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a b s t r a c t 

This paper studies the continuous maximum capacity path interdiction problem, where two players, user 

and interdictor, compete in a capacitated network. The user wants to send the maximum possible amount 

of flow through a path, whose capacity is given by the minimum capacity among its arcs. The budget- 

constrained interdictor decreases arc capacities by any continuous amount to reduce the quality of the 

user’s chosen path. We present an efficient algorithm based on a discrete version of the Newton’s method, 

which helps us solve the problem in polynomial time. We also prove that the problem can be transformed 

into a zero-sum game, which has always a pure Nash equilibrium point. We demonstrate the performance 

of our algorithm over a set of randomly generated networks. 

© 2022 Elsevier B.V. All rights reserved. 
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. Introduction 

The maximum capacity path problem (MCPP), also known as 

idest path problem, consists of finding a maximum capacity path 

etween two given nodes in a network. The capacity of any given 

ath is determined by the minimum capacity among its arcs. Be- 

ause of its flow-based structure, this problem arises in many real- 

orld applications from different domains. In telecommunication 

etworks, packets of information must be routed between nodes 

ubject to a network’s limited transmission capacity. A transmis- 

ion path consists of a sequence of links, each of which has a 

iven available bandwidth. To route a packet, transmission mech- 

nisms (i.e., protocols) determine the path for each packet while 

t the same time enforce a quality of service level, which is typi- 

ally given by a guaranteed transmission bandwidth. One example 

s the Multiprotocol Label Switching (MPLS), which routes pack- 

ts between two nodes (i.e., ingress and egress routers) through a 

ath that is determined at the entry node (i.e., a label switched 

ath) ( Medhi & Ramasamy, 2017 ). This protocol requires a mini- 

um available bandwidth to send a packet along a path ( Kar, Kodi- 

lam, & Lakshman, 20 0 0 ), where the path’s bandwidth corresponds 

o the minimum bandwidth among its links. A similar situation 

ccurs in the design of reliable data transmission paths, where 

he quality of a transmission path is determined by the minimum 

ransmission reliability (or quality) across the links in the path 

 Ramaswamy, Orlin, & Chakravarti, 2005 ; Tragoudas, 2001 ). Other 
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pplications of MCPP include the routing of single service units 

e.g., police, firefighters), where the quality of a route is deter- 

ined by the maximum distance (or response time) to a poten- 

ial service location ( Berman & Handler, 1987 ). The MCPP also 

rises in single-winner election methods, where pairwise candi- 

ate comparisons rely on sequences (i.e., path) of intermediate 

andidates and the smallest number of voters in the sequence of 

omparisons ( Schulze, 2011 ). The maximum capacity path prob- 

em is also a sub-problem of other higher-level problems such as 

he k -splittable flow problem ( Baier, Köhler, & Skutella, 2005 ), the 

aximum flow problem ( Ahuja, Magnanti, & Orlin, 1993 ; Edmonds 

 Karp, 1972 ), and the quickest path problem ( Clímaco, Pascoal, 

raveirinha, & Captivo, 2007 ; Martins & Santos, 1997 ), among 

thers. 

Multiple algorithms exist to solve MCPP, including modi- 

ed versions of shortest path algorithms like Dijkstra’s algo- 

ithm (in O (m + n log n ) time), scaling procedures (in O ( min

 m + n log n, m log n W } ) time), and recursive algorithms (in O (m )

ime), where n is the number of nodes, m is the number arcs, and

 is the maximum arc cost in the network ( Gabow, 1983 ; Pollack,

960 ; Punnen, 1991 ). Related problems include the weighted mini- 

ax flow, which is to minimize the maximum value of arc weights 

ultiplied by their flow while preserving a solution of maximum 

ow ( Ichimori, Ishii, & Nishida, 1981 ), and other variants seeking 

or a path of maximum capacity between any one node to any 

ther node ( Pollack, 1960 ) or between all node pairs ( Hu, 1961 ). 

In this paper, we study the continuous maximum capacity 

ath interdiction problem (CMCPIP). This problem consists of 

wo players, user and interdictor , that compete in a directed 

nd capacitated network. The user solves an MCPP, whereas the 
tinuous maximum capacity path interdiction problem, European 

8 
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udget-constrained interdictor decreases arc capacities to reduce 

he quality of the user’s chosen path. The interdictor knows the 

ost of reducing a unit (or fraction) of each arc’s capacity and is 

llowed to reduce them in any amount, as long as the total cost of 

ts actions satisfies a budget constraint. We assume that informa- 

ion is perfect, meaning that both agents have complete knowledge 

f the network topology and parameters. The agents interact in 

 Stackelberg game fashion ( von Stackelberg, 1952 ), where the 

nterdictor plays first by reducing arc capacities, and then the user 

etermines its maximum capacity path after observing the inter- 

ictor’s actions. Applications of the CMCPIP include information 

ransmission planning (e.g., telecommunication networks using 

PLS) in the presence of a proactive adversary (i.e., interdictor), 

hose intention is to reduce the bandwidth or reliability of a sub- 

et of links. We refer the reader to Aiello, Kushilevitz, Ostrovsky, 

 Rosén (20 0 0) ; Bhavathankar, Chatterjee, & Misra (2017) ; Xue 

 Nahrstedt (2004) and Mageswari & Baulkani (2020) for related 

orks on packet routing in the presence of adversaries. 

In CMCPIP, the interdictor may represent a hostile agent (i.e., a 

ammer) or a network failure event that reduces arc capacities. Be- 

ause the user competes against an interdictor that acts optimally, 

his game describes a pessimistic vision of the possible maximum 

apacity path. If the interdictor adopts a sub-optimal strategy, then 

t is possible to find a path with a larger capacity than that pro-

ided by CMCPIP. Under the assumption that the interdictor plays 

rst in this two-stage Stackelberg setting, this game guarantees 

hat in the presence of an adversary equipped with a given dis- 

uption budget, it is possible to send an amount of flow of at least 

he optimal objective function of CMCPIP. Variations in the inter- 

ictor’s budget help modeling different scenarios for the uncertain 

etwork attacks and their corresponding impact on the maximum 

apacity path. As a result, the role of the interdictor budget is to 

cknowledge that some arcs capacities may be reduced but neither 

any of them at the same time nor by drastic amounts, which is 

 concept that also appears in the budgeted uncertainty paradigm 

rom robust optimization ( Bertsimas & Sim, 20 03, 20 04 ). 

Unlike most of the interdiction works available in the literature 

see Smith & Song, 2020 for a survey), in this paper we focus on

ontinuous interdiction actions. This is not only a generalization of 

he existing methods (e.g., Mohammadi & Tayyebi, 2019 ), but also a 

ore realistic approach from an application point of view. Existing 

odels typically assume binary interdictor decisions, reflecting an 

ll-or-nothing disruption regime when attacks are executed. This is 

nrealistic if the adversary has a wider range of options available 

hen planning the disruption of a network component. The use 

f continuous decision variables allows us to model realistic situ- 

tions in which the interdictor not only selects the location of the 

ttacks but also their intensity (e.g., jammer strength). Moreover, 

ontinuous decisions can be used to model the unknown outcome 

f the interdictor’s actions by admitting a range of values for the 

ossible impact rather than a single value. In this case, the inter- 

ictor unveils the worst-case set of (continuous) actions that cause 

he most detrimental damage under the given budget. 

The proposed CMCPIP belongs to the category of network in- 

erdiction problems. These problems are widely studied, as they 

re a natural way to describe the operation of a flow-based system 

ubject to disruptions. Well known problems in this class are the 

aximum flow and the shortest path interdiction problem, both 

f which are NP-hard ( Israeli & Wood, 2002 ; Wood, 1993 ). Al-

hough network interdiction problems are typically hard to solve 

see Smith & Song, 2020 for a survey), in this paper we present a

olynomial time algorithm for solving CMCPIP. Our algorithm con- 

ists of two phases. The first phase finds an interval of values con- 

aining the optimal CMCPIP value, whereas the second phase uses 

 discrete version of the Newton’s method to search for the op- 

imal solution. Methodologically speaking, related works include a 
2 
inary search to find most vital arcs in a network ( Ball, Golden, & 

ohra, 1989 ), an application of the Newton’s method to solve max- 

mum flow interdiction problem ( Matuschke, McCormick, Oriolo, 

eis, & Skutella, 2017 ), and a successive minimum cut algorithm to 

olve maximum flow interdiction problem ( McMasters & Mustin, 

970 ). The closest work to ours is that of Mohammadi & Tayyebi 

2019) , which assumes that the cost of interdicting an arc is fixed 

egardless of the attack intensity, i.e., the interdiction actions are 

iscrete and the interdictor follows an all-or-nothing rationale. 

We transform CMCPIP into a zero-sum game in normal form 

nd prove that such game always has a pure Nash equilibrium. This 

llows us to devise optimal strategies for each player. This is an 

mportant theoretical result because zero-sum normal games not 

lways admit a pure Nash-equilibrium ( Mazalov, 2014 ). Addition- 

lly, this transformation provides a justification for the assumption 

hat the user has complete information of the interdictor’s actions. 

n zero-sum normal games, players act in a pessimistic way to se- 

ure a minimum payoff, i.e., they want to maximize their mini- 

um guaranteed payoff. Our approach is similar to the work of 

ashburn & Wood (1995) , whose zero-sum game transformation 

ombining network optimization and game theoretical results al- 

ows them to efficiently solve a probabilistic version of a path- 

election interdiction problem. 

This paper is organized as follows. In Section 2 , we review the 

xisting literature on network interdiction. Section 3 provides a 

i-level programming formulation of CMCPIP in which the inter- 

ictor (outer level) variables are continuous, while the user (inner 

evel) variables are discrete (i.e., whether an arc belongs to the 

ath). This feature differentiates CMCPIP from some of the existing 

etwork interdiction problems, whose formulations contain con- 

inuous variables at the user level and assume integer interdictor 

ecisions (e.g., Israeli & Wood, 2002 ; Wood, 1993 ). Indeed, this 

eature prevents us from using the KKT conditions and duality 

esults to directly convert CMCPIP into a single-level problem (e.g., 

llende & Still, 2013 ; Golden, 1978 ). Section 4 presents the prelim- 

nary results needed in our strongly polynomial algorithm, which 

s described in Section 5 . Section 6 provides a reduction of CMCPIP 

o a zero-sum normal game, which always has a Nash equilibrium 

oint. We present our computational experience in Section 7 . 

ection 8 presents our concluding remarks and future work. 

