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Abstract

To induce a desired correlation structure among random variables, widely popular
simulation software relies upon the method of Iman and Conover (IC). The underly-
ing premise is that the induced Spearman rank correlation is a meaningful way to
approximate other correlation measures among the random variables (e.g., Pearson’s
correlation). However, as expected, the desired a posteriori correlation structure
often deviates from the Spearman correlation structure. Rooted in the same princi-
ple of IC, we propose an alternative distribution-free method based on mixed-inte-
ger programming to induce a Pearson correlation structure to bivariate or multivari-
ate random vectors. We also extend our distribution-free method to other correlation
measures such as Kendall’s coefficient of concordance, Phi correlation coefficient,
and relative risk. We illustrate our method in four different contexts: (1) the simula-
tion of a healthcare facility, (2) the analysis of a manufacturing tandem queue, (3)
the imputation of correlated missing data in statistical analysis, and (4) the estima-
tion of the budget overrun risk in a construction project. We also explore the limits
of our algorithms by conducting extensive experiments using randomly generated
data from multiple distributions.
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1 Introduction

Simulation studies often require the use of correlated input variables, as they may
reflect realistic features of the problem at hand. For instance, Mitchell et al. (1977)
describe a paper mill operation modeled as a tandem queue with two service sta-
tions: inspection and cutting. If a paper roll is of poor quality, it takes a long time to
inspect because defective sections need to be removed and splices are made. When
the roll reaches the cutting station, it needs to be processed slowly to avoid break-
ing it and to repair the splices. Thus, there is a high positive correlation between the
processing times of the two stations that severely impact the system performance.
In the project management context, Touran (1993) and Touran and Suphot (1997)
investigated the impact of correlations on input variables when simulating the total
cost of a construction project. They found that many of the cost components such as
mechanical and electrical costs are positively correlated due to their common eco-
nomic drivers, which could affect the risk of underestimating the budget. Cario and
Nelson (1997) described that service times of a customer in a store may be corre-
lated depending on the order size. Large orders may take longer processing times on
the order desk, cashier, and loading dock stations than smaller orders. In a similar
context, Patuwo et al. (1993) studied the impact in a queue performance due to cor-
related arrivals, and Cahen et al. (2018) derived models to determine the probability
of large delays occurring in two correlated queues. Further, Hill and Reilly (2000)
studied the effect that the correlation among input parameters has on the perfor-
mance of optimization solvers like CPLEX and a heuristic by Toyoda (1975) when
solving the two-dimensional knapsack problem. Similarly, Reilly (2009) analyzed
the effect of parameter correlation in the 0-1 knapsack, capital budgeting (or multi-
dimensional knapsack), set-covering, and generalized assignment problems.

Additional applications where correlated random variables also play a signifi-
cant role include modeling the correlated pixel structure in image processing algo-
rithms (Chakraborty 2006), the study of correlated survival rates in animal popula-
tion modeling (Todd and Ng 2001; Dias et al. 2008), modeling correlated insurance
claim amounts (Kolev and Paiva 2008), designing inventory policies with random
correlated demands (Nasr and Maddah 2015), designing systems under correlated
failures (Levitin and Xie 2006; Dai et al. 2004), generating correlated asset returns
in portfolio optimization problems (Sefair et al. 2017), computing reliable shortest
paths with correlated travel times (Zhang and Khani 2019; Corredor et al. 2020),
modeling the propagation of flight leg delays (Yan and Kung 2016), constructing
medical decision trees (Clark and El-Taha 1998), among others. Regardless of the
field of application, it is well known that ignoring such input correlations may result
in erroneous simulation results (see, for instance, Altiok and Melamed (2001) for an
illustration in manufacturing systems).

In an era of data-intensive applications, the generation of correlated data
becomes even more relevant in statistical analysis with missing data and impu-
tation methods for machine learning and database management (Batista and
Monard 2003). The motivation of such methods is that missing data can be crit-
ical for meaningful statistical inferences and may reduce the confidence in the
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predictions (Little and Rubin 2019). Instead of reducing the database size by
eliminating observations for which one or more variables have missing values,
imputation techniques aim to complete the data using available information. Of
particular interest to us are the imputation methods aiming not only to complete
the missing data but also to preserve (or induce) a correlation structure between a
pair of variables (Deb and Liew 2016).

There are well-known procedures to generate correlated multivariate random
vectors for some probability distributions. For instance, Schmeiser and Lal (1982)
and Rosenfeld (2008) proposed methods for generating correlated bivariate Gamma
variates. Stanfield et al. (2004) generated multivariate Johnson random vectors that
represent correlated product-reuse operation times in a production environment.
Park and Dong (1998) focused on generating nonnegative correlated random vari-
ables for a class of infinitely divisible distributions, whereas Young and Beaulieu
(2000) developed a Fourier-transform-based method to generate Rayleigh random
samples. In the case of discrete random variables, Xiao (2017) focused on generat-
ing correlated discrete samples for any general distribution, whereas Shin and Pasu-
pathy (2010) provided an algorithm for the generation of bivariate Poisson random
vectors. Park et al. (1996), Qagqish (2003), and Shults (2017) proposed methods to
generate correlated binary variables with specific marginal distributions and Bis-
was (2004) studied the generation of correlated categorical variables. Even though
these methods take advantage of specific properties of the underlying distributions,
they lack the flexibility to be easily extended to most distributions or a mixture of
distributions.

To avoid the dependence on the properties of a specific probability distribution,
more general procedures have focused on transforming a multivariate normal distri-
bution into a multivariate distribution with target marginals and correlations. Li and
Hammond (1975) proposed an analytical method based on this principle, but their
procedure leads to the numerical solution of double-integral equations that might
become computationally intensive and unstable given a certain degree of accuracy.
To overcome this practical limitation, Van der Geest (1998) developed an algorithm
to stabilize and increase the accuracy of Li and Hammond ’s method, while Lurie
and Goldberg (1998) presented a modified version in which a nonlinear optimiza-
tion procedure minimizes the distance between the achieved and target correla-
tion matrix. Cario and Nelson (1997) proposed the NORTA (normal-to-anything)
approach in which a standard multivariate normal distribution is transformed into
any multivariate distribution with a target correlation matrix. Hill and Reilly (1994)
generated random vectors with the desired marginals and correlations through mix-
tures of distributions with extreme correlations. Further, Haas (1999) studied meth-
ods to generate bivariate correlated random numbers based on copulas. In this case,
the copula and its parameters have to be specified (or estimated) as input to the ran-
dom number generation procedure. Finding the appropriate copula for any given
correlation metric may be challenging. Although all of these methods can deal with
any desired marginal distributions, some rely on modifications of the input data and
exploit the specific properties of the subjacent distributions. In some cases, they are
able to induce correlations only between variables of the same type (i.e., continuous
or discrete) but cannot handle distribution mixtures. Further, some approaches are
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designed for a specific correlations metric and may fail to induce target correlation
levels even if they are attainable (Ghosh and Henderson 2003).

