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This paper studies the continuous maximum capacity path interdiction problem, where two players, user
and interdictor, compete in a capacitated network. The user wants to send the maximum possible amount
of flow through a path, whose capacity is given by the minimum capacity among its arcs. The budget-
constrained interdictor decreases arc capacities by any continuous amount to reduce the quality of the
user’s chosen path. We present an efficient algorithm based on a discrete version of the Newton’s method,
which helps us solve the problem in polynomial time. We also prove that the problem can be transformed
into a zero-sum game, which has always a pure Nash equilibrium point. We demonstrate the performance
of our algorithm over a set of randomly generated networks.
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1. Introduction

The maximum capacity path problem (MCPP), also known as
widest path problem, consists of finding a maximum capacity path
between two given nodes in a network. The capacity of any given
path is determined by the minimum capacity among its arcs. Be-
cause of its flow-based structure, this problem arises in many real-
world applications from different domains. In telecommunication
networks, packets of information must be routed between nodes
subject to a network’s limited transmission capacity. A transmis-
sion path consists of a sequence of links, each of which has a
given available bandwidth. To route a packet, transmission mech-
anisms (i.e., protocols) determine the path for each packet while
at the same time enforce a quality of service level, which is typi-
cally given by a guaranteed transmission bandwidth. One example
is the Multiprotocol Label Switching (MPLS), which routes pack-
ets between two nodes (i.e., ingress and egress routers) through a
path that is determined at the entry node (i.e., a label switched
path) (Medhi & Ramasamy, 2017). This protocol requires a mini-
mum available bandwidth to send a packet along a path (Kar, Kodi-
alam, & Lakshman, 2000), where the path’s bandwidth corresponds
to the minimum bandwidth among its links. A similar situation
occurs in the design of reliable data transmission paths, where
the quality of a transmission path is determined by the minimum
transmission reliability (or quality) across the links in the path
(Ramaswamy, Orlin, & Chakravarti, 2005; Tragoudas, 2001). Other
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applications of MCPP include the routing of single service units
(e.g., police, firefighters), where the quality of a route is deter-
mined by the maximum distance (or response time) to a poten-
tial service location (Berman & Handler, 1987). The MCPP also
arises in single-winner election methods, where pairwise candi-
date comparisons rely on sequences (i.e., path) of intermediate
candidates and the smallest number of voters in the sequence of
comparisons (Schulze, 2011). The maximum capacity path prob-
lem is also a sub-problem of other higher-level problems such as
the k-splittable flow problem (Baier, Kohler, & Skutella, 2005), the
maximum flow problem (Ahuja, Magnanti, & Orlin, 1993; Edmonds
& Karp, 1972), and the quickest path problem (Climaco, Pascoal,
Craveirinha, & Captivo, 2007; Martins & Santos, 1997), among
others.

Multiple algorithms exist to solve MCPP, including modi-
fied versions of shortest path algorithms like Dijkstra’s algo-
rithm (in O(m+nlogn) time), scaling procedures (in O(min
{m+nlogn, mlog, W}) time), and recursive algorithms (in O(m)
time), where n is the number of nodes, m is the number arcs, and
W is the maximum arc cost in the network (Gabow, 1983; Pollack,
1960; Punnen, 1991). Related problems include the weighted mini-
max flow, which is to minimize the maximum value of arc weights
multiplied by their flow while preserving a solution of maximum
flow (Ichimori, Ishii, & Nishida, 1981), and other variants seeking
for a path of maximum capacity between any one node to any
other node (Pollack, 1960) or between all node pairs (Hu, 1961).

In this paper, we study the continuous maximum capacity
path interdiction problem (CMCPIP). This problem consists of
two players, user and interdictor, that compete in a directed
and capacitated network. The user solves an MCPP, whereas the
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budget-constrained interdictor decreases arc capacities to reduce
the quality of the user’s chosen path. The interdictor knows the
cost of reducing a unit (or fraction) of each arc’s capacity and is
allowed to reduce them in any amount, as long as the total cost of
its actions satisfies a budget constraint. We assume that informa-
tion is perfect, meaning that both agents have complete knowledge
of the network topology and parameters. The agents interact in
a Stackelberg game fashion (von Stackelberg, 1952), where the
interdictor plays first by reducing arc capacities, and then the user
determines its maximum capacity path after observing the inter-
dictor’s actions. Applications of the CMCPIP include information
transmission planning (e.g., telecommunication networks using
MPLS) in the presence of a proactive adversary (i.e., interdictor),
whose intention is to reduce the bandwidth or reliability of a sub-
set of links. We refer the reader to Aiello, Kushilevitz, Ostrovsky,
& Rosén (2000); Bhavathankar, Chatterjee, & Misra (2017); Xue
& Nahrstedt (2004) and Mageswari & Baulkani (2020) for related
works on packet routing in the presence of adversaries.

In CMCPIP, the interdictor may represent a hostile agent (i.e., a
jammer) or a network failure event that reduces arc capacities. Be-
cause the user competes against an interdictor that acts optimally,
this game describes a pessimistic vision of the possible maximum
capacity path. If the interdictor adopts a sub-optimal strategy, then
it is possible to find a path with a larger capacity than that pro-
vided by CMCPIP. Under the assumption that the interdictor plays
first in this two-stage Stackelberg setting, this game guarantees
that in the presence of an adversary equipped with a given dis-
ruption budget, it is possible to send an amount of flow of at least
the optimal objective function of CMCPIP. Variations in the inter-
dictor’s budget help modeling different scenarios for the uncertain
network attacks and their corresponding impact on the maximum
capacity path. As a result, the role of the interdictor budget is to
acknowledge that some arcs capacities may be reduced but neither
many of them at the same time nor by drastic amounts, which is
a concept that also appears in the budgeted uncertainty paradigm
from robust optimization (Bertsimas & Sim, 2003, 2004).

Unlike most of the interdiction works available in the literature
(see Smith & Song, 2020 for a survey), in this paper we focus on
continuous interdiction actions. This is not only a generalization of
the existing methods (e.g., Mohammadi & Tayyebi, 2019), but also a
more realistic approach from an application point of view. Existing
models typically assume binary interdictor decisions, reflecting an
all-or-nothing disruption regime when attacks are executed. This is
unrealistic if the adversary has a wider range of options available
when planning the disruption of a network component. The use
of continuous decision variables allows us to model realistic situ-
ations in which the interdictor not only selects the location of the
attacks but also their intensity (e.g., jammer strength). Moreover,
continuous decisions can be used to model the unknown outcome
of the interdictor’s actions by admitting a range of values for the
possible impact rather than a single value. In this case, the inter-
dictor unveils the worst-case set of (continuous) actions that cause
the most detrimental damage under the given budget.

The proposed CMCPIP belongs to the category of network in-
terdiction problems. These problems are widely studied, as they
are a natural way to describe the operation of a flow-based system
subject to disruptions. Well known problems in this class are the
maximum flow and the shortest path interdiction problem, both
of which are NP-hard (Israeli & Wood, 2002; Wood, 1993). Al-
though network interdiction problems are typically hard to solve
(see Smith & Song, 2020 for a survey), in this paper we present a
polynomial time algorithm for solving CMCPIP. Our algorithm con-
sists of two phases. The first phase finds an interval of values con-
taining the optimal CMCPIP value, whereas the second phase uses
a discrete version of the Newton’s method to search for the op-
timal solution. Methodologically speaking, related works include a
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binary search to find most vital arcs in a network (Ball, Golden, &
Vohra, 1989), an application of the Newton’s method to solve max-
imum flow interdiction problem (Matuschke, McCormick, Oriolo,
Peis, & Skutella, 2017), and a successive minimum cut algorithm to
solve maximum flow interdiction problem (McMasters & Mustin,
1970). The closest work to ours is that of Mohammadi & Tayyebi
(2019), which assumes that the cost of interdicting an arc is fixed
regardless of the attack intensity, i.e., the interdiction actions are
discrete and the interdictor follows an all-or-nothing rationale.

We transform CMCPIP into a zero-sum game in normal form
and prove that such game always has a pure Nash equilibrium. This
allows us to devise optimal strategies for each player. This is an
important theoretical result because zero-sum normal games not
always admit a pure Nash-equilibrium (Mazalov, 2014). Addition-
ally, this transformation provides a justification for the assumption
that the user has complete information of the interdictor’s actions.
In zero-sum normal games, players act in a pessimistic way to se-
cure a minimum payoff, i.e., they want to maximize their mini-
mum guaranteed payoff. Our approach is similar to the work of
Washburn & Wood (1995), whose zero-sum game transformation
combining network optimization and game theoretical results al-
lows them to efficiently solve a probabilistic version of a path-
selection interdiction problem.

This paper is organized as follows. In Section 2, we review the
existing literature on network interdiction. Section 3 provides a
bi-level programming formulation of CMCPIP in which the inter-
dictor (outer level) variables are continuous, while the user (inner
level) variables are discrete (i.e., whether an arc belongs to the
path). This feature differentiates CMCPIP from some of the existing
network interdiction problems, whose formulations contain con-
tinuous variables at the user level and assume integer interdictor
decisions (e.g., Israeli & Wood, 2002; Wood, 1993). Indeed, this
feature prevents us from using the KKT conditions and duality
results to directly convert CMCPIP into a single-level problem (e.g.,
Allende & Still, 2013; Golden, 1978). Section 4 presents the prelim-
inary results needed in our strongly polynomial algorithm, which
is described in Section 5. Section 6 provides a reduction of CMCPIP
to a zero-sum normal game, which always has a Nash equilibrium
point. We present our computational experience in Section 7.
Section 8 presents our concluding remarks and future work.

