gyroscope
(CMG) simulation model illustrate the success of the proposed
approach for stabilization and tracking control in the presence
of uncertainty in LPV scheduling variables.

I. INTRODUCTION

Linear parameter-varying (LPV) framework has been a
popular approach to model nonlinear dynamical systems
in terms of parametric linear models that depend on ex-
ternal scheduling variables [1]. More recently, data-driven
methods have been developed for global identification of
state-space LPV models with uncertainty quantification using
only input/output data [2]. In an LPV model, the dynamical
mapping between the control inputs and the outputs is linear,
which facilitates model-based control synthesis. However,
this mapping depends on the scheduling variables, which
are used to capture nonlinear behaviors. Most works on
LPV identification and control assume an affine scheduling
dependency, which limits the expressiveness of models and
the scope of application. Arbitrary scheduling dependency
can be learned from data [3], [4], [5] but increases the
complexity of mathematical analysis.

For control design using LPV models, there are several
sources of uncertainty that include disturbance, noise, plant-
model mismatch, and uncertainties in the evolution of the
scheduling variables. Generally, the scheduling variables can
be measured at current time instant but unknown in the
future. Prior knowledge on the scheduling variables (e.g.,
rate-of-variation) can be used to reduce the uncertainty [6].

This work was financially supported by the United States National
Science Foundation under award #1912757.

The authors are with School of Electrical & Computer
Engineering, University of Georgia, Athens, GA 30602
yajie.bao@uga.edu,javadm@uga.edu.

Using constant scheduling variables within the prediction
horizon in the design of model predictive control (MPC) can
work for slowly varying scheduling variables but degrades
the control performance [7]. To cope with the scheduling
uncertainty, robust and stochastic control design are then
needed. The authors in [6] presented a tube-based MPC
design approach for stabilizing constrained LPV models
with affine scheduling dependency as a more conservative
but implementable approximation of the min–max feedback
control problem [8]. Instead, [9] proposed a stochastic MPC
approach for stabilizing constrained LPV systems with arbi-
trary scheduling dependency using scenario optimization.

Model-based control depends on the accuracy and is
subject to the complexity of the model while model-free
control can use the trajectories of systems to directly design
controller without the need for model identification. For
instance, our recent work in [2], [5] used NN to identify
LPV models and achieved high accuracy; but unfortunately,
the approaches in [6] that assumes an affine scheduling de-
pendency and [9] that assumes that terminal set and terminal
control law exist cannot be directly applied to synthesize a
controller based on the identified NN-based LPV models.
This is because the identified models are not affine and
the terminal set and terminal control law are difficult to
compute due to the high complexity of the learned NN-based
models (it should be noted that data-driven methods can
be developed to approximate the terminal set and terminal
control law, but that is beyond the scope of this paper).
Reinforcement learning (RL) can therefore be used to learn
a controller from the closed-loop trajectories. This paper
aims to investigate the application of model-free RL for both
stabilization and tracking control of (generally) nonlinear
systems in LPV framework.

Classical RL assumes a stationary environment model (i.e.,
the transition probability and reward functions do not vary
with time) and finds a sequence of actions (i.e., a policy,
a.k.a. control law) for the agent such that the reward function
is optimized in an average sense for every initial state of
the system. However, LPV models vary with the scheduling
variables, resulting in dynamically varying environments.
To adapt to the varying contexts, existing RL algorithms
for dynamically varying environments distinguish different
contexts and find policies for each context [10]. For control
design in LPV framework, we propose to use a prior knowl-
edge on the evolution of scheduling variables for generating
representative scheduling and system trajectories for RL,
investigate the effects of scheduling trajectories on control
performance, and use fine-tuning [11] to refine the learned

2021 European Control Conference (ECC)
June 29 - July 2, 2021. Rotterdam, Netherlands

978-94-6384-236-5 ©2021 EUCA 150

Authorized licensed use limited to: University of Georgia. Downloaded on July 24,2022 at 02:58:33 UTC from IEEE Xplore. Restrictions apply.

controller. Moreover, we propose to use a valid control
sequence to help exploration and select the structure of NN,
and examine the imposition of a-priori known controller
structure on the structure of the policy network to facilitate
the learning and analyzing of the controller.