Other methods have focused on reordering the samples of previously generated
random variates a posteriori, to induce the desired correlation structure. Polge et al.
(1973) proposed an algorithm to sort the samples from a single univariate distri-
bution to induce a desired sample autocorrelation. Based on the premise that rank
correlation is a meaningful way to define dependencies among variables, Iman
and Conover (1982) proposed a reordering transformation scheme to induce a tar-
get Spearman rank correlation. Using a heuristic procedure, Charmpis and Panteli
(2004) reorder multivariate samples to induce target Pearson product-moment cor-
relations. In the context of design of experiments, Harris et al. (1995a) and Har-
ris et al. (1995b) devise heuristic methods to produce minimum-correlation samples
using Latin hypercube. Although these approaches do not explicitly use the joint
probability density functions (or cumulative density functions), given their (approxi-
mate) numerical solution there is no guarantee that the correlation found is the
closest to the target given the available samples. Indeed, some methods require a
fine-tuning of the search parameters, which may have a big impact on the solution
quality. Additionally, existing methods are not easily adaptable to other correlation
coefficients beyond Pearson and Spearman.

To induce a given target correlation structure, widely popular simulation software
like Crystal Ball and @Risk seem to rely upon the Iman—Conover (IC) method for
generating correlated random variables, rather than sampling from the multivariate
distribution (Van der Geest 1998; Haas 1999; Oracle 2019). The IC method works
as follows (Mildenhall 2005). Given samples of n values from two known marginal
distributions X and Y and a desired correlation p between them, reorder the samples
to have the same rank-order correlation as a reference distribution (of size n X 2)
with desired linear correlation p. Since linear correlation and rank correlation are
typically close, the reordered output will have approximately the desired correla-
tion structure. Some of the key characteristics of the Iman—Conover (IC) method is
that it: (1) is simple to use; (2) is distribution-free; (3) preserves the exact form of
the marginal distributions; 4) and may be used with any type of sampling scheme.
As stated in Iman and Conover (1982), the underlying premise is that the induced
rank correlations are a meaningful way to define the dependencies among the ran-
dom variables. To some degree, the Spearman rank correlation is used as a proxy to
induce a target Pearson product-moment (linear) correlation.

This paper is rooted on the same principles of IC, yet it presents a more general
framework based on a mixed-integer programming (MIP) formulation that is able to
induce different correlation structures. We use the modeling approach of Medaglia
and Sefair (2009) and extend its application to the multivariate case and other cor-
relation measures. Further, we propose an efficient solution algorithm that handles
problems with larger samples. The proposed method, aside from coping with the
widely popular Spearman rank correlation and Pearson product-moment correlation,
is able to induce other correlation measures such as Kendall’s W, Phi correlation
coefficient, and relative risk. We present an MIP model that induces such correlation
structures to bivariate vectors, as well as a column generation approach that effi-
ciently generates large samples of correlated vectors. We then extend the bivariate
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methodology to the multivariate case, in which random vectors are correlated one
at a time. This strategy produces good quality results in terms of the achieved cor-
relations. Our method handles both discrete and continuous random variables (or
a mixture of them). To illustrate its practical use, we provide two case studies that
describe how our method can be integrated in Monte Carlo and discrete-event simu-
lation models, including the simulation of a healthcare facility and a manufacturing
tandem queue. We also discuss how our approach can be used for data imputation in
machine learning and estimating the risk of running over the budget in a construc-
tion project.

The remainder of this article is organized as follows: Section 2 presents the pro-
posed framework with the underlying MIP model for inducing bivariate correlations
and a column generation procedure to accelerate its solution. Section 3 extends the
results from the bivariate case to the generation of multivariate correlated random
vectors. Section 4 illustrates how to modify our models to induce other correlations
such as Spearman, relative risk, and Kendall and Phi coefficients of concordance.
Section 5 illustrates the use of the proposed approach in different settings, including
hospital logistics, simulation of tandem queues with correlated service times, data
imputation, and estimating the risk of overrunning the budget in construction pro-
jects. Section 6 describes the computational performance of our procedure for the
generation of large-scale samples. Section 7 contains conclusions and recommenda-
tions for future research.

2 Generating bivariate correlated random vectors

In this section, we describe a mixed-integer programming (MIP) model and a col-
umn generation approach to induce a given Pearson correlation to a bivariate ran-
dom sample. Although we center our attention on the Pearson correlation, our meth-
odology can be extended to induce other correlation measures. We describe such
extensions in Sect. 4, where we outline the required changes and adjustments.

2.1 Mixed-integer programming model

Let X and Y be a pair of random variables with probability density functions fy(x)
and fy(y), and let {x; : i=1,2,...,n}and {y; : i=1,2,...,n} be a pair of random
samples from X and Y, respectively. The Pearson linear or product-moment correla-
tion, denoted by piy, is a statistic that measures the degree of the linear association
between two variables. Formally, the Pearson correlation is defined as follows:

2o ¥0Y _ pe the Pearson

Definition 1 (Pearson correlation) Let p§Y =

Y 0=)2 XL, 0=9)?
product-moment correlation, where x and y are the sample means for X and 7Y,
respectively.
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Using the samples for X and Y, our goal is to induce a desired Pearson correla-
tion while obtaining vectors with marginal distributions identical to that of fy(x)
and fy(y). To do so, we use a matching approach, in which x-variates are paired
one-to-one with y-variates. This procedure not only induces the desired corre-
lation, but also preserves the marginal distributions because the input data are
not modified. Formally, we use a (bipartite) graph denoted by G = (Ny U Ny, A),
where Ay and N, are the node sets representing the observations from the ran-
dom samples of X and Y such that Ny NN, =@; and A = Ny x N, are the arcs
matching observations between sets Ny and N,. Figure 1 shows this bipartite
graph.

To model the matching decisions, we use the binary decision variable Z; that
takes the value of 1 if variates x; and y; are paired as a random sample (x;,y;),
and takes the value of 0, otherwise. Additionally, we denote the correlation cost
of matching variates x; and \ by Cjj- Under Pearson correlation, this cost corre-
sponds to ¢; = (x; — x)(y; — y) for a given arc (i,j) € A, which allows us to rewrite
the Pearson correlation coefficient in terms of the z-variables as in Eq. 1. For a
given matching, Eq. (1) returns the achieved Pearson coefficient

211:1 z;l=1 CjjZjj
VEL = D2 EL O — 92

/\P
Pxy

ey

The following integer program induces a given Pearson product-moment, 5)};)/’
to the random sample.

h Z;;l CijZjj P

min ~ Pxy (2a)

\/Z?:l(xi - ]_5)2 Z?:l(yi - y)z

Fig. 1 Underlying bipartite
graph for bivariate correlation
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n
s.t. ZZU:I, Vi=1,....,n (2b)
J=1
n
D=1 Vi=1l...n (2¢)
i=1
zije{O,l}, Vi,j=1,...,n (2d)

The objective function in (2a) minimizes the absolute gap between the achieved cor-
relation, ﬁ‘;y, and the target correlation F;Y after matching the observations into bivari-
ate vectors. Constraints (2b) guarantee that each observation from the sample of the
random variable X (i.e., in Ny) is assigned to one observation from the sample of the
random variable Y (i.e., in ). Likewise, (2c) guarantees that each observation from
N, is assigned one observation of Ny. Constraints (2d) define the binary nature of the
assignment variables. We denote the set of feasible solutions z € {0, 1} satisfying
(2b)—(2d) as Z.