. Literature review 

Network interdiction models are widely applied, as they can 

e used to optimize the operation of flow-based systems under 

isruptions. They have been applied in a wide range of domains, 

ncluding interdicting criminal in an illegal drug supply chains 

 Malaviya, Rainwater, & Sharkey, 2012 ), energy delivery ( Rocco 

t al., 2010 ), nuclear smuggling ( Dimitrov et al., 2008 ; Morton, Pan,

 Saeger 2007 ), infection spread control ( Assimakopoulos, 1987 ), 

ilitary planning ( Ghare, Montgomery, & Turner, 1971 ), conserva- 

ion planning ( Acevedo, Sefair, Smith, Reichert, & Fletcher, 2015 ; 

efair, Smith, Acevedo, & Fletcher, 2017 ), and protecting electric 

ower grids against terrorist attacks ( Salmeron, Wood, & Baldick, 

004 ). Depending on the players’ objectives and decisions, various 

ypes of network interdiction problems arise, including 

• Shortest path interdiction ( Fulkerson & Harding, 1977 ; 

olden, 1978 ; Israeli & Wood, 2002 ; Sefair & Smith, 2016 ): The ob-

ective of the user is to find a shortest path to move between two 

nown nodes, while the objective of the interdictor is to perturb 

he arc set to deteriorate the user’s objective. Actions that could 

chieve this objective are removing or increasing the length (or 

ost) of a subset of arcs. 

• Maximum flow interdiction ( Akgun, Tansel, & Wood, 2011 ; 

ltner, Ergun, & Uhan, 2010 ; Royset & Wood, 2007 ; Wood, 1993 ):

he user maximizes the flow sent from a source node to a sink 
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ode, whereas the interdictor seeks to reduce such flow by de- 

reasing the capacity of a subset of arcs. 

• Maximum reliability path interdiction ( Pan, 2005 ; Pan & 

orton, 2008 ): The user chooses a maximum reliability path to 

ove between two known nodes, while the interdictor decreases 

he overall path reliability by decreasing the individual reliability 

f a subset of arcs. 

Interdiction problems have been formulated for other network- 

riented problems including matching and assignment ( Laroche, 

archetti, Martin, & Roka, 2014 ; Sefair & Smith, 2017 ; Zenklusen, 

010 ), minimum spanning tree ( Frederickson & Solis-Oba, 1999 ; 

enklusen, 2015 ), hub design ( Ghaffarinasab & Motallebzadeh, 

018 ; Ramamoorthy, Jayaswal, Sinha, & Vidyarthi, 2018 ), and fa- 

ility location ( Church & Scaparra, 2007 ; Liberatore, Scaparra, & 

askin, 2011, 2012 ). For a comprehensive review of network inter- 

iction problems, we refer the reader to the survey papers Smith, 

rince, & Geunes (2013) and Smith & Song (2020) . 

Robust optimization problems are closely related to interdiction 

roblems. In some variants, the order in which the game is played 

s interchanged, meaning that the problem is solved from the 

erspective of the user ( Matuschke et al., 2017 ). That is, the user

akes its decisions first and then the interdictor, which represents 

he uncertainty in the input parameters, perturbs a subset of pa- 

ameters seeking the maximum possible deterioration of the user 

roblem’s objective value. Examples of constraints limiting the 

nterdictor when choosing such perturbations are the ellipsoidal 

r polyhedral uncertainty sets in Bertsimas & Sim (20 03, 20 04) . 

nlike some network interdiction problems, Bertsimas & Sim 

2003) show that the robust counterpart of some polynomially 

olvable zero-one optimization problems remains polynomially 

olvable. Further, they present an algorithm for robust network 

ow problems to obtain an optimal solution by solving a polyno- 

ial number of minimum cost flow problems. In a related area, 

lves Pessoa, Di Puglia Pugliese, Guerriero, & Poss (2015) prove 

hat the robust constrained shortest path problem under resource 

ncertainty is strongly NP-hard, which can be solved in pseudo- 

olynomial time whenever the uncertainty set is determined only 

y capacity constraints. 

The closest work to ours is that of Mohammadi & Tayyebi 

2019) on the MCPIP, which assumes that the cost of interdicting 

n arc is fixed regardless of the attack intensity. This limiting as- 

umption implies that the interdictor decreases arc capacities by a 

xed (known) amount if an arc is attacked, which is unrealistic in 

ome applications. We propose a more general model that allows 

ontinuous interdiction decisions with costs that are proportional 

o the intensity of the attacks. These additional problem features 

ose new algorithmic challenges that prevent us from using the 

impler algorithmic framework in Mohammadi & Tayyebi (2019) in 

ts current form. In this work, we characterize an optimal solu- 

ion to the continuous interdiction problem and exploit its features 

e.g., the interdictor’s budget constraint is always binding). These 

lements provide the theoretical background to prove that the al- 

orithm in Mohammadi & Tayyebi (2019) can be extended to the 

ontinuous case. To our knowledge, this is the first work studying 

he maximum capacity path interdiction problem with continuous 

ariables for the interdictor and interdiction costs proportional to 

he intensity of the attacks. 

. Problem definition and formulation 

In this section, we formally define CMCPIP and formulate it as 

 bi-level optimization problem. To this end, we first describe the 

aximum capacity path problem. Let G = (V, A, c ) be a directed

raph in which V = { 1 , 2 , . . . , n } is the node set, A is the arc set
uch that | A | = m , and c is an m -dimensional vector of arc capaci-

ies. The capacity of arc (i, j) ∈ A is given by parameter c i j ≥ 0 . The
3 
etwork contains two distinguished nodes, s and t , representing 

he origin and the destination of a maximum capacity path, re- 

pectively. We refer to a path from s to t as an st -path. Moreover,

e define the capacity of any st-path P as the minimum capacity 

f its arcs, i.e., min (i, j) ∈ P c i j . Using these definitions, the maximum 

apacity path problem is to find an st-path of maximum capacity. 

his problem can be formulated as the combinatorial optimization 

roblem 

ax 
P∈P 

min 
(i, j) ∈ P 

c i j , (1) 

here P is the set of all st-paths in G . We formulate Problem 

1) as a zero-one linear programming problem with binary deci- 

ion variables x i j for each (i, j) ∈ A . Variable x i j is equal to one if

rc (i, j) ∈ A is chosen for the maximum capacity path and is equal

o zero otherwise. Using these definitions, the MIP formulation in 

2) describes MCPP. 

max z = c min (2a) 

.t. c i j + M i j (1 − x i j ) ≥ c min , ∀ (i, j) ∈ A (2b) 

∑ 

j :(i, j ) ∈ A x i j −
∑ 

j:( j,i ) ∈ A x ji = 

{ 

1 i = s 
0 i / ∈ { s, t} , 
−1 i = t 

∀ i ∈ V (2c) 

x i j ∈ { 0 , 1 } ∀ (i, j) ∈ A, (2d) 

here M i j = max (k,� ) ∈ A { c k� } − c i j acts like a big-M parameter. The 

bjective function in (2a) and the Constraints in (2b) guarantee 

hat c min = min (i, j) ∈ A { c i j : x i j = 1 } . Constraints (2c) are typical flow
alance requirements and Constraints (2d) enforce the binary na- 

ure of the decision variables. We note that alternative formula- 

ions to the MIP in (2) may exist. However, we are unaware of 

ny compact linear programming formulation for MCPP, as in the 

ase for other combinatorial optimization problems (e.g., minimum 

panning tree ( Magnanti & Wolsey, 1995 )). 

The MIP in (2) can be solved using traditional integer pro- 

ramming methods, such as branch-and-bound and cutting planes 

 Schrijver, 1998 ), or zero-one programming approaches such as 

alas’ additive method ( Balas, 1965 ). However, such approaches 

ave exponential complexity in the worst case. Due to its structure, 

he MCPP described in (2) is solvable by efficient polynomial-time 

lgorithms ( Medhi & Ramasamy, 2017 ). 

The MIP formulation in (2) describes the user’s problem only. 

o formulate the interdiction problem, we introduce the contin- 

ous decision variables d i j ∈ [0 , c i j ] for each (i, j) ∈ A . These vari-

bles capture the reduction in the capacity of arc (i, j) ∈ A induced

y the interdictor actions. The interdictor is subject to the bud- 

et constraint 
∑ 

(i, j) ∈ A w i j d i j ≤ W , where w i j ≥ 0 is the cost of de- 

reasing c i j by one unit and W ≥ 0 is the available budget. Using 

hese definitions, we formulate CMCPIP as the bi-level program- 

ing problem in (3) . 

min z (3a) 

.t. 
∑ 

(i, j) ∈ A 
w i j d i j ≤ W (3b) 

0 ≤ d i j ≤ c i j ∀ (i, j) ∈ A, (3c) 

z = max c min (3d) 

s.t. c i j − d i j + M i j (1 − x i j ) ≥ c min , ∀ (i, j) ∈ A (3e) 

∑ 

j :(i, j ) ∈ A 
x i j −

∑ 

j:( j,i ) ∈ A 
x ji = 

{ 

1 i = s 
0 i / ∈ { s, t} , 
−1 i = t 

∀ i ∈ V (3f) 

x i j ∈ { 0 , 1 } ∀ (i, j) ∈ A (3g) 
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Fig. 1. Instance of CMCPIP with total budget W = 1 . 
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The interdictor’s objective function in (3a) seeks to reduce the 

ser’s objective function subject to the budget constraint (3b) and 

he bounds on the d-variables enforced by (3c) . Constraints 

3d) –(3g) correspond to the user’s problem and describe the MCPP 

n (2) with updated arc capacities given the interdictor’s decisions. 

 feasible solution to Problem (3) takes the form (d , x ) , where

 is feasible for the interdictor (i.e., satisfies constraints (3b) and 

3c) ) and x is optimal for the user given d . We emphasize that the

ser problem in (3d) –(3g) is always feasible. 

Problem (3) cannot be solved using the traditional dualize-and- 

ombine approach (i.e., dualizing the user’s problem to produce 

 single-level formulation) or a KKT-based reformulation because 

he user-level variables are binary ( Allende & Still, 2013 ; Bazaraa, 

arvis, & Sherali, 2011 ). However, this bi-level problem can be 

ransformed into a single-level integer linear problem using a value 

unction reformulation and then solved using a branch-and-cut al- 

orithm ( Fischetti, Ljubi ́c, Monaci, & Sinnl, 2017, 2018 ; Tahernejad, 

alphs, & DeNegre, 2020 ). Other solution approaches to solve 

i-level optimization problems include decomposition techniques 

ased on column-and-constraint generation ( Zeng & An, 2014 ) and 

ailored algorithms exploiting the problem’s structure ( Contardo & 

efair, 2021 ; Xu & Wang, 2014 ). A compact linear programming re- 

ormulation to Problem (2) may allow the use of other solution ap- 

roaches for the solution of Problem (3) . However, we are unaware 

f the existence of such reformulation for the MCPP. Although it is 

ossible to solve Problem (3) via existing methods, using such ap- 

roaches will ignore the subjacent properties of the problem that 

n this particular case admit a polynomial time algorithm. 

In the remainder of this paper, we use the notation G = (V, A, c )

o denote a graph with node set V , arc set A , and arc capacities

 = (c i j ) (i, j) ∈ A . Moreover, we represent a solution to Problem (3) as

d , x ) , where d = (d i j ) (i, j) ∈ A , which can be simplified to only d be-

ause x can be determined by solving MCPP on G = (V, A, c − d )

sing the MIP in (2) or any other method. In other words, the op-

imal objective function value corresponding to an optimal solution 

 
∗ to Problem (3) is the same as that obtained by solving Problem 

2) with arc capacities given by c i j − d ∗
i j 
for each arc (i, j) ∈ A . 