To the best of our knowledge, this paper is the first to
examine the application of RL to control nonlinear systems
in LPV framework. The remainder of this paper is organized
as follows: Section II describes the problem statement and
introduces off-policy policy gradient reinforcement learning.
Control of systems in the LPV framework using RL is intro-
duced in Section III. Section IV presents our experimental
results using two numerical examples and a control moment
gyroscope (CMG) model, which validate the performance
of the proposed methods. Concluding remarks are finally
provided in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES

Let us consider a constrained nonlinear system described
by the following state-space LPV model with the initial state
x(0):

x(k + 1) = A (θ(k))x(k) +B (θ(k))u(k), (1)
y(k) = C (θ(k))x(k), (2)
x(k) ⊆ X, u(k) ⊆ U, (3)

where k ∈ Z is the discrete time variable, θ ∈ Θ ⊆ Rnθ is
the vector of scheduling variables, u is the vector of control
inputs, x is the state vector, and y ⊆ Rny is the output
vector. Furthermore, X ∈ Rnx is the state constraint set
and U ∈ Rnu is the input constraint set. A, B, and C are
smooth matrix functions of θ(k). We assume that x(k), y(k)
and θ(k) can be measured at each time instant k while the
future behavior of θ is not exactly known at k. Using Θ to
describe the future scheduling variables for control design
is too restrictive and thus knowledge on the evolution of θ
has been explored. In practice, θ generally varies within a
bounded rate-of-variation, i.e., ∀k ∈ N, |θ(k+1)−θ(k)| ≤ δ,
which gives a “cone” expanding outwards from the current
θ(k) to describe the possible future trajectories of θ. Other
instances of the knowledge on the future θ that have been
explored in the literature can be found in [6].

This paper considers both stabilizing and tracking control
of nonlinear systems in the LPV framework. For stabilizing
control design, the problem is to learn a policy π : X ×
Θ −→ U for (1) using generated trajectories with selected
scheduling trajectories such that the system is steered from
some initial state x0 to the origin by π. For tracking control,
the problem is to learn a policy π for (1) and (2) such that the
tracking error e(k) = y(k)−yr(k) resides in the ε-ball B(ε)
after finite time despite the variations of θ given a reference
signal yr and an error tolerance ε ∈ R+.

A. Off-policy Policy Gradient Reinforcement Learning

An RL agent aims to learn a policy function a = π(s)∗1

that gives action a at a state s such that the expected

1Here, we only consider deterministic policies for control.

return V π(s0) (a.k.a., value function) within a horizon T
is maximized, i.e.,

π∗ = arg max
π

V π(s0)

= arg max
π

Eτ∼p(τ |s0,π)

[
T−1∑
t=0

γtr(st, π(st))

]
(4)

where γ ∈ (0, 1] is the discount factor and
p(τ |s0, π) represents the probability of a trajectory
τ = (s0, a0, s1, · · · , aT−1, sT) that starts from s0 under
policy π and

p(τ |s0, π) = p(s0)

T−1∏
t=0

p(st+1|st, at),

in which p(st+1|st, at) is the state transition model
(i.e., dynamics of the environment). For model-free RL,
p(st+1|st, at) is unknown and τ is generated for learning
by interacting with the real system.

Policy gradient algorithms for RL use parameterized
policy functions πψ(s) with parameters ψ (e.g., using a
neural network). Moreover, action-value function Qπt (s, a) =
Ea∼π[Gt|st = s, at = a] is used to assess the expected
return of a pair of state and action (s, a) following π where
Gt =

∑T
k=0 γ

krt+k+1. The update law of the model is
based on the policy gradient theorem in [12]. Furthermore,
actor-critic methods use parameterized action-value functions
(a.k.a. critic) Qφ(s, a) with parameters φ while the actor
refers to πψ(s).

