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Route assignment and scheduling with trajectory coordination

Navid Matin-Moghaddam and Jorge A. Sefair

School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ, USA

ABSTRACT
We study the problem of finding optimal routes and schedules for multiple vehicles traveling in a
network. Vehicles may have different origins and destinations, and must coordinate their trajecto-
ries to keep a minimum distance from each other at any time. We determine a route and a sched-
ule for each vehicle, which possibly requires vehicles to wait at some nodes. Vehicles are
heterogeneous in terms of their speed on each arc, which we assume is known and constant
once in motion. Applications of this problem include air and maritime routing, where vehicles
maintain a steady cruising speed as well as a safety distance to avoid collision. Additional related
problems arise in the transportation of hazardous materials and in military operations, where
vehicles cannot be too close to each other given the risk posed to the population or the mission
in case of a malicious attack. We discuss the hardness of this problem and present an exact for-
mulation for its solution. We devise an exact solution algorithm based on a network decompos-
ition that exploits the sparsity of the optimal solution. We illustrate the performance of our
methods on real and randomly generated networks.
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1. Introduction

This article studies a route assignment and scheduling prob-
lem in which vehicles need to keep a minimum distance
from each other at any time. This problem, which we refer
to as RASTC (Route Assignment and Scheduling with
Trajectory Coordination) is inspired by modern applications
in transportation and logistics, and particularly by the emerg-
ing challenge of coordinating driverless vehicles. In RASTC,
a set of vehicles travel between known origins and destina-
tions in a directed network. Due to safety reasons (e.g., to
avoid collisions or to reduce the vulnerability to adversary
attacks), the Euclidean distance between any two vehicles
cannot be less than a given parameter at any time. To avoid
such geographic conflict, RASTC seeks a route and a schedule
for each vehicle, specifying the departure time from each
node along the route that also minimizes a function of the
vehicles’ travel times. RASTC includes other realistic features
such as heterogeneous vehicles in terms of speed and min-
imum and maximum waiting times at any node.

Route assignment and scheduling problems are common in
transportation and logistics applications. Related problems such
as vehicle routing with time windows (Br€aysy and Gendreau,
2005a, 2005b), time-dependent vehicle routing (Malandraki
and Daskin, 1992), and dial-a-ride (Cordeau and Laporte,
2007), are close to RASTC, as they decide on the vehicles’
departure times and seek for optimal routes and schedules.
However, they focus on time-dependent demands or dynamic
travel times rather than enforcing a minimum distance between
vehicles (see, e.g., Pillac et al. (2013) and Dixit et al. (2019) for

comprehensive reviews on dynamic routing problems).
Multiple decentralized routing models have focused on obstacle
and collision avoidance. In a single-vehicle application, Hu
et al. (2018) propose a model that selects the best path from a
set of candidates to avoid static and moving obstacles while
choosing the vehicle’s speed and acceleration. For multiple
vehicles, Jin et al. (2012), Kamal et al. (2015), and Zhu and
Ukkusuri (2015) propose models and algorithms for intersec-
tion control that determine routes and departure schedules to
minimize the total travel time of all vehicles across the intersec-
tion. Rios-Torres and Malikopoulos (2017) present a compre-
hensive survey on vehicle coordination approaches for
intersections and highway on-ramps. Under the assumption of
discrete time, Yu and LaValle (2012) and Ferrati and Pallottino
(2013) use time-expanded networks for centralized vehicle
coordination in order to construct collision-free trajectories.
Yamashita et al. (2005) propose coordination policies to
dynamically adjust vehicle routes while en route, aiming to
reduce congestion in connected environments where vehicles
share location and destination data.

Collision avoidance is relevant in other applications
beyond road traffic. In flexible manufacturing systems,
Automated Guided Vehicles (AGVs) are used for material
handling and need to be safely routed across the production
facility. In this area, Nishi et al. (2011) propose a decompos-
ition algorithm to optimally route and schedule AGVs in
discrete time that synchronizes vehicles and production
schedules. The manufacturing layout is modeled as a net-
work, thus route conflicts prevent two or more AGVs from
using a node or edge at the same time. This definition of
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conflict is also used by Krishnamurthy et al. (1993) to opti-
mize AGV routes for known demands and by Adamo et al.
(2018) to optimize the speed of AGVs for pickup and
delivery operations with time windows. Corr�ea et al. (2004)
combine constraint programming and mixed-integer pro-
gramming over a space–time network for dispatching and
conflict-free routing of AGVs. Fazlollahtabar and Saidi-
Mehrabad (2015) present a survey on existing methodologies
for AGV scheduling and routing. Collision avoidance is also
relevant in air traffic control of airplanes or Unmanned
Aerial Vehicles (UAVs). Using a heuristic approach, Phung
et al. (2017) solve a path planning problem for a single
UAV in the context of infrastructure inspection with static
obstacles. In a real-time setting, Frazzoli et al. (2001) pro-
pose a protocol for airplane conflict resolution, in which a
centralized traffic controller adjusts aircraft trajectories to
minimize the deviation from ideal routes sent by each pilot.
Richards and How (2002) investigate the problem of finding
optimal trajectories for multiple aircrafts to avoid collisions.
The proposed discrete-time problem includes aircraft turn-
ing rates and speed decisions, as well as collision avoidance
constraints, which are embedded into a mixed-integer pro-
gram. Otto et al. (2018) provide a survey on optimization
approaches for UAV routing. Trajectory coordination is also
relevant in the area of multi-robot path planning (Hoy
et al., 2015). Given known origins, destinations, and fixed
paths for a set of robots, Abichandani et al. (2013) propose
a nonlinear optimization problem to determine velocity pro-
files under collision, kinematics, and communication con-
straints. Ferrera et al. (2013), and Ferrera et al. (2014)
provide decentralized approaches for collision avoidance via
robot coordination.

Routing and scheduling with a minimum distance
requirement is also in the transportation of hazardous
materials, where spills or explosions are uncommon, but
have serious consequences to the environment and humans
(Erkut and Verter, 1998). A common approach to mitigate
the impact of hazmat accidents is to design routes that sat-
isfy safety, equity, and operational criteria (List et al., 1991;
Current and Ratick, 1995). Gopalan, Batta, and Karwan
(1990) and Gopalan, Kalluri, Batta, and Karwan (1990)
design vehicle routes under equity considerations that bal-
ance the population exposure to hazmat shipments along
the path, as it is undesirable to expose the same population
to the risk of multiple hazmat shipments at the same time.
Toumazis and Kwon (2016) extend the conditional value at
risk ideas to develop a risk metric for the design of robust
routes that minimize the worst-case consequences of a
potential accident. Esfandeh et al. (2018) study a network
design problem that includes time-dependent road closures
that indirectly influence the routes chosen by hazmat
vehicles, which helps to reduce a population, exposure to
the risky shipments in space and time. In a closely related
study to RASTC, Carotenuto et al. (2007) argue that if two
hazmat vehicles travel too close to each other and one is
involved in an accident, there is a high probability that the
other will also be affected. As a result, they enforce a min-
imum distance between vehicles with a two-stage heuristic

approach that first identifies a candidate set of low-risk
routes and then determines vehicle departure times while
considering that vehicles cannot wait at intermediate nodes.
To mitigate the additional risk posed by vehicles traveling too
close to each other, each route is discretized and no two
vehicles are allowed inside the safety (circular) area around
any of the discrete points at the same time. In case of acci-
dent or malicious attack affecting a vehicle, this separation
gives nearby vehicles enough time to react, limiting the nega-
tive consequences on the population. In the military context,
the convoy movement problem seeks conflict-free trajectories
to move military assets from sources to destinations, while
satisfying spatiotemporal constraints. In this area, Thomas
et al. (2015) propose an algorithm to route convoys across a
network, assuming that convoys move as a whole and occupy
an edge for some time given their length. For security rea-
sons, a minimum inter-convoy distance is maintained for
convoys traveling in the same direction. For the same prob-
lem, Chardaire et al. (2005) propose a discrete-time integer
programming formulation that selects the best route out of a
candidate set and a starting time for each convoy, assuming
that once a convoy starts traversing the network it continu-
ously moves until reaching its destination. Using an integer
programming approach, Kumar and Narendran (2008) deter-
mine each convoy’s route and departure time while enforcing
a minimum inter-convoy headway on shared net-
work components.