We assume that all parameters in Problem (3) are positive in- 

egers. This is a common assumption in the network optimization 

iterature and is not restrictive in practice ( Ahuja et al., 1993 ). Ra-

ional numbers can be transformed into integer numbers by multi- 

lying them by a suitably large number. Moreover, irrational num- 

ers need to be converted into rational numbers to be stored on 

 computer, which allows us to transform them into integer num- 

ers as well. We assume that all parameters are positive. If the 

roblem contains some arc (i, j) with c i j = 0 , then the user would

ever select an st-path including (i, j) and the arc can be removed. 

f w i j = 0 for some (i, j) ∈ A , then the optimal interdictor’s action

s to set d i j = c i j at no cost, which means that arc (i, j) can be

emoved from the network because its capacity becomes zero. If 

 = 0 , then the interdictor cannot decrease any arc capacity and 

onsequently, d = 0 is its optimal decision. 

The following example shows that Problem (3) may have a frac- 

ional optimal solution even if all parameters are integer numbers. 

xample 1. Consider the graph shown in Fig. 1 , where the num- 

ers in parenthesis correspond to (c i j , w i j ) for each arc (i, j) ∈ A .

he available budget is W = 1 and the user travels from node 1 to

ode 4, so the possible maximum capacity st-paths are 1 − 2 − 4 , 

 − 3 − 4 , and 1 − 3 − 2 − 4 with capacity c min = 3 . If the interdic-

or reduces c 24 to 2, then the user will select 1 − 3 − 4 with ca-

acity c min = 3 . Similarly, if the interdictor decreases c 13 from 3 to

, then the user will select 1 − 2 − 4 with capacity c min = 3 . There-

ore, the interdictor must divide the budget equality among both 

aths, changing c and c from 3 to 2.5, which results in the ca-
13 24 

4 
acity of all st-paths being at most c min = 2 . 5 . This is the optimal

olution to this instance of CMCPIP. 

. Problem properties 

In this section, we derive some preliminary results that serve 

s the foundation of our algorithm and that will be used through- 

ut the paper. Although the user (inner) level feasible region in 

roblem (3) is discrete, we prove that the set of objective val- 

es corresponding to all feasible solutions (i.e., the objective re- 

ion ) is a closed interval. For a given maximum capacity path P in

 = (V, A, c ) , let z max = min (i, j) ∈ P { c i j } and x max = (x i j ) (i, j) ∈ A , where

 i j = 1 if (i, j) ∈ P and x i j = 0 otherwise. Note that z max is the same

bjective function value of (d , x ) = (0 , x max ) in Problem (3) . There-

ore, the objective value of any feasible solution belongs to the in- 

erval [0 , z max ] . 

We use the notion of an st-cut in G , which is a minimal set of

rcs whose removal from G disconnects s and t , i.e., G has no st- 

aths. The removal of all arcs in an st-cut will partition G into two

ub-graphs with node sets S and S̄ , one containing s and the other 

ontaining t , respectively ( Ahuja et al., 1993 ). We denote an st-cut 

y C = [ S, S̄ ] where s ∈ S and t ∈ S̄ . We refer to an arc (i, j) with

 ∈ S and j ∈ S̄ as a forward and an arc (i, j) with i ∈ S̄ and j ∈ S

s a backward arc of C. The sets (S, S̄ ) and ( ̄S , S) denote the sets

f forward and backward arcs, respectively, in an st-cut C = [ S, S̄ ] .

he weight of an st-cut is the sum of weights of its forward arcs. 

oreover, a minimum st-cut is an st-cut of minimum weight. We 

efer the reader to Ahuja et al. (1993) for further details on finding 

inimum st-cuts. Property 1 states the relationship between an st- 

ut and the optimal solution to CMCPIP. 

roperty 1. The set of modified arcs in an optimal solution belongs 

o an st-cut. 

Suppose that a feasible solution to Problem (3) exists with ob- 

ective value equal to z. This means that the capacity of any st- 

ath is at most z, i.e., for every st-path there exists at least one 

rc whose initial or modified capacity is less than or equal to z. 

ecause the initial capacity of some st-paths may be greater than 

, the interdictor has to reduce the capacity of at least one arc in 

hose st-paths to z. In this case, it is sufficient to modify the ca- 

acity of exactly one arc in each of these st-paths. As a result, the 

et of modified arcs in any optimal solution belongs to an st-cut. 

oreover, it is nonstrategic for the interdictor to incur in the ad- 

itional cost of reducing the initial capacity of an arc (i, j) with 

 i j > z to any value strictly less than z. The following definition and 

heorem formalize the arguments in Property 1 . 
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efinition 1. For any st-cut C and any z ∈ [0 , z max ] , we define vec-

or d (C,z) = 

(
d (C,z) 
i j 

)
(i, j) ∈ A 

as 

 

(C,z) 
i j 

= 

{
c i j − z If (i, j) ∈ C and c i j > z 
0 Otherwise 

, ∀ (i, j) ∈ A. (4) 

The following properties are immediate. 

roperty 2. If d (C,z) satisfies the budget constraint (3b) , then d (C,z ′ ) 

lso satisfies it for every z ′ ∈ [ z, z max ] . 

roperty 3. Vector d (C,z) is a feasible solution to Problem (3) if and 

nly if it satisfies the budget constraint (3b) . 

heorem 1. Consider an instance of Problem (3) and suppose that 

 feasible solution exists with objective value equal to z. Then, there 

xists an st-cut C such that d (C,z) satisfies Constraints (3b) and (3c) . 

roof. Suppose that d̄ is a feasible solution to Problem (3) 

ith objective value equal to z. Define the set D̄ = { (i, j) ∈ A :

 i j − d̄ i j ≤ z} and note that at least one member of this set deter- 

ines the user’s optimal path with capacity z. Set D̄ contains at 

east one arc from each st-path P ∈ P , where P is the set of all

t-paths. Otherwise, there is an st-path whose capacity is more 

han z, which contradicts the optimality of the user’s problem 

iven d̄ . Because D̄ contains at least one arc from each st-path, 

t follows that it contains at least one st-cut. Denote any of the 

t-cuts in D̄ by C and define d ∗ as in (4) . This implies that the

bjective value of d ∗ is also equal to z and that d ∗
i j 

≤ d̄ i j ≤ c i j for 

very (i, j) ∈ A . Using this relationship and the nonnegativity of 

he w -parameters, we obtain that ∑ 

i, j) ∈ A 
w i j d 

∗
i j ≤

∑ 

(i, j) ∈ A 
w i j d̄ i j , 

hich means that d ∗ satisfies the budget constraint (3b) . 

e complete the proof by noting that d ∗ is nonnegative by 

onstruction. �

From a practical point of view, Theorem 1 states that the in- 

erdictor should only focus on reducing the capacity of st-cuts in 

rder to reduce the capacity of any of the user’s st-paths. We lever- 

ge on this result to search for an optimal solution to Problem 

3) only among the st-cuts of G . Definition 2 describes the costs 

ncurred by the interdictor when attacking a subset of arcs in G in 

rder to achieve an objective function value equal to z. 

efinition 2. For any network G = (V, A, c) and any z ∈ [0 , z max ] ,

e define a cost vector w̄ 
z = 

(
w̄ 

z 
i j 

)
(i, j) ∈ A 

as 

¯  z i j = 

{
w i j (c i j − z) If c i j > z 
0 If c i j ≤ z 

, ∀ (i, j) ∈ A. (5) 

The value w̄ 
z 
i j 

can be seen as the cost of reducing the capacity 

f arc (i, j) from c i j to z when c i j > z, which is equal to zero if

 i j ≤ z because an interdiction action on arc (i, j) will not improve 

he objective function value z. Using (5) , we can calculate the cost 

f attacking any st-cut C as w̄ 
z (C) = 

∑ 

(i, j) ∈ C w̄ 
z 
i j 
. Property 4 follows 

irectly from Definitions 1 and 2 . 

roperty 4. Vector d (C,z) satisfies the budget constraint (3b) if and 

nly if w̄ 
z (C) ≤ W . 

Theorem 2 states that the interdictor can reduce the capacity 

f all st-paths to z as long as the cost of an st-cut is less than or

qual to W . 

heorem 2. Let C z be a minimum st-cut with respect to arc costs w̄ 
z ,

here z ∈ [0 , z max ] . 
5 
• If w̄ 
z (C z ) ≤ W , then d (C 

z ,z) is a feasible solution to Problem (3) . 
• If w̄ 

z (C z ) > W , then there is no feasible solution to Problem

(3) with objective value equal to z. 

roof. The proof of the first part follows directly from Properties 

 and 4 . To prove the second part, we show that there is no feasi-

le solution with objective value z. Assume for contradiction that 

 feasible solution to Problem (3) with objective value z exists. By 

heorem 1 , there exists an st-cut, C, such that d (C,z) is a feasible so-

ution with objective value z. Using the budget feasibility of d (C,z) , 

e obtain 

 ≥
∑ 

(i, j) ∈ A 
w i j d 

(C,z) 
i j 

= 

∑ 

(i, j) ∈ C∩{ (i, j): c i j >z} 
w i j (c i j − z) 

= w̄ 
z (C) , 

here the first and second equalities hold from the definitions 

f d (C,z) and w 
z , respectively. However, the weight of any st- 

ut C is at least the weight of the minimum st-cut C z , thus 

¯  z (C z ) ≤ w̄ 
z (C) ≤ W , which contradicts the assumption that 

¯  z (C z ) > W . This implies that d (C,z) is not feasible and that there

s no feasible solution with objective value equal to z. �

Theorem 3 states an important feature of any optimal solution 

o Problem (3) . 

heorem 3. If the optimal objective function value to Problem (3) is 

ositive, then the budget constraint is binding at any optimal solution. 

roof. Assume for contradiction that d ∗ is an optimal solution 

ith objective function value equal to z ∗ > 0 and such that 
 

(i, j) ∈ A w i j d 
∗
i j 

< W . Define D 
∗ as the set of arcs whose modified

apacity is positive, i.e., D 
∗ = { (i, j) ∈ A : c i j − d ∗

i j 
> 0 } , and let δ∗ =

in (i, j) ∈ D ∗{ c i j − d ∗
i j 
} . Because z ∗ is positive, it follows that there is 

t least one st-path whose capacity is positive. Thus, every arc on 

uch st-paths belong to D 
∗ and D 

∗ 	 = ∅ . Define d ′ as 

 
′ 
i j = 

{
d ∗
i j 

(i, j) / ∈ D 
∗

d ∗
i j 

+ ε (i, j) ∈ D 
∗ , 

here ε = min 

{ 
W −∑ 

(i, j) ∈ A w i j d ∗i j ∑ 

(i, j) ∈ D ∗ w i j 
, δ∗

} 

> 0 . It follows that d ′ is a fea- 
ible solution to Problem (3) because it satisfies both the budget 

onstraint in (3b) and also 0 ≤ d ′ 
i j 

≤ c i j for every (i, j) ∈ A . By con-

truction, the capacity of any st-path is decreased by ε, meaning 

hat d ′ leads to a solution with objective function value strictly less 

han z ∗, which contradicts the optimality of d ∗. �

These preliminary results lead us to reformulate Problem (3) as 

ollows: 

min z (6a) 

s.t. min 
C∈C 

{ 

w̄ 
z (C) = 

∑ 

(i, j) ∈ C 
w̄ 

z 
i j 

} 

= W (6b) 

here C is the set of all st-cuts in G = (V, A ) . Now, consider the

unction 

f (z) = min 
C∈C 

{ ̄w 
z (C) } −W 

= min 
C∈C 

{ ∑ 

(i, j) ∈ C 
max { 0 , w i j (c i j − z) } −W 

} 

. 