Off-policy policy gradient uses a known behavior policy
πD to collect samples and estimate Q(s, a) with regard to
the target policy πψ . In this way, policy improvement is
achieved. Moreover, off-policy approaches do not require full
trajectories, and experience replay can be used to improve
sample efficiency. Deterministic policy gradient makes deter-
ministic decision but is hard to guarantee enough exploration
unless there is sufficient noise in the environment [13]. Either
adding noise to the deterministic policy or using stochastic
behavior policies can help the exploration for training.

III. CONTROL OF NONLINEAR SYSTEMS IN LPV
FRAMEWORK USING RL

In this section, we present the adaptation of off-policy pol-
icy gradient RL to LPV control. Specifically, the challenges
associated with uncertainties in the scheduling variables and
the architecture design of actor NN are tackled.

A. Environment Description of LPV Models

For an RL-based controller design, we first need to set
up the environment for the agent to interact with. The
environment can be described by a set of states s, a set of
actions a, the dynamics/transition model p (which is usually
unknown), a reward function r, and a discount factor γ. The
state of the environment s should be sufficient for decision
making, as model-free RL assumes that the dynamic model
p is unknown and selects actions only based on s without
explicitly learning p. Authors in [14] show that employing
the history of the operation as the environment state s allows

151

Authorized licensed use limited to: University of Georgia. Downloaded on July 24,2022 at 02:58:33 UTC from IEEE Xplore. Restrictions apply.

the actor to implicitly build a process model. In our case,
s consists of the control inputs, observed outputs, tracking
errors, and scheduling variables in the past time steps.

Action a is the control input that is computed by the
policy function. The family of policy functions affects the
analysis of the learned controller. Multi-layer perceptrons
(MLP) are commonly used to represent policy functions.
To select a proper size for MLP, we propose to find an
MLP that can well approximate the initial controller using
training data generated offline by sampling the feasible states
and evaluating the control law and use it as a benchmark
for policy NN design. Moreover, NN architecture can be
designed to be in a targeted controller form. For control
of LPV models, we use an MLP fNN to model K =
fNN (θ(k)) instead of a = fNN (s) such that a controller
in the form of u = K(θ(k))x is obtained, which is more
suitable for control synthesis.

The dynamic model p of LPV systems is unknown and
varies with the scheduling variable θ(k). Given a value of
θ(k), (1) and (2) constitute a linear model and given a
scheduling trajectory {θ(t)}Tt=0, the evolution of the model
is determined. For training the RL agent, we can generate
arbitrary valid scheduling trajectories and the agent makes
a decision only based on the present scheduling variable.
However, these trajectories for training are not necessarily
identical to the scheduling variable for control, i.e., in closed-
loop operation. This discrepancy between the scheduling
trajectories for training and control can degrade the closed-
loop performance when applying the trained agent to control
LPV model, and poses the trade-off between performance
and sample efficiency. Moreover, matrix functions A, B
and C are generally bounded, which results in bounded
differences in x and y given different scheduling trajectories.
Given the bounded differences of the model, RL can still be
used to improve the initial controller. Using π, p(s′, r|s, a)
to represent the target policy and control environment and
πD, pθ(s

′, r|s, a) to denote the behavior policy and training
environment, Theorem 1 gives a sufficient condition for
improving the true returns V π in the control environment
based on the returns V̂ π in the training environment.

Theorem 1 ([15]): Let the expected total variation dis-
tance (TV-distance) between two transition distributions
Es∼πD,t [DTV (p(s′, r|s, a)‖pθ(s′, r|s, a))] be bounded at
each time step by εm and the policy divergence
Es∼πt [π‖πD] be bounded by επ . Then, the true returns and
model returns of the policy are bounded as

V π ≥ V̂ π −
[

2γrmax(εm + 2επ)

(1− γ)2
+

4rmaxεπ
1− γ

]
︸ ︷︷ ︸

C(εm,επ)

,

The reward function r defined for control of nonlinear
systems should be negatively related to the tracking error.
rk = −‖e(k)‖1 is used in our experiments. Discount factor
γ shows how important future rewards are to the current state
s and is used to moderate the stability problems. Therefore, r
is set to be close to 1 for control to facilitate the convergence
of the tracking error.