To linearize the model described by (2a)—(2d), we introduce the nonnegative devia-
tion variables 5~ and 6*. These deviation variables capture the negative or positive gap
between ﬁ;}y and Eiy, respectively. The resulting linearized MIP, which we call bivari-
ate correlated vector generation MIP (BCVG-MIP), is given by

[BCVG-MIP] miné~ + 6" (3a)

Z?:l Z;‘l:l CijZjj

S.t. =+ 6_ - 6+ = ;§Y (3b)
VD G =R T =

zeZ (3c)

657,67 >0, (3d)

where (3a) minimizes the deviation from the target correlation ﬁiy defined in (3b).
Note that BCVG-MIP is a well-structured assignment problem with side constraints
(3b) and (3d).

2.2 Column generation procedure

Our formulation for BCVG-MIP has n? + 2 variables (i.e., n® z-variables and 2 &
-variables). However, in any optimal solution, only 7 out of the n? z-variables are
nonzero. This means that most of the z-variables may not be necessary to solve
the MIP, yet they create a computational burden to the branch-and-bound algo-
rithm. Based on this observation, we develop a column generation procedure that
seeks to solve the original problem by using only a subset of the z-variables (see
Desaulniers et al. (2006) for further details on the column generation procedure).
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To this end, we relax the binary nature of the z-variables in BCVG-MIP (i.e.,
Constraints (2d)) and denote its linear relaxation as BCVG-LP. We denote the
dual variable associated with constraint (3b) as ¢ and the duals associated with
(2b) and (2c¢) as u; and v;, respectively. In matrix notation, the column correspond-
ing to variable z; in BCVG-LP has the form

ng/SXY

where e; is an n-dimensional vector of zeros with a 1 in the i-th position and
Syy = \/ Y —X)2 Y (y; — 3)?2. Using this notation, the restricted master prob-
lem corresponding to BCVG-LP is given by

[BCVG-RMP] miné~ +6F (4a)
st ) az; +&6 —§6T=b (4b)

(i,H)eC
67,67 >0, (4d)

where C C Ny X Ny represent a subset of the columns in BCVG-LP; &, is a(2n + 1)
-dimensional vector of zeros with a 1 in the first position; and b is a (2n + 1)-dimen-
sional vector of ones, except for the first position which equals ﬁl;y. Because z-vari-
ables are not part of (4a), then the reduced cost of any non-basic variable z;; is given
by

i A ©)

Equation (5) allows us to compute the reduced cost for any non-basic variable in
closed-form without solving a subproblem.

Algorithm 1 describes our column generation procedure. In Step 1, the algorithm
constructs an initial basis for BCVG-RMP consisting of 2n + 1 columns (i.e., the
number of constraints in the model, excluding non-negativity constraints). To do so,
we use the columns of the n z-variables corresponding to the IC method’s output,
which induces a rank-order correlation that approximates the Pearson’s product-
moment correlation. Using this initialization, our model can only improve (or rep-
licate) the results of the IC method. We also add the columns corresponding to the
deviation variables 6t and §~, and n — 1 additional columns corresponding to assign-
ment z-variables for the input data as produced by the random number generator.
This initialization provides a feasible solution consisting of the assignment variables
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from the IC method solution being equal to one, one of the deviation variables equal
to |E§Y - ﬁ§y| and the other equal to zero (depending on whether the IC method
underestimates or overestimates ﬁiy), and the remaining variables equal to zero.

In Line 2, Algorithm 1 solves BCVG-RMP to obtain the initial values for the
dual variables, which are used to calculate the reduced costs in Line 3. The while
loop in Lines 4-9 iterates until there is no attractive non-basic variables outside C
in terms of reduced cost. Line 5 finds the non-basic variable with the most negative
reduced cost (i.e., we use the Dantzig rule (Liibbecke and Desrosiers 2005)), and
Line 6 augments BCVG-RMP with the information of the corresponding column.
Using the updated information, Line 7 re-solves BCVG-RMP, whose dual variables
are used to calculate the reduced costs in Line 8. Upon termination of the while
loop, Line 10 solves the integer version of BCVG-RMP with the columns generated
thus far. Line 11 returns the optimal solution to this problem and the corresponding
deviations from the target correlation.

Algorithm 1: Column generation procedure to induce bivariate correlation

Input: n observations from each random variable X and Y, target correlation pk
Output: Correlated vectors with Pearson coefficient piy and deviation from target
correlation piy

1 Construct an initial feasible solution to BCVG-RMP

2 Solve BCVG-RMP to obtain o, u;, and v;, Vi,j=1,...,n

3 Calculate reduced costs 75, ¥(4,7) € C

4 while 3r;; <0,(i,j) €C do

5 (i*,5%) < argming jyge 73

6 C < CU(i*,7*), add z;+;« and a;«j» to BCVG-RMP

7 Solve BCVG-RMP to obtain o, w;, and vj, Vi,j=1,...,n

8 Calculate reduced costs r;j, V(i, j) ¢ C

9 end

o Solve BCVG-RMP with (2d) to obtain z*, 6~*, and 6**

11 Return z*, §=*, and §7*

[

Algorithm 1 terminates in at most n? — 2n — literations, in which case BCVG-RMP
will contain all the columns in BCVG-MIP. Note that in Line 10 we solve the integer
version of BCVG-RMP with the columns generated thus far, which provides an upper
bound on the optimal solution to BCVG-MIP. Although this strategy may not provide
the optimal solution to BCVG-MIP, our computational results illustrate that this pro-
cedure is enough to produce near-optimal solutions without the need of a branch-and-
price algorithm.
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3 Generating multivariate correlated random vectors

In this section, we extend our bivariate approach to the multivariate case. We induce
a given matrix of target Pearson correlation coefficients on a set of multivariate ran-
dom samples. We process the given random vectors merging them one at a time, itera-
tively inducing bivariate correlations with all vectors already processed. Once a vector
is processed, its observations cannot be shuffled and our method proceeds with the next
vector. This process is repeated until all vectors are merged. As in the bivariate case,
our approach can be easily extended to include other multivariate correlations metrics,
which we discuss in Sect. 4.

3.1 Mixed-integer programming model

Let K be the index set of random variables X, and let {x;; : i =1,2,...,n} be a sam-
ple of n random observations for random variable X, (k € K). Let p, , be the target
correlation between variables X; and X , all of which are stored in the |[K| X || sym-
metric correlation matrix R = [;kl,kz]’ for (k;,k,) € K x K. Let K C K be the subset
of indices corresponding to variables whose samples will not be shuffled. For a given
ke K\ K, let Yki; be a binary decision variable that equals 1 if the i-th observation of
variable X is placed in position j of the correlated random (output) vector, and equals 0,
otherwise. Associated with variable y, ; ., there is a cost ¢; ;i = (X; — X)X j — Xpr)
that accounts for the interaction of the i-th observation of variable X, and the j-th obser-
vation of variable X, in the induced correlation, where X, and X;, are the sample means.
To induce Pearson product-moment correlations between X, and X, for k € K\ K
and all ¥ € K, we define the MIP in (6a)—(6f), which we denote by MCVG-MIP(k,
IC). This problem is parameterized to emphasize that it seeks to induce target correla-
tions gy, for k € IC'\ K and all ¥’ € K by only rearranging X,. Similar to the bivariate
case, we use 6;,{, and 6;,(, to calculate the deviation from the target correlation for each
k' € K. For a given k, vector y, contains the y-variables. We point out that MCVG-
MIP(k, K) is very similar to BCVG-MIP with the distinction that it simultaneously
induces bivariate correlations between X, and all X,, variables for k' € K. MCVG-
MIP(k, K) and BCVG-MIP are identical when || = 1.