Define the set Z = { 0 } ∪ { c i j : c i j ≤ z max , (i, j) ∈ A } and suppose
hat its elements are organized in nondrecreasing order such that 

0 =) z 0 ≤ z 1 ≤ . . . ≤ z k (= z max ) , where k ≥ 1 is an integer number.

he following lemma states some properties of f (z) . 
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emma 1. The function f (z) : R �→ R is nonincreasing and 

iecewise-linear. Furthermore, f (z) : [ z l−1 , z l ] �→ R is a decreas- 

ng concave piecewise-linear function for any l = 1 , 2 , . . . , k . 

roof. Because W is a constant, it follows that f (z) + W = 

in C∈C { ̄w 
z (C) } is the minimum of the functions w̄ 

z (C) . For any 

t-cut C in G , the function w̄ 
z (C) = 

∑ 

(i, j) ∈ C max { 0 , w i j (c i j − z) } is
 convex nonincreasing piecewise-linear function on z. 

Let z ∈ [ z l−1 , z l ] for any l = 1 , 2 , . . . , k . Define S = { (i, j) ∈ A :

 i j ≥ z} , b C = 

∑ 

(i, j) ∈ C∩ S w i j c i j −W , and a C = 

∑ 

(i, j) ∈ C∩ S w i j . Then,

unction f (z) can be re-written in the following form. 

f (z) = min 
C∈C 

{ ∑ 

(i, j) ∈ C∩ S 
w i j (c i j − z) −W 

} 

= min 
C∈C 

{ b C − a C z } . (7) 

The concavity and decreasing nature follow because f (z) is de- 

ned in (7) as the minimum of a set of linear functions, a C > 0 ,

nd a C and b C are constants for z ∈ [ z l−1 , z l ] . �

Lemma 1 implies that f (z) has only one root z ∗ ∈ [0 , z max ] ,

hich is the optimal value to Problem (6) . Further, Theorem 2 im- 

lies that if z is an infeasible objective function value, then 

f (z) > 0 . Similarly, if z is a feasible objective value, then f (z) ≤ 0 .

he following Lemma builds on this observation. 

emma 2. For any fixed value z ∈ [0 , z max ] , if Problem (3) has no fea-

ible solution with objective value z, then it contains no feasible solu- 

ion whose objective value is less than z. 

roof. Suppose that Problem (3) has no feasible solution with ob- 

ective value z ′ ∈ [0 , z max ] such, which implies that f (z ′ ) > 0 . Con-

ider a solution with objective value z ′′ < z ′ . Because f (z) is a non-
ncreasing function, it follows that f (z ′′ ) ≥ f (z ′ ) > 0 , which implies

hat there is no feasible solution with objective value z ′′ < z ′ . �

Lemmas 1 and 2 form the basis of our polynomial-time algo- 

ithm, which we describe in Section 5 . 

. Polynomial-time solution algorithm 

In this section, we present an algorithm to solve Problem (3) in 

olynomial time. The proposed algorithm consists of two phases. 

he first phase uses a binary search to find an interval [ z k −1 , z k ]

ontaining the optimal objective value z ∗. Formally, the goal is to 

nd the smallest index k ∈ { 1 , 2 , . . . , m } so that d (C z k −1 ,z k −1 ) is in-

easible while d (C 
z k ,z k ) is feasible, where C z k −1 and C z k are two min- 

mum st-cuts in G = (V, A, w̄ 
z k −1 ) and G = (V, A, w̄ 

z k ) , respectively.

sing Theorem 2 , the first phase looks for an index k so that the

inimum st-cut cost in G = (V, A, w̄ 
z k −1 ) is greater than W but less

han or equal to W in G = (V, A, w̄ 
z k ) . The second phase uses a

iscrete version of the Newton’s method to find the value of z ∗

nside the interval provided by the first phase, and obtains a cor- 

esponding st-cut, C ∗. The condition z ∗ ∈ [ z l−1 , z l ] means that there

s no feasible solution with objective value z l−1 , whereas a solu- 

ion with objective value z l exists. Accordingly, we find the root of 

f (z) in [ z l−1 , z l ] using Algorithm 1 , which is based on a discrete

ersion of the Newton’s method ( Radzik, 2013 ). The second phase 

lso constructs an optimal solution to Problem (3) using z ∗ and 

 
∗. Depending on the context, in Algorithm 1 we use the notation 

 = (V, A, α) with α = c or α = w because we invoke subroutines

o find a maximum capacity path using the c-parameters or to find 

 minimum st-cut with arc weights given by the w -parameters. 

Phase I of Algorithm 1 starts in Line 1 by calculating a mini- 

um st-cut in G = (V, A, w 
′ ) , denoted by ˜ C , where w 

′ 
i j 

= c i j w i j for

ach (i, j) ∈ A . This can be done by finding the maximum flow be-

ween s and t in G and then using the results from the classic 
6 
ax-flow min-cut theorem ( Ahuja et al., 1993 ). The If condition 

n Lines 2–4 verifies whether the weight of ˜ C is less than or equal 

o W . If so, it is feasible for the interdictor to reduce all the arc

apacities in ˜ C to zero. In this case, Line 3 calculates the optimal 

nterdictor attack as well as its corresponding objective value. The 

lgorithm then moves to Line 24 and terminates. If the weight of 
˜  is more than W , Line 5 solves a MCPP with the initial capacities

s input (i.e., c ) and obtains the maximum capacity z max . This can

e done using any existing algorithm for the MCPP (see Medhi & 

amasamy, 2017 for widest path algorithms on directed networks). 

ollowing our mathematical development from Section 4 , Line 6 

reates a sorted list of z-values ranging from 0 to z max , which is

sed in Lines 7–16 to search for the interval [ z l−1 , z l ] that contains

 
∗. To this end, Algorithm 1 uses a binary search approach that it- 

ratively solves maximum flow problems using the w̄ -weights de- 

ned in (5) . If the maximum flow found in Line 10, denoted by v ,
s less than or equal to W , then there is a feasible solution to Prob-

em (3) according to Theorem 2 . If v > W , then there is no feasible

olution for the interdictor and the corresponding z k -value is un- 

chievable. Both cases are used to update the interval where z ∗ lies 

n the binary search. Line 12 records the index k U such that inter- 

al [ z k U −1 , z k U ] contains z 
∗, as well as other parameters required in

hase II. 

Phase II of Algorithm 1 begins in Line 17 by constructing the 

et of arcs whose capacities are greater than or equal to ˜ z , which 

s the upper bound of the interval containing z ∗. The While loop 

n Lines 18–22 generates a sequence { ̃ z k } k =0 , 1 , ... converging to the 

oot z ∗, where ˜ z 0 = ˜ z . Following the results in Radzik (2013) , we

alculate the k -th element in this sequence, ˜ z k as a function of ˜ z k −1 

y computing 

˜  k = ˜ z k −1 −
f ( ̃ z k −1 ) 

f ′ ( ̃ z k −1 ) 

= ˜ z k −1 −
b 
C ˜ z k −1 

− a 
C ˜ z k −1 ̃

 z k −1 

−a 
C ˜ z k −1 

= 

∑ 

(i, j) ∈ C ˜ z k −1 ∩ S w i j c i j −W ∑ 

(i, j) ∈ C ˜ z k −1 ∩ S w i j 

, (8) 

here C ˜ z k −1 is a minimum st-cut in G = (V, A, w̄ 
˜ z k −1 ) . Because f (z)

s non differentiable at its breakpoints, we calculate f ′ ( ̃ z k −1 ) us- 

ng its right-hand derivative. Line 19 computes ˜ z k using (8) and 

ine 20 updates the corresponding set of weights w̄ ̃
 z using (5) . 

sing these weights, Line 21 solves a minimum st-cut problem 

n G = (V, A, w̄ ̃
 z ) . The While -loop continues until v ∗ = W , which

s equivalent to finding the root of f (z) as a result of Lemma 1 .

ote that the stopping condition also means that the interdictor 

epletes its budget, which is a necessary condition for optimality 

ccording to Theorem 3 . 

The following lemma and theorem prove that 

lgorithm 1 solves Problem (3) in a finite number of itera- 

ions. The correctness of Algorithm 1 is given by the results in 

adzik (2013) , for which Remark 1 provides more details. 

emma 3. If there is an index k such that points ( ̃ z k −1 , f ( ̃ z k −1 )) and

 ̃ z k , f ( ̃ z k )) lie on the same line segment of f (z) , then f ( ̃ z k ) = 0 , i.e.,

˜  k is the optimal value to Problem (3) . 

roof. Because C ∗ = C ˜ z k −1 in Line 21 is a minimum st-cut in G =
V, A, w̄ 

˜ z k −1 ) , it follows that 

f ( ̃ z k −1 ) = min 
C∈C 

{ ̄w 
˜ z k −1 (C) } −W 

= w̄ 
˜ z k −1 (C ˜ z k −1 ) −W 

= b ˜ z k −1 
− a ˜ z k −1 ̃

 z k −1 . 
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Algorithm 1 Two-phase algorithm for CMCPIP. 