2. Literature review

Network interdiction models are widely applied, as they can
be used to optimize the operation of flow-based systems under
disruptions. They have been applied in a wide range of domains,
including interdicting criminal in an illegal drug supply chains
(Malaviya, Rainwater, & Sharkey, 2012), energy delivery (Rocco
et al., 2010), nuclear smuggling (Dimitrov et al., 2008; Morton, Pan,
& Saeger 2007), infection spread control (Assimakopoulos, 1987),
military planning (Ghare, Montgomery, & Turner, 1971), conserva-
tion planning (Acevedo, Sefair, Smith, Reichert, & Fletcher, 2015;
Sefair, Smith, Acevedo, & Fletcher, 2017), and protecting electric
power grids against terrorist attacks (Salmeron, Wood, & Baldick,
2004). Depending on the players’ objectives and decisions, various
types of network interdiction problems arise, including

o Shortest path interdiction (Fulkerson & Harding, 1977;
Golden, 1978; Israeli & Wood, 2002; Sefair & Smith, 2016): The ob-
jective of the user is to find a shortest path to move between two
known nodes, while the objective of the interdictor is to perturb
the arc set to deteriorate the user’s objective. Actions that could
achieve this objective are removing or increasing the length (or
cost) of a subset of arcs.

o Maximum flow interdiction (Akgun, Tansel, & Wood, 2011;
Altner, Ergun, & Uhan, 2010; Royset & Wood, 2007; Wood, 1993):
The user maximizes the flow sent from a source node to a sink
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node, whereas the interdictor seeks to reduce such flow by de-
creasing the capacity of a subset of arcs.

e Maximum reliability path interdiction (Pan, 2005; Pan &
Morton, 2008): The user chooses a maximum reliability path to
move between two known nodes, while the interdictor decreases
the overall path reliability by decreasing the individual reliability
of a subset of arcs.

Interdiction problems have been formulated for other network-
oriented problems including matching and assignment (Laroche,
Marchetti, Martin, & Roka, 2014; Sefair & Smith, 2017; Zenklusen,
2010), minimum spanning tree (Frederickson & Solis-Oba, 1999;
Zenklusen, 2015), hub design (Ghaffarinasab & Motallebzadeh,
2018; Ramamoorthy, Jayaswal, Sinha, & Vidyarthi, 2018), and fa-
cility location (Church & Scaparra, 2007; Liberatore, Scaparra, &
Daskin, 2011, 2012). For a comprehensive review of network inter-
diction problems, we refer the reader to the survey papers Smith,
Prince, & Geunes (2013) and Smith & Song (2020).

Robust optimization problems are closely related to interdiction
problems. In some variants, the order in which the game is played
is interchanged, meaning that the problem is solved from the
perspective of the user (Matuschke et al,, 2017). That is, the user
makes its decisions first and then the interdictor, which represents
the uncertainty in the input parameters, perturbs a subset of pa-
rameters seeking the maximum possible deterioration of the user
problem’s objective value. Examples of constraints limiting the
interdictor when choosing such perturbations are the ellipsoidal
or polyhedral uncertainty sets in Bertsimas & Sim (2003, 2004).
Unlike some network interdiction problems, Bertsimas & Sim
(2003) show that the robust counterpart of some polynomially
solvable zero-one optimization problems remains polynomially
solvable. Further, they present an algorithm for robust network
flow problems to obtain an optimal solution by solving a polyno-
mial number of minimum cost flow problems. In a related area,
Alves Pessoa, Di Puglia Pugliese, Guerriero, & Poss (2015) prove
that the robust constrained shortest path problem under resource
uncertainty is strongly NP-hard, which can be solved in pseudo-
polynomial time whenever the uncertainty set is determined only
by capacity constraints.

The closest work to ours is that of Mohammadi & Tayyebi
(2019) on the MCPIP, which assumes that the cost of interdicting
an arc is fixed regardless of the attack intensity. This limiting as-
sumption implies that the interdictor decreases arc capacities by a
fixed (known) amount if an arc is attacked, which is unrealistic in
some applications. We propose a more general model that allows
continuous interdiction decisions with costs that are proportional
to the intensity of the attacks. These additional problem features
pose new algorithmic challenges that prevent us from using the
simpler algorithmic framework in Mohammadi & Tayyebi (2019) in
its current form. In this work, we characterize an optimal solu-
tion to the continuous interdiction problem and exploit its features
(e.g., the interdictor’s budget constraint is always binding). These
elements provide the theoretical background to prove that the al-
gorithm in Mohammadi & Tayyebi (2019) can be extended to the
continuous case. To our knowledge, this is the first work studying
the maximum capacity path interdiction problem with continuous
variables for the interdictor and interdiction costs proportional to
the intensity of the attacks.

3. Problem definition and formulation

In this section, we formally define CMCPIP and formulate it as
a bi-level optimization problem. To this end, we first describe the
maximum capacity path problem. Let G = (V,A, c) be a directed
graph in which V ={1,2,...,n} is the node set, A is the arc set
such that |A| = m, and c¢ is an m-dimensional vector of arc capaci-
ties. The capacity of arc (i, j) € A is given by parameter ¢;; > 0. The
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network contains two distinguished nodes, s and t, representing
the origin and the destination of a maximum capacity path, re-
spectively. We refer to a path from s to t as an st-path. Moreover,
we define the capacity of any st-path P as the minimum capacity
of its arcs, i.e., min jcp¢;j. Using these definitions, the maximum
capacity path problem is to find an st-path of maximum capacity.
This problem can be formulated as the combinatorial optimization
problem

K i, O
where P is the set of all st-paths in G. We formulate Problem
(1) as a zero-one linear programming problem with binary deci-
sion variables x;; for each (i, j) € A. Variable x;; is equal to one if
arc (i, j) € A is chosen for the maximum capacity path and is equal
to zero otherwise. Using these definitions, the MIP formulation in
(2) describes MCPP.

Max 2z = Cpin (2a)

s.t. Cij + M,_,(] — Xij) > Cmin» V(l, ]) cA (Zb)
1 i=s

Y iieaXii = XjGiyeaXii = 10 i¢{s.t}, VieV (2¢)
-1 i=t

x;€{0,1} V(i j) €A, (2d)

where M;; = maXx y)eafChe} — Cij acts like a big-M parameter. The
objective function in (2a) and the Constraints in (2b) guarantee
that ¢pip = ming j)ea{cij : X;j = 1}. Constraints (2c) are typical flow
balance requirements and Constraints (2d) enforce the binary na-
ture of the decision variables. We note that alternative formula-
tions to the MIP in (2) may exist. However, we are unaware of
any compact linear programming formulation for MCPP, as in the
case for other combinatorial optimization problems (e.g., minimum
spanning tree (Magnanti & Wolsey, 1995)).

The MIP in (2) can be solved using traditional integer pro-
gramming methods, such as branch-and-bound and cutting planes
(Schrijver, 1998), or zero-one programming approaches such as
Balas’ additive method (Balas, 1965). However, such approaches
have exponential complexity in the worst case. Due to its structure,
the MCPP described in (2) is solvable by efficient polynomial-time
algorithms (Medhi & Ramasamy, 2017).

The MIP formulation in (2) describes the user’s problem only.
To formulate the interdiction problem, we introduce the contin-
uous decision variables d;; € [0, ¢;;] for each (i, j) € A. These vari-
ables capture the reduction in the capacity of arc (i, j) € A induced
by the interdictor actions. The interdictor is subject to the bud-
get constraint 3 ; ;.4 Wi;djj < W, where w;; > 0 is the cost of de-
creasing ¢;; by one unit and W > 0 is the available budget. Using
these definitions, we formulate CMCPIP as the bi-level program-
ming problem in (3).

min z (3a)
s.t. Z W,‘jd,‘j <W (3b)
(i,j)eA
0<dj=c; V(J) €A, (30)
Z=max Cpip (3d)
s.t. Gij — d,‘j + M,‘j(l — X,‘j) > Crins V(l, ]) cA (36)
1 i=s
Z Xij — Z Xji = 0 l¢ {S, t}, VieV (3f)
ji(j)eA Ji(jiieA -1 i=t
x;€{0,1} V(@ j)eA (3g)
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The interdictor’s objective function in (3a) seeks to reduce the
user’s objective function subject to the budget constraint (3b) and
the bounds on the d-variables enforced by (3c). Constraints
(3d)-(3g) correspond to the user’s problem and describe the MCPP
in (2) with updated arc capacities given the interdictor’s decisions.
A feasible solution to Problem (3) takes the form (d,x), where
d is feasible for the interdictor (i.e., satisfies constraints (3b) and
(3¢)) and x is optimal for the user given d. We emphasize that the
user problem in (3d)-(3g) is always feasible.

Problem (3) cannot be solved using the traditional dualize-and-
combine approach (i.e., dualizing the user’s problem to produce
a single-level formulation) or a KKT-based reformulation because
the user-level variables are binary (Allende & Still, 2013; Bazaraa,
Jarvis, & Sherali, 2011). However, this bi-level problem can be
transformed into a single-level integer linear problem using a value
function reformulation and then solved using a branch-and-cut al-
gorithm (Fischetti, Ljubi¢, Monaci, & Sinnl, 2017, 2018; Tahernejad,
Ralphs, & DeNegre, 2020). Other solution approaches to solve
bi-level optimization problems include decomposition techniques
based on column-and-constraint generation (Zeng & An, 2014) and
tailored algorithms exploiting the problem’s structure (Contardo &
Sefair, 2021; Xu & Wang, 2014). A compact linear programming re-
formulation to Problem (2) may allow the use of other solution ap-
proaches for the solution of Problem (3). However, we are unaware
of the existence of such reformulation for the MCPP. Although it is
possible to solve Problem (3) via existing methods, using such ap-
proaches will ignore the subjacent properties of the problem that
in this particular case admit a polynomial time algorithm.