B. Off-policy Policy Gradient Algorithm for Control Design

In this section, we consider deep deterministic policy gra-
dient (DDPG), an off-policy actor-critic algorithm proposed
in [16] for control design in LPV framework. DDPG learns
both a Q-function and a deterministic policy. Specifically, the
critic is trained by minimizing the following mean-squared
Bellman error (MSBE) loss with stochastic gradient descent:

L(φ,Drepl) =E(s,a,r,s′,d)∼Drepl [(Qφ(s, a)

−(r + γ(1− d)Qφtarg(s
′, πψtarg(s

′))))2] (5)

where Qφtarg is the target network with parameters φtarg
to evaluate the target Q-values, πψtarg is the target policy
network with parameters ψtarg to compute an action which
approximately maximizes Qφtarg , Drepl is reply buffers of tran-
sitions (s, a, r, s′, d), and d indicates whether s′ is terminal.

For policy learning of the actor, a deterministic policy
πψ(s) is learned by solving

max
ψ

Es∼Drepl [Qφ(s, πψ(s))],

where Q-function parameters φ are fixed, using gradient
ascent with respect to policy parameters only. Since the
policy is deterministic, the agent may not be able to explore
a sufficient variety of policies at the training time to find
the optimal policy. To help with the exploration, noise is
added to actions at training time, i.e., the exploration policy
πexpl(s) = πψ(s)+N whereN denotes the selected noise.N
can be an Ornstein-Uhlenbeck process [17] or uncorrelated
mean-zero Gaussian noise. When exploiting the learned
policy, πψ(s) is evaluated without adding noise. However, for
complex systems, a small noise added at each time step can
be insufficient for exploration but significantly change the
system long-term behaviors. Therefore, We reduce the scale
of the noise over the course of training by σn(N) = σ0

1+n
where n is the number of episodes and σ0 is the initial noise
scale such that the exploration at the beginning is sufficient
and the exploration policy at the end of the training time
converges to the deterministic policy.

Moreover, uniform-random action selection before running
the real policy can help the exploration but may result in
control inputs that cause system failure. Instead, similar
to the exploration policy, we add Gaussian noise to the
control sequence generated by the initial controller and use
the noisy sequences to collect open-loop trajectories. The
noisy sequences can contain the optimal control sequence
and these trajectories can improve the convergence of the
learning. Moreover, randomly initialized parameters of the
actor and critic neural networks can be far from the optimal
solution. We can use the open-loop trajectories to train the
actor and critic network separately before RL, which gives
a good initialization and improves the convergence rate.

The training procedure of DDPG for LPV system control
is summarized as follows:

1: procedure DDPG FOR CONTROL OF LPV SYSTEMS
2: Input: initial control sequence {u(k)}Tk=0, selected

scheduling sequence {θ(k)}Tk=0, initial policy parame-
ters ψ, Q network parameters φ, empty replay buffer

152

Authorized licensed use limited to: University of Georgia. Downloaded on July 24,2022 at 02:58:33 UTC from IEEE Xplore. Restrictions apply.

D; the maximal number of steps Nmax for training, the
number of steps Nstart before applying πψ .

3: Set target parameters: ψtarg ←− ψ, φtarg ←− φ; n = 0.
4: while n < Nmax do
5: Observe state s and select action a =

clip
(
πψ(s) + ε, alow, ahigh

)
, where ε ∼ N .