Input: Graph G = (V, A, c ) with two prescribed nodes, s and t , in- 

terdiction cost vector w , and budget W 

Output: Optimal interdiction vector d ∗ and its corresponding opti- 

mal value z ∗

Phase I: 

1: Find a minimum st-cut ˜ C in G = (V, A, w 
′ ) with arc weights 

w 
′ 
i j 

= w i j c i j , (i, j) ∈ A 

2: if 
∑ 

(i, j) ∈ ̃ C w 
′ 
i j 

≤ W then 

3: Calculate d ∗
i j 

= 

{
c i j (i, j) ∈ ˜ C 

0 (i, j) ∈ A \ ˜ C and set z ∗ = 0 . Go to 

Line 24 

4: end if 

5: Find a maximum capacity path in G = (V, A, c ) and set z max to 

its capacity 

6: Sort the values in { c i j : c i j ≤ z max , (i, j) ∈ A } ∪ { 0 } in nonde- 
creasing order and let z 0 = 0 ≤ z 1 . . . ≤ z � = z max be the sorted 

list 

7: Set k L = 0 and k U = � 

8: while k U − k L > 1 do 

9: Set k = � k L + k U 2 � 
10: Find the maximum flow value, v , between s and t in G = 

(V, A, w̄ 
z k ) , where w̄ 

z k is defined by (5) 

11: if v ≤ W then 

12: Set k U = k , ˜ z = z k U , v 
∗ = v , and let C ∗ be the st-cut corre- 

sponding to v in G = (V, A, w̄ 
z k ) 

13: else 

14: Set k L = k 

15: end if 

16: end while 

Phase II: 

17: Construct set S ∗ = { (i, j) ∈ A : c i j ≥ ˜ z } 
18: while v ∗ 	 = W do 

19: Set ˜ z = 

∑ 

(i, j) ∈ C ∗∩ S ∗ w i j c i j −W ∑ 

(i, j) ∈ C ∗∩ S ∗ w i j 

20: Calculate w̄ ̃
 z using (5) 

21: Find a minimum st-cut, C ∗, in G = (V, A, w̄ ̃
 z ) and set v ∗ to 

its weight 

22: end while 

23: Set z ∗ = ˜ z , calculate d (C 
∗,z ∗) using (4), and set d ∗ = d (C 

∗,z ∗) 

24: Return d ∗ and z ∗

t  

r  

a

(  

i

e  

a

v  

r  

7  

s  

z

t  

(  

v  

i

1

{  

L

d  

s

s  
y assumption, ( ̃ z k , f ( ̃ z k )) lies on the line segment, implying that 

f ( ̃ z k ) = b 
C 
˜ z k −1 

− a 
C 
˜ z k −1 ̃

 z k . From (8) we know that ˜ z k = 

b 
C 
˜ z k −1 

a 
C 
˜ z k −1 

, which

esults in f ( ̃ z k ) = 0 . �

heorem 4. Algorithm 1 solves Problem (3) in a finite number of it- 

rations. 

roof. The binary search in Phase I explores a finite set of inter- 

als, thus it finishes in a finite number of iterations. The proof for 

hase II is based on the results in Radzik (2013) , where the goal is

o find the root of a convex nonincreasing piecewise-linear func- 

ion given by 

 (δ) = max { f (x ) − δg(x ) | x ∈ X } , (9) 

here X is the domain of the f - and g-functions. It is shown that

he Newton’s method finishes in a finite number of iterations while 

isiting a sequence of increasing values. This result is analogous 

or a concave decreasing function like f (z) defined as in (7) with 

f (x ) = b C , g(x ) = a C , δ = z, and X = C (see Lemma 1 ) and where

he update in Line 19 using (8) results in a sequence of decreas- 

ng ˜ z -values. Because f (z) contains a finite number of segments, 

emma 3 implies that Phase II terminates after a finite number of 

terations. �

emark 1. Radzik (2013) proved that the number of iterations of 

he Newton’s method for finding the root of a convex nonincreas- 

ng piecewise-linear function defined as in (9) , has a strongly poly- 

omial bound given by O(p 2 log 2 p) , where p is the dimension of 

ector x . As established in Theorem 4 , the Newton’s method is ap-

licable in a similar way to find the root of f (z) . As a result, the

umber of iterations of Phase II has a strongly polynomial bound 

iven by O(m 
2 log 

2 
m ) , where m is the number of arcs in the net- 

ork. This leads to an overall time complexity of Algorithm 1 equal 

o O(m 
2 log 

2 
m �(n, m )) , where �(n, m ) is the complexity for find- 

ng a minimum cut in a network, which is polynomially solvable. 

The value z max in Line 5 can be quickly initialized with c max = 

ax (i, j) ∈ A { c i j } , avoiding the solution of a MCPP. This is convenient 

hen the input network is very large because the complexity of 

ny algorithm for MCPP is no less than O (m ) . This alternative ini-

ialization comes at the expense of additional iterations of the bi- 

ary search procedure in Lines 8–16. Remark 2 states that this 

odification has no effect in the algorithm’s correctness and that 

ach extra step in the binary search requires the solution of a triv- 

al sub-problem. Our implementation uses this initialization as it 

educed the solution times in the large-scale instances in our com- 

utational experiments. 

emark 2. Let z max be the capacity of the maximum capacity path 

etween s and t in G = (V, A, c ) . Therefore, the maximum flow be-

ween s and t in G = (V, A, w̄ 
z ) must be zero for any z ≥ z max be-

ause at least one arc in every (s, t) path has a modified weight of

ero according to (5) . Otherwise, z max would not be the true max- 

mum capacity. As a result, using c max in Line 5 implies that Line 

 admits more values in the sorted list, which will be discarded 

hen executing Line 12 for any z k > z max as the sub-problem in 

ine 10 returns v = 0 . The algorithm will return the same results

fter this modification because at some iteration k of the binary 

earch we will have z k ≤ z max , which is the initialization in the 

riginal version of the algorithm. 

Fig. 2 shows an example of the step-by-step execution of 

lgorithm 1 on a network with 6 nodes and 9 arcs. Fig. 2 (a) shows

he network components with arc capacities and interdiction costs 

ext to each arc. Fig. 2 (b) shows the execution of Line 1, where

rc capacities are given by w 
′ 
i j 

= w i j c i j , for each (i, j) ∈ A , which

s the same as using (5) with z = 0 . Executing this line returns
7 
he cut ˜ C = { (1 , 2) , (1 , 3) } with value 
∑ 

(i, j) ∈ ̃ C w 
′ 
i j 

= 60 (shown in

ed dotted lines). Because this value is greater than W = 15 , the

lgorithm skips Lines 2–4. We use the initialization z max = c max 

see Remark 2 ) in Line 5 and create a sorted list of arc capac-

ties (including 0) according to Line 6. Fig. 2 (c) shows the first 

xecution of Line 10 within the binary search with k = 4 , z 4 = 7 ,

nd updated arc weights given by w̄ 
z 4 . This line returns the flow 

alue v = 4 with corresponding cut C = { (3 , 5) , (4 , 6) } (shown in

ed dotted lines). Because v ≤ W , Line 12 updates k U = 4 , ˜ z = z 4 =
 , v ∗ = 4 , and C ∗ = { (3 , 5) , (4 , 6) } , and Line 9 sets k = 2 . Fig. 2 (d)

hows the execution of Line 10 in the binary search with k = 2 ,

 2 = 5 , and updated arc weights given by w̄ 
z 2 . This line returns 

he flow value v = 12 with corresponding cut C = { (3 , 5) , (2 , 4) }
shown in red dotted lines). Line 12 updates k U = 2 , ˜ z = z 2 = 5 ,

 
∗ = 12 , and C ∗ = { (2 , 4) , (3 , 5) } , and Line 9 sets k = 1 . The next

teration of the binary search is shown in Fig. 2 (e), where Line 

0 returns the flow value v = 24 with corresponding cut C = 

 (1 , 2) , (3 , 2) , (3 , 5) } (shown in red dotted lines). Because v > W ,

ine 14 updates k L = 1 and Phase 1 terminates because the con- 

ition of the While loop in Line 8 is no longer satisfied. Fig. 2 (f)

hows the execution of Phase 2, where Line 17 constructs the 

et S ∗ = { (1 , 2) , (1 , 3) , (2 , 4) , (3 , 5) , (4 , 3) , (5 , 4) , (4 , 6) , (5 , 6) } and
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Fig. 2. Step-by-step example of the execution of Algorithm 1 . 
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ine 20 sets ˜ z = 4 . 769 because 12 = v ∗ 	 = 15 . The minimum st-cut

n the modified network with weights w̄ ̃
 z (shown in Fig. 2 (f)) ob- 

ained in Line 21 is C ∗ = { (2 , 4) , (3 , 5) } with value v ∗ = 15 . The

hile loop terminates because v ∗ = W and the condition in Line 

8 is no longer satisfied. Line 23 calculates the attacks d ∗ using (4) ,

hich are shown in parenthesis in Figure Fig. 2 (g). The algorithm 

eturns z ∗ = 4 . 769 and d ∗ in Line 24. 

. A reduction to a zero-sum game 

Algorithm 1 solves Problem (3) in polynomial time assuming 

hat user and interdictor are not subject to any side constraint be- 

ond those in Problem 3 . However, Algorithm 1 cannot solve other 

roblem variants involving additional constraints, for instance any 

onstraint making a cut or path infeasible. In this section, we show 

hat Problem (3) can be reduced to a zero-sum noncooperative 

ame. We prove that the game always has a pure Nash-equilibrium 

oint. This is an interesting result from a theoretical point of view 
8

ecause in general zero-sum games may not always admit a pure 

ash-equilibrium point (see Mazalov, 2014 for further details). This 

eduction allows us to convert Problem (3) into a constrained zero- 

um game, where some side constraints can be easily incorporated. 

We first determine the set of pure strategies for each agent in 

roblem (3) . The user’s strategy set consists of all st-paths in G .

o determine a strategy set for the interdictor, we use the decision 

ariables d (C,z) from Definition 1 and remove their dependency on 

. Let Č be the set of all st-cuts in G such that w̄ 
z max (C) ≤ W for

ach C ∈ Č . We show that there is a unique number z C ∈ [0 , z max ]

or each st-cut C such that d (C,z C ) satisfies the budget constraint of 

roblem (3) in equality form. This construction allows us to define 

he interdictor’s strategy set as all st-cuts C ∈ Č in G . As a result,

f the user chooses an st-path P and the interdictor attacks an st- 

ut C, then the user’s payoff is the leftover capacity of P after the 

nterdictor reduces the capacity of some arcs in C. Because this is 

 zero-sum game, the interdictor’s payoff is the capacity loss of 

he user. This implies that the user’s and interdictor’s payoffs are 
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Table 1 

Calculation of z C for a given st-cut. 

k 0 1 2 3 

z̄ k 0 7.40 10.20 10.50 

S k (C) { e 1 , e 2 , . . . , e 10 } { e 6 , e 7 , e 8 , e 9 , e 10 } { e 7 , e 8 , e 9 , e 10 } { e 7 , e 8 , e 9 , e 10 } 

Fig. 3. Sequence of { ̄z k } for a given cut C. 

Fig. 4. Instance of Problem (3) . 
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t most z C . To remove dependency of d (C,z) on z, we define z C as

ollows. 

efinition 3. Define C as an st-cut in G such that w̄ 
z max (C) ≤ W . 

efine g C (z) = w̄ 
z (C) −W , where g C : [0 , z max ] → R and let z C be

he solution of g C (z) = 0 . 

From Lemma 1 , g C (z) is a convex decreasing piecewise-linear 

unction for z ∈ [0 , z max ] . 

emma 4. For each st-cut C ∈ Č in G , z C is the best attainable objec-

ive value to Problem (3) when the interdictor reduces the arc capac- 

ties in cut C only. 

roof. Suppose for a contradiction that z C is not the best attain- 

ble objective that the interdictor can achieve by reducing the arc 

apacities in cut C. Then, let z ′ < z C be the best objective the inter-

ictor can achieve. Because g C is decreasing, then g C (z ′ ) > g C (z C ) =
 . This implies g C (z ′ ) > 0 , i.e., w̄ 

z ′ (C) > W , which means that z ′ is
nattainable (i.e., infeasible) with respect to cut C. �

The following properties of z C are immediate. 

roperty 5. For each st-cut C ∈ Č in G , z C ∈ [0 , z max ] and it is unique.