The concept of geographic conflict also arises in other
static problems that focus on finding disjoint paths, but
ignore the flow scheduling aspect. A classic problem in this
area is the design of survivable networks, which aims to find
a minimum cost network such that each pair (or subset) of
nodes is connected by a given number of arc- or node-dis-
joint paths (Suurballe, 1974; Grotschel et al., 1995; Kerivin
and Mahjoub, 2005; Omran et al. 2013, Diarrassouba et al.,
2018). Margolis et al. (2018) use this concept to design a
resilient supply network by selecting multiple node-disjoint
distribution channels, which mitigates the risk of unsatisfied
demand due to disruptions at intermediate stages. Other
variants in communication problems aim to find disjoint
paths that guarantee some degree of information transmis-
sion. They include finding arc-disjoint paths in the presence
of resilient arcs (i.e., not subject to failure) ( _Zotkiewicz
et al., 2010) and bifurcated routing problems between an
origin and a destination with node and arc use costs (De
Jongh et al., 1999). Other approaches focus on the design of
disjoint paths under spatial failures. These failures are mod-
eled as disks of known diameter that can be located any-
where in the continuous space. It is assumed that
components overlapping with a disk completely fail (or are
destroyed) (Neumayer et al., 2009; Neumayer et al., 2015) or
lose some functionality (Sullivan and Smith, 2014).
Extending the max-flow min-cut theorem, Neumayer et al.
(2009), Kobayashi and Otsuki (2014), Neumayer et al.
(2015), and Otsuki et al. (2016) study the problems of find-
ing the maximum number of geographically disjoint paths
between two nodes and the minimum number of disk fail-
ures to disconnect two nodes. In these problems, two paths
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are geographically disjoint if the minimum distance between
them is at least a given value (except in areas close to the
origin and destination). Although close to RASTC, these
static approaches ignore the vehicle route assignment and
scheduling aspects, and can only be used when all vehicles
travel between the same origin and destination. We refer to
these approaches as static, as they enforce a minimum dis-
tance between paths rather than vehicles.

Applications of RASTC include air and maritime routing,
where vehicles need to maintain a steady cruising speed, as
well as a safety distance, to avoid collision. Additional
related problems arise in the transportation of hazardous
materials, where vehicles cannot be too close to each other
given the risk posed to the population in case of accident or
malicious attack. Moreover, RASTC is related to the convoy
movement problem in the absence of congestion when the
convoy can split at any point and vehicles can travel at the
speed limit (or any other constant speed) along different
routes. In this case, enforcing a minimum separation dis-
tance decreases the risk of losing multiple vehicles at once
given an airstrike or a roadside bomb. RASTC is also related
to AGV routing when the interest is to find routes and
schedules for known demands and when operations require
each AGV to travel between two locations only.

We focus on problems with a moderate number of
vehicles and assume that cycles are undesirable, as they may
unnecessarily expose a population to dangerous materials,
require additional fuel consumption, and may not be even
possible given the network used. We allow heterogeneous
vehicles with different speeds, which remain constant once
in motion. Each vehicle has a designated speed for each arc,
which is not necessarily the same for all arcs. This is plaus-
ible for air and maritime routing applications, where
vehicles travel at cruising speeds. For more ambitious related
problems such as routing of autonomous vehicles, the solu-
tion from RASTC provides a benchmark to compare the
performance of other models or solution approaches. For
instance, the solution quality of a heuristic that allows vari-
able speeds must be no worse than that provided by
RASTC. Moreover, RASTC provides a benchmark for any
decentralized coordination mechanism, as it assumes a cen-
tralized (and optimal) coordination between the vehicles.
Although RASTC is not specifically designed to handle vari-
able speeds while in motion, these can be approximated
using our approach. Because the goal is to avoid the geo-
graphic conflict while still moving towards the destination,
it is possible to add extra nodes along an arc where vehicles
can wait. In this way, the combination of motion (at con-
stant speed) and waiting can approximate a deceler-
ation profile.

RASTC has received very little attention in the literature.
There are no exact models or algorithms available to tackle
emerging RASTC problems in continuous time. The follow-
ing are our main contributions:

1. We introduce an NP-hard routing and scheduling problem
that is relevant for current and emerging related applica-
tions and that encompasses several realistic features.

2. We develop an alternative linear formulation to the geo-
graphic conflict that avoids the Euclidean norm when
calculating the distance between vehicles and propose a
polynomial-time pre-processing approach to character-
ize the conflict.

3. We embed such conflict constraints into a Mixed-
Integer Programming (MIP) formulation, which we
solve using a tailored decomposition technique.

This article is organized as follows. In Section 2, we study
the geographic conflict and derive disjunctive linear con-
straints on the vehicles’ departure times to represent the
geographic conflict. In Section 3, we embed the develop-
ments from Section 2 into an MIP to solve RASTC.
Although exact, the MIP’s number of variables and con-
straints makes it computationally challenging for solving
moderate- and large-scale instances. To overcome this prob-
lem, in Section 4 we devise an exact solution approach based
on a network decomposition. In Section 5, we demonstrate
the performance of our approach and explore its limits by
solving real instances out of Berlin’s road network, as well
as other randomly generated instances. Section 6 presents
our final remarks and future research. Appendices 1 and 2
contain all the proofs of our propositions.

2. Vehicle coordination modeling

We enforce the coordination among a set of vehicles, V, by
imposing constraints on their departure times from the
nodes they traverse in a directed network, G ¼ ðN,AÞ: In
Section 2.1, we characterize the distance between network
elements, and in Section 2.2 we describe the conditions that
vehicles’ departure times must satisfy to avoid geographic

conflict. We define �dðði, jÞ, kÞ and d̂ðði, jÞ, ðk, lÞÞ as functions
returning the shortest Euclidean distance between arc (i, j)
and node k, and between arcs (i, j) and (k, l), respectively.
We assume that arcs are straight lines. Non-straight trajecto-
ries (e.g., along a winding road) can be approximated by
adding intermediate nodes connected by straight arcs.

2.1. Distance between network elements

2.1.1. Arc–node distance
The arc–node distance is the minimum Euclidean distance
between arc (i, j) and node k, which we denote by
�dðði, jÞ, kÞ: To calculate �dðði, jÞ, kÞ, we use the coordinates of
node i, xi, and the unit vector in the direction of arc (i, j),
u. We then obtain the orthogonal projection of xk on the
line xi þ au, which is given by xi þ a�u, where a� ¼
arg mina2Rkxi þ au� xkk: The value of a� is unique and
can be calculated in closed form given the convexity of the
Euclidean norm function. Using this projection, we have
that

�dðði, jÞ, kÞ ¼
kxi � xkk If a� � 0
kxj � xkk If a� � kxj � xik
kxi þ a�u� xkk If 0 < a� < kxj � xik:

8<
:
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2.1.2. Arc–arc distance
We define the arc–arc distance as the minimum Euclidean dis-
tance between arcs (i, j) and (k, l), which we denote by

d̂ðði, jÞ, ðk, lÞÞ: We also define uij and ukl as the unit vectors in
the direction of arcs (i, j) and (k, l), respectively. Following the
same intuition as in the arc–node distance, we find two points
along the lines xi þ aijuij and xk þ aklukl whose distance is
minimum by finding a� ¼ arg minðaij , aklÞ2R2kxi þ aijuij �
xk � akluklk: Using a� ¼ ða�ij, a�klÞ, we have that

Although in this case vector a� may not be unique (e.g.,
when arcs are parallel), an optimal solution a� can still be
obtained in closed form given convexity of the Euclidean
norm function.

2.2. Geographic conflict modeling

This section describes our approach to prevent geographic
conflict by requiring vehicles to maintain a distance of at
least d units at any time. We introduce two types of con-
flicts: arc–arc, used to avoid conflict when vehicles are mov-
ing, and arc–node, used when one of the vehicles is waiting
at a node and the other is moving. To impose such conflict
constraints only on relevant network components, we define

X ¼ fðði, jÞ, ðk, lÞÞ � A� A : d̂ðði, jÞ, ðk, lÞÞ < dg and W ¼
fðði, jÞ, kÞ � A� N : �dðði, jÞ, kÞ < dg: As an arc–arc conflict
is symmetric, we add ðði, jÞ, ðk, lÞÞ or ððk, lÞ, ði, jÞÞ to X, but
not both. We assume that there is no arc–node conflict
involving any vehicle’s origin or destination nodes.