6: if n < Nstart then
7: Select a = clip (u(k) + ε, alow, ahigh), where
k = MOD(n/T) and ε ∼ N

8: end if
9: Execute a in the environment where the schedul-

ing variable is θ(k); n = n+ 1.
10: Observe next state s′, reward r and done signal

d; store (s, a, r, s′, d) in replay buffer D.
11: If s′ is terminal, reset environment state.
12: if update then
13: for each update doRandomly sample a batch

B of transitions from D.
14: Evaluate targets: y(r, s′, d) = r + γ(1 −

d)Qφtarg(s
′, πψtarg(s

′)))
15: Update Q network: φ ←− φ − α 5φ

1
|B|
∑

(s,a,r,s′,d)∈B (Qφ(s, a)− y(r, s′, d))
2

16: Update policy network: ψ ←− ψ + β 5ψ
1
|B|
∑
s∈B Qφ (s, πψ(s))

17: Update target networks: φtarg ←− ρφtarg +
(1− ρ)φ and ψtarg ←− ρψtarg + (1− ρ)ψ

18: end for
19: end if
20: end while
21: end procedure

The scheduling trajectories for training are selected to
contain or be similar to the scheduling variables for system
operations such that the discrepancy between the training
environments and real operations is bounded and the learned
controller still works by Theorem 1. Moreover, the collected
closed-loop trajectories from operations can be used for
fine-tuning the actor and critic networks to adapt to new
environments. Fine-tuning reuses parts of the previously
trained networks and parameters to facilitate learning. A
detailed discussion on fine-tuning can be found in [7].

IV. EXPERIMENTAL RESULTS AND VALIDATION

In this section, the proposed methods are validated using
numerical examples and a complex physical system model.

A. Stabilizing Control

Consider a second-order LPV model in [6] described by

x(k + 1) =

([
1 1
0 1

]
+

[
0.1 0
0 0.1

]
θ1(k) +

[
0.5 0.5
0 0

]
θ2(k)

+

[
0 0
0 0.2

]
θ3(k)

)
x(k) +

[
0.5
1

]
u(k)

(6)

with constraints and scheduling sets as

X = {x ∈ R2|‖x‖∞ ≤ 6},U = {u ∈ R| |u| ≤ 1}
Θ = {θ ∈ R3|‖θ‖∞ ≤ 1}.

This example is to demonstrate the proposed method for
stabilizing control and investigate the effects of scheduling
trajectories on control performance.

1) Network Architecture and Hyperparameters: We use
an MLP with three hidden layers to model the policy network
πψ . Each of the hidden layers contains 16 units and uses
the rectified linear unit (ReLU) activation function while
the output layer uses a linear activation function. Moreover,
another MLP with three hidden layers is used to model
the Q network Qφ. Each of the hidden layers contains 32
units and uses ReLU as activation function while the output
layer uses linear activation function. Furthermore, we choose
ρ = 0.001 for target network update. The reward function is
chosen as rt = −x(t + 1)Tx(t + 1) − a2t and the discount
factor is γ = 0.99. The agent takes actions sampled from a
uniform distribution over the action space for the first 100
steps to help with the exploration and warm up the network.
Moreover, Ornstein–Uhlenbeck process [17] with standard
deviation σ = 0.3 is added to the action during training for
exploration. The maximal length of an episode is considered
to be T = 200. We trained the agent for 50, 000 steps with
limit of the sequential memory as 100, 000 and batch size as
32 using Adam optimizer with a learning rate of 10−3.

2) Experimental Setup: First, we train and test the agent
using the same scheduling trajectory to examine the capabil-
ity of the proposed method to stabilize the system. Next, we
test the learned controller for different scheduling variables to
examine the adaptability of the learned control law. Then, we
use fine-tuning to refine the learned controller and examine
the improvement.

3) Results and Discussion: The scheduling signals and
control results are shown in Fig. 1. Mean absolute error
(MAE) is used to measure the control performance. We
considered sinusoidal in (a) and random in (b) scheduling
signals. Subplots (c) and (d) show the control results using
the same scheduling trajectory for both training and testing,
which demonstrates that the proposed method can stabilize
the system with small errors when there is no discrepancy be-
tween the learning environment and real operations. Subplots
(e) and (f) present the control results using one scheduling
signal for training and another for testing, which shows that
the learned controller can still stabilize the system when the
discrepancy in scheduling signal(s) is limited although the
control performance slightly degrades. Moreover, we fine-
tuned the controller learned in (c) for 40, 000 steps using
a decreased learning rate 10−6 to adapt to the scheduling
signal (b). Similarly, we fine-tuned the controller in (d) for
40, 000 steps using a decreased learning rate 10−4 to adapt
to the scheduling signal (a). Subplots (g) and (h) show the
control results using fine-tuning, which demonstrates that
fine-tuning can facilitate the RL agent with less training steps
and even better performance than starting from the scratch
(comparing (c) and (h)). It is noted that the transferability is
not symmetric (i.e., adapting from (b) to (a) is easier than
from (a) to (b)), as discussed in [18], which demonstrates
the importance of scheduling signal selection for training.