The uniqueness of z C follows from the fact that g C is decreasing 

n the interval [0 , z max ] , so the root of the function must be unique.

urthermore, z C ∈ [0 , z max ] since g 
C (z max ) ≤ 0 by Definition 3 . 

Because g C is a convex decreasing piecewise-linear function in 

he interval [0 , z max ] , we find the root of g C using the same prin-

iples from the Newton’s method described in Section 4 . In par- 

icular, we generate a nondecreasing sequence { ̄z k } k =0 , 1 , ... converg- 

ng to the root z C , where z̄ 0 = 0 . Define S k (C) = { (i, j) ∈ C : c i j ≥ z̄ k }
nd the k -th element in this sequence, z̄ k , using following update 

ule. 

¯ k = z̄ k −1 −
g C ( ̄z k −1 ) 

g ′ C ( ̄z k −1 ) 

= z̄ k −1 −
∑ 

(i, j) ∈ S k −1 (C) w i j (c i j − z̄ k −1 ) −W 

−∑ 

(i, j) ∈ S k −1 (C) w i j 

= 

∑ 

(i, j) ∈ S k −1 (C) w i j c i j −W ∑ 

(i, j) ∈ S k −1 (C) w i j 

(10) 

heorem 5. The update rule in (10) converges to z C if S k (C) =
 k −1 (C) for any given k ∈ { 0 , 1 , 2 , . . . } . 
roof. When S k (C) = S k −1 (C) we have that 

¯ k = 

∑ 

(i, j) ∈ S k −1 (C) w i j c i j −W ∑ 

(i, j) ∈ S k −1 (C) w i j 

= 

∑ 

(i, j) ∈ S k (C) w i j c i j −W ∑ 

(i, j) ∈ S k (C) w i j 

. 

eorganizing terms, we obtain 
∑ 

(i, j) ∈ S k (C) w i j (c i j − z̄ k ) = W , which 

mplies that g C ( ̄z k ) = 0 by definition. Hence, z̄ k = z C . �

Property 6 describes a feature of function g C (z) that guarantees 

he convergence of the update rule in (10) in a finite number of 

terations. 

roperty 6. The breakpoints of the convex decreasing piecewise- 

inear function 

 
C (z) = w̄ 

z (C) −W 

= 

∑ 

(i, j) ∈ C 
max { 0 , w i j (c i j − z) } −W 

orrespond to the capacity values for arcs in C. Hence, the Newton’s 

ethod based procedure converges in a finite number of iterations, 

hich is bounded by the number of unique arc capacities in cut C. 
9

We illustrate this root-finding procedure using Example 2 . 

xample 2. Consider an instance of Problem (3) with z max = 15 , 

ith an st-cut consisting of 10 arcs, C = { e 1 , e 2 , . . . , e 10 } . The initial
rc capacities are { 2 , 3 , 4 , 7 , 7 , 9 , 12 , 14 , 18 , 18 } and the interdiction
udget is W = 20 . For simplicity, we assume that all w -values are

qual to 1. Table 1 shows the values of z̄ k calculated by (10) . 

Table 1 shows that the sequence { ̄z k } 3 k =0 
is increasing in k , given

he update from (10) . At k = 3 , we have that S 3 (C) = S 2 (C) , which

s the convergence condition. 

Fig. 3 illustrates the corresponding function g C (z) , its break- 

oints and root, as well as the z̄ k -values until convergence. 

The following example illustrates the reduction of an instance 

f Problem (3) to a zero-sum noncooperative game. 

xample 3. Consider the instance of Problem (3) depicted in Fig. 4 , 

ith s = 1 and t = 4 . Recall that the strategy set for the user con-

ists of all st-paths, while for the interdictor consists of all st-cuts. 

able 2 shows the payoff matrix for the user perspective, for all 

ombinations of user st-paths and interdictor’s st-cuts. The payoff

s the capacity of a path P after the interdictor optimally decreases 
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Table 2 

User’s payoff matrix for the zero-sum game in Fig. 4 . 

C 1 = [ S 1 , ̄S 1 ] C 2 = [ S 2 , ̄S 2 ] C 3 = [ S 3 , ̄S 3 ] C 4 = [ S 4 , ̄S 4 ] 

S 1 = { 1 } S 2 = { 1 , 2 } S 3 = { 1 , 3 } S 4 = { 1 , 2 , 3 } 
S̄ 1 = { 2 , 3 , 4 } S̄ 2 = { 3 , 4 } S̄ 3 = { 2 , 4 } S̄ 4 = { 4 } 
z C 1 = 

47 
14 

z C 2 = 
55 
18 

z C 3 = 
49 
13 

z C 4 = 3 

P 1 : 1 − 2 − 4 3 3 3 3 

P 2 : 1 − 2 − 3 − 4 47 
14 

55 
18 

49 
13 

3 

P 3 : 1 − 3 − 4 47 
14 

55 
18 

49 
13 

3 

P 4 : 1 − 4 47 
14 

55 
18 

49 
13 
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he arc capacities in cut C. In this example, the strategy profile 

P 1 , C 4 ) is a pure Nash equilibrium solution with payoff equal to 3. 

In the same setting of Example 3 , suppose that there are side 

onstraints that make cuts C 1 and C 3 infeasible. This new prob- 

em cannot be solved directly by Algorithm 1 . However, this can 

e solved using the proposed reduction by removing strategies C 1 
nd C 3 because they do not satisfy the new constraint. This reduces 

he size of the game, and strategy profile (P 1 , C 4 ) remains optimal. 

The game described in Example 3 contains a pure equilibrium 

olution, which indeed is always the case. Theorem 6 establishes 

hat the proposed game always contains a pure Nash equilibrium 

olution. Remark 3 states that a sequential game can be depicted 

s a simultaneous game in normal form. 

heorem 6. The corresponding zero-sum game to any instance of 

roblem (3) has always a pure Nash equilibrium solution. 

roof. Let A = (a i j ) be the payoff matrix for the user. Consider 

he ( st-cut) strategy C j for the interdictor, where z C j = min C∈ ̌C { z C } ,
nd the strategy P i for the user, which corresponds to the maxi- 

um value of elements belonging to the j-th column of A . For- 

ally, the payoff value of strategy (P i , C j ) corresponds to a i j , where

 = arg max r=1 , ... , |P| min { c(P r ) , z C j } , where c(P r ) is the capacity of

ath P r (i.e., c(P r ) = min (k,� ) ∈ P r c k� ). Next, we prove that strategy 

P i , C j ) is a pure Nash equilibrium. By construction, we have that 

he user has no incentive to deviate from P i given C j as there 

s no strictly better payoff in the corresponding column of the 

ayoff matrix. To prove that the interdictor has no incentive to 

hange strategy C j , suppose for a contradiction that the st-cut C l 
s chosen instead of C j , with l 	 = j, and that the optimal payoff

n this case is a ˆ � l , corresponding to strategy (P ˆ � , C l ) and where
ˆ  = arg max r=1 , ... , |P| min { c(P r ) , z C l } . We examine three cases for a ˆ � l : 

• Case 1 : a ˆ � l = z C l . In this case, the user’s payoff is increased be-

cause z C j = min { z C : C ∈ Č } ≤ z C l , hence the interdictor has no

incentive to adopt the new strategy C l . 
• Case 2 : a i j ≤ a ˆ � l < z C l . In this case, the interdictor has no incen-

tive to change strategy C j because it provides a payoff that is at 

least as good as C l . 
• Case 3 : a ˆ � l < a i j . This means that c(P ˆ � ) = a ˆ � l < a i j ≤ c(P i ) , which

is impossible because the user can choose path P i and obtain a 

payoff a ˆ � l ≥ c(P i ) . 

Piecing together these cases leads to the conclusion that there 

s no cut C l better than C j for the interdictor, with l 	 = j, thus strat-

gy (P i , C j ) is a pure Nash equilibrium. �

emark 3. The CMCPIP is a sequential game, where the interdictor 

lays first and then the user, fully aware of the interdictor’s choice 

ecides the path to follow. However, this game can be equally rep- 

esented as a simultaneous game in normal form because regard- 

ess of the path chosen, the user’s payoff will be at-most z C for any 

hoice of st-cut C of the interdictor. That is, the payoff of the user’s 

hoice is not affected by the order of play. 

We also point out that in this zero-sum game the user wants to 

aximize their payoff (maximum capacity of the path), while the 
10 
nterdictor wants to minimize the user’s payoff. This means that 

he interdictor’s payoff is the negative of the user’s payoff, so it 

uffices to depict only one payoff. 

Although the result of this section is theoretically interesting, 

ts practical applicability is limited to small networks because the 

trategy sets of the user ( st-paths) and the interdictor ( st-cuts) 

row exponentially with the size of network. 

. Computational experiments 

This section illustrates the computational performance of our 

olution approach. We implemented Algorithm 1 in a computer 

ith an Intel Xeon E5-2680 v4 CPU running at 2.40 GHz, 16 GB 

f RAM, and Linux 3.10.0. We used Python 3.6 and the em- 

edded routines in Matplotlib and NetworkX for the code de- 

elopment and instance generation ( Batagelj & Brandes, 2005 ). 

ection 7.1 presents an example on the interdiction of wireless sen- 

or networks, where an interdictor affects the transmission band- 

idth between sensors. Section 7.2 demonstrates the performance 

f our algorithm on a set of randomly generated networks of var- 

ous sizes based on Erdõs & Rényi (1976) and scale-free graphs 

 Barabási & Albert, 1999 ). 

.1. Interdiction of wireless sensor networks 

Wireless Sensor Networks (WSNs) consist of a group of sen- 

ors located in a space with the purpose of collecting physical or 

nvironmental data of interest, which is then transmitted wire- 

essly from sensor to sensor until reaching a base station (or sink) 

or processing. Sensors must be strategically located in the sur- 

eyed area due to their limited transmission range in order to en- 

ure a continuous communication to the base station. The use of 

SNs includes environmental monitoring, infrastructure surveil- 

ance, precision agriculture, fire detection, and supply chain man- 

gement, among others ( Othman & Shazali, 2012 ; Xu, 2002 ). 

Consider the randomly generated 10 0 0-sensor WSN shown in 

ig. 5 a. Sensor locations are depicted as nodes and an arc between 

wo nodes means that the corresponding sensors are within range 

nd can communicate. The network in Fig. 5 a is undirected for 

llustrative purposes, but the communication between sensors is 

idirectional and the CMCPIP is solved over a directed network 

ith two arcs—(i, j) and ( j, i ) —for every pair of communicating 

ensors i and j. This leads to a network of 16,578 arcs. The net- 

ork user is interested in finding the maximum transmission ca- 

acity path between a given sensor (source) and the base station, 

hich are depicted in Fig. 5 a with a circle and a star, respectively.

rc capacities represent the transmission bandwidth between sen- 

ors, which we generate using an integer uniform distribution in 

he range [10,50]. We generate arc interdiction costs using an in- 

eger uniform distribution in the range [10 , 100] , except for those 

rcs close to the source or base node, which we assume are pro- 

ibitively expensive to attack. This reflects that such locations are 

ighly protected to deter any interdiction action. We define the 

inimum cost of totally isolating the source sensor as the value 

f the minimum-cost cut between source and base station in the 

ame WSN but using arc costs given by c i j w i j , for each (i, j) ∈ A

i.e., using the costs of reducing each arc capacity to zero). We cal- 

ulate the interdictor’s budget as a percentage of the total isolation 

ost. 