[MCVG-MIP(k, /_C)] min Z (5k_,k’ + 5;:,(/) (6a)
Kek

ZL 2;1:1 CrkeijYk,ij _p ,
S.t + 6/(,](; - 52:1(, = pk,k” kel (6b)

n = \2 n - 2
\/Z,‘:l(xk,i - xk) Z,‘:l(xk’,i - xk’)

Zyk,ixi=1’ Vl=1,,n (6C)
j=1
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n
zyk,lj = 19 V]: 1, R () (6d)

i=1
eij €10, 1}, Vij=1,....n (6¢)
S0 20, K ek )

3.2 Column generation procedure

We modify the column generation approach from the bivariate case in order to solve

(62)—(6f). To this end, we define S, \/ Z:’=1(xk,i —X)? Z:’: 1 (op i — X;0)? and the

vectors

i = [ Crk 1,1/ XX | ¢; | ej]T’

for each (i,j) € {1,...,n} x {1,...,n}. Using this notation, the restricted master
problem for the column generation approach to solve MCVG-MIP(k, K) is given by

[MCVG-RMP(k, K)]  min Y (8, +6;,)

4 (7a)
k'ek
(i,HeC
Yiij2 0. V@)eC (7¢)
e B 2 0K €K, (7d)

where C is a subset of columns of the linear relaxation of MCVG-MIP(k, K), T is a
(1K| 4+ 2n) x | K| matrix consisting of an identity matrix in its top | K| X || portion,
and zeros everywhere else. Additionally, b is a (|| + 2n)-dimensional vector that
contains the p-values in the top || positions, and ones in the remaining 21 posi-
tions. Vectors 6~ and 8% are of dimension |K| and contain the values of 6k » and
5,:rk,, Vk' € K, respectively. We denote the dual variables associated with Constraints
(6b) as oy, and the duals associated with (3c) as «; and v—s1m11ar to those in (2b)
and (2c)—respectively. The reduced cost of any non- bas1c variable y; ;; in MCVG-

RMP(k, K), for (i, /) & C, is given by
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_ Crilij
riJ = - 2 _S Ukr - ui - Vj. (8)

k/EfC XXyt

Algorithm 2 describes our column generation procedure for the multivariate case.
The underlying principle is to induce the target correlations by shuffling one random
vector at a time. After a vector is processed, the arranged data becomes fixed and
cannot be shuffled in future iterations. By doing so, we are able to iteratively use
the method for the bivariate case. In Step 1, the algorithm constructs the permuta-
tion in which random vectors will be processed and whose target correlations will
be sequentially induced. The for loop in Lines 2-14 induces the target correla-
tion between a random vector and all those already in K, according to the order in
the permutation. Line 3 finds an initial basis for MCVG-RMP((k, K)) consisting of
2n 4 2 columns (i.e., the number of constraints in the model, excluding non-negativ-
ity constraints). To do so, we use the same strategy as in the bivariate case. In Line
4, Algorithm 2 solves MCVG-RMP((k, K)) to obtain the initial values for the dual
variables, which are used to calculate the reduced costs in Line 5. The while loop
in Lines 6-11 is identical to that in Algorithm 1 but solving MCVG-RMP((%, K))
at each iteration. Upon termination of the while loop, Line 12 solves the integer
version of MCVG-RMP((k, K)) with the columns generated thus far. Line 13 adds
variable X to the list of variables that cannot be shuffled in future iterations. In this
step, the samples of X, are sorted as prescribed by y;. Line 15 returns the optimal
vectors obtained at each iteration for each variable , which are used to calculate the
deviations from the target correlations.

In Sect. 6, we demonstrate that Algorithm 2 produces better results than the
approach of Iman and Conover (1982) in terms of inducing correlations that are
closer to the target correlations. This is despite its dependency on the initial per-
mutation of variables, which determines the order in which the vectors are pro-
cessed, and the fact that solving the integer version of MCVG-RMP with the col-
umns generated thus far (i.e., Line 12) may not produce an optimal solution to

(62)—(61).
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Algorithm 2: Column generation procedure to induce multivariate correlations

Input: n observations for each variable X, k € KC; target correlation matrix R
Output: Correlated vectors with Pearson coefficient R
1 Construct a permutation kpyj, kjg, - - . , ki) of the indices in K; initialize K= {kn}
2 for k = kpy to kx| do
3 Construct an initial feasible solution to MCVG-RMP(k, K)

4 Solve MCVG-RMP (k, K) to obtain oy, for each k' € K, u;, and v;,

5 Calculate reduced costs 75, V(i,5) & C
6 while HTU <0, (l,j) ¢ C| do

7 (1%, J*) <= argming jyge 7
8 C + CU(i*,5%), add yy ;- and ay 4 ;« to MCVG-RMP(k, K)
9 Solve MCVG-RMP(k, K) to obtain oy, for each &' € K, u;, and v;,
Vi,j=1,..., n
10 Calculate reduced costs r;j, V(i, j) & C
11 end
12 Solve MCVG-RMP(k, K) with y; € {0,1}™*™ to obtain y}
13 K+ {k}
14 end

15 Return yj, for each k € K

4 Extensions to other correlation measures

In Sect. 2, we focused on inducing Pearson product-moment correlation. However,
there are other correlation measures that are better suited for certain applications.
Our methodology is capable of targeting these correlation measures with only minor
changes to the constraints while maintaining the same underlying structure in the
MIP. In this section, we present alternative correlation measures and describe how to
pursue them for the bivariate case. The extension to the multivariate can be achieved
in the same manner as in the Pearson product-moment correlation.

4.1 Targeting Spearman rank correlation
The Spearman rank correlation, denoted by pf(y, is a nonparametric (distribution-

free) rank statistic that measures the degree of association between two variables. It
is a measure of monotone association that is used when the distribution of the data
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makes the Pearson’s correlation coefficient misleading. The Spearman rank correlation
is defined as follows:

631, &
n(n2-1)
rank correlation, where d; = ry(x;) — ry(y;) is the difference between the ranks of the

variates x; and y; within the corresponding samples for X and Y, respectively.

Definition 2 (Spearman rank correlation) Let pfﬂ, =1- be the Spearman

Under the Spearman rank correlation, let ¢; = (ry(x;) — rY(y_,-))2 be the correlation
cost for a given arc (i, j) € A. Then, the mathematical programming model that induces
a given Spearman rank correlation ﬁfﬂ/ to the random sample is given by (3a)—(3d),
replacing (3b) by

nn*—=1)—-63" Y cizy S ©
(2 — 1) = Pxr

In this case, each column in the corresponding BCVG-RMP is the same as in
(4a)—(4d) but using Syy = —n(n* — 1)/6 and with the top entry of b equal to ﬁiy.