In the remainder of this paper, we use the notation G = (V,A, ¢)
to denote a graph with node set V, arc set A, and arc capacities
€ = (Cjj) (i, jea- Moreover, we represent a solution to Problem (3) as
(d, x), where d = (d;j) (; jyea, Which can be simplified to only d be-
cause x can be determined by solving MCPP on G = (V,A,c—d)
using the MIP in (2) or any other method. In other words, the op-
timal objective function value corresponding to an optimal solution
d* to Problem (3) is the same as that obtained by solving Problem
(2) with arc capacities given by ¢;; — d;*j for each arc (i, j) € A.

We assume that all parameters in Problem (3) are positive in-
tegers. This is a common assumption in the network optimization
literature and is not restrictive in practice (Ahuja et al., 1993). Ra-
tional numbers can be transformed into integer numbers by multi-
plying them by a suitably large number. Moreover, irrational num-
bers need to be converted into rational numbers to be stored on
a computer, which allows us to transform them into integer num-
bers as well. We assume that all parameters are positive. If the
problem contains some arc (i, j) with ¢;; = 0, then the user would
never select an st-path including (i, j) and the arc can be removed.
If wi; =0 for some (i, j) € A, then the optimal interdictor’s action
is to set d;; =¢;; at no cost, which means that arc (i, j) can be
removed from the network because its capacity becomes zero. If
W =0, then the interdictor cannot decrease any arc capacity and
consequently, d = 0 is its optimal decision.

The following example shows that Problem (3) may have a frac-
tional optimal solution even if all parameters are integer numbers.

Example 1. Consider the graph shown in Fig. 1, where the num-
bers in parenthesis correspond to (c;j, w;;) for each arc (i, j) € A.
The available budget is W = 1 and the user travels from node 1 to
node 4, so the possible maximum capacity st-paths are 1 —2 —4,
1-3-4,and 1 -3 -2 —4 with capacity ¢y, = 3. If the interdic-
tor reduces cp4 to 2, then the user will select 1 —3 —4 with ca-
pacity cyin = 3. Similarly, if the interdictor decreases cq3 from 3 to
2, then the user will select 1 — 2 — 4 with capacity ¢,;, = 3. There-
fore, the interdictor must divide the budget equality among both
paths, changing c;3 and cy4 from 3 to 2.5, which results in the ca-
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‘ (cijywij) .

Fig. 1. Instance of CMCPIP with total budget W = 1.

pacity of all st-paths being at most c,;, = 2.5. This is the optimal
solution to this instance of CMCPIP.

4. Problem properties

In this section, we derive some preliminary results that serve
as the foundation of our algorithm and that will be used through-
out the paper. Although the user (inner) level feasible region in
Problem (3) is discrete, we prove that the set of objective val-
ues corresponding to all feasible solutions (i.e., the objective re-
gion) is a closed interval. For a given maximum capacity path P in
G=(V,A,c), let zmax = ming j)cp{Cij} and Xmax = (X;;) (i jea» Where
x;j = 11if (i, j) € P and x;; = 0 otherwise. Note that zmax is the same
objective function value of (d, X) = (0, Xnax) in Problem (3). There-
fore, the objective value of any feasible solution belongs to the in-
terval [0, Zmax]-

We use the notion of an st-cut in G, which is a minimal set of
arcs whose removal from G disconnects s and t, i.e., G has no st-
paths. The removal of all arcs in an st-cut will partition G into two
sub-graphs with node sets S and S, one containing s and the other
containing t, respectively (Ahuja et al.,, 1993). We denote an st-cut
by C=1S,S] where seS and t € S. We refer to an arc (i, j) with
icSand jeS as a forward and an arc (i, j) withieS and jeS§
as a backward arc of C. The sets (S,S) and (S,S) denote the sets
of forward and backward arcs, respectively, in an st-cut C =[S, S].
The weight of an st-cut is the sum of weights of its forward arcs.
Moreover, a minimum st-cut is an st-cut of minimum weight. We
refer the reader to Ahuja et al. (1993) for further details on finding
minimum st-cuts. Property 1 states the relationship between an st-
cut and the optimal solution to CMCPIP.

Property 1. The set of modified arcs in an optimal solution belongs
to an st-cut.

Suppose that a feasible solution to Problem (3) exists with ob-
jective value equal to z. This means that the capacity of any st-
path is at most z, i.e., for every st-path there exists at least one
arc whose initial or modified capacity is less than or equal to z.
Because the initial capacity of some st-paths may be greater than
z, the interdictor has to reduce the capacity of at least one arc in
those st-paths to z. In this case, it is sufficient to modify the ca-
pacity of exactly one arc in each of these st-paths. As a result, the
set of modified arcs in any optimal solution belongs to an st-cut.
Moreover, it is nonstrategic for the interdictor to incur in the ad-
ditional cost of reducing the initial capacity of an arc (i, j) with
Cij > z to any value strictly less than z. The following definition and
theorem formalize the arguments in Property 1.
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Definition 1. For any st-cut C and any z € [0, zmax], we define vec-

tor d©2 = (di(.c‘”) as
T T ig)eA

If (i, j)eCand ¢;; > z

Otherwise V(. Jj) € A. (4)

Cz _ JGj—2

The following properties are immediate.

Property 2. If A9 satisfies the budget constraint (3b), then d#)
also satisfies it for every z' € [z, Zmax].

Property 3. Vector d©? is a feasible solution to Problem (3) if and
only if it satisfies the budget constraint (3b).

Theorem 1. Consider an instance of Problem (3) and suppose that
a feasible solution exists with objective value equal to z. Then, there
exists an st-cut C such that d(©? satisfies Constraints (3b) and (3c).

Proof. Suppose that d is a feasible solution to Problem (3)
with objective value equal to z. Define the set D={Gj)eA:
¢ij —dij <z} and note that at least one member of this set deter-
mines the user’s optimal path with capacity z. Set D contains at
least one arc from each st-path P € P, where P is the set of all
st-paths. Otherwise, there is an st-path whose capacity is more
than z, which contradicts the optimality of the user’s problem
given d. Because D contains at least one arc from each st-path,
it follows that it contains at least one st-cut. Denote any of the
st-cuts in D by C and define d* as in (4). This implies that the
objective value of d* is also equal to z and that d;*j <d;j < ¢; for
every (i, j) € A. Using this relationship and the nonnegativity of
the w-parameters, we obtain that

2 widi = Y0 widy,

(i.j)eA (i.j)eA

which means that d* satisfies the budget constraint (3b).
We complete the proof by noting that d* is nonnegative by
construction. O

From a practical point of view, Theorem 1 states that the in-
terdictor should only focus on reducing the capacity of st-cuts in
order to reduce the capacity of any of the user’s st-paths. We lever-
age on this result to search for an optimal solution to Problem
(3) only among the st-cuts of G. Definition 2 describes the costs
incurred by the interdictor when attacking a subset of arcs in G in
order to achieve an objective function value equal to z.

Definition 2. For any network G = (V,A,c) and any z € [0, zmax],

we define a cost vector w? = vT/lZ as
I/ .j)en
-7 Wl'j(ij—Z) If Gj >z ..
W = {0 Ifgj<z’ Vi j)eA (5)

The value vT/fj can be seen as the cost of reducing the capacity
of arc (i, j) from ¢;; to z when ¢;; > z, which is equal to zero if
Cij <z because an interdiction action on arc (i, j) will not improve
the objective function value z. Using (5), we can calculate the cost
of attacking any st-cut C as W?(C) = }_; jjec vT/lZJ Property 4 follows
directly from Definitions 1 and 2.

Property 4. Vector d©? satisfies the budget constraint (3b) if and
only if w*(C) <W.

Theorem 2 states that the interdictor can reduce the capacity
of all st-paths to z as long as the cost of an st-cut is less than or
equal to W.

Theorem 2. Let C* be a minimum st-cut with respect to arc costs W%,
where z € [0, Zmax]-
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o If W2(C%) < W, then d(©2 is a feasible solution to Problem (3).
o If W?(C?) > W, then there is no feasible solution to Problem
(3) with objective value equal to z.

Proof. The proof of the first part follows directly from Properties
3 and 4. To prove the second part, we show that there is no feasi-
ble solution with objective value z. Assume for contradiction that
a feasible solution to Problem (3) with objective value z exists. By
Theorem 1, there exists an st-cut, C, such that d©2 is a feasible so-
lution with objective value z. Using the budget feasibility of d©2,
we obtain

_4C2)
W= Y wyd
(i,j)eA
(i, j)eCn{(i.j):cij>z}
=w(0),
where the first and second equalities hold from the definitions
of d©? and w?, respectively. However, the weight of any st-
cut C is at least the weight of the minimum st-cut C?, thus
w?(C?) <w#(C) <W, which contradicts the assumption that

WZ(C?) > W. This implies that d(©? is not feasible and that there
is no feasible solution with objective value equal to z. O

wij (Cij — 2)

Theorem 3 states an important feature of any optimal solution
to Problem (3).

Theorem 3. If the optimal objective function value to Problem (3) is
positive, then the budget constraint is binding at any optimal solution.