Fig. 5 b shows the optimal interdiction plan when the interdic- 

or’s budget is equal to 1% of the total isolation cost. The thicker 

lack arcs are attacked, i.e., arcs such that d ∗
i j 

> 0 in the solution 

eturned in Line 24 of Algorithm 1 . Fig. 5 b also shows a maxi-

um transmission path between the source sensor and the base 

ode using an attacked arc. Note that this path may not be unique. 
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Fig. 5. Interdiction of a WSN. 
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he maximum transmission capacity in the absence of the inter- 

ictor is equal to 45, which is reduced given the attacks to 42.66 

5.21% decrease). Solving CMCPIP on the same WSN and using in- 

erdiction budgets of 2%, 5%, and 10% of the total isolation cost 

esults in maximum transmission capacities of 40.78 (9.37% de- 

rease), 37.15 (17.44% decrease), and 32.56 (27.64% decrease), re- 

pectively. These results illustrate that even with a small budget 

he interdictor is able to disrupt the user operations to some de- 

ree. Algorithm 1 solved these WSN instances in less than 2 sec- 

nds. 

.2. Randomly generated instances 

We use the undirected binomial random graphs introduced by 

rdõs & Rényi (1976) to create random instances of various arc 

ensities. Binomial graphs are generated using two parameters, 

 and p ∈ [0 , 1] , where n is the number of nodes and any edge

i, j) exists with probability p. As p increases, the graph becomes 

enser. In particular, p = 1 corresponds to a complete graph. We 

lso generate random graphs using the Barabási-Albert (BA) model 

 Barabási & Albert, 1999 ), which are scale-free and approximate 

he behavior of systems in which few nodes have a relatively 

igh degree with respect to other nodes (e.g., internet, social net- 

orks). Under the BA model, graphs are generated by sequen- 

ially adding new nodes and arcs using a preferential attachment 

ule in which highly connected nodes are more likely to receive 

ore arc connections. This is controlled by parameter h , which 

s the number of initially connected nodes that have a higher 

hance to be connected to new nodes as the graph construction 

rogresses. 

In all instances, we assume that the origin is Node 1 (i.e., 

 = 1 ) and the destination is Node n (i.e., t = n ). We generate three

roups of c-parameters to evaluate the influence of different ca- 

acities on the algorithm’s performance. These capacities are gen- 

rated using integer uniform distributions with ranges [50 , 500] , 

50 , 10 0 0] , and [50 , 20 0 0] , respectively. In all instances, the w -

arameters are integer and uniformly distributed in the range 

1,10 0 0], and the interdiction budget W is a percentage of the total

solation cost of node s . To construct a directed network, we first 

enerate an undirected graph and then create arcs (i, j) and ( j, i )

or each existing edge { i, j} in the input graph. We avoid arc dupli-
11 
ates and assign both arcs the same capacity and interdiction cost 

s the edge in the initial undirected graph. The results presented 

re averages across five randomly generated networks of the same 

ize. 

We test our algorithm on multiple networks with different val- 

es of p and h , resulting in a number of nodes between 100 and

0 0 0 and a number of arcs between 1600 and 3.6M. Tables 3

nd 4 summarize the performance of Algorithm 1 on networks 

enerated from Erdõs-Rényi binomial graphs and Barabási-Albert 

cale-free graphs, respectively. In both cases, the solution times 

 t) increase with the network size and the length of the capac- 

ty range as the number of (possibly) distinct capacity values in- 

rease. This is because the input set of distinct z-values in the 

inary search procedure tends to be larger as the capacity range 

ncreases, requiring more iterations of Phase 1. Moreover, a bud- 

et increase allows the interdictor to achieve a smaller objective 

unction value via more arcs attacked or more intense attacks. This 

esults in more time-consuming subproblems in Lines 10 and 21 

s the size of the input networks (and number of arcs with 0 ca- 

acity) depend on the arc weights given by (5) . We also report 

he impact of the interdictor actions as �z = (z 0 − z ∗) /z 0 , where

 
∗ is the optimal value of CMCPIP returned by Algorithm 1 in 

ine 24 and z 0 is the capacity of the maximum capacity path in 

he absence of interdictor. As expected, the interdiction impact in- 

reases with the budget. Attacks reduce the capacity of the maxi- 

um capacity path by at least 7.30% (1% budget) and up to 32.96% 

10% budget) in the networks generated from binomial graphs 

nd by at least 5.62% (1% budget) and up to 33.23% (10% bud- 

et) in the networks generated from scale-free graphs. These re- 

ults illustrate that the interdictor can cause significant damage 

o the user operations even with a small budget. Tables 3 and 

 demonstrate the scalability of Algorithm 1 , which is able to 

olve very-large scale instances (e.g., 20 0 0 nodes and 3.6M arcs) 

n less than 500 seconds on average given its polynomial time 

ature. 

Tables 5 and 6 report the run time of each Phase of 

lgorithm 1 for the binomial- and scale-free graphs, respectively. 

n both cases, the run time of each phase increases with the in- 

ut network size and the interdictor’s budget. Increasing the length 

f the capacity range results in longer solution times ( t) due to 

ore iterations performed in Phase 1. This is because the number 
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Table 3 

Solution time and interdiction impact on networks generated from Erdõs-Rényi binomial graphs. 

Budget % 

1% 2% 5% 10% 

(n, m, p) Capacity t (s) �z (%) t (s) �z (%) t (s) �z (%) t (s) �z (%) 

(100, 5054, 0.3) [50, 500] 0.35 7.44 0.44 12.41 0.45 20.73 0.51 32.96 

[50, 1000] 0.39 7.30 0.42 10.20 0.45 23.85 0.47 29.64 

[50, 2000] 0.44 8.26 0.42 13.19 0.51 22.41 0.55 29.71 

(100, 9008, 0.7) [50, 500] 0.68 9.61 0.66 13.70 0.78 23.02 0.84 30.95 

[50, 1000] 0.70 9.03 0.69 13.26 0.82 22.55 0.92 31.25 

[50, 2000] 0.73 9.46 0.71 13.12 0.84 23.01 0.92 32.79 

(500, 126996, 0.3) [50, 500] 7.32 9.41 7.73 13.68 8.68 22.29 9.71 30.44 

[50, 1000] 8.20 10.21 8.14 14.00 9.48 23.13 10.31 30.46 

[50, 2000] 8.13 10.05 9.15 14.39 10.04 22.93 11.18 30.97 

(500, 226936, 0.7) [50, 500] 13.81 11.29 14.62 14.89 17.76 22.14 18.52 32.09 

[50, 1000] 13.89 9.50 15.26 14.60 17.10 22.89 19.39 32.07 

[50, 2000] 15.16 10.32 16.33 13.89 17.91 22.68 20.78 32.11 

(1000, 509468, 0.3) [50, 500] 30.23 10.09 32.83 13.99 38.45 23.03 42.31 31.62 

[50, 1000] 32.50 9.83 36.50 13.97 41.74 23.49 44.21 31.56 

[50, 2000] 35.44 10.60 37.58 14.13 42.14 23.10 48.53 32.07 

(1000, 909596, 0.7) [50, 500] 55.38 9.84 60.76 13.92 74.14 22.90 77.33 31.29 

[50, 1000] 59.11 10.50 64.93 14.01 77.24 22.38 84.35 32.22 

[50, 2000] 63.10 9.87 68.44 13.76 76.55 22.33 89.46 31.81 

(2000, 2039320, 0.3) [50, 500] 128.60 10.13 142.81 14.59 163.39 22.54 183.96 32.00 

[50, 1000] 143.29 10.39 152.74 14.36 168.16 22.44 198.23 31.85 

[50, 2000] 146.57 10.39 158.66 14.69 174.93 22.66 214.90 31.54 

(2000, 3637428, 0.7) [50, 500] 242.12 9.79 262.14 14.26 310.88 22.46 352.48 31.51 

[50, 1000] 261.45 10.02 311.25 14.09 321.55 22.98 372.05 32.00 

[50, 2000] 274.28 10.28 317.19 14.08 332.15 22.48 388.82 31.58 

Table 4 

Solution time and interdiction impact on networks generated from Barabási-Albert scale-free graphs. 

Budget % 

1% 2% 5% 10% 

(n, m, h ) Capacity t (s) �z (%) t (s) �z (%) t (s) �z (%) t (s) �z (%) 

(100, 1600, 20) [50, 500] 0.26 7.26 0.28 13.38 0.33 21.73 0.36 33.23 

[50, 1000] 0.27 5.75 0.31 14.14 0.32 17.64 0.35 30.88 

[50, 2000] 0.31 8.87 0.31 11.13 0.30 18.59 0.37 30.74 

(100, 2500, 50) [50, 500] 0.35 5.62 0.36 10.87 0.39 20.81 0.49 29.82 

[50, 1000] 0.39 6.36 0.41 12.68 0.43 21.42 0.46 30.80 

[50, 2000] 0.42 7.20 0.38 10.59 0.45 19.73 0.51 30.11 

(500, 40000, 100) [50, 500] 4.51 9.26 4.94 12.47 5.81 21.92 6.09 32.53 

[50, 1000] 5.04 10.74 5.11 13.23 6.14 22.19 6.58 31.24 

[50, 2000] 5.26 10.13 5.43 13.71 6.27 22.02 6.94 30.73 

(500, 62500, 250) [50, 500] 7.31 8.94 7.52 12.56 8.61 21.35 9.58 32.89 

[50, 1000] 7.71 9.52 7.89 14.19 8.54 20.81 10.59 31.36 

[50, 2000] 7.93 9.38 8.38 13.60 9.63 22.76 10.66 31.51 

(1000, 160000, 200) [50, 500] 19.44 9.56 20.36 13.45 23.13 21.08 25.95 30.21 

[50, 1000] 19.56 9.17 22.09 13.22 23.62 21.94 27.45 30.78 

[50, 2000] 21.01 8.68 22.93 13.63 25.64 22.73 29.54 31.59 

(1000, 250000, 500) [50, 500] 29.18 9.05 31.35 14.02 34.47 20.80 40.89 30.88 

[50, 1000] 31.26 10.46 33.15 12.70 37.79 22.34 42.75 31.30 

[50, 2000] 32.66 9.74 37.04 13.42 38.86 21.61 47.72 31.81 

(2000, 640000, 400) [50, 500] 80.38 9.92 87.18 14.68 98.95 22.92 110.84 31.10 

[50, 1000] 83.34 9.94 92.30 13.75 102.31 22.41 118.29 31.99 

[50, 2000] 91.48 10.41 100.22 14.50 115.21 21.60 126.64 31.42 

(2000, 1000000, 1000) [50, 500] 128.94 9.55 135.21 13.68 154.03 22.05 185.61 32.24 

[50, 1000] 132.85 10.03 144.30 14.00 160.69 21.89 186.74 31.74 

[50, 2000] 137.87 9.69 152.41 13.66 171.48 21.34 196.85 31.61 
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f (possibly) distinct capacity values increase with the length of 

he capacity interval. The performance of Phase 2 is similar across 

apacity values. Phase 1 is consistently more time-consuming as 

t performs more iterations until identifying the range of z-values 

ontaining the optimal objective function value. Phase 2 performs 

ery few iterations as it only needs to identify the optimal ob- 

ective function value and the corresponding set of arcs to attack 

ithin the already narrowed range of z-values (and subset of arcs) 

rovided by Phase 1. In our experiments, Phase 1 performs be- 

ween 8 to 11 iterations, whereas Phase 2 performs no more than 

 iterations (2 for most instances). These experiments show that 
12 
ariations in input parameters and network size affect the solution 

imes in a similar manner in the examined networks regardless of 

heir structure. 