4.2 Targeting Kendall's W

Kendall’s W (also called Kendall’s coefficient of concordance) is a measure of the
agreement between m sets of ranks for n objects (Kendall and Babington-Smith 1939;
Wallis 1939; Sheskin 2000). Given its properties, Kendall’s W has been used in areas
such as ecology (Legendre 2005), medical decision making (Leschied et al. 2016), psy-
chology (Sigler and Tallent-Runnels 2006), among others. For m = 2, Kendall’s W is
defined as follows:

Definition 3 (Kendall’s W) Let Pxy = W3+ e the Kendall's W coefficient,

n(n?-1)

where U = Z?zl(xi + y;)? and x; and y, are the ranks assigned to the i-th object in the
sets of ranks X and Y, respectively.

Under Kendall’'s W, let ¢; = (x; + yj)2 be the correlation cost for a given arc
(i,j) € A. Then, the corresponding MIP model that induces a given Kendall’s W p§Y
to the random sample (i.e., permutation of n numbers) is given by (3a)—(3d), replacing
(3b) by:

33, > iz — 3n(n + 1)
— +6" -6 =7 (10)

nn?—1) = Pxy

In this case, each column in the corresponding BCVG-RMP is the same as in
(4a)—(4d) but using Sy, = n(n> — 1)/3 and with the top entry of b equal to Egy.
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4.3 Targeting Phi correlation coefficient

The proposed MIP model is also able to induce correlations to categorical variables.
The Phi correlation coefficient (also known as the mean square contingency coeffi-
cient) is a special case of the Pearson correlation coefficient that measures the asso-
ciation between two binary variables (Sheskin 2000). The corresponding column
generation formulation is identical to (4a)—(4d).

4.4 Targeting relative risk

The relative risk (or risk ratio) is also a measure of association between categorical
variables. The relative risk ratio, defined as the ratio of the probability of occurrence
of an event in a group to its probability in another group, has been widely used in
epidemiological studies. For instance, to compare the relative probabilities of con-
tracting a disease (Cornfield 1951; Morris and Gardner 1988; Sheskin 2000), the
relative risk is typically calculated as the ratio of the probability of contracting the
disease in the higher-risk group, divided by the probability of the same event, but in
the lower risk group. Mathematically, the relative risk is defined as follows:

Definition 4 (Relative risk) Let p%, = (1§V)<Z”+lv) -
i=1 NN T

measure, where x and y are the means of the binary observations within the corre-

sponding samples for X and Y, respectively. Then, the relative risk can be expressed
R _ PX=l|r=1}
a5 Pxy = px=1v=0)"

1) be the relative risk

Under the relative risk measure let ¢; = x;(1 —y;) be the correlation cost for a
given arc (i,j) € A. Then, the corresponding MIP model that induces a given rela-
tive risk measure ﬁiy to the random sample is given by (3a)—(3d), replacing (3b) by:

chz+5— gro =y an

== (145G, - 1)

Although in this case variables 5~ and 6% are not deviations from the target cor-
relation, they still drive the MIP to produce a correlation as close as possible to the
target value ﬁf}y. In this case, each column in the corresponding BCVG-RMP is the
same as in (4a)—(4d) but using Sy, = 1 and with the top entry of b equal to the right-
hand side of (11).

5 lllustrative applications
The purpose of this section is to illustrate, by means of different examples, that
our proposed approach can be used in different practical settings. In Sect. 5.1, we

illustrate the use of our models in a healthcare application, whereas in Sect. 5.2,
we illustrate how our models can be blended with Monte Carlo and discrete-event
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Table 1 Capacity overestimation X=1 X=0 Total
of the hospital laboratory
facility by simulating X and Y as y=1 25 70 95
independent variables
Y=0 19 36 55
Total 44 106 150
Table 2 Determining the X=1 X=0 Total
right capacity for the hospital
laboratory facility by inducing _
2 =040 Y=1 41 54 95
xy =V -
Y=0 3 52 55
Total 44 106 150

simulation environments. In Sect. 5.3, we illustrate how to use our model for data
imputation in machine learning and database applications. Section 5.4 presents a
multivariate example related to the budget overrun risk in construction projects.

5.1 Simulating correlated laboratory exams

As a first example, we consider the case of a hospital laboratory that analyzes
two blood tests, A and B. Let X and Y be two Bernoulli distributed random vari-
ables representing whether a patient takes test A or B, with probabilities py = 0.3
and py = 0.6, respectively. The hospital is interested in estimating the number of
patients attending the laboratory facility, considering that only one blood sample is
collected if a patient needs both examinations. The fact that some patients need both
examinations is modeled by a Phi correlation coefficient /_)ﬁy =04.

We simulate the laboratory operation considering n = 150 patients. Table 1 shows
the simulation results when variables X and Y are simulated ignoring their correla-
tion. In this scenario, a total of 114 patients (= 25 + 19 + 70) require the laboratory
services for at least one examination. However, we obtain ﬁfgy = —0.09, which is far
from the target of 0.4.

We solve BCVG-MIP using the definitions in Sect. 4.3 to induce the desired
Phi correlation coefficient. Results in Table 2 show that in this case, 98 patients
(= 41+ 54 + 3) go to the laboratory facility to take a blood examination. Moreo-
ver, we obtain ﬁ?;y = 0.40 (perfect fit), avoiding the overestimation in the number of
patients attending the laboratory facility.

5.2 Performance evaluation of a tandem queue with correlated service times

To illustrate how BCVG-MIP can be embedded into a discrete-event simulation
environment, we consider a tandem queue system with two stations and correlated
service times. As pointed out by Law and Kelton (2000), such a system could rep-
resent a shop where incoming parts are inspected for defects in the first station and
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marked for repair in the second station. In this setting, it is reasonable to expect that
a badly damaged part takes a long time to inspect and repair, as opposed to a small
defect that could be rapidly detected and fixed. Indeed, Mitchell et al. (1977) show
that ignoring such correlations may lead to inaccuracies in the system’s performance
measures.

We embed the BCVG-MIP into a tandem queue simulation model using the Sto-
chastic Simulation in Java (SSJ) library (L’Ecuyer et al. 2002), with two M/M/1
queues of infinite buffer space between the stations. Also, we assume a Poisson
arrival rate A = 1 and exponential service times with mean 1/u = 0.75 at each sta-
tion. For validation purposes, we use the expected time to clear the system, W, and
the expected delay in the second queue, W, ,, under correlated service times given
by a Pearson correlation p. To integrate the proposed model with the simulation,
we generate correlated service times in batches of N observations to be consumed
by the simulation. Once these vectors are consumed, a new batch of service times is
generated by the simulation model and sent to BCVG-MIP to induce the target cor-
relation structure. To do so, we slightly modify BCVG-MIP to consider that at the
k-th iteration of this procedure, M = (k — 1)N observations (history) have already
been used by the simulation model and are now fixed. Thus, the only degrees of
freedom to induce the target correlation are given by the new batch of N pairs of
observations.