Proof. Assume for contradiction that d* is an optimal solution
with objective function value equal to z* >0 and such that
Y (i.j)eaWijdj; <W. Define D* as the set of arcs whose modified
capacity is positive, i.e., D* = {(i,j) e A: ¢j; — d;‘j > 0}, and let §* =
min; jyep«{Cij — d;‘j}. Because z* is positive, it follows that there is
at least one st-path whose capacity is positive. Thus, every arc on
such st-paths belong to D* and D* # @. Define d’ as

d — d; (i, j) ¢ D*
ij d;‘j+e @i, j)eD*
W3y op Wi,
where € = min M 8*] > 0. It follows that d’ is a fea-
(i,j)eD* ™ij

sible solution to Problem (3) because it satisfies both the budget
constraint in (3b) and also 0 < d{j < ¢;; for every (i, j) € A. By con-
struction, the capacity of any st-path is decreased by €, meaning
that d’ leads to a solution with objective function value strictly less
than z*, which contradicts the optimality of d*. O

These preliminary results lead us to reformulate Problem (3) as
follows:

min z (6a)

s.t. min W (C) = Z Wt =W (6b)
(i,j)eC

where C is the set of all st-cuts in G = (V,A). Now, consider the

function

f@ =min{W ©)} - W

=min{ > max{0, w;(c;—2)} -W ¢.
(i,j)eC

Define the set Z = {0} U {c;; : ¢;j < Zmax. (i, j) € A} and suppose
that its elements are organized in nondrecreasing order such that
(0=)zg <21 <...<z,(=2zZmax), Where k > 1 is an integer number.
The following lemma states some properties of f(z).
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Lemma 1. The function f(z):R~ R is nonincreasing and
piecewise-linear. Furthermore, f(z):[z_q,z]+— R is a decreas-
ing concave piecewise-linear function for any 1 =1,2,...,k.

Proof. Because W is a constant, it follows that f(z)+W =
minceo{W?(C)} is the minimum of the functions w?(C). For any
st-cut C in G, the function W?(C) = 3" ; jycc max{0, w;(c;j —2)} is
a convex nonincreasing piecewise-linear function on z.

Let ze[z_q,7] for any 1 =1,2,.... k. Define S={(i,j)cA:
Gij = Z}, bC = Z(i.j)ECﬂS W;jCij — W, and ac = Z(i,j)eCﬂSWij' Then,
function f(z) can be re-written in the following form.

f(2) =min

Z Wij(cij—z)—W
(i.j)eCns
=min {bc — . 7
IEIEICH{ c — acz} (7)

The concavity and decreasing nature follow because f(z) is de-
fined in (7) as the minimum of a set of linear functions, ac > 0,
and ac and b¢ are constants for z € [z;_1,z]. O

Lemma 1 implies that f(z) has only one root z* € [0, zmax],
which is the optimal value to Problem (6). Further, Theorem 2 im-
plies that if z is an infeasible objective function value, then
f(z) > 0. Similarly, if z is a feasible objective value, then f(z) <O0.
The following Lemma builds on this observation.

Lemma 2. For any fixed value z € [0, zmax], if Problem (3) has no fea-
sible solution with objective value z, then it contains no feasible solu-
tion whose objective value is less than z.

Proof. Suppose that Problem (3) has no feasible solution with ob-
jective value z’ € [0, zmax] such, which implies that f(z') > 0. Con-
sider a solution with objective value z” < Z'. Because f(z) is a non-
increasing function, it follows that f(z”) > f(z') > 0, which implies
that there is no feasible solution with objective value z” <Zz/. O

Lemmas 1 and 2 form the basis of our polynomial-time algo-
rithm, which we describe in Section 5.

5. Polynomial-time solution algorithm

In this section, we present an algorithm to solve Problem (3) in
polynomial time. The proposed algorithm consists of two phases.
The first phase uses a binary search to find an interval [z,_q, z;]
containing the optimal objective value z*. Formally, the goal is to
find the smallest index k € {1,2,....m} so that d€* %1 s in-
feasible while d€*2) is feasible, where C%-1 and C% are two min-
imum st-cuts in G = (V,A,w%-1) and G = (V, A, w%), respectively.
Using Theorem 2, the first phase looks for an index k so that the
minimum st-cut cost in G = (V, A, W?-1) is greater than W but less
than or equal to W in G = (V,A,w%). The second phase uses a
discrete version of the Newton’s method to find the value of z*
inside the interval provided by the first phase, and obtains a cor-
responding st-cut, C*. The condition z* € [z,_;, z;] means that there
is no feasible solution with objective value z;_;, whereas a solu-
tion with objective value z; exists. Accordingly, we find the root of
f(2) in [zj_1,7] using Algorithm 1, which is based on a discrete
version of the Newton’s method (Radzik, 2013). The second phase
also constructs an optimal solution to Problem (3) using z* and
C*. Depending on the context, in Algorithm 1 we use the notation
G=(V,A a) with & = ¢ or & =w because we invoke subroutines
to find a maximum capacity path using the c-parameters or to find
a minimum st-cut with arc weights given by the w-parameters.

Phase I of Algorithm 1 starts in Line 1 by calculating a mini-
mum st-cut in G = (V, A, w’), denoted by C, where Wlfj = ;jw;j for
each (i, j) € A. This can be done by finding the maximum flow be-
tween s and t in G and then using the results from the classic
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max-flow min-cut theorem (Ahuja et al.,, 1993). The If condition
in Lines 2-4 verifies whether the weight of € is less than or equal
to W. If so, it is feasible for the interdictor to reduce all the arc
capacities in C to zero. In this case, Line 3 calculates the optimal
interdictor attack as well as its corresponding objective value. The
algorithm then moves to Line 24 and terminates. If the weight of
€ is more than W, Line 5 solves a MCPP with the initial capacities
as input (i.e., ¢) and obtains the maximum capacity zmax. This can
be done using any existing algorithm for the MCPP (see Medhi &
Ramasamy, 2017 for widest path algorithms on directed networks).
Following our mathematical development from Section 4, Line 6
creates a sorted list of z-values ranging from 0 to zpmax, Which is
used in Lines 7-16 to search for the interval [z;_;, z;] that contains
z*. To this end, Algorithm 1 uses a binary search approach that it-
eratively solves maximum flow problems using the w-weights de-
fined in (5). If the maximum flow found in Line 10, denoted by v,
is less than or equal to W, then there is a feasible solution to Prob-
lem (3) according to Theorem 2. If v > W, then there is no feasible
solution for the interdictor and the corresponding z,-value is un-
achievable. Both cases are used to update the interval where z* lies
in the binary search. Line 12 records the index ky such that inter-
val [zy,_1,2,] contains z*, as well as other parameters required in
Phase II.

Phase II of Algorithm 1 begins in Line 17 by constructing the
set of arcs whose capacities are greater than or equal to Z, which
is the upper bound of the interval containing z*. The While loop
in Lines 18-22 generates a sequence {Z},_o .. converging to the
root z*, where Z, = Z. Following the results in Radzik (2013), we
calculate the k-th element in this sequence, Z; as a function of Z;_;
by computing

2" — 2" |- f(zk—])
R ¢
- bczki‘ - aczk7] zk—l
e
DS
_ Xjpecians WiiCij =W ®)
2 jyeciorns Wij

where (%-1 is a minimum st-cut in G = (V, A, W%-1). Because f(z)
is non differentiable at its breakpoints, we calculate f’(Z;_;) us-
ing its right-hand derivative. Line 19 computes Z, using (8) and
Line 20 updates the corresponding set of weights w? using (5).
Using these weights, Line 21 solves a minimum st-cut problem
on G = (V,A, w?). The While-loop continues until v* = W, which
is equivalent to finding the root of f(z) as a result of Lemma 1.
Note that the stopping condition also means that the interdictor
depletes its budget, which is a necessary condition for optimality
according to Theorem 3.

The following lemma and theorem prove that
Algorithm 1 solves Problem (3) in a finite number of itera-
tions. The correctness of Algorithm 1 is given by the results in
Radzik (2013), for which Remark 1 provides more details.

Lemma 3. If there is an index k such that points (Z;_q, f(Z;_1)) and
(Z, f(Z)) lie on the same line segment of f(z), then f(Z,) =0, ie,
Z), is the optimal value to Problem (3).

Proof. Because C* = C%-1 in Line 21 is a minimum st-cut in G =
(V, A, w#-1), it follows that

fEr) = minf#r (©)) - W

Wi (CB1) — W

bcqu — aCzH Zk_1.
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By assumption, (Z,, f(Z;)) lies on the line segment, implying that

b
f@) =bg,_, —az,_,%. From (8) we know that 2, = $' which
k-1

results in f(Z,) =0. O

Theorem 4. Algorithm 1 solves Problem (3) in a finite number of it-
erations.

Proof. The binary search in Phase I explores a finite set of inter-
vals, thus it finishes in a finite number of iterations. The proof for
Phase II is based on the results in Radzik (2013), where the goal is
to find the root of a convex nonincreasing piecewise-linear func-
tion given by

h(8) = max {f(x) — g(x) | x € X}, (9)

where X is the domain of the f- and g-functions. It is shown that
the Newton’s method finishes in a finite number of iterations while
visiting a sequence of increasing values. This result is analogous
for a concave decreasing function like f(z) defined as in (7) with
f(xX) =bc, gx) =ac, 6 =z, and X =C (see Lemma 1) and where
the update in Line 19 using (8) results in a sequence of decreas-
ing Z-values. Because f(z) contains a finite number of segments,
Lemma 3 implies that Phase Il terminates after a finite number of
iterations. O

Remark 1. Radzik (2013) proved that the number of iterations of
the Newton’s method for finding the root of a convex nonincreas-
ing piecewise-linear function defined as in (9), has a strongly poly-
nomial bound given by O(p? log2 p), where p is the dimension of
vector X. As established in Theorem 4, the Newton’s method is ap-
plicable in a similar way to find the root of f(z). As a result, the
number of iterations of Phase II has a strongly polynomial bound
given by ©(m? log? m), where m is the number of arcs in the net-
work. This leads to an overall time complexity of Algorithm 1 equal
to ©O(m? log2 mA (n,m)), where A(n, m) is the complexity for find-
ing a minimum cut in a network, which is polynomially solvable.