. Final remarks 

In this paper, we study the maximum capacity path interdic- 

ion problems with continuous interdiction. We propose an effi- 

ient algorithm for its solution, combining a binary search proce- 

ure and a discrete-type Newton’s method. The algorithm first ob- 

ains an interval that contains the optimal objective function and 
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Table 5 

Solution time and iterations per phase on networks generated from Erdõs-Rényi binomial graphs. 

Budget % 

1% 5% 10% 

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 

(n, m, h ) Capacity t (s) iter. t (s) iter. t (s) iter. t (s) iter. t (s) iter. t (s) iter. 

(100, 5054, 0.3) [50, 500] 0.29 8.8 0.07 2.0 0.36 9.0 0.09 2.0 0.41 8.8 0.10 2.0 

[50, 1000] 0.32 10.0 0.07 2.0 0.36 9.6 0.08 2.0 0.38 9.8 0.09 2.0 

[50, 2000] 0.37 10.6 0.07 2.0 0.42 10.6 0.09 2.0 0.45 10.6 0.10 2.0 

(100, 9008, 0.7) [50, 500] 0.55 9.0 0.12 2.0 0.66 9.0 0.12 2.0 0.70 8.8 0.14 2.0 

[50, 1000] 0.59 10.0 0.10 2.0 0.70 9.8 0.12 2.0 0.77 10.0 0.15 2.0 

[50, 2000] 0.64 11.0 0.09 2.0 0.72 11.0 0.12 2.0 0.78 10.6 0.13 2.0 

(500, 126996, 0.3) [50, 500] 6.03 9.0 1.29 2.0 7.00 8.8 1.68 2.0 7.78 9.0 1.93 2.0 

[50, 1000] 6.83 10.0 1.37 2.0 7.80 10.0 1.68 2.0 8.43 9.8 1.89 2.0 

[50, 2000] 6.88 11.0 1.25 2.0 8.38 10.6 1.66 2.0 9.31 11.0 1.86 2.0 

(500, 226936, 0.7) [50, 500] 11.37 9.0 2.45 2.0 14.45 9.0 3.31 2.0 14.75 8.6 3.76 2.0 

[50, 1000] 11.64 9.8 2.24 2.0 14.09 10.0 3.01 2.0 15.87 10.0 3.52 2.0 

[50, 2000] 12.86 11.0 2.30 2.0 14.96 11.0 2.94 2.0 17.33 11.0 3.46 2.0 

(1000, 509468, 0.3) [50, 500] 24.91 8.8 5.32 2.0 31.19 8.8 7.27 2.0 33.98 9.0 8.33 2.0 

[50, 1000] 27.30 10.0 5.20 2.0 34.38 10.0 7.36 2.0 36.08 9.8 8.13 2.0 

[50, 2000] 29.94 11.0 5.50 2.0 35.12 11.0 7.03 2.0 40.36 11.0 8.17 2.0 

(1000, 909596, 0.7) [50, 500] 45.91 8.8 9.47 2.0 60.54 9.0 13.60 2.0 62.13 8.8 15.20 2.0 

[50, 1000] 49.55 9.8 9.57 2.0 63.88 9.8 13.36 2.0 69.23 9.8 15.12 2.0 

[50, 2000] 53.66 11.0 9.44 2.0 63.35 10.8 13.20 2.0 74.41 10.8 15.05 2.0 

(2000, 2039320, 0.3) [50, 500] 105.84 8.4 22.76 2.0 132.25 8.6 31.14 2.0 147.05 8.8 36.91 2.0 

[50, 1000] 120.10 9.8 23.19 2.0 137.74 9.8 30.42 2.0 162.34 10.0 35.89 2.0 

[50, 2000] 124.40 11.0 22.17 2.0 145.55 10.8 29.38 2.0 179.23 11.0 35.67 2.0 

(2000, 3637428, 0.7) [50, 500] 200.99 8.8 41.14 2.0 253.78 9.0 57.10 2.0 284.93 9.0 67.56 2.0 

[50, 1000] 220.89 10.0 40.56 2.0 264.41 10.0 57.14 2.0 306.76 10.0 65.29 2.0 

[50, 2000] 234.08 11.0 40.20 2.0 278.06 11.0 54.08 2.0 324.74 11.0 64.08 2.0 

Table 6 

Solution time and iterations per phase on networks generated from Barabási-Albert scale-free graphs. 

Budget % 

1% 5% 10% 

Phase 1 Phase 2 Phase 1 Phase 2 Phase 1 Phase 2 

(n, m, h ) Capacity t (s) iter. t (s) iter. t (s) iter. t (s) iter. t (s) iter. t (s) iter. 

(100, 1600, 20) [50, 500] 0.21 8.8 0.06 2.2 0.27 8.8 0.06 2.0 0.29 8.8 0.08 2.0 

[50, 1000] 0.22 9.6 0.05 2.0 0.26 9.6 0.06 2.0 0.28 9.8 0.07 2.0 

[50, 2000] 0.26 10.2 0.05 2.0 0.25 10.2 0.05 2.0 0.30 10.2 0.07 2.0 

(100, 2500, 50) [50, 500] 0.28 8.4 0.07 2.0 0.31 8.8 0.08 2.0 0.39 9.0 0.10 2.0 

[50, 1000] 0.31 9.6 0.08 2.2 0.35 10.0 0.08 2.0 0.38 10.0 0.08 2.0 

[50, 2000] 0.34 10.4 0.08 2.2 0.37 10.6 0.08 2.0 0.41 10.6 0.09 2.0 

(500, 40000, 100) [50, 500] 3.71 9.0 0.80 2.0 4.70 9.0 1.12 2.0 4.82 8.4 1.27 2.0 

[50, 1000] 4.21 10.0 0.82 2.0 5.05 10.0 1.09 2.0 5.33 9.8 1.25 2.0 

[50, 2000] 4.42 11.0 0.84 2.0 5.20 11.0 1.06 2.0 5.74 11.0 1.20 2.0 

(500, 62500, 250) [50, 500] 6.08 8.8 1.23 2.0 6.98 9.0 1.62 2.0 7.62 8.8 1.96 2.0 

[50, 1000] 6.46 10.0 1.25 2.0 6.98 10.0 1.56 2.0 8.63 10.0 1.96 2.0 

[50, 2000] 6.70 11.0 1.23 2.0 8.02 10.8 1.61 2.0 8.83 11.0 1.84 2.0 

(1000, 160000, 200) [50, 500] 15.89 8.8 3.55 2.0 18.70 9.0 4.43 2.0 20.83 9.0 5.13 2.0 

[50, 1000] 16.30 9.8 3.25 2.0 19.34 10.0 4.28 2.0 22.47 10.0 4.97 2.0 

[50, 2000] 17.77 11.0 3.24 2.0 21.37 11.0 4.27 2.0 24.50 11.0 5.04 2.0 

(1000, 250000, 500) [50, 500] 24.14 9.0 5.04 2.0 27.89 8.8 6.57 2.0 32.83 9.0 8.06 2.0 

[50, 1000] 26.18 10.0 5.08 2.0 31.12 10.0 6.67 2.0 34.88 10.0 7.87 2.0 

[50, 2000] 27.76 11.0 4.89 2.0 32.41 11.0 6.45 2.0 39.62 11.0 8.10 2.0 

(2000, 640000, 400) [50, 500] 66.28 8.6 14.10 2.0 80.06 9.0 18.89 2.0 88.64 8.8 22.19 2.0 

[50, 1000] 69.59 9.8 13.75 2.0 84.03 10.0 18.28 2.0 96.66 10.0 21.63 2.0 

[50, 2000] 77.25 11.0 14.24 2.0 96.12 11.0 19.09 2.0 105.35 11.0 21.29 2.0 

(2000, 1000000, 1000) [50, 500] 106.86 9.0 22.08 2.0 124.43 9.0 29.60 2.0 148.90 9.0 36.72 2.0 

[50, 1000] 111.45 10.0 21.39 2.0 132.23 10.0 28.45 2.0 152.96 10.0 33.78 2.0 

[50, 2000] 117.31 11.0 20.56 2.0 143.46 11.0 28.02 2.0 163.77 11.0 33.08 2.0 
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hen constructs an optimal solution. By exploiting the properties 

f an optimal solution and the problem’s network structure, our 

roposed algorithm runs in polynomial time and becomes one of 

he first known algorithms to exhibit such performance on a con- 

inuous network interdiction problem. To our knowledge, network 

nterdiction problems have mostly focused on discrete decisions for 

he adversary and the literature on continuous interdiction is very 
imited. d

13
We also show that the problem can be converted into a 

ero-sum noncooperative game which always has a pure Nash- 

quilibrium point. This is an interesting result from a theoretical 

oint of view because in general zero-sum games may not always 

dmit a pure Nash-equilibrium point (see Mazalov, 2014 for fur- 

her details). Moreover, this reduction can be used to solve some 

ersions of the problem that include side constraints on the inter- 

ictor that make a cut infeasible. These cannot be incorporated in 
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ur proposed algorithm, but can be easily included in the game- 

heoretical form of the game as it enumerates all the interdictor’s 

trategies. Naturally, this approach is not suitable for large-scale in- 

tances because it requires the enumeration of the set of strategies 

or the user and interdictor. 

Our work shows that CMCPIP is one of the simplest forms of 

etwork interdiction problems because it admits a polynomial time 

lgorithm, while various—and more sophisticated—variants exist in 

he literature. Future work can be directed towards including more 

ealistic features on the user’s path design, such as multiple objec- 

ives ( Ramirez-Marquez, 2010 ), asymmetric information ( Bayrak & 

ailey, 2008 ), and dynamic (multi-stage) interactions between user 

nd interdictor ( Borrero, Prokopyev, & Sauré, 2015 ; Sefair & Smith, 

016, 2017 ). Moreover, it is worth exploring a compact linear pro- 

ramming formulation to MCPP, as its existence may allow the so- 

ution of other deterministic and stochastic problem variants. Be- 

ause of the polynomial nature of the proposed algorithm, there 

re multiple research opportunities where CMCPIP can be used 

s a (fast) subproblem. For instance, it is possible to embed the 

roposed algorithm into an defender-attacker-defender framework, 

here the user first fortifies arcs to prevent any interdictor attempt 

o reduce their capacity, and then a CMCPIP game develops over 

he fortified network. 
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