
 1

DeLTA 2.0: A deep learning pipeline for quantifying 1
single-cell spatial and temporal dynamics 2

 3
Owen M. O’Connor1,2, Razan N. Alnahhas1,2, Jean-Baptiste Lugagne1,2,*, Mary J. Dunlop1,2,* 4

 5
1 Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA 6
2 Biological Design Center, Boston University, Boston, Massachusetts, USA 7
* jlugagne@bu.edu (JBL); * mjdunlop@bu.edu (MJD) 8
 9
 10
Abstract 11
Improvements in microscopy software and hardware have dramatically increased the pace of 12
image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. 13
Although tools for segmenting and tracking bacteria within time-lapse images exist, most require 14
human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce 15
DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single 16
cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses 17
deep convolutional neural networks to extract single-cell information from time-lapse images, 18
requiring no human input after training. DeLTA 2.0 retains all the functionality of the original 19
version, which was optimized for bacteria growing in the mother machine microfluidic device, but 20
extends results to two-dimensional growth environments. Two-dimensional environments 21
represent an important class of data because they are more straightforward to implement 22
experimentally, they offer the potential for studies using co-cultures of cells, and they can be used 23
to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking 24
are significantly more challenging tasks in two-dimensions due to exponential increases in the 25
number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic 26
resistant and susceptible cells, and also track pole age and growth rate across generations. In 27
addition to the two-dimensional capabilities, we also introduce several major improvements to the 28
code that increase accessibility, including the ability to accept many standard microscopy file 29
formats as inputs and the introduction of a Google Colab notebook so users can try the software 30
without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 31
10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates 32
around 1%, making it a powerful tool for analyzing time-lapse microscopy data. 33
 34
Author Summary 35
Time-lapse microscopy can generate large image datasets which track single-cell properties like 36
gene expression