The value zpax in Line 5 can be quickly initialized with cpax =
max; jealcij}, avoiding the solution of a MCPP. This is convenient
when the input network is very large because the complexity of
any algorithm for MCPP is no less than O(m). This alternative ini-
tialization comes at the expense of additional iterations of the bi-
nary search procedure in Lines 8-16. Remark 2 states that this
modification has no effect in the algorithm’s correctness and that
each extra step in the binary search requires the solution of a triv-
ial sub-problem. Our implementation uses this initialization as it
reduced the solution times in the large-scale instances in our com-
putational experiments.

Remark 2. Let zynax be the capacity of the maximum capacity path
between s and t in G = (V, A, ¢). Therefore, the maximum flow be-
tween s and t in G = (V,A, w?) must be zero for any z > zmax be-
cause at least one arc in every (s,t) path has a modified weight of
zero according to (5). Otherwise, zmax would not be the true max-
imum capacity. As a result, using cmax in Line 5 implies that Line
6 admits more values in the sorted list, which will be discarded
when executing Line 12 for any z; > zmax as the sub-problem in
Line 10 returns v = 0. The algorithm will return the same results
after this modification because at some iteration k of the binary
search we will have z, < zmax, which is the initialization in the
original version of the algorithm.

Fig. 2 shows an example of the step-by-step execution of
Algorithm 1 on a network with 6 nodes and 9 arcs. Fig. 2(a) shows
the network components with arc capacities and interdiction costs
next to each arc. Fig. 2(b) shows the execution of Line 1, where
arc capacities are given by W;j = wjj¢;j, for each (i, j) € A, which
is the same as using (5) with z = 0. Executing this line returns
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Algorithm 1 Two-phase algorithm for CMCPIP.
Input: Graph G = (V, A, ¢) with two prescribed nodes, s and t, in-
terdiction cost vector w, and budget W
Output: Optimal interdiction vector d* and its corresponding opti-
mal value z*
Phase I:
1: Find a minimum st-cut € in G= (V,A, w) with arc weights
W;J = W;;Cij, (l, ]) cA
2: if Z(i,j)eCW:'j < W then

. . | o GpeC ~ .
3: Calculate dl.j = { 0 (i) eA\C and set z¥ = 0. Go to
Line 24
4: end if

5: Find a maximum capacity path in G = (V, A, ¢) and set zpax to
its capacity

6: Sort the values in {c;j : ¢jj < Zmax. (i, j) € A}U {0} in nonde-
creasing order and let zo =0 < z;... <z, = zmax be the sorted
list

7: Set k; =0 and ky = ¢

8: while ky —k; > 1 do

9 Set k= KTk

10: Find the maximum flow value, v, between s and t in G =
(V,A, w?), where w?k is defined by (5)

11: if v <W then

12: Set ky = k, Z =z, v* = v, and let C* be the st-cut corre-
sponding to v in G = (V, A, W)

13: else

14: Set k; =k

15: end if

16: end while
Phase II:

17: Construct set $* = {(i, j) e A : ¢;j > Z}
18: while v* £ W do
(i jecxns WijCij—W

19: Setz= 2 (i.j)ecrns* Wij

20:  Calculate w? using (5)

21: Find a minimum st-cut, C*, in G = (V,A, W?) and set v* to
its weight

22: end while
23: Set z* = 7, calculate d©"#") using (4), and set d* = d(©7")
24: Return d* and z*

the cut €= {(1,2), (1,3)} with value Z(i,j)eﬁng =60 (shown in
red dotted lines). Because this value is greater than W = 15, the
algorithm skips Lines 2-4. We use the initialization zmax = Cmax
(see Remark 2) in Line 5 and create a sorted list of arc capac-
ities (including 0) according to Line 6. Fig. 2(c) shows the first
execution of Line 10 within the binary search with k=4, z4 =7,
and updated arc weights given by w?. This line returns the flow
value v =4 with corresponding cut C ={(3,5), (4,6)} (shown in
red dotted lines). Because v < W, Line 12 updates ky =4,Z=2z4 =
7, v* =4, and C* = {(3,5), (4,6)}, and Line 9 sets k = 2. Fig. 2(d)
shows the execution of Line 10 in the binary search with k =2,
7z, =5, and updated arc weights given by w?2. This line returns
the flow value v =12 with corresponding cut C = {(3,5), (2,4)}
(shown in red dotted lines). Line 12 updates ky =2, Z=2z, =5,
v* =12, and C* ={(2,4), (3,5)}, and Line 9 sets k = 1. The next
iteration of the binary search is shown in Fig. 2(e), where Line
10 returns the flow value v =24 with corresponding cut C=
{(1,2),(3,2),(3,5)} (shown in red dotted lines). Because v > W,
Line 14 updates k; =1 and Phase 1 terminates because the con-
dition of the While loop in Line 8 is no longer satisfied. Fig. 2(f)
shows the execution of Phase 2, where Line 17 constructs the
set S ={(1,2),(1,3),(2,4),(3,5),(4,3),(5.4),(4,6), (5.6)} and
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. cij(wij) .

Sorted Capacities:{0, 4, 5,6,7,8,9,12,13}
(a)
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Phase 1

0 cij (@), 0)

k=1, 2z =4, C={1,2),(5,2),3,5)}, v=24

2 =4769, C*={(2,4),(3,5)}, v=15
(U]

Fig. 2. Step-by-step example of the execution of Algorithm 1.

Line 20 sets Z = 4.769 because 12 = v* # 15. The minimum st-cut
in the modified network with weights W? (shown in Fig. 2(f)) ob-
tained in Line 21 is C* = {(2,4), (3,5)} with value v* = 15. The
While loop terminates because v* =W and the condition in Line
18 is no longer satisfied. Line 23 calculates the attacks d* using (4),
which are shown in parenthesis in Figure Fig. 2(g). The algorithm
returns z* = 4.769 and d* in Line 24.

6. A reduction to a zero-sum game

Algorithm 1 solves Problem (3) in polynomial time assuming
that user and interdictor are not subject to any side constraint be-
yond those in Problem 3. However, Algorithm 1 cannot solve other
problem variants involving additional constraints, for instance any
constraint making a cut or path infeasible. In this section, we show
that Problem (3) can be reduced to a zero-sum noncooperative
game. We prove that the game always has a pure Nash-equilibrium
point. This is an interesting result from a theoretical point of view

because in general zero-sum games may not always admit a pure
Nash-equilibrium point (see Mazalov, 2014 for further details). This
reduction allows us to convert Problem (3) into a constrained zero-
sum game, where some side constraints can be easily incorporated.

We first determine the set of pure strategies for each agent in
Problem (3). The user’s strategy set consists of all st-paths in G.
To determine a strategy set for the interdictor, we use the decision
variables d(©? from Definition 1 and remove their dependency on
z. Let C be the set of all st-cuts in G such that w?max(C) <W for
each C e C. We show that there is a unique number z¢ € [0, Zmax]
for each st-cut C such that d©Zc) satisfies the budget constraint of
Problem (3) in equality form. This construction allows us to define
the interdictor’s strategy set as all st-cuts C € € in G. As a resul,
if the user chooses an st-path P and the interdictor attacks an st-
cut C, then the user’s payoff is the leftover capacity of P after the
interdictor reduces the capacity of some arcs in C. Because this is
a zero-sum game, the interdictor’s payoff is the capacity loss of
the user. This implies that the user’s and interdictor’s payoffs are
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at most zc. To remove dependency of d(©? on z, we define z€ as
follows.

Definition 3. Define C as an st-cut in G such that w?max(C) <W.
Define g€(z) = w?(C) — W, where g°: [0, Zmax] — R and let zZ€ be
the solution of g€(z) = 0.

From Lemma 1, gf(z) is a convex decreasing piecewise-linear
function for z € [0, Zmax].

Lemma 4. For each st-cut C € C in G, z€ is the best attainable objec-
tive value to Problem (3) when the interdictor reduces the arc capac-
ities in cut C only.

Proof. Suppose for a contradiction that z€ is not the best attain-
able objective that the interdictor can achieve by reducing the arc
capacities in cut C. Then, let z/ < z€ be the best objective the inter-
dictor can achieve. Because g€ is decreasing, then g€(z') > g€(z5) =
0. This implies g°(z') > 0, i.e., W? (C) > W, which means that 2’ is
unattainable (i.e., infeasible) with respect to cut C. O

The following properties of z€ are immediate.
Property 5. For each st-cut C € C in G, z€ € [0, zmax] and it is unique.

The uniqueness of z& follows from the fact that g€ is decreasing
in the interval [0, zmax], SO the root of the function must be unique.
Furthermore, z€ € [0, Zmax] since g°(zmax) < 0 by Definition 3.

Because g€ is a convex decreasing piecewise-linear function in
the interval [0, zmax], we find the root of g€ using the same prin-
ciples from the Newton’s method described in Section 4. In par-
ticular, we generate a nondecreasing sequence {Z}y_o 1 .. converg-
ing to the root z¢, where Zy = 0. Define S, (C) = {(i, j) € C: Cij = Zk}
and the k-th element in this sequence, Z;, using following update
rule.

= = gc(zk—l)
KT oGy
5 Di.jes, . © Wii (G = Zkeq) =W
= 4k-1 —

= 2. )es, © Wil

_ Zapesao Wit =W (10)

220, j)ese 1 © Wi

Theorem 5. The update rule in (10) converges to z€ if S,(C) =
Sk_1(C) for any given k€ {0,1,2,...}.

Proof. When S, (C) = S;_;(C) we have that

3 Y oGjes, © WijCij — W
k =

2 (i.j)esi © Wi
X peso Wii€ii —W

2 j)ese©) Wij
Reorganizing terms, we obtain 3 j)cs, () Wij(Cij — Z) = W, which
implies that g©(Z,) = 0 by definition. Hence, z;, = 2¢. O
Property 6 describes a feature of function g€(z) that guarantees

the convergence of the update rule in (10) in a finite number of
iterations.