153

Authorized licensed use limited to: University of Georgia. Downloaded on July 24,2022 at 02:58:33 UTC from IEEE Xplore. Restrictions apply.

(a) Sinusoidal scheduling signal.

.

(b) Random scheduling signal.

(c) Closed-loop system states
with scheduling signal in (a)
for both training and testing.
MAE = [0.0765 0.0549]T.

.

(d) Closed-loop system states
with scheduling signal in (b)
for both training and testing.
MAE = [0.0553 0.0541]T..

(e) Closed-loop system states
with scheduling signal in (a)
for training and (b) for testing.
MAE = [0.0720 0.0750]T.

.

(f) Closed-loop system states
with scheduling signal in (b)
for training and (a) for testing.
MAE = [0.0869 0.0716]T..

(g) Fine-tuning the controller
in (c) for (b). MAE =
[0.0627 0.0679]T.

.

(h) Fine-tuning the controller
in (d) for (a). MAE =
[0.0572 0.0480]T.

Fig. 1: Scheduling signals and control results using a stabi-
lizing RL agent. MAE is calculated after 10 steps.

B. Tracking Control

Consider a single-input single-output LPV model with two
states in [19] described by

x(k + 1) =

([
0.95 1

0 −0.59

]
+

[
0 0.5
0 0

]
θ1(k)

+

[
0 0

0.2 0

]
θ2(k)

)
x(k) +

[
1

0.5

]
u(k)

(7)

y(k + 1) =
([

0.8 −0.6
]

+
[
0 −0.03

]
θ1(k)

+
[
0.04 0

]
θ2(k)

)
x(k)

(8)

with constraints and scheduling sets as

X = {x ∈ R2| − 6 ≤ x1 ≤ 4,−4 ≤ x2 ≤ 6},
U = {u ∈ R| |u| ≤ 1},Θ = {θ ∈ R2|‖θ‖∞ ≤ 1}.

The same network architecture and hyperparameters as in
Section IV-A.1 are used for this example except for the
learning rate that is set to 10−5 and that we trained the

agent for 450, 000 steps. The state of environment is sk =
[x(k) e(k) θ(k)]T and the reward function is defined as
r(sk, ak) = −e2(k) − a2k, where e(k) = y(k) − yr(k),
yr(k) denotes the setpoint, and ak = −u(k) is the control
input. Random scheduling signals similar to Fig. 1(b) were
used for this example. Fig. 2 shows the control result,
which demonstrates the capability of the proposed method
for tracking control purposes.

Fig. 2: Piecewise constant reference tracking control results
for second example.

C. Policy Network Design

In this example, we demonstrate that the proposed method
for policy network design can facilitate the RL control,
using experiments on a 4 degree-of-freedom control moment
gyroscope (CMG) simulation model from [20]. The detailed
plant description can be found in [21]. The states of the
simulation model consist of angles qi and angular speeds
ωi, i = 1, 2, 3, 4 of the 4 gimbals and it is generally required
to control q3 and q4 using torques τ1 and τ1 provided by two
dc motors. We use the LPV representation of CMG in [21]
to inform the policy network design. The states, outputs and
scheduling variables of the obtained LPV model are

x = [q3 q4 ω2 ω3 ω4]T,

y = [q3 q4]T,

θ = [q2 q3]T
(9)

The controller is designed to be in the static state-feedback
form with parameter-varying gain, i.e., u = K(θ)x, where
K is a smooth nonlinear matrix function represented by NN.