In this particular example, we use BCVG-MIP to correlate batches of size
N = 200 and stop the simulation after a run of 100, 000 time units. Figure 2a shows
that BCVG-MIP quickly achieves the target correlation structure for p = —0.50,
—0.25, 0, +0.50, and +0.95. However, for p = —0.95 our model achieves a correla-
tion of p = —0.640. This large gap is explained by the fact that the theoretical mini-
mal (negative) correlation that can be induced in a pair of exponential random vari-
ables is given by p = 1 — 22/6 = —0.645 which is close to the achieved correlation
(Hill and Reilly 1994). Notably, without explicitly knowing the statistical properties
of the induced correlations, BCVG-MIP achieves the minimal (negative) possible
correlation.

Figure 2b, ¢ shows the convergence to the system performance measures W(M)
and W, ,(M) once M customers have left the system. Our results validate those

h(M)

Fig.2 Convergence of p, W, and W,,
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obtained by Mitchell et al. (1977), where positive correlations in service times
improve system performance. We also compare against the analytical performance
metrics for a tandem of queues with infinite buffer space without correlated ser-
vice times. In such case, the analytical results of W = 6 and Wq’2 = 2.25 (Gross and
Harris 1985) were closely approximated by our simulation model (inducing p = 0)
which achieved W(M) = 6.101 and W, ,(M) = 2.272 when M = 100166.

5.3 Correlated missing-data imputation

This section describes how to use our methodology to induce bivariate correlations
in missing-data imputation analysis. Consider two vectors in R”, x and y, containing
samples of random variables X and Y, respectively. Although these vectors may have
been collected through direct observation or experiments, we assume that they have
missing data. We define /y and I, as the sets of indices corresponding to samples
for which one variate is available, but the other one is missing. That is, i € I, means
that the x-value in sample (x;,y;) is available, but the y-value is missing. Similarly,
i € Iy means that the y-value in sample (x;,y;) is available, but the x-value is missing.
Additionally, we use set Iy to denote samples missing both x- and y-values. Instead
of deleting them, we preserve samples indexed in Iy, as they may have complete
information for other variables different from X and Y. Further, we denote by I the
set of indices corresponding to the complete samples (x;, y;) for which no data are
missing.

We assume that there is a set of data points to replace the missing values for
each variable. These values can be found using the empirical probability distribu-
tion of each variable, learning or regression methods based on other variables, or
any other method (see Little and Rubin (2019) for a review of existing techniques).
To represent the new data, we use index sets Iy and Ty, where |Iy| = |I, U Iyy| and
|Ty| = |Iy U Iyy|. This means that there is enough new data to fill in the missing val-
ues in samples whose indices are in I, with values indexed in I, as well as sam-
ples whose indices are in I, with observations indexed in I,. The remaining values
indexed in I, and I, are used to fill in samples indexed in I,y. Note that index sets
I, and I, contain the new data to fill in all missing values, including those in Iy,.
Figure 3a shows this construction, where the solid black nodes indicate missing val-
ues. Note that it is not necessarily true that |Iy| = |I,|, as there may be more missing
values in one variable than the other.

Although our approach can handle any target Pearson correlation, the goal in this
case is to fill in the missing x- and y-values using the new observations while preserv-
ing the observed Pearson correlation from the available data. Using the construction
in Fig. 3a, we create the assignment graph shown in Fig. 3b, where the set of arcs
is given by A ={G,)):ie€l,jel, v iel,jel, v i€l,jel,)}.
Intuitively, this set of arcs consist of all the choices to complete the missing values,
including those samples missing both x- and y-values. Note that there are no arcs
related to samples indexed in / because they are complete and input data cannot be
modified.
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Fig. 3 a Existing and new data indices. b Assignment graph for correlated missing-data imputation

The set of z-variables in BCVG-MIP consists of Z; for (i, j) € A, which allows us
to rewrite (4b) in BCVG-RMP as

Y az+&6 —gst =1,
i)Hed’

where b’ is a {2(n — |I|) + 1}-dimensional vector of ones but with the first position
equal to ﬁ§y — Yics Cii/Sxy to account for the partially achieved correlation pro-
duced by the samples indexed in I—i.e., achieved by the data that cannot be modi-
fied by our algorithm. In this case, the procedure to compute the reduced cost for
non-basic z-variables in (5) only includes pairs (i,j) € A'.

We illustrate this approach on a case study that presents data on standard-
ized tests to evaluate the effects of parental psychological disorders on children’s
development (p.228, example 11.1, Little and Rubin 2019). Data collected include
verbal and reading comprehension scores in a standardized test for the first and
second child of the sampled families and among three risk groups: control, mod-
erate-risk, and high-risk. All sampled families have two children, and their risk
level is chosen based on the severity of the psychological disorder of the parents,
if any. Table 3 presents the data obtained for the second child of 27 families in
the moderate-risk group. Observations marked by “—” denote missing values.
In this case, I = {1,...,17}, I, = {18,...,23}, I, = {24}, and I, = {25,26,27}.
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Table 3 Correlated missing-data

X . Family Verbal Reading
imputation example

1 140 93
2 113 96
3 108 98
4 120 101
5 128 105
6 133 105
7 150 109
8 155 110
9 125 114
10 140 115
11 148 116
12 123 118
13 158 126
14 118 104
15 85 87
16 140 130
17 185 139
18 100 -
19 110 -
20 130 -
21 135 -
22 150 -
23 63 -
24 - 126
25 - -
26 - -
27 - -

The Pearson correlation between the verbal and reading comprehension scores
using available information in / is given by p‘iy =0.77.

Using the estimates available in Little and Rubin (2019), we generate new
data to fill in the missing scores using normal distributions with parameters
Hy = 128.57 and oy = 25.90 for verbal and u, = 110.67 and 6, = 13.75 for read-
ing comprehension. These p- and o-values are estimated using the mean and
standard deviations of the available information. After sampling from these distri-
butions and rounding to the nearest integer, we obtain new verbal scores given by
156, 90, 129, and 145, and new reading comprehension scores given by 93, 117,
117,121, 127, 127, 110, 108, and 106. With these values, we construct the coeffi-
cients for each decision variable z; in (3b), which are given by ¢; = (x; = X)(y; — )
for (i,j) € A’ and where the sample averages X and ¥ and Sy, are calculated using
both existing and new observations for each variable.
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Table 4 shows the results of our approach for the correlated missing-data exam-
ple. In this case, the achieved correlation (including all samples) is equal to 0.68.
This correlation is the closest possible to the observed sample correlation before
imputing new data. Note that if sample averages are used to replace the missing
information, the achieved correlation would be 0.54.This illustrates the well-docu-
mented importance of inducing a relevant correlation in addition to finding imputa-
tion values (Moorthy et al. 2014).

We emphasize that our method can be paired with any other imputation method
to generate candidate values as the raw data are never changed but only reorganized.
Moreover, other realistic extensions such as limiting the possible samples where a
new value can be imputed, fixing the sample where a value must go, or inducing an
autocorrelation within the same variable (Abdella and Marwala 2005) can be easily
incorporated in our method by modifying the set of arcs in the assignment graph (as
in Fig. 3b).