Property 6. The breakpoints of the convex decreasing piecewise-
linear function

£L(@) =w () -W
= Y max{0,w;(c; —2)} -W
(i.j)eC
correspond to the capacity values for arcs in C. Hence, the Newton’s

method based procedure converges in a finite number of iterations,
which is bounded by the number of unique arc capacities in cut C.
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Table 1
Calculation of z¢ for a given st-cut.
k 0 1 2 3
Z 0 7.40 10.20 10.50

S (©)  fer.ez, ..., e} {es.e7.es.e9.e10}  {e7.es,e9. €10}  {e7.es, €9, €10}

Budget = 20
70 g '

60
50
40 -

30 A

g(2)

20 A

10 A
— oo S

PR : 22}

-10

0 2 4 6 8 10 12 14
z

Fig. 3. Sequence of {z;} for a given cut C.

. (cijywij) .

Fig. 4. Instance of Problem (3).

We illustrate this root-finding procedure using Example 2.

Example 2. Consider an instance of Problem (3) with zpax = 15,
with an st-cut consisting of 10 arcs, C = {eq, e, ..., €19}. The initial
arc capacities are {2,3,4,7,7,9, 12, 14, 18, 18} and the interdiction
budget is W = 20. For simplicity, we assume that all w-values are
equal to 1. Table 1 shows the values of z, calculated by (10).

Table 1 shows that the sequence {Zk}zzo is increasing in k, given
the update from (10). At k = 3, we have that S3(C) = S,(C), which
is the convergence condition.

Fig. 3 illustrates the corresponding function g€(z), its break-
points and root, as well as the z,-values until convergence.

The following example illustrates the reduction of an instance
of Problem (3) to a zero-sum noncooperative game.

Example 3. Consider the instance of Problem (3) depicted in Fig. 4,
with s =1 and t = 4. Recall that the strategy set for the user con-
sists of all st-paths, while for the interdictor consists of all st-cuts.
Table 2 shows the payoff matrix for the user perspective, for all
combinations of user st-paths and interdictor’s st-cuts. The payoff
is the capacity of a path P after the interdictor optimally decreases
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Table 2
User’s payoff matrix for the zero-sum game in Fig. 4.
G =1[51.51] G=[55] G=I[5.5] Ci=I[S:5]
S1={1} S»={1.2} S3={1.3} S4={1,2,3}
S$1={2,3,4 S5 ={3,4} S3=1{2,4} Sq={4}
=4 £ =3 =% 25 =
Ph:1-2-4 3 3 3 3
P:1-2-3-4 % § % 3
P:1-3-4 i B I 3
Pi1-4 4 2 49 3
the arc capacities in cut C. In this example, the strategy profile

(Py,Cy4) is a pure Nash equilibrium solution with payoff equal to 3.

In the same setting of Example 3, suppose that there are side
constraints that make cuts C; and C; infeasible. This new prob-
lem cannot be solved directly by Algorithm 1. However, this can
be solved using the proposed reduction by removing strategies C;
and C; because they do not satisfy the new constraint. This reduces
the size of the game, and strategy profile (P, C4) remains optimal.

The game described in Example 3 contains a pure equilibrium
solution, which indeed is always the case. Theorem 6 establishes
that the proposed game always contains a pure Nash equilibrium
solution. Remark 3 states that a sequential game can be depicted
as a simultaneous game in normal form.

Theorem 6. The corresponding zero-sum game to any instance of
Problem (3) has always a pure Nash equilibrium solution.

Proof. Let A= (q;;) be the payoff matrix for the user. Consider

the (st-cut) strategy C; for the interdictor, where = minC€Cv{ZC},
and the strategy P, for the user, which corresponds to the maxi-
mum value of elements belonging to the j-th column of A. For-
mally, the payoff value of strategy (P, C;) corresponds to a;;, where

path P (ie, c(P) = ming ,cp Ck). Next, we prove that strategy
(P, C;j) is a pure Nash equilibrium. By construction, we have that
the user has no incentive to deviate from P, given C; as there
is no strictly better payoff in the corresponding column of the
payoff matrix. To prove that the interdictor has no incentive to
change strategy C;, suppose for a contradiction that the st-cut G
is chosen instead of C;, with I+# j, and that the optimal payoff
in this case is ay, corresponding to strategy (P;(;) and where

 Case 1: gy =70 In this case, the user’s payoff is increased be-

cause z% = min{z€ : C e ¢} <7, hence the interdictor has no

incentive to adopt the new strategy C;.

o Case 2: g;; < a; < ZG. In this case, the interdictor has no incen-
tive to change strategy C; because it provides a payoff that is at
least as good as (.

* Case 3: a5 < g;;. This means that c(P;) = a; < a;; < c(P), which
is impossible because the user can choose path P, and obtain a
payoff a; > c(R).

Piecing together these cases leads to the conclusion that there
is no cut ; better than C; for the interdictor, with I # j, thus strat-
egy (B, Cj) is a pure Nash equilibrium. 0O

Remark 3. The CMCPIP is a sequential game, where the interdictor
plays first and then the user, fully aware of the interdictor’s choice
decides the path to follow. However, this game can be equally rep-
resented as a simultaneous game in normal form because regard-
less of the path chosen, the user’s payoff will be at-most z€ for any
choice of st-cut C of the interdictor. That is, the payoff of the user’s
choice is not affected by the order of play.

We also point out that in this zero-sum game the user wants to
maximize their payoff (maximum capacity of the path), while the
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interdictor wants to minimize the user’s payoff. This means that
the interdictor’s payoff is the negative of the user’s payoff, so it
suffices to depict only one payoff.

Although the result of this section is theoretically interesting,
its practical applicability is limited to small networks because the
strategy sets of the user (st-paths) and the interdictor (st-cuts)
grow exponentially with the size of network.

7. Computational experiments

This section illustrates the computational performance of our
solution approach. We implemented Algorithm 1 in a computer
with an Intel Xeon E5-2680 v4 CPU running at 2.40GHz, 16 GB
of RAM, and Linux 3.10.0. We used Python 3.6 and the em-
bedded routines in Matplotlib and NetworkX for the code de-
velopment and instance generation (Batagelj & Brandes, 2005).
Section 7.1 presents an example on the interdiction of wireless sen-
sor networks, where an interdictor affects the transmission band-
width between sensors. Section 7.2 demonstrates the performance
of our algorithm on a set of randomly generated networks of var-
ious sizes based on Erdds & Rényi (1976) and scale-free graphs
(Barabési & Albert, 1999).

7.1. Interdiction of wireless sensor networks

Wireless Sensor Networks (WSNs) consist of a group of sen-
sors located in a space with the purpose of collecting physical or
environmental data of interest, which is then transmitted wire-
lessly from sensor to sensor until reaching a base station (or sink)
for processing. Sensors must be strategically located in the sur-
veyed area due to their limited transmission range in order to en-
sure a continuous communication to the base station. The use of
WSNs includes environmental monitoring, infrastructure surveil-
lance, precision agriculture, fire detection, and supply chain man-
agement, among others (Othman & Shazali, 2012; Xu, 2002).

Consider the randomly generated 1000-sensor WSN shown in
Fig. 5a. Sensor locations are depicted as nodes and an arc between
two nodes means that the corresponding sensors are within range
and can communicate. The network in Fig. 5a is undirected for
illustrative purposes, but the communication between sensors is
bidirectional and the CMCPIP is solved over a directed network
with two arcs—(i, j) and (j,i)—for every pair of communicating
sensors i and j. This leads to a network of 16,578 arcs. The net-
work user is interested in finding the maximum transmission ca-
pacity path between a given sensor (source) and the base station,
which are depicted in Fig. 5a with a circle and a star, respectively.
Arc capacities represent the transmission bandwidth between sen-
sors, which we generate using an integer uniform distribution in
the range [10,50]. We generate arc interdiction costs using an in-
teger uniform distribution in the range [10, 100], except for those
arcs close to the source or base node, which we assume are pro-
hibitively expensive to attack. This reflects that such locations are
highly protected to deter any interdiction action. We define the
minimum cost of totally isolating the source sensor as the value
of the minimum-cost cut between source and base station in the
same WSN but using arc costs given by c;jw;;, for each (i, j) € A
(i.e., using the costs of reducing each arc capacity to zero). We cal-
culate the interdictor’s budget as a percentage of the total isolation
cost.

Fig. 5 b shows the optimal interdiction plan when the interdic-
tor’s budget is equal to 1% of the total isolation cost. The thicker
black arcs are attacked, i.e., arcs such that d;*j > 0 in the solution
returned in Line 24 of Algorithm 1. Fig. 5b also shows a maxi-
mum transmission path between the source sensor and the base
node using an attacked arc. Note that this path may not be unique.
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(a) WSN input network
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(b) Arcs attacked and maximum capacity (bandwidth)
path

Fig. 5. Interdiction of a WSN.

The maximum transmission capacity in the absence of the inter-
dictor is equal to 45, which is reduced given the attacks to 42.66
(5.21% decrease). Solving CMCPIP on the same WSN and using in-
terdiction budgets of 2%, 5%, and 10% of the total isolation cost
results in maximum transmission capacities of 40.78 (9.37% de-
crease), 3715 (17.44% decrease), and 32.56 (27.64% decrease), re-
spectively. These results illustrate that even with a small budget
the interdictor is able to disrupt the user operations to some de-
gree. Algorithm 1 solved these WSN instances in less than 2 sec-
onds.