1) Network Architecture and Hyperparameters: An MLP
with two hidden layers is used to model K(θ). Each of the
hidden layers contains 512 units, uses ReLU as activation
function and is followed by a batch normalization layer2 to
normalize different physical units of features. The output
layer uses linear activation function and the output of this
MLP is multiplied by x to constitute the policy network.
For Q network, the state s is transformed by an MLP
with one 16-unit layer followed by one 32-unit layer and
action a is transformed by an MLP with one 32-unit hidden
layer. The transformed s and a are concatenated and then
transformed by an MLP with two 512-unit hidden layers
to estimate Q value. All the hidden layers are followed by
a batch normalization layer. Gaussian noise N (0, 0.03u(k))
is added to an initial control sequence {u(k)}Tk=1 from an
MPC at time k for the first 40, 000 steps to help with the
exploration. Moreover, an Ornstein–Uhlenbeck process with

2We refer to DDPG in Keras [22] for implementing the proposed method.

154

Authorized licensed use limited to: University of Georgia. Downloaded on July 24,2022 at 02:58:33 UTC from IEEE Xplore. Restrictions apply.

initial standard deviation σ = [0.1 0.4]T is added to the
action at training time for exploration. Also considered are
the discount factor γ = 0.99 and ρ = 0.001 for target
network update. The maximal length of an episode is 400.
We trained the agent for 1, 500 episodes with limit of the
sequential memory as 50, 000 and batch size as 64 using
Adam optimizer with a learning rate as 10−4 for the Q
network and 10−5 for the policy network.

2) Experimental Settings: The state of environment st
consists of {u(t + k − l), θ(t + k − l), x(t + k − l), e(t +
k − l)}lk=1 where l = 4 denotes the memory length and is
used for the agent to implicitly build the process model as
discussed in Section III-B. The reward function is chosen
as rt = −‖e(t + 1)‖1 and the control objective is to track
reference q3 = q4 = 0. We first use the network architecture
described in Section IV-C.1 to learn a controller in the form
of u = K(θ)x. Then, we learn u = fNN (s) where fNN
shares the same architecture with the network that represents
K(θ) for comparison using the same hyperparameters except
for the learning rate that is assumed to be 10−3 for the Q
network and 10−4 for fNN .

3) Results and Discussion: Fig. 3 shows the control
results. Despite the CMG platform being far more complex
than the two numerical examples discussed earlier, using
the techniques proposed in Section III-B for exploration
and network design and initialization, very precise tracking
performance was achieved in moderate training episodes,
which demonstrates that the proposed method can improve
the convergence. Moreover, subplot (a) with constraints on
the network structure achieved better tracking performance
than (b), which shows that the policy network can be
designed for analysis without degrading the performance.

(a) Control result using
u =K(θ)x.

.

(b) Control result using
u =fNN (s).

Fig. 3: Control results for the CMG platform. The unit for
angles is radian and the sampling frequency is 0.1 kHz.

V. CONCLUDING REMARKS

In this paper, an off-policy deep deterministic policy
gradient approach was proposed to control nonlinear systems
in LPV framework using closed-loop trajectories. The pro-
posed method proved to perform well when the discrepancy
between the training environment and operations is bounded.
An algorithm was presented to tackle uncertainties in the
scheduling variable by selecting representative scheduling
trajectories for training such that the learned controller
could be generalized to unseen scheduling signals. More-
over, techniques for assisting exploration, network design
and initialization, and refining the learned controller were

studied using an initial control sequence. Experiments on two
numerical examples, as well as a complex nonlinear model of
control moment gyroscopes demonstrated that the proposed
approaches could effectively control (both stabilize and track
reference trajectories) LPV systems with small errors and
improve the convergence of reinforcement learning.

REFERENCES

[1] J. Hanema, “Anticipative model predictive control for linear parameter-
varying systems,” Ph.D. dissertation, Technische Universiteit Eind-
hoven, Eindhoven, The Netherlands, 2018.

[2] Y. Bao, J. Mohammadpour Velni, and M. Shahbakhti, “Epistemic
uncertainty quantification in state-space LPV model identification
using bayesian neural networks,” IEEE Control Systems Letters, vol. 5,
no. 2, pp. 719–724, 2020.