2.2.1. Arc–arc conflict
Suppose that while traversing the network, vehicles g and h
use arcs (i, j) and (k, l), respectively, with corresponding vel-
ocity vectors vgij and vhkl, where ðði, jÞ, ðk, lÞÞ 2 X: Under these

conditions, the distance between g and h at time t is given by
kxi þ vgijt � ðxk þ vhklðt � dÞÞk, where d represents the differ-

ence in the departure time of h with respect to the departure
time of g, which is the reference time. For instance, d < 0 indi-
cates that h departs d units of time before g, whereas d > 0
indicates that h departs d units of time after g. If d¼ 0, then g
and h start moving at the same time. We assume that each
vehicle’s speed is constant while traversing an arc, thus g

spends cgij ¼ kxj�xikkvgijk
time moving from i to j, and h spends chkl ¼

kxl�xkk
kvhklk

time moving from k to l. This means that any value of d

and t satisfying the following two conditions leads to a geo-
graphic conflict between g and h while they are in motion
along arcs (i, j) and (k, l), respectively:

kxi þ vgijt � ðxk þ vhklðt � dÞÞk < d (1)

t 2 maxf0, dg, minfcgij, chkl þ dg
h i

(2)

Condition (1) reflects the occurrence of geographic conflict,
whreas (2) narrows the time window for conflict analysis
down to values of t when vehicles are moving. The term
maxf0, dg captures the earliest time at which both vehicles
are in motion and the term minfcgij, chkl þ dg captures the

time at which the first vehicle arrives at its destination. The
following proposition establishes an important property of
all the values ðd, tÞ satisfying (1) and (2), which we later use
to derive some constraints for our mathematical program.

Proposition 1. If the differences in departure times d1 and
d2, where d1 � d2, lead to a geographic conflict, then any d 2
½d1, d2� also leads to a conflict.

Proposition 1 proves the convexity of the set of values ðd, tÞ
satisfying (1) and (2), and suggests that the geographic conflict
interval can be fully characterized by the minimum and
maximum possible difference in the departure times. Based on

this observation, we define ‘̂
gh
ijkl ¼ minfdjðd, tÞ satisfies kxi þ

vgijt � ðxk þ vhklðt � dÞÞk � d and ð2Þg and ûgh
ijkl ¼ maxfdj

ðd, tÞ satisfies kxi þ vgijt � ðxk þ vhklðt � dÞÞk � d and ð2Þg,
thus conflict arises if the difference between the departure

times falls in the interval ð‘̂ghijkl, ûgh
ijklÞ: That is, if we let sgi and shk

be the departure times of vehicles g and h from nodes i and k
along arcs (i, j) and (k, l), respectively, such that ðði, jÞ, ðk, lÞÞ 2
X, then the disjunction ðshk � sgi � ‘̂

gh
ijklÞ�ðshk � sgi � ûgh

ijklÞ
avoids any conflict when the vehicles are in motion along these

arcs. The optimization problems producing ‘̂- and û-parame-
ters are convex due to Proposition 1 and that Slater’s con-
straint qualification holds given that ðði, jÞ, ðk, lÞÞ 2 X: Hence,

we can obtain the unique optimal values for ‘̂ and û-parame-
ters in closed-form by solving the corresponding system of
first-order Karush-Kuhn-Tucker optimality conditions.

To illustrate the operation of our arc–arc conflict condi-
tions, consider the situation depicted in Figure 1(a), where
vehicle g travels between nodes i and j using arc (i, j), and
vehicle h travels from k to l using arc (k, l). The xy-coordi-
nates of nodes i, j, k, and l are (0, 0), (2, 2), (3, 3), and (2,
1), respectively. In this case, we assume d¼ 1, for which
ðði, jÞ, ðk, lÞÞ clearly belongs to X. Assuming speeds equal to

one, we obtain ‘̂
gh
ijkl ¼ �0:82, which means that h must

depart k at least 0.82 units of time before g to avoid conflict.
Figure 1(b) illustrates the situation when shk � sgi ¼ �0:82:

d̂ðði, jÞ, ðk, lÞÞ ¼
kxi þ a�ijuij � xk � a�kluklk, If 0 � a�ij � kxj � xik and 0 � a�kl � kxl � xkk
minf�dðði, jÞ, kÞ, �dðði, jÞ, lÞ, �dððk, lÞ, iÞ, �dððk, lÞ, jÞg, Otherwise:

(
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At the departure time of g (which we denote by t¼ 0 for
convenience), vehicle h is almost halfway of its trip to l. At
t¼ 1.41, g is halfway to j and h arrives at l, where the dis-
tance between vehicles is exactly d. In this case, there is no
conflict between g and h, as the distance between them is no
less than d at any time while in motion. Note that any
departure times such that shk � sgi < �0:82 also prevent con-

flict. The arc–arc conflict analysis also produces ûgh
ijkl ¼ 2:38,

meaning that h must depart k at least 2.38 units of time
after g to avoid conflict. Figure 1(c) illustrates the situation
when shk � sgi ¼ 2:38: At time t¼ 0, g departs node i while h
waits at k until time t¼ 2.38. At t¼ 2.82, g arrives at j and h
is at coordinate ð2:8, 2:6Þ, whose distance to j is exactly d.
As in the previous case, this situation leads to no conflict as
the vehicles are never at a distance of less than d while in
motion. Indeed, any configuration of departure times such
that shk � sgi 62 ð�0:82, 2:38Þ will prevent geographic conflict.

Our arc–arc conflict conditions are general to any net-
work topology as long as the participant arcs belong to X.
Figure 2 depicts three special cases of arc–arc conflicts, in
which we assume for simplicity d¼ 1 and unit speeds. In
the first case, two vehicles using the same arc (i.e.,
ði, jÞ ¼ ðk, lÞ) synchronize their departure times to avoid
conflict while in motion. In Figure 2(a), our conflict analysis
requires the vehicles to leave node i with a time difference
of at least 1 unit, i.e., shi � sgi 62 ð�1, 1Þ: Figure 2(a) illus-
trates that the minimum distance d is preserved when shi �
sgi ¼ �1: In Figure 2(b), vehicles transit two arcs that inter-
sect (e.g., a road intersection with no right or left turns),
requiring the vehicles to leave the departure nodes with a
time difference shk � sgi 62 ð�1:04, 1:55Þ to avoid conflict.
Figure 2(b) illustrates the case where shk � sgi ¼ �1:04: At
time t¼ 0, g departs i while h is almost at the intersection,
and at time t¼ 1.05 vehicles are at their minimum distance
(d). Figure 2(c) illustrates the case where j ¼ k, meaning
that g travels towards the location of h such that the depart-
ure times from i and j must satisfy shj � sgi 62 ð0:59, 2Þ:
Figure 2(c) illustrates the case where shj � sgi ¼ 0:59, in

which g departs i at t¼ 0 and h waits at node j until

t¼ 0.59, achieving a minimum distance of d between
vehicles at time t¼ 1.30.

Figures 1 and 2 illustrate how to prevent the geographic
conflict while vehicles are moving. However, these con-
straints allow the distance between vehicles to be less than d
when one of them is waiting at a node. For instance, the
distance between g and h will be less than d if h waits at l
after t¼ 1.41 in Figure 1(b) or when g waits at j after
t¼ 2.82 in Figure 1(c). This situation may not be desirable
in some related problems (e.g., military convoy planning),
requiring additional arc–node constraints to prevent
such conflict.

2.2.2. Arc–node conflict
Suppose that vehicle g uses arc (i, j) and vehicle h visits
(and possibly waits at) node l such that ðði, jÞ, lÞ 2 W: In this
case, the distance between the two vehicles at time t is given
by kxi þ tvgij � xlk, where we assume that the departure

time of g is the reference time. Proposition 2 establishes an
analogous result to Proposition 1 for the arc–node conflict.
The proof of Proposition 2 is similar to that of
Proposition 1.

Proposition 2. If the differences in departure times t1 and t2,
where t1 � t2, lead to a geographic conflict, then any t 2
½t1, t2� also leads to a conflict.