5.4 Estimating the budget overrun risk in a construction project

To illustrate the use of our approach for multivariate correlations, we use the case
study presented in Touran (1993), where the budget overrun risk of a construction
project is determined using a Monte Carlo simulation. The goal is to avoid underes-
timating the overrun risk by incorporating the correlations among cost components,
as raw material prices depend on the same economic conditions and typically fluctu-
ate together. We define X, X,, and X; as the random variables representing the total
cost (per square foot) of electrical systems, mechanical systems, and moisture protec-
tion, respectively. Following Touran (1993), we assume that X;, X,, and X; are log-
normally distributed with parameters puy = 5.14 and oy = 2.76 for X,, py, = 9.47
and oy, = 6.58 for X,, and py, = 1.81 and oy, = 2.12 for X;3. We want to induce the
target Pearson correlation coefficients py y, = 0.8 and py, x = px, x, = 0.45, which
capture moderate (=0.45) and strong (=0.8) correlations between cost components.
We conduct 50 random experiments to compare the performance of the column
generation (CG) approach in Algorithm 2 versus the IC method. Each experiment
consists of generating 100 samples for each log-normal variable, which we then

Table 4 Correlated missing-data

X . Family Verbal Reading

imputation results
18 100 108
19 110 110
20 130 121
21 135 127
22 150 127
23 63 106
24 156 126
25 920 93
26 129 117
27 145 117

Bold values represent the new generated data
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correlate using each method. The box plots in Fig. 4 present the results, including
lines at the lower quartile, median, and upper quartile values for the mean and maxi-
mum absolute deviations from the target correlation (using only the upper triangular
portion of the correlation matrix) across the 50 experiments. The plots for CG are
significantly narrower and have smaller absolute deviations than those for the IC
method. On average, the deviation from the target correlation for the IC method is
close to 0.4, whereas it is less than 0.15 for the CG approach. Moreover, the average
maximum deviations produced by IC and CG are 0.6 and 0.2, respectively. These
results show that the CG method provides more accurate correlations compared to
IC, which is critical when making decisions in systems featuring random variability
and interdependencies.

6 Computational experiments

In this section, we test the computational limits of our approach by generating ran-
dom instances of up to 3000 observations. In each experiment, we generate the ran-
dom samples independently. We use Java (version 1.8.0_151) to code our algorithms
and Gurobi (version 8.1.0) to solve the optimization problems on a machine with an
Intel 17-4610M processor @3.00GHz and 16GB of RAM. All the reported solution
times for the column generation approaches include the time taken by IC, which is
less than one second for any of the instances considered. This is expected as IC runs
in polynomial time. We use the package MC2D in R to run the Iman and Conover
method (Pouillot and Delignette-Muller 2010). Further, we set a time limit of 1000
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Fig.4 Box plots of the mean and maximum absolute difference between the achieved and target correla-
tions for three log-normal random vectors and 100 samples
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s for all the bivariate experiments and 3600 s to solve each iteration of the loop in
Lines 2—14 in Algorithm 2, where the most computationally intensive operation is to
solve the MIP problem in Line 12.

6.1 Bivariate correlations

We generate random values from exponential (4 = 1/2), normal (u = 10,0 = 3),
and uniform [0, 1] distributions, with sample sizes of 500, 1000, 2000, and 3000
observations. For each pair of distributions and sample size, we induce values of ﬁ‘;y
equal to —0.8, 0.5, 0, 0.5, and 0.8.

Table 5 compares the average absolute deviations from the target correlation
between Iman—Conover (IC), BCVG-MIP (MIP), and our column generation algo-
rithm (CG) approach (i.e., Algorithm 1) over 10 replications. In all the experi-
ments, the average absolute deviation is no more than 0.052 for our method, and
it is very close to 0 for BCVG-MIP in every instance. This result indicates that
in most instances the target correlation is achievable with the given samples. The
maximum average absolute deviation is 0.171 for IC when inducing a correlation of
—0.5 between the two exponential distributions with 500 samples. The performance
of IC drastically deteriorates as the target correlations become more negative for
combinations of variables involving the exponential distribution. This is because the
use of Spearman correlation relies on the ranking of each observation rather than
on its value, which seems to be more sensitive when inducing extreme correlations
on asymmetric distributions. On the contrary, the CG method exhibits a more con-
sistent performance across distributions and target correlations. Note that we omit
results for E;Y = —0.8 when correlating two exponential variables, as this is theo-
retically not possible to achieve (Conway 1979). Because of the large sample size,
BCVG-MIP times out for almost all instances of 3000 samples except for problems
inducing a correlation coefficient of 0, where almost all instances are solved to opti-
mality. In such cases, the MIP produces an average optimal solution with an abso-
lute deviation of 0.

Table 6 shows that in no case was the MIP faster than the CG approach.
Indeed, the MIP almost always timed out for instances with 3000 samples,
whereas the CG approach solved every problem within the time limit. Problems
inducing a correlation of 0 are easier to solve given that the initial set of columns
in the CG approach contains the IC solution as well as n — 1 columns reflecting
the data pairings produced by the random number generator. Because the samples
are independently generated, the CG approach has an initial solution of very good
quality. This feature may also explain the performance of the MIP when solving
instances of O target correlation, as a feasible solution is readily available. For the
same correlation level, the CG method improves the IC solution in almost every
case after generating only a few columns (see Table A.1 in the Supplementary
Material for more details on the CG performance). In both approaches, CG and
MIP, instances are more difficult to solve as the target correlation becomes more
extreme regardless of its sign.
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Table 7 shows that overall, the column generation procedure resulted in a
computational speedup of at least 3x and up to 2000x faster than the MIP. These
mixed results show that the instance difficulty depends on the combination of
distributions, target correlation, and sample size. In general, we observe that the
MIP’s solution time increases as the target correlation becomes extreme (i.e.,
moves closer to +1 or —1). This is also the case for the column generation (CG)
approach. The speedup tends to be larger for those instances inducing a target
correlation of O given that the initialization of the CG method is an advantage
over the MIP. For some distributions, however, the speedup is larger when induc-
ing extreme correlations (e.g., uniform-uniform). Tables 5, 6, and 7 demonstrate
the advantages of the CG approach in terms of the quality of the solution, which
can be achieved at very reasonable computational time for some correlation lev-
els, distributions, and sample sizes.