7.2. Randomly generated instances

We use the undirected binomial random graphs introduced by
Erdds & Rényi (1976) to create random instances of various arc
densities. Binomial graphs are generated using two parameters,
n and p € [0, 1], where n is the number of nodes and any edge
(i, j) exists with probability p. As p increases, the graph becomes
denser. In particular, p =1 corresponds to a complete graph. We
also generate random graphs using the Barabasi-Albert (BA) model
(Barabasi & Albert, 1999), which are scale-free and approximate
the behavior of systems in which few nodes have a relatively
high degree with respect to other nodes (e.g., internet, social net-
works). Under the BA model, graphs are generated by sequen-
tially adding new nodes and arcs using a preferential attachment
rule in which highly connected nodes are more likely to receive
more arc connections. This is controlled by parameter h, which
is the number of initially connected nodes that have a higher
chance to be connected to new nodes as the graph construction
progresses.

In all instances, we assume that the origin is Node 1 (i.e.,
s =1) and the destination is Node n (i.e., t = n). We generate three
groups of c-parameters to evaluate the influence of different ca-
pacities on the algorithm’s performance. These capacities are gen-
erated using integer uniform distributions with ranges [50, 500],
[50, 1000], and [50,2000], respectively. In all instances, the w-
parameters are integer and uniformly distributed in the range
[1,1000], and the interdiction budget W is a percentage of the total
isolation cost of node s. To construct a directed network, we first
generate an undirected graph and then create arcs (i, j) and (j,i)
for each existing edge {i, j} in the input graph. We avoid arc dupli-
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cates and assign both arcs the same capacity and interdiction cost
as the edge in the initial undirected graph. The results presented
are averages across five randomly generated networks of the same
size.

We test our algorithm on multiple networks with different val-
ues of p and h, resulting in a number of nodes between 100 and
2000 and a number of arcs between 1600 and 3.6M. Tables 3
and 4 summarize the performance of Algorithm 1 on networks
generated from Erdds-Rényi binomial graphs and Barabasi-Albert
scale-free graphs, respectively. In both cases, the solution times
(t) increase with the network size and the length of the capac-
ity range as the number of (possibly) distinct capacity values in-
crease. This is because the input set of distinct z-values in the
binary search procedure tends to be larger as the capacity range
increases, requiring more iterations of Phase 1. Moreover, a bud-
get increase allows the interdictor to achieve a smaller objective
function value via more arcs attacked or more intense attacks. This
results in more time-consuming subproblems in Lines 10 and 21
as the size of the input networks (and number of arcs with 0 ca-
pacity) depend on the arc weights given by (5). We also report
the impact of the interdictor actions as Az = (z0 —z*)/z°, where
z* is the optimal value of CMCPIP returned by Algorithm 1 in
Line 24 and z0 is the capacity of the maximum capacity path in
the absence of interdictor. As expected, the interdiction impact in-
creases with the budget. Attacks reduce the capacity of the maxi-
mum capacity path by at least 7.30% (1% budget) and up to 32.96%
(10% budget) in the networks generated from binomial graphs
and by at least 5.62% (1% budget) and up to 33.23% (10% bud-
get) in the networks generated from scale-free graphs. These re-
sults illustrate that the interdictor can cause significant damage
to the user operations even with a small budget. Tables 3 and
4 demonstrate the scalability of Algorithm 1, which is able to
solve very-large scale instances (e.g., 2000 nodes and 3.6M arcs)
in less than 500 seconds on average given its polynomial time
nature.

Tables 5 and 6 report the run time of each Phase of
Algorithm 1 for the binomial- and scale-free graphs, respectively.
In both cases, the run time of each phase increases with the in-
put network size and the interdictor’s budget. Increasing the length
of the capacity range results in longer solution times (t) due to
more iterations performed in Phase 1. This is because the number
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Table 3
Solution time and interdiction impact on networks generated from Erdds-Rényi binomial graphs.
Budget %
1% 2% 5% 10%
(n,m, p) Capacity t(s) Az (%) t(s) Az (%) t(s) Az (%) t(s) Az (%)
(100, 5054, 0.3) [50, 500] 0.35 7.44 0.44 12.41 0.45 20.73 0.51 32.96
[50, 1000]  0.39 7.30 0.42 10.20 0.45 23.85 0.47 29.64
[50, 2000] 0.44 8.26 0.42 13.19 0.51 22.41 0.55 29.71
(100, 9008, 0.7) [50, 500] 0.68 9.61 0.66 13.70 0.78 23.02 0.84 30.95
[50, 1000]  0.70 9.03 0.69 13.26 0.82 22.55 0.92 31.25
[50, 2000] 0.73 9.46 0.71 13.12 0.84 23.01 0.92 32.79
(500, 126996, 0.3) [50, 500] 7.32 9.41 7.73 13.68 8.68 22.29 9.71 30.44
[50, 1000]  8.20 10.21 8.14 14.00 9.48 23.13 10.31 30.46
[50, 2000]  8.13 10.05 9.15 14.39 10.04 22.93 11.18 30.97
(500, 226936, 0.7) [50, 500] 13.81 11.29 14.62 14.89 17.76 22.14 18.52 32.09
[50, 1000]  13.89 9.50 15.26 14.60 17.10 22.89 19.39 32.07
[50, 2000]  15.16 10.32 16.33 13.89 17.91 22.68 20.78 32.11
(1000, 509468, 0.3) [50, 500] 30.23 10.09 32.83 13.99 38.45 23.03 42.31 31.62
[50, 1000]  32.50 9.83 36.50 13.97 41.74 23.49 44.21 31.56
[50, 2000]  35.44 10.60 37.58 14.13 42.14 23.10 48.53 32.07
(1000, 909596, 0.7) [50, 500] 55.38 9.84 60.76 13.92 74.14 22.90 77.33 31.29
[50, 1000]  59.11 10.50 64.93 14.01 77.24 22.38 84.35 32.22
[50, 2000]  63.10 9.87 68.44 13.76 76.55 2233 89.46 31.81
(2000, 2039320, 0.3)  [50, 500] 128.60 10.13 142.81 14.59 163.39 2254 183.96  32.00
[50, 1000] 14329  10.39 152.74 1436 168.16  22.44 198.23 3185
[50, 2000] 146.57 1039 158.66  14.69 17493  22.66 21490 31.54
(2000, 3637428, 0.7)  [50, 500] 24212 9.79 262.14  14.26 310.88  22.46 35248  31.51
[50, 1000] 26145  10.02 31125  14.09 32155 2298 372.05  32.00
[50, 2000] 274.28  10.28 31719  14.08 332,15 2248 388.82  31.58
Table 4
Solution time and interdiction impact on networks generated from Barabasi-Albert scale-free graphs.
Budget %
1% 2% 5% 10%
(n,m, h) Capacity t(s) Az (%) t(s) Az (%) t(s) Az (%) t(s) Az (%)
(100, 1600, 20) [50, 500] 0.26 7.26 0.28 13.38 0.33 21.73 0.36 33.23
[50, 1000]  0.27 5.75 0.31 14.14 0.32 17.64 0.35 30.88
[50, 2000]  0.31 8.87 0.31 11.13 0.30 18.59 0.37 30.74
(100, 2500, 50) [50, 500] 0.35 5.62 0.36 10.87 0.39 20.81 0.49 29.82
[50, 1000]  0.39 6.36 0.41 12.68 0.43 21.42 0.46 30.80
[50, 2000]  0.42 7.20 0.38 10.59 0.45 19.73 0.51 30.11
(500, 40000, 100) [50, 500] 4.51 9.26 4.94 12.47 5.81 21.92 6.09 32.53
[50, 1000]  5.04 10.74 5.11 13.23 6.14 22.19 6.58 31.24
[50, 2000]  5.26 10.13 5.43 13.71 6.27 22.02 6.94 30.73
(500, 62500, 250) [50, 500] 7.31 8.94 7.52 12.56 8.61 21.35 9.58 32.89
[50, 1000] 7.71 9.52 7.89 14.19 8.54 20.81 10.59 31.36
[50, 2000]  7.93 9.38 8.38 13.60 9.63 22.76 10.66 31.51
(1000, 160000, 200) [50, 500] 19.44 9.56 20.36 13.45 23.13 21.08 25.95 30.21
[50, 1000]  19.56 9.17 22.09 13.22 23.62 21.94 27.45 30.78
[50, 2000]  21.01 8.68 22.93 13.63 25.64 22.73 29.54 31.59
(1000, 250000, 500) [50, 500] 29.18 9.05 31.35 14.02 34.47 20.80 40.89 30.88
[50, 1000]  31.26 10.46 33.15 12.70 37.79 22.34 42.75 31.30
[50, 2000]  32.66 9.74 37.04 13.42 38.86 21.61 47.72 31.81
(2000, 640000, 400) [50, 500] 80.38 9.92 87.18 14.68 98.95 22.92 110.84  31.10
[50, 1000]  83.34 9.94 92.30 13.75 102.31 2241 11829  31.99
[50, 2000]  91.48 10.41 100.22  14.50 11521  21.60 126.64 31.42
(2000, 1000000, 1000)  [50, 500] 12894 955 135.21 13.68 154.03  22.05 185.61 32.24
[50, 1000]  132.85  10.03 14430  14.00 160.69  21.89 186.74 31.74
[50, 2000]  137.87  9.69 152.41 13.66 17148 2134 196.85 31.61

of (possibly) distinct capacity values increase with the length of
the capacity interval. The performance of Phase 2 is similar across
capacity values. Phase 1 is consistently more time-consuming as
it performs more iterations until identifying the range of z-values
containing the optimal objective function value. Phase 2 performs
very few iterations as it only needs to identify the optimal ob-
jective function value and the corresponding set of arcs to attack
within the already narrowed range of z-values (and subset of arcs)
provided by Phase 1. In our experiments, Phase 1 performs be-
tween 8 to 11 iterations, whereas Phase 2 performs no more than
3 iterations (2 for most instances). These experiments show that
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variations in input parameters and network size affect the solution
times in a similar manner in the examined networks regardless of
their structure.