Because ðði, jÞ, lÞ 2 W, we know that geographic conflict
exists at some time t such that 0 � t � cgij: Using

Proposition 2, we can calculate a conflict interval ð�‘ghijl , �ugh
ijl Þ

for the vehicles’ departure times difference by performing
the following two steps:

	 Step 1: Solve |xi þ tvgij � xl| ¼ d for t and obtain the
roots t1 and t2, where t1 � t2:

	 Step 2: Return �‘
gh
ijl ¼ maxf0, t1g and �ugh

ijl ¼ minfcgij, t2g:

The roots in Step 1 always exist and are real because
ðði, jÞ, lÞ 2 W and there are no constraints on t. Using this
two-step procedure, we establish that no conflict arises if h

Figure 1. Arc–arc conflict analysis.
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leaves node l at most �‘
gh
ijl units of time after g departs i, or if

h arrives at l at least �ugh
ijl units of time after g departs i. If we

let sgi be the departure time of vehicle g from node i along
arc (i, j), shl be the departure time of vehicle h from node l,

and shk be the departure time of vehicle h from node k along

arc (k, l), such that ðði, jÞ, lÞ 2 W, then the disjunction ðshl �
sgi � �‘

gh
ijl Þ�ðshk þ chkl � sgi � �ugh

ijl Þ avoids any conflict while

vehicle g is moving and vehicle h is waiting after arriving
into node l using arc (k, l).

Figure 3 illustrates the arc–node conflict conditions when
g is traveling from i to j, h is waiting at l, d¼ 1, and unit
speeds. Clearly, ðði, jÞ, lÞ 2 W, indicating that g and h will
have conflicting locations at some time t 2 ½0, kxj � xik�: We

obtain that �‘
gh
ijl ¼ 1:41 and �ugh

ijl ¼ 2:83: Figure 3(a) illustrates

the situation when �‘
gh
ijl ¼ 1:41, which forces h to leave l (to

any other node) no later than t¼ 1.41 to avoid conflict.

Figure 3(b) describes the situation when �ugh
ijl ¼ 2:83, which

implies that h must arrive at l (from k or any other node)
not earlier than t¼ 2.83.

3. Mathematical programming formulation

We propose an MIP formulation for RASTC that uses a
directed network G ¼ ðN,AÞ, where N is the set of nodes
and A is the set of arcs. A set of vehicles V travels between
known origin and destination nodes denoted by sg and pg,
respectively, for each vehicle g 2 V: We partition V into sets
Vst to identify those vehicles traveling from s to t.
Parameters agj and bgj denote the minimum and maximum

amount of time that vehicle g is allowed to wait at node j 2
N, if visited. There is no maximum waiting time constraint
at nodes sg and pg, for any g 2 V: Departure times within

the interval ð‘̂ghijkl, ûgh
ijklÞ result in a conflict when vehicles g

and h travel on arcs (i, j) and (k, l), respectively, such that

ðði, jÞ, ðk, lÞÞ 2 X: Similarly, the interval (�‘
gh
ijk, �u

gh
ijkÞ captures

the arc–node conflict when vehicle g travels along arc (i, j)

Figure 2. Special cases in the arc–arc conflict analysis.

Figure 3. Arc–node conflict analysis.
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and vehicle h uses node k such that ðði, jÞ, kÞ 2 W: For each
vehicle g, we precalculate the shortest-path time from sg to
pg, denoted by zgSP, using arc costs given by cgij þ agj , for all

ði, jÞ 2 A: We use big-M parameters Mg and Mgh with posi-
tive value for g, h 2 V:

The binary variable xgij is equal to one if and only if g 2
V uses arc ði, jÞ 2 A, and the continuous variable sgi cap-
tures the departure time of g from node i 2 N: We reformu-
late the arc–arc and arc–node conflict disjunctive conditions

using a big-M approach. We use the binary variable f ghijkl,

which is equal to one if the conflict condition involving ûgh
ijkl

is satisfied by vehicles g and h, g 6¼ h, traveling on arcs (i, j)
and (k, l), respectively, such that ðði, jÞ, ðk, lÞÞ 2 X: This vari-
able is equal to zero if the departure times of g and h satisfy

the disjunctive condition that uses ‘̂
gh
ijkl: The binary variable

eghijk models the arc–node conflict between vehicles g and h,

g 6¼ h, when g is traveling arc (i, j) and h is waiting at node
k such that ðði, jÞ, kÞ 2 W: If the departure times satisfy the

arc–node condition that uses �ugh
ijk, then eghijk is equal to one.

Otherwise, if they satisfy the condition using �‘
gh
ijk, then eghijk is

equal to zero. The decision variable z captures the value of
the objective function, which corresponds to the maximum
relative deviation from each vehicle’s shortest-path time. We
define the sets of indices K ¼ fðg, h, i, j, k, lÞjg, h 2 V , g 6¼
h, ðði, jÞ, ðk, lÞÞ 2 Xg, C ¼ fðg, h, i, j, lÞjg, h 2 V, g 6¼ h, ðði, jÞ,
lÞ 2 Wg, and ! ¼ fðg, h, i, j, k, lÞjg, h 2 V , g 6¼ h, ði, jÞ, ðk, lÞ 2
A, ðði, jÞ, lÞ 2 Wg to capture the possible combinations of
vehicles and network elements where conflict may occur.
Constraints (4)–(19) describe the feasible region of RASTC:

min z (3)

s:t:
X

j:ði, jÞ2A
xgij �

X
j:ðj, iÞ2A

xgji ¼
1, If i ¼ sg
0, If i 2 N n fsg , pgg, 8g 2 V, i 2 N
�1, If i ¼ pg

8<
:

(4)

sgi þ cgij þ agj � sgj þMgð1� xgijÞ, 8g 2 V, 8ði, jÞ 2 A (5)

sgi þ cgij þ bgj � sgj �Mgð1� xgijÞ, 8g 2 V, 8ði, jÞ 2 A : i, j 62 fsg , pgg
(6)

shk � sgi � ‘̂
gh
ijkl þMgh f ghijkl þ ð1� xgijÞ þ ð1� xhklÞ

h i
, 8ðg, h, i, j, k, lÞ 2 K

(7)

shk � sgi � ûgh
ijkl �Mgh ð1� f ghijklÞ þ ð1� xgijÞ þ ð1� xhklÞ

h i
, 8ðg, h, i, j, k, lÞ 2 K

(8)

shl � sgi � �‘
gh
ijl þMgh eghijl þ ð1� xgijÞ

h i
, 8ðg, h, i, j, lÞ 2 C

(9)

shk þ chkl � sgi � �ugh
ijk �Mgh ð1� eghijl Þ þ ð1� xgijÞ þ ð1� xhklÞ

h i
, 8ðg, h, i, j, k, lÞ 2 !

(10)

f ghijkl � xgij, 8ðg, h, i, j, k, lÞ 2 K (11)

f ghijkl � xhkl, 8ðg, h, i, j, k, lÞ 2 K (12)

eghijl � xgij, 8ðg, h, i, j, lÞ 2 C (13)

eghijl �
X

k:ðk, lÞ2A
xhkl, 8ðg, h, i, j, lÞ 2 C (14)

sg1s � ::: � s
gjVst j
s , 8s, t 2 N : jVstj > 1 (15)

sgpg
zgSP
� z, 8g 2 V (16)

sgi � 0, 8g 2 V , i 2 N (17)

xgij 2 f0, 1g, 8g 2 V, ði, jÞ 2 A (18)

f ghijkl 2 f0, 1g, 8ðg, h, i, j, k, lÞ 2 K (19)

eghijl 2 f0, 1g, 8ðg, h, i, j, lÞ 2 C (20)

Constraints (4) impose flow-balance conditions for each
node and each vehicle, similar to the classic multicommod-
ity flow problem (Ahuja et al., 1993). Constraints (5)–(6)
help enforce the waiting times at each node and keep track
of each vehicle’s travel time. These constraints also help in
eliminating cycles, as they are assumed to be infeasible for
the problems of our interest. Constraints (5) guarantee that
if vehicle g 2 V uses arc (i, j) (i.e., xgij ¼ 1), then its depart-

ure time from node j is at least agj units of time after its

arrival time (i.e., sgi þ cgij), which enforces the minimum

waiting time. Similarly, Constraints (6) prevent vehicle g
from waiting longer than bgj at node j, enforcing the max-

imum waiting time conditions. Due of the big-M parame-
ters, these constraints are only active when g uses arc (i, j),
and are redundant otherwise. We strengthen the formulation
by modifying the big-M values as our solution algorithm
progresses and more information on the problem’s optimal
solution becomes available. This is discussed in Section 4.2.