Table 7 Average speedup of CG versus MIP

Sample size p Distributions
exp-exp norm-norm  unif-unif exp-norm  exp-unif norm-unif
500 -08 6.70 32.14 7.60 6.46 8.81
-0.5 4.60 26.60 14.61 11.19 12.63 39.65
0.0 101.25 207.27 289.81 209.41 167.79 231.61
0.5 154.75 304.55 285.50 268.00 4741 263.91
0.8 3.64 25.39 377.43 8.63 7.50 290.64
1000 -0.8 11.76 1727.82 12.23 10.36 35.16
-0.5 858 71251 60.11 29.85 16.51 1012.82
0.0 240.65 419.00 399.68 389.88 378.11 447.11
0.5 17.97 825.82 57.70 38.87 19.22 980.36
0.8 7.39 15.78 1361.84 13.05 10.73 52.56
2000 -0.8 6.80 1220.16 8.17 7.58 17.61
-0.5 10.57 695.65 44.07 17.50 11.85 1243.75
0.0 402.83 431.52 421.11 415.26 312.00 446.82
0.5 15.77 1138.34 44.57 13.05 10.34 1484.24
0.8 8.46 7.89 2016.09 7.96 7.56 27.39
3000 -08 - - - - -
-05 - _ _ _ _ _
0.0¥ 1007.26 (8) 803.45 (10) 589.09 (10) 848.46 (10) 1025.26 (10) 1241.90 (9)
05 - - - - - -
08 - - - - - -

*For sample size 3000 and p = 0, numbers in parenthesis represent the number of instances solved to

optimality by the MIP

—, No instance solved to optimality
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6.2 Multivariate correlations

We use Algorithm 2 to induce multivariate correlations among 5 and 10 random
variables from various distributions and sample sizes. We generate random val-
ues using 10 different distributions, including normal (X; with 4 =5 and ¢ = 3;
and X4 with y = 8 and o = 16), exponential (X, and X; with A =4 and 4 = 10,
respectively), uniform (X5 and X both in the interval [0, 1]), log-normal (X, with
# =514 and ¢ = 2.76; and Xy with 4 =9.74 and 6 = 6.58) and gamma (X5 with
shape= 8 and scale = 5; and X, with shape= 10 and scale= 7). For the experi-
ments with 5 variables, we use X, ..., X5, and for those with 10 random vari-
ables, we use X, ...,X;,. Similar to the bivariate case, we use sample sizes of
500, 1000, 2000, and 3000 observations. We generate five instances of random
samples for each combination of number of variables and sample size. Our goal is
to induce target Pearson correlation matrices with entries of different intensities
and signs, given by

10804502 -0.3
1 04505 —-0.1

o= 1 01 -03
-0.5
1
and
1 —068 093 0.82 -058 073 065 0.67 064 -0.05
1 -0.76 —0.72 034 -055 —-043 —0.24 —0.65 0.5
1 09 -049 077 066 0.62 075 -0.13
1 -024 069 064 045 0.7 -0.29
p_ 1 —-045 -026 —0.63 —-0.2 -0.28
= 1 0.66 0.68 066 023 |
1 029 0.64 0.03
1 029 041
1 —0.07
1
where the column order is given by X, ..., X5 and X, ..., X, respectively.

Table 8 shows the performance of the CG approach (Algorithm 2) versus the
IC method when inducing a multivariate correlation structure in 5- and 10-vari-
able instances. We report two complementary performance metrics for each
method: the average and the maximum absolute deviations from the target. For
each instance, we calculate the average absolute deviation across target correla-
tion coefficients in the upper triangular portion of the correlation matrix, exclud-
ing the diagonal. This is because the matrix is symmetric and the correlations
in the diagonal are trivially achieved. Table 8 reports the average of these val-
ues across instances in the column “Avg. abs. deviation”. Because calculating the
average absolute deviation may not provide information on pairwise target corre-
lations, we also report the maximum absolute deviation observed across instances
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Table 8 Performance of CG versus IC in the multivariate case

Variables ~ Sample size  Avg. abs. deviation Max. abs. deviation Time (s)
CG IC IC/CG CG IC IC/CG CG IC
5 500 0.002  0.056  30.60 0.012  0.141 11.64 795 <1
1000 0.003 0.044 17.12 0.006  0.153  25.06 5252 <1
2000 0.006  0.038 6.59 0.015 0.116 7.93 43485 <1
3000 0.009  0.039 4.25 0.024  0.130 5.43 559.12 <1
10 500 0.006  0.056 9.33 0.129  0.251 1.94 1362.63 <1
1000 0.007  0.046 6.57 0.116  0.219 1.88 1496.13 <1
2000 0.011  0.047 4.27 0.108  0.225 2.09 282134 <1
3000 0.014  0.047 3.36 0.114  0.222 1.94 626247 <1

in the column “Max. abs. deviation”. We report the solution time for each method
in seconds. In this case, we omit the comparison with MCVG-MIP(k, K) as its
performance is not competitive as K increases in size, even for five variables and
500 samples.

Table 8 shows that the CG approach achieves correlations that are closer to the
targets compared to the IC method. The average absolute deviations for IC are up
to 30.6 times greater than those in CG for five variables, and up to 9.3 times for
10 variables. Notably, the relative improvement of CG with respect to IC decreases
as more samples are used, with the largest improvement seen for 500 samples. The
maximum deviation from the target correlation matrix shows a similar pattern. The
IC method induces a correlation structure whose maximum deviation is almost
twice as large as that induced by the CG approach in any instance. For five vari-
ables and 1000 samples, the maximum deviation in the IC method is more than 25
times that observed in the CG method. The improvement is moderate for 10 varia-
bles, with the IC method producing maximum deviations that are at least 1.88 times
larger than those in the CG approach. Along the same lines, we observe that the
largest deviations in the IC method consistently occur when dealing with at least
one asymmetrical distribution. This is the case in 85% of the experiments with 5
and 10 variables (34 out of 40 experiments), where the maximum deviations occur
when attempting to correlate exponential and normal (16 experiments) and expo-
nential and log-normal (18 experiments) distributions. A similar pattern is observed
in the CG approach, where 80% of the maximum deviations are related to correla-
tions involving the exponential distribution. However, the CG emerges as a valid and
effective alternative to reduce the maximum deviation compared to IC as shown in
Table 8.

In general, the CG approach provides a more accurate correlation structure but
at the expense of significantly longer solution times with respect to the IC method.
Given its integer programming component, the solution times of the CG approach
quickly deteriorate as more samples and variables are used. In critical applications,
where precision is of utmost importance for the decision maker, the CG method may
become a valuable alternative.
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7 Concluding remarks and future research

This paper proposes a new approach based on mixed-integer programming (MIP) to
induce different types of correlation structures to bivariate and multivariate random
vectors. Even though it shares the same principle of the Iman—Conover (IC) method,
our method is able to induce target correlations more accurately than IC. With
simple adjustments, our MIP method is able to target a wide range of correlation
structures, including the Spearman rank, Pearson correlation, relative risk, Phi cor-
relation coefficient, and Kendall’s coefficient of concordance. We propose a column
generation procedure to improve the scalability and computational performance of
the solution approach without drastically compromising the quality of the solution.
Although the IC method is fast as it runs in polynomial time, throughout this paper
we show that it can induce correlations that are far from the targets. This is more
evident for some combinations of target correlations, sample size, and distributions.
We empirically found that IC leads to large errors when inducing correlations on
asymmetrical distributions (e.g., negative correlations between exponential distribu-
tions in Table 5, maximum deviations in Table 8), when using a small sample size
for some combinations of distributions (e.g., 100 log-normal samples in Sect. 5.4
and Table 8), as the number of variables increases (e.g., 10-variable case in Table 8).
In general, the proposed models based on mathematical programming provide more
accurate correlations, but at the expense of longer solution times.

Following the results of Sect. 5.2, a future task is to implement the proposed CG
approaches as a callable library so that it could be possible to generate correlated
random vectors on-the-go within existing simulation environments. This strategy is
rooted in the advantages of the CG approach, as it is fast and accurate when correlat-
ing small batches of data.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s00291-021-00620-5.
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