8. Final remarks

In this paper, we study the maximum capacity path interdic-
tion problems with continuous interdiction. We propose an effi-
cient algorithm for its solution, combining a binary search proce-
dure and a discrete-type Newton’s method. The algorithm first ob-
tains an interval that contains the optimal objective function and
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Table 5
Solution time and iterations per phase on networks generated from Erdds-Rényi binomial graphs.
Budget %
1% 5% 10%
Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
(n,m, h) Capacity t(s) iter. t(s) iter.  t (s) iter. t(s) iter. ~ t (s) iter. t(s) iter.
(100, 5054, 0.3) [50, 500] 0.29 8.8 0.07 2.0 0.36 9.0 0.09 2.0 0.41 8.8 0.10 2.0
[50, 1000]  0.32 10.0 0.07 2.0 0.36 9.6 0.08 2.0 0.38 9.8 0.09 2.0
[50, 2000]  0.37 106  0.07 2.0 0.42 10.6  0.09 2.0 0.45 10.6  0.10 2.0
(100, 9008, 0.7) [50, 500] 0.55 9.0 0.12 2.0 0.66 9.0 0.12 2.0 0.70 8.8 0.14 2.0
[50, 1000]  0.59 10.0 0.10 2.0 0.70 9.8 0.12 2.0 0.77 100 0.15 2.0
[50, 2000]  0.64 11.0 0.09 2.0 0.72 11.0 0.12 2.0 0.78 106 013 2.0
(500, 126996, 0.3) [50, 500] 6.03 9.0 1.29 2.0 7.00 8.8 1.68 2.0 7.78 9.0 1.93 2.0
[50, 1000]  6.83 10.0 137 2.0 7.80 10.0 1.68 2.0 8.43 9.8 1.89 2.0
[50, 2000]  6.88 11.0 125 2.0 8.38 10.6  1.66 2.0 9.31 11.0 1.86 2.0
(500, 226936, 0.7) [50, 500] 11.37 9.0 2.45 2.0 14.45 9.0 3.31 2.0 14.75 8.6 3.76 2.0
[50, 1000]  11.64 9.8 2.24 2.0 14.09 10.0 3.01 2.0 15.87 10.0 3.52 2.0
[50, 2000]  12.86 11.0 230 2.0 14.96 11.0 294 2.0 17.33 11.0 3.46 2.0
(1000, 509468, 0.3) [50, 500] 24.91 8.8 532 2.0 31.19 8.8 7.27 2.0 33.98 9.0 8.33 2.0
[50, 1000]  27.30 10.0 5.20 2.0 34.38 10.0 7.36 2.0 36.08 9.8 8.13 2.0
[50, 2000]  29.94 11.0 5.50 2.0 35.12 11.0 7.03 2.0 40.36 11.0 8.17 2.0
(1000, 909596, 0.7) [50, 500] 45.91 8.8 9.47 2.0 60.54 9.0 13.60 2.0 62.13 8.8 1520 2.0
[50, 1000]  49.55 9.8 9.57 2.0 63.88 9.8 1336 2.0 69.23 9.8 1512 2.0
[50, 2000]  53.66 11.0 9.44 2.0 63.35 108 13.20 2.0 74.41 108 15.05 2.0
(2000, 2039320, 0.3)  [50, 500] 10584 8.4 2276 2.0 13225 8.6 31.14 20 147.05 8.8 36.91 2.0
[50, 1000] 120.10 9.8 23.19 2.0 137.74 9.8 3042 2.0 16234 100 3589 2.0
[50, 2000] 12440 11.0 2217 2.0 14555 108 2938 2.0 17923 11.0 3567 2.0
(2000, 3637428, 0.7)  [50, 500] 20099 88 4114 20 253.78 9.0 57.10 2.0 28493 9.0 67.56 2.0
[50, 1000] 220.89 10.0 40.56 2.0 264.41 10.0 57.14 20 306.76 10.0 6529 2.0
[50, 2000] 234.08 11.0 4020 2.0 278.06 11.0 54.08 2.0 32474 11.0 64.08 2.0
Table 6
Solution time and iterations per phase on networks generated from Barabdsi-Albert scale-free graphs.
Budget %
1% 5% 10%
Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2
(n,m, h) Capacity t(s) iter. t(s) iter.  t (s) iter. t(s) iter.  t (s) iter. t(s) iter.
(100, 1600, 20) [50, 500] 0.21 8.8 0.06 2.2 0.27 8.8 0.06 2.0 0.29 8.8 0.08 2.0
[50, 1000]  0.22 9.6 0.05 2.0 0.26 9.6 0.06 2.0 0.28 9.8 0.07 2.0
[50, 2000]  0.26 10.2  0.05 2.0 0.25 10.2  0.05 2.0 0.30 102 0.07 2.0
(100, 2500, 50) [50, 500] 0.28 8.4 0.07 2.0 0.31 8.8 0.08 2.0 0.39 9.0 0.10 2.0
[50, 1000]  0.31 9.6 0.08 22 0.35 10.0 0.08 2.0 0.38 10.0 0.08 2.0
[50, 2000]  0.34 104 0.08 2.2 0.37 10.6  0.08 2.0 0.41 106  0.09 2.0
(500, 40000, 100) [50, 500] 3.71 9.0 0.80 2.0 4.70 9.0 1.12 2.0 4.82 8.4 1.27 2.0
[50, 1000]  4.21 10.0 0.82 2.0 5.05 10.0 1.09 2.0 5.33 9.8 1.25 2.0
[50, 2000]  4.42 11.0 084 2.0 5.20 11.0 1.06 2.0 5.74 11.0 120 2.0
(500, 62500, 250) [50, 500] 6.08 8.8 1.23 2.0 6.98 9.0 1.62 2.0 7.62 8.8 1.96 2.0
[50, 1000]  6.46 10.0 1.25 2.0 6.98 10.0 1.56 2.0 8.63 10.0 1.96 2.0
[50, 2000]  6.70 11.0 1.23 2.0 8.02 10.8  1.61 2.0 8.83 11.0 184 2.0
(1000, 160000, 200) [50, 500] 15.89 8.8 3.55 2.0 18.70 9.0 443 2.0 20.83 9.0 5.13 2.0
[50, 1000]  16.30 9.8 3.25 2.0 19.34 10.0 428 2.0 22.47 10.0 497 2.0
[50, 2000] 17.77 11.0 3.24 2.0 21.37 11.0 4.27 2.0 24.50 11.0 5.04 2.0
(1000, 250000, 500) [50, 500] 24.14 9.0 5.04 2.0 27.89 8.8 6.57 2.0 32.83 9.0 8.06 2.0
[50, 1000]  26.18 10.0 5.08 2.0 31.12 10.0 6.67 2.0 34.88 10.0 7.87 2.0
[50, 2000]  27.76 11.0 489 2.0 32.41 11.0 645 2.0 39.62 11.0 8.10 2.0
(2000, 640000, 400) [50, 500] 66.28 8.6 1410 20 80.06 9.0 1889 2.0 88.64 8.8 2219 20
[50, 1000]  69.59 9.8 13.75 2.0 84.03 10.0 1828 20 96.66 10.0 2163 20
[50, 2000]  77.25 11.0 1424 2.0 96.12 11.0 19.09 20 10535 11.0 2129 2.0
(2000, 1000000, 1000)  [50, 500] 106.86 9.0 22.08 2.0 12443 9.0 2960 2.0 14890 9.0 36.72 2.0
[50, 1000] 11145 100 2139 2.0 13223 100 2845 20 15296 10.0 33.78 2.0
[50, 2000] 117.31 11.0 2056 2.0 14346 11.0 28.02 20 163.77 11.0 33.08 2.0

then constructs an optimal solution. By exploiting the properties
of an optimal solution and the problem’s network structure, our
proposed algorithm runs in polynomial time and becomes one of
the first known algorithms to exhibit such performance on a con-
tinuous network interdiction problem. To our knowledge, network
interdiction problems have mostly focused on discrete decisions for
the adversary and the literature on continuous interdiction is very
limited.

13

We also show that the problem can be converted into a
zero-sum noncooperative game which always has a pure Nash-
equilibrium point. This is an interesting result from a theoretical
point of view because in general zero-sum games may not always
admit a pure Nash-equilibrium point (see Mazalov, 2014 for fur-
ther details). Moreover, this reduction can be used to solve some
versions of the problem that include side constraints on the inter-
dictor that make a cut infeasible. These cannot be incorporated in
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our proposed algorithm, but can be easily included in the game-
theoretical form of the game as it enumerates all the interdictor’s
strategies. Naturally, this approach is not suitable for large-scale in-
stances because it requires the enumeration of the set of strategies
for the user and interdictor.

Our work shows that CMCPIP is one of the simplest forms of
network interdiction problems because it admits a polynomial time
algorithm, while various—and more sophisticated—variants exist in
the literature. Future work can be directed towards including more
realistic features on the user’s path design, such as multiple objec-
tives (Ramirez-Marquez, 2010), asymmetric information (Bayrak &
Bailey, 2008), and dynamic (multi-stage) interactions between user
and interdictor (Borrero, Prokopyev, & Sauré, 2015; Sefair & Smith,
2016, 2017). Moreover, it is worth exploring a compact linear pro-
gramming formulation to MCPP, as its existence may allow the so-
lution of other deterministic and stochastic problem variants. Be-
cause of the polynomial nature of the proposed algorithm, there
are multiple research opportunities where CMCPIP can be used
as a (fast) subproblem. For instance, it is possible to embed the
proposed algorithm into an defender-attacker-defender framework,
where the user first fortifies arcs to prevent any interdictor attempt
to reduce their capacity, and then a CMCPIP game develops over
the fortified network.
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