Constraints (7) and (8) impose the arc–arc conflict con-
straints. If vehicles g and h use arcs (i, j) and (k, l), respect-
ively (e.g., xgij ¼ xhkl ¼ 1), and there is an arc–arc conflict

between such arcs, then the binary variable f ghijkl forces the

departure times to satisfy either (7) or (8). If xgij ¼ 0 or

xhkl ¼ 0, or both, then the corresponding arc–arc constraints
are relaxed. Constraints (9) and (10) impose the arc–node

conflict constraints. In this case, the binary variable eghijl
forces the departure times to satisfy exactly one constraint
between (9) and (10), when g is moving along arc (i, j) and
h is waiting at l, and ðði, jÞ, lÞ 2 W: Constraints (11)–(14)
strengthen the formulation by forcing the e- and f-variables
to be zero when the network elements involved in the con-
flict are not used by vehicles g and h, as in this case the cor-
responding Constraints (7)–(10) will be already relaxed.
When multiple identical vehicles travel between the same
origin and destination, any permutation of a feasible routing
and scheduling plan among vehicles is also feasible.
Constraints (15) break such symmetry and reduce the
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feasible space by imposing a nondecreasing order on the
vehicles’ departure times, which will not affect the optimal
solution. In this case, imposing no more than jVj � 1 con-
straints suffices to eliminate the symmetries.

In the absence of conflict, the optimal path for any
vehicle is the shortest path to the destination with arc costs
given by the sum of travel and minimum waiting times.
However, conflict may force a vehicle to deviate from its
shortest path or to wait longer than required at one or more
nodes, increasing the total travel time. For this reason, our
objective function seeks a fair route planning and scheduling
that minimizes the maximum deviation from each vehicle’s
shortest-path time. Constraints (16) and the objective func-
tion (3) model this situation. Constraints (17)–(19) enforce
the nature of the decision variables.

Regarding RASTC’s computational complexity, related static
problems such as finding the maximum number of geographic-
ally disjoint paths can be solved in polynomial time (Neumayer
et al., 2009; Kobayashi, and Otsuki 2014; Neumayer et al., 2015:
Otsuki et al., 2016). However, RASTC is NP-hard due to its
dynamic nature (see proof in Appendix 1).

4. Network decomposition approach for RASTC

In this section, we develop a network decomposition scheme
to expand the limits of our exact model. This is motivated
by the prohibitively large number of decision variables and
constraints in formulation (3)–(20), which makes RASTC
unsolvable in reasonable time for medium- and large-scale
instances using commercial solvers. Our approach is based
on two observations:

1. Not all vehicles use all the network components, which
means that solving RASTC on a sub-network may pro-
duce an optimal solution for the problem on the com-
plete network.

2. Conflict may not occur on every pair of network com-
ponents in X or W, which means that enforcing a sub-
set of conflict constraints may be enough to produce a
conflict-free optimal solution for the complete problem.

4.1. Notation and additional definitions

We use the notation RASTC(G,K,C,!) to describe the
problem in (3)–(20) with parameters given by G, K, C, and
!, where we assume that other parameters (e.g., V) will
not change. We denote the global optimal value of
RASTC(G,K,C,!) by z�, and use zð
Þ to denote the optimal
value of RASTC with parameters given by (
). For instance

zð~G, ~K, ~C, ~!Þ denotes the optimal solution to RASTC

(~G, ~K, ~C, ~!). We use the notation ẑ ið
Þ to represent the
optimal value of RASTC if the parameters in ð
Þ produce an
upper bound on z�, and �z ið
Þ if they produce a lower
bound at iteration i.

We introduce the following network structures that are
useful in our analysis. A reduced network, Gr ¼ ðNr,ArÞ, is
a subgraph of G (i.e., Nr � N and Ar � A) that contains at

least one path from sg to pg, for all g 2 V: The set of bound-
ary nodes B of Gr is the set of nodes in Nr with an incoming
or outgoing arc in A n Ar: That is, B ¼ fi 2 Nrjði, jÞ 2
A n Ar�ðj, iÞ 2 A n Arg � Nr: The network Gr induces a
complement network Gc ¼ ððN n NrÞ [ B,A n ArÞ, which
contains all elements in G but not in Gr, and also includes
the boundary nodes. We use Gc to search for paths between
each pair of boundary nodes i, j 2 B, i 6¼ j that can be used
to augment Gr. We denote the elements (nodes and arcs) in
the kth shortest-path of vehicle g from i to j in Gc as
Pk

ijgðGcÞ, which allows us define an augmented network

Ga ¼ [
i, j2B, i6¼j

g2V, k¼1, :::,K
Pk

ijgðGcÞ
� �

[ Gr,

where Gr � GaF � G, and K is the maximum number of
paths allowed. igure 4(a) shows an initial network G ¼
ðN,AÞ whereas Figure 4(b) shows a possible reduced net-
work Gr with boundary nodes in gray. Figure 4(c) shows the
corresponding complement network and Figure 4(d) shows
an augmented network, which in this case contains only one
path (if any exist) for each pair of boundary nodes in Gc.

We enforce the following rules when constructing Ga.
For each pair of nodes i, j 2 B, i 6¼ j and each vehicle g, we
augment Gr with P1

ijgðGcÞ, which contains the elements of a

shortest-path between i and j in Gc with arc costs given by
the sum of travel and minimum waiting times for each
vehicle. If such a path consists of arc (i, j) only, then we
also add P2

ijgðGcÞ, the second shortest-path between i and j

in Gc, to Gr in order to allow vehicles to wait at a non-
boundary node in Gc, which may be optimal. Note that if
P2

ijgðGcÞ 6¼ ;, then it must contain a non-boundary node in

Gc that can be used for waiting, which is not the case if the
path has only one arc. We illustrate the importance of this
construction in the following example, which is also relevant
when discussing the correctness of our decomposition algo-
rithm in Section 4.2.

Example 1. This example illustrates an instance of RASTC
in which waiting is optimal and where the travel time for
some vehicles increases with respect to their shortest path
due to the geographic conflict constraint. Consider the net-
work in Figure 5(a), with V ¼ f1, 2, 3g, and origin-destin-
ation pairs ðs1, t1Þ ¼ ð1, 5Þ, ðs2, t2Þ ¼ ð5, 1Þ, and
ðs3, t3Þ ¼ ð9, 6Þ: We assume that vehicles are not allowed to
wait at nodes 2 and 6, and that the distance to enforce
arc–arc and arc–node conflicts is d. Moreover, we assume
unit speeds such that the travel times displayed on each arc
are equal to the distance between nodes. The optimal solu-
tion to RASTC on G is that all vehicles depart their origins
at time 0, using paths 1! 2! 6! 8! 7! 4! 5, 5!
4! 3! 2! 1, and 9! 2! 6, for Vehicles 1, 2, and 3,
respectively. At time 3d, Vehicle 2 is at node 4 and Vehicle
1 is at node 8, which means that Vehicle 1 must wait d=2
units of time until Vehicle 2 arrives at node 3. In this case,
the optimal value of RASTC is z� ¼ 8d=6d ¼ 4=3 (given by
Vehicle 1’s deviation from its shortest path). Figure 5(b)
shows a possible reduced network, Gr. In an optimal solu-
tion to RASTC on Gr, Vehicle 1 has to wait 6d units of time
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at node 1 until Vehicle 2 finishes its route, before traveling
to node 5 using path 1! 2! 3! 4! 5: As a result,
zðGr,K,C,!Þ ¼ 12d=6d ¼ 2: Observe that Vehicle 1 cannot
use nodes 2, 3, 4, 6 or 7 while Vehicle 2 is moving, as this
will create a conflict. To create Ga, the shortest path between
boundary nodes for any vehicle is arc (6, 7). If only this arc
is added to Gr and RASTC is solved again on Ga, then the
optimal solution will not change, as arc (6, 7) alone does
not help Vehicle 1 in avoiding Vehicle 2. However, if we
add the second shortest path to Gr, which is given by 6!
8! 7, then the optimal solution on Ga is optimal to
RASTC on G.