[3] R. Tóth, V. Laurain, W. X. Zheng, and K. Poolla, “Model structure
learning: A support vector machine approach for LPV linear-regression
models,” in 2011 50th IEEE Conference on Decision and Control and
European Control Conference. IEEE, 2011, pp. 3192–3197.

[4] S. Z. Rizvi, J. Mohammadpour Velni, F. Abbasi, R. Tóth, and
N. Meskin, “State-space LPV model identification using kernelized
machine learning,” Automatica, vol. 88, pp. 38–47, 2018.

[5] Y. Bao, J. Mohammadpour Velni, A. Basina, and M. Shahbakhti,
“Identification of state-space linear parameter-varying models using
artificial neural networks,” in 21st IFAC World Congress. IFAC,
2020.

[6] J. Hanema, M. Lazar, and R. Tóth, “Heterogeneously parameterized
tube model predictive control for LPV systems,” Automatica, vol. 111,
p. 108622, 2020.

[7] Y. Bao, J. Mohammadpour Velni, and M. Shahbakhti, “An online
transfer learning approach for identification and predictive control
design with application to RCCI engines,” in ASME Dynamic Systems
and Control Conference. ASME, 2020.

[8] J. H. Lee and Z. Yu, “Worst-case formulations of model predictive
control for systems with bounded parameters,” Automatica, vol. 33,
no. 5, pp. 763–781, 1997.

[9] G. C. Calafiore and L. Fagiano, “Stochastic model predictive control
of LPV systems via scenario optimization,” Automatica, vol. 49, no. 6,
pp. 1861–1866, 2013.

[10] S. Padakandla, “A survey of reinforcement learning algorithms for
dynamically varying environments,” arXiv preprint arXiv:2005.10619,
2020.

[11] G. I. Parisi, R. Kemker, J. L. Part, C. Kanan, and S. Wermter,
“Continual lifelong learning with neural networks: A review,” Neural
Networks, vol. 113, pp. 54–71, 2019.

[12] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press, 2018.

[13] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Ried-
miller, “Deterministic policy gradient algorithms,” in ICML, 2014.

[14] N. A. Spielberg, M. Brown, N. R. Kapania, J. C. Kegelman, and
J. C. Gerdes, “Neural network vehicle models for high-performance
automated driving,” Science Robotics, vol. 4, no. 28, 2019.

[15] M. Janner, J. Fu, M. Zhang, and S. Levine, “When to trust your model:
Model-based policy optimization,” in Advances in Neural Information
Processing Systems, 2019, pp. 12 519–12 530.

[16] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa,
D. Silver, and D. Wierstra, “Continuous control with deep reinforce-
ment learning,” arXiv preprint arXiv:1509.02971, 2015.

[17] G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian
motion,” Physical review, vol. 36, no. 5, p. 823, 1930.

[18] Y. Bao, Y. Li, S. Huang, L. Zhang, L. Zheng, A. Zamir, and L. Guibas,
“An information-theoretic approach to transferability in task transfer
learning,” in 2019 IEEE International Conference on Image Processing
(ICIP), 2019, pp. 2309–2313.

[19] J. Hanema, M. Lazar, and R. Tóth, “Tube-based LPV constant out-
put reference tracking MPC with error bound,” IFAC-PapersOnLine,
vol. 50, no. 1, pp. 8612–8617, 2017.

[20] T. R. Parks, “Manual for model 750: Control moment gyroscope,”
Educational Control Products, Bell Canyon, CA, 1999.

[21] H. S. Abbas, A. Ali, S. M. Hashemi, and H. Werner, “LPV state-
feedback control of a control moment gyroscope,” Control Engineering
Practice, vol. 24, pp. 129–137, 2014.

[22] F. Chollet et al., “Keras,” https://keras.io, 2015.

155

Authorized licensed use limited to: University of Georgia. Downloaded on July 24,2022 at 02:58:33 UTC from IEEE Xplore. Restrictions apply.