By construction, Gr is augmented with elements from Gc,
thus the new elements added to Ga contain at least one
non-boundary node, either from P1

ijgðGcÞ or P2
ijgðGcÞ, for

each vehicle g. The distance between these new nodes and
some elements already in Gr may be less than d, creating a
conflict. However, if both the maximum waiting time and
the geographic conflict constraints are relaxed for these new
nodes only, then they can be used for waiting. Using these
elements, we define the lower-bound problem RASTC-R as
a relaxation of RASTC in which Constraints (6)–(14) are
not enforced for elements in Ga n Gr (e.g., white nodes and
dotted arcs in Figure 4(d)). That is, there is no geographical
conflict or maximum waiting time constraints when vehicles
use those elements in Ga n Gr: We use zRðG,K,C,!Þ to
denote the optimal solution to RASTC-R(G,K,C,!) and
vector ðx, sÞ to describe a feasible solution to RASTC or
RASTC-R, where x and s contain the values of the x- and
s-variables, respectively. We use ðx̂, ŝÞ and ð�x, �sÞ to denote
optimal solutions to an upper and a lower bound problem,
respectively.

The following propositions state some useful bounds
for our decomposition algorithm, where we note that
z� ¼ zðG,K,C,!Þ:
Proposition 3. The following conditions are satisfied for any
network G, any reduced network Gr, and any conflict sets
�K � K, �C � C, and �! � !:

1. zðGr,K,C,!Þ � zðG,K,C,!Þ
2. zðG,K,C,!Þ � zðG, �K, �C,!Þ

Proposition 4. For a given network G and a reduced
network Gr such that the optimal solution to RASTC
ðGr, �K, �C,!Þ is feasible to RASTC(Gr,K,C,!), where
�K � K, �C � C, and �!�!, then zðGr, �K,�C, �!Þ�zðG,K,C,!Þ:

Proposition 5. For a given network G, a reduced network
Gr � G, and conflict sets �K � K, �C � C, and �! � !,
z ðG,K,C,!Þ � zRðGa, �K, �C, �!Þ:

4.2. Decomposition algorithm

Algorithm 1 describes our network decomposition approach.
Line 1 initializes conflict sets �K, �C, and �! to empty, as they
will be dynamically populated when encountering conflicts.
Line 1 also initializes the upper and lower bound values,
UB0 and LB0, and a counter i to track the number of itera-
tions. Line 2 constructs a feasible reduced network that
guarantees that at least T paths exists from sg to pg for every
vehicle g 2 V: This step is performed using Dijkstra’s algo-
rithm for T¼ 1 (Dijkstra, 1959) or Yen’s k shortest-path
algorithm for T> 1 (Yen, 1971). The loop in lines 3–17 is
executed until convergence and consists of upper bound
(Lines 5 and 6) and lower bound (Lines 7 and 8) routines.
Using Proposition 4, Line 5 obtains an upper bound on z�

by solving RASTC on the reduced network using Algorithm
2 (see Section 4.2.1), where conflict constraints are added
dynamically in a cutting-plane fashion. This strategy drastic-
ally reduces the number of x-, e-, and f-variables, as well as
the number of conflict constraints. Line 5 also produces a
feasible solution for RASTC(G,K,C,!), whose objective
value and solution are stored in an incumbent in Line 6. In
Line 7, our algorithm constructs the augmented network Ga

induced by Gr. Line 8 produces a lower bound on z� by fol-
lowing the rules from Section 4.1 to construct Ga. Section
4.2.2 provides a polynomial time algorithm to construct Ga.
Using Proposition 5, Line 8 constructs a lower bound on z�

by solving problem RASTC-R(Ga, �K, �C, �!), whose optimal
value is saved in Line 9.

Lines 10 and 11 verify a first stopping condition for our
algorithm. If ð�xi, �siÞ is feasible to RASTC (i.e., no conflict or
maximum waiting time violations in Ga n Gr), then such a

Figure 4. Network structures used to solve RASTC.
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solution is optimal. Lines 13 and 14 verify an additional
stopping condition that occurs when the optimal solution to
RASTC-R(Ga, �K, �C, �!) only uses elements in Gr or when
this solution uses elements in Ga n Gr, but has the same
objective function value equal to the best know upper
bound. In such cases, upper and lower bound values are the
same, and the incumbent ð�x, �sÞ is optimal. If none of these
conditions is satisfied, then Gr is augmented in Line 15, and
the algorithm goes to Line 3. Although in Line 15 we aug-
ment Gr, we only allow new elements to be used by vehicles
needing them, according to ð�x i, �siÞ: This reduces the number
of binary variables in the problems solved in Lines 5 and 8.
Algorithm 1 can stop at an iteration i in which UBi > LBi

as a result of Lines 10 and 11.

At each iteration i> 1 of Algorithm 1, we tighten the
MIP used in Line 5 by updating the value of the big-M
parameters. We use Mg ¼ UBi�1z

g
SP and Mgh ¼

UBi�1maxfzgSP, zhSPg for vehicles g, h 2 V: We initialize the
big-M values using the same expressions, but having a spe-
cific UB-parameter for vehicle g 2 V given byP

h2V zhSP=z
g
SP, and for each pair of vehicles g, h 2 V given

by maxfP‘2V z‘SP= zgSP,
P

‘2V z‘SP=z
h
SPg: These values capture

the worst-case situation in which vehicles move one at a
time. Using this strategy, the MIP becomes stronger as
Algorithm 1 progresses because the UB-values are nonin-
creasing. Before proving the finite termination and cor-
rectness of Algorithm 1, we provide more details on the
upper bound (Lines 5 and 6) and lower bound (Lines 7
and 8) routines.

Algorithm 1. Network Decomposition Algorithm for RASTC
1: Initialize �K ¼ ;, �C ¼ ;, �! ¼ ;,UB0 ¼ 1, LB0 ¼ 0, and

set counter i¼ 0
2: Initialize Gr with a set of T paths from sg to pg in G for

each g 2 V
3: while UBi > LBi do
4: Set i ¼ iþ 1
5: Solve RASTC(Gr, �K, �C, �!) to obtain an optimal solution

ðx̂ i, ŝiÞ, optimal value ẑ iðGr, �K, �C, �!Þ, and updated sets
�K, �C, and �! (see Section 4.2.1)

6: Set UBi ¼ ẑ iðGr, �K, �C, �!Þ and update the incumbent
solution ð�x, �sÞ  ðx̂i, ŝiÞ and objective �z ¼ UBi

7: Calculate B and construct Ga using Gr (see Section 4.2.2)
8: Solve RASTC-R(Ga, �K, �C, �!) to obtain an optimal solu-

tion ð�xi, �siÞ and optimal value �z iðGa, �K, �C, �!Þ
9: Set LBi ¼ �z iðGa, �K, �C, �!Þ
10: if ð�x i, �s iÞ is feasible for RASTC then
11: Incumbent ð�x, �sÞ  ð�x i, �siÞ is optimal with objective

�z ¼ LBi: Go to Step 15
12: if UBi ¼ LBi then
13: Incumbent ð�x, �sÞ is optimal with objective �z ¼ UBi:

Go to Step 15
14: else Augment Gr with the elements used in ð�x i, �siÞ that

are not in Gr

15: Return ð�x, �sÞ and �z

4.2.1. Upper bound
We use Algorithm 2 to solve RASTC(Gr, �K, �C, �!) in Line 5
of Algorithm 1. After initializing i, Line 2 solves RASTC
over Gr using a subset of conflicts. Line 3 stores an optimal
solution and its objective value in an incumbent. The loop
in Lines 4–9 iterates until the incumbent solution has no

conflict violations. Line 6 identifies such violations using ‘̂-,

û-, �‘-, and �u-parameters. This can be done in OðjNj2jVj2Þ
steps by comparing all arcs in the paths of every pair of
vehicles, where jNj bounds the number of arcs in any path.
Line 7 solves RASTC using the updated conflicts sets and
Line 8 updates the incumbent with the resulting optimal
objective value and solution. Line 10 returns an optimal
solution to RASTC(Gr,K,C,!), its objective value, and the
updated conflict sets. Algorithm 2 finishes in a finite num-
ber of iterations, due to the finite size of the conflict sets.
The solution obtained upon termination is feasible to
RASTC(Gr,K,C,!) and also optimal given Proposition 4.
This means that zðGr,K,C,!Þ ¼ ẑðGr, �K, �C, �!Þ:

4.2.2. Lower bound
We revisit the importance of the rules to construct Ga. In
Figure 5(b), the shortest path between boundary nodes is
arc (6, 7). If only this arc is added to Gr, then Algorithm 1
erroneously stops with a suboptimal solution, as the solution
to RASTC-R in Line 8 would be the same as the solution to
RASTC(Gr, �K, �C, �!). In this case, zRðGa, �K, �C, �!Þ is not a
lower bound on z�: If Ga follows the rules from Section 4.1,
then the optimal solution to RASTC-R(Ga, �K, �C, �!) is opti-
mal to RASTC-R(G,K,C,!).

Algorithm 2. Upper Bound Algorithm for RASTC(Gr, �K, �C, �!)
1: Set counter i¼ 0
2: Solve RASTC(Gr, �K, �C, �!) to obtain an optimal solution
ðxi, siÞ and optimal value ziðGr, �K, �C, �!Þ

3: Set ẑðGr , �K, �C, �!Þ ¼ ziðGr, �K, �C, �!Þ and update the
incumbent solution ðx̂, ŝÞ  ðxi, siÞ

4: while ðxi, siÞ induces geographic conflict do
5: Set i ¼ iþ 1
6: Identify all the violated arc–arc and node-arc conflicts

in ðxi, siÞ and update �K, �C, and �!
7: Solve RASTC(Gr, �K, �C, �!) to obtain an optimal solution

ðxi, siÞ and optimal value ziðGr, �K, �C, �!Þ
8: Set ẑðGr, �K, �C, �!Þ ¼ ziðGr, �K, �C, �!Þ and update the

incumbent solution ðx̂, ŝÞ  ðxi, siÞ
9: Return ðx̂, ŝÞ, ẑðGr, �K, �C, �!Þ, �K, �C, and �!

Using Gr as input, in Line 7 of Algorithm 1 we construct
the set of boundary nodes in OðjAcjÞ steps and construct Ga

by calculating the K (�2) shortest-path between every pair
of boundary nodes for each vehicle. This can be done in

OðjVjjNrj2jNcjðjNcj log jNcj þ jAcjÞÞ steps using Yen’s algo-
rithm (Yen, 1971) and Fibonacci heaps (Fredman and
Tarjan, 1987). In practice, we calculate paths between
boundary nodes only for those vehicles that have used such
nodes. Proposition 6 describes a filtering process that avoids
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adding unnecessary paths to Ga, reducing the number of deci-
sion variables in the problem solved in Line 8 of Algorithm 1.
We use the function cðPÞ to denote the total travel and min-
imum wait time along path P: Proposition 7 proves the finite
termination and correctness of Algorithm 1.

Proposition 6. Consider that at any given iteration, Algorithm 1
has constructed a reduced network Gr and its corresponding com-
plement network Gc, and that the current upper bound is UB.
Then, a shortest-path PijgðGcÞ, with i,j2B,i 6¼ j, and g2V, will not
improve UB if for every g2V,cðPsg ,i,gðGÞÞþcðPijgðGcÞÞþ
cðPj,pg ,g ðGÞÞ�zgSPUB:

Proposition 7. Algorithm 1 terminates in a finite number of
iterations with an optimal solution to RASTC(G,K,C,!).

5. Computational results

We illustrate the features of RASTC and examine the per-
formance of our network decomposition approach on real
and randomly generated networks. To perform our compu-
tations, we use Cþþ with CPLEX 12.7 on a desktop com-
puter with an Intel Core i7 2.40GHz processor and 8.0GB
RAM. We set a solution time limit of 2 hours in all the
experiments. With no enhancements, CPLEX cannot solve
to optimality any of the proposed instances and sometimes
cannot even find an integer feasible solution, while the opti-
mality gaps are very large for those instances where an
incumbent is available within the time limit.

5.1. Berlin’s road network instances

We use a directed road network from the Friedrichshain dis-
trict in east Berlin, Germany (Transportation Networks for
Research Core Team, 2018), with 224 nodes and 523 arcs.
The maximum Euclidean distance between any two nodes is
2.25 miles, which we denote by dmax. We allow vehicles to
wait at nodes an unlimited amount of time and assume a
speed of 35mph for every vehicle. Moreover, we define par-
ameter �d to limit the maximum Euclidean distance that a
vehicle can travel between origin and destination. Using this

network, Section 5.1.1 illustrates an optimal routing and
scheduling plan for jVj ¼ 15: Section 5.1.2 describes a pro-
cedure to create random instances out of this network and
Section 5.1.3 summarizes the performance of our approach
on such instances.

5.1.1. Illustrative example
In this section we describe in detail the features of a
RASTC’s optimal solution with jVj ¼ 15, �d ¼ 2dmax=3, and
d¼ 1050 ft. Figure 6(a) shows the network and the randomly
generated origins (labeled as �) and destinations (labeled as
�). The label next to the triangles is the vehicle index.

We depict the vehicles’ position at various times t, where
t¼ 0 is the time at which the first vehicle starts moving. We
illustrate the conflict by drawing a circle of diameter equal
to d around each vehicle such that any conflict results in
overlapping circles. Figure 6(b) shows that 10 vehicles start
traveling at t¼ 0, indicating that some have to wait into its
journey avoid conflict. Figure 6(c) shows that Vehicle #10
only starts traveling at t¼ 6, when Vehicle #8 is far enough
to avoid conflict. As expected, the minimum distance
requirement leads to a deterioration in the travel time for
some vehicles, due to some having to wait at intermediate
nodes or need to deviate from a shortest path to avoid con-
flict. Algorithm 1 solves this instance in 55 seconds, whereas
the MIP formulation could not solve it within 2 hours.

Figure 7 illustrates other features of RASTC. The label
next to a node is the node index. Figures 7(a)–7(c) show
that waiting at a node is optimal for some vehicles. Vehicle
#3 departs from Node 93 in Figure 7(a) and due to the road
(directed) network structure, it has to make a U-turn visit-
ing Nodes 125, 92, and 59 on the way to its destination.
From t¼ 50 to t¼ 95, Vehicle #2 waits at Node 121 to avoid
conflict with Vehicle #3 and the approaching Vehicle #9.
Figures 7(d)–7(f) illustrate the case where Vehicle #2 is not
allowed to wait at Node 121 (i.e., b2121 ¼ 0). Vehicle #2 visits
Node 121 at t¼ 50 and continues to its destination while
Vehicle #3 waits at Node 93. Vehicle #3 starts moving at
t¼ 95 when Vehicle #9 is far enough. Figures 7(g)–7(i) illus-
trate the case of heterogeneous vehicle speeds. We increase
Vehicle #3’s speed on arc (93, 125) to twice the speed in

Figure 5. Construction of Ga.
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other arcs. As a result, Vehicle #3 departs Node 93 at some
time t< 50 and by t¼ 50 is already at Node 59, which
allows Vehicles #9 and #2 to freely travel without waiting.

5.1.2. Random instance generation
We create instances with 5, 10, 15 and 20 vehicles and with
randomly generated origin and destination nodes. To induce
various trip lengths, we use �d 2 fdmax=3, 2dmax=3, dmaxg to
represent short (S), medium (M), and long (L) trips, respect-
ively. For each combination of jVj and �d, we generate five
random instances (replications). Moreover, for each trip
length we solve problems with d 2 f105, 210, 420g (in feet),
representing short (S), medium (M), and large (L) distance
requirements for the geographic conflict.

5.1.3. Results
In this section, we compare the performance of our decom-
position algorithm and the MIP in (3)–(20). The first three
columns of Table 1 describe the instance solved, including
the number of vehicles (jVj) and the different levels of �d
and d. We vary �d to control the instance difficulty.
Increasing �d leads to longer trips, making it more likely for
vehicles to encounter conflict. Longer trips also result in
larger Gr and Ga networks, increasing the difficulty of the
subproblems. Likewise, increasing d induces more conflicts,
which will likely increase the number of iterations needed
by our approach.

In Table 1, r is the percentage of instances (out of five)
solved to optimality within a 2 hour time limit using the
proposed decomposition approach. Additionally, tmin, tavg,
and tmax are the minimum, average, and maximum running
times (in seconds) across solved instances for each combin-
ation of jVj, �d and d. For those instances that timed out,
gmin, gavg, and gmax report the minimum, average, and max-
imum optimality gap calculated as 100ðUBk � LBkÞ=UBk,
where k is the last iteration before timing out. The optimal-
ity gap when r¼ 100 is zero, which we report as “-”. We do
not report the solution time when r¼ 0. As expected, the
solution time increases as jVj, �d, and d increase.

Our approach can solve all instances with �d of type S to
optimality, regardless of the number of vehicles and value of

d. Table 1 also reports the time to obtain and the quality of
the first optimality gap. These values are given by t1avg and

g1avg ¼ 100ðUB1 � 1Þ=UB1, where t1avg is the average time

required to solve the first upper bound problem. Note that
the objective function value in RASTC is always at least
equal to one. We also report the average number of itera-
tions to solve an instance to optimality or before time-out,
which is given by iavg. On average, our decomposition algo-
rithm requires few iterations and provides an initial feasible
solution (UB) and initial gap in relatively short time.

We calculate the proportion of x-variables used in the
decomposition strategy with respect to the MIP. We
report the average value of this metric across vehicles and
replications (times 100) as a proxy of the average number
of network components used by each vehicle. We report
these values for the upper and lower bound problems in

the last iteration, which we denote by jxjuavg and jxj‘avg ,
respectively. We also report the proportion of s-variables,

which we denote by jsjuavg and jsj‘avg : The values cavg and

vavg are the proportion of constraints and variables in the
last lower bound subproblem (the largest problem solved),
relative to to the MIP. These metrics show that our
approach significantly reduces the number of variables
and constraints used. For example, instances 20-S-L
require on average only 0.2% of the constraints, 0.3% of
the variables, no more than 3.4% of the arc variables, and
no more than 6.21% of the continuous variables required
in the MIP.

5.2. Random network instances

Section 5.1 is focused on analyzing the performance of our
approach for several instances out of the same road network.
In this section, we study the performance of our approach
on randomly generated networks. Section 5.2.1 describes a
procedure to such instances and Section 5.2.2 summarizes
the performance metrics.

5.2.1. Random instance generation
We generate layered networks in order to control the dis-
tance between nodes and arcs, which directly affects the

Figure 6. Origin-Destination pairs and waiting at origin nodes.
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existence of conflict. These layered networks also provide
many alternative paths for each vehicle, testing the limits of
our decomposition approach, as many iterations may be
needed to find useful network components. We create lay-
ered networks having n layers and n nodes per layer, result-
ing in jNj ¼ n� n nodes. Nodes are arranged in a square of
dimension 200� 200 such that layers are evenly separated.
The position of each node within a layer is chosen ran-
domly. The ith node (from top to bottom) of the qth layer
(from left to right) is connected to the ith node of layers
qþ 1 and q – 1 and to nodes i – 1 and iþ 1 in the same
layer, whenever these nodes exist. The resulting arrangement
of nodes and arcs creates multiple conflicts when vehicles
move. Figure 8 shows random layered networks with jNj ¼

6� 6, jNj ¼ 10� 10, and jNj ¼ 14� 14 nodes. All vehicles
are assumed to have a unit speed.

We create networks with sizes ranging from 4� 4 to
14� 14 nodes. For each size, we create instances with 10,
15, 20, and 25 vehicles with randomly generated origin and
destination nodes for each vehicle and with d 2 f2, 8g, rep-
resenting short (S) and large (L) distance requirements. We
impose no restriction on the trip’s length of any vehicle (i.e.,
�d ¼ 1) and assume that there are no minimum or max-
imum waiting times on any node. For each combination of
jNj, jVj, and d, we generate three random replications.
Because of the number of alternative paths and the number
of arcs, we expect these layered networks to be more diffi-
cult than those from Berlin’s road network.

Figure 7. Waiting at intermediate nodes and heterogeneous vehicle speeds.
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5.2.2. Results
Table 2 shows the performance of our method on random
layered networks. The first three columns characterize the
instance, including jNj, jAj, jVj, and d. We compare our
Decomposition Approach (DA) with the MIP solved with
CPLEX on the complete network but adding the conflict
constraints as encountered via cutting planes. That is, using
Algorithm 2 with call RASTC(G, �K ¼ ;, �C ¼ ;, �! ¼ ;). The
columns tDA and tMIP are the average solution times (in sec-
onds) for our approach and the MIP, respectively, for
instances solved within the time limit, whose number is
shown in parenthesis. The column gDA is the average opti-
mality gap for the decomposition approach calculated as in
Table 1. Our decomposition approach solves instances of up
to 10 vehicles on 14� 14 networks, whereas the largest
instance solved with the MIP via cutting planes has 10
vehicles on the easiest setup of a 6� 6 network. These
results show that the proposed decomposition approach out-
performs the MIP. The value of z� is the average optimal
objective function value for instances solved to optimality. If
z� > 1, then the geographic conflict requires some vehicles
to wait at intermediate nodes or to deviate from their short-
est path.

As expected, the performance of our decomposition algo-
rithm depends on multiple factors, including jNj, jVj, �d, and
d. For instance, in Berlin’s Friedrichshain network (224
nodes and 523 arcs), we optimally solve some of the 20-
vehicle instances with large �d and medium d, whereas in the
layered networks, we solve instances of 25 vehicles, 100
nodes, and 360 arcs but a small d. Our approach can handle
more vehicles for some parameter combinations (e.g., small
d or �d) or under other problem setups such as imposing
conflict constraints only in some parts of the network,
which is allowed in our modeling.

6. Final remarks and future work

We present an approach to impose geographical conflict
conditions in a route assignment and scheduling problem.
Using a polynomial-time pre-processing step, we identify
regions in the network where geographic conflict may occur
and provide conditions on the departure times from each

node that avoid conflict. By using a big-M approach to
model disjunctive constraints, we reformulate this problem
into a mixed-integer program that is very challenging to
solve. To improve the solution time, we introduce a decom-
position algorithm that takes advantage of the problem’s
network structure. Instead of solving the problem on the
initial (complete) network, we limit our search to the most
important sub-networks for each vehicle, which we dynam-
ically construct as the optimization problem is solved.
Solving the problem on a reduced network provides an
upper bound on the optimal objective function value, which
is helpful to eliminate network components that are not
used in any optimal solution. We obtain a lower bound by
allowing vehicles to use elements outside the reduced net-
work, ignoring conflict or maximum waiting times. This
strategy, combined with an iterative procedure to prevent
conflicts as they are encountered, helps us maintain a small-
sized problem which translates into favorable solution times.
Our algorithm is able to solve instances that the MIP formu-
lation cannot solve.

Our approach takes advantage of the sparsity of an opti-
mal solution to construct a reduced network that is suffi-
cient to identify an optimal solution for the complete
network. Our approach can be generalized to other prob-
lems, where the solution is sparse and possibly without a
network structure. The proposed decomposition approach
follows the same principle of other classic methods: generate
useful problem elements as needed while keeping a “master
problem” small. In RASTC, we generate path segments aim-
ing to improve the incumbent solution in the reduced net-
work, guaranteeing the existence of a feasible solution at any
iteration. Our method can be initialized using any set of
candidate paths, for instance using the low-risk routes from
Carotenuto et al. (2007). Moreover, our approach preserves
the structure of RASTC at every iteration, which is advanta-
geous because there is always a connection between integer
and continuous variables, a known problem in other
approaches such as Benders decomposition. Our proposed
decomposition approach does not rely on duality theory,
avoiding the challenges of potentially weak linear relaxa-
tions. However, our approach can be coupled with other
methods to solve large problems (e.g., column generation,

Figure 8. Random layered networks of different sizes.
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Benders decomposition, Lagrangian relaxation), which can
be used to accelerate the solution of the problems on the
reduced or augmented networks.

Although in this article we focus on two-dimensional
problems where conflict is prevented everywhere in the net-
work, the vehicle coordination analysis also applies to three-
dimensional problems (e.g., aerial or underwater vehicles)
and other problems where conflict needs to be prevented
only in some areas. A future research path is to include a
variable speed or a discrete speed profile that vehicles can
choose when traversing an arc. Currently, it is possible to
approximate such a variable speed profile by adding nodes
along an arc where vehicles can wait. These mechanisms
help approximate any acceleration–deceleration decisions
along the route at the expense of additional decision varia-
bles and constraints. This is motivated by the observation
that geographical conflicts may be avoided not only through
route selection and scheduling but also by choosing an
appropriate speed at specific times. Additionally, our cen-
tralized approach can be used as a benchmark to determine
the quality of decentralized approaches that locally resolve
the geographical conflicts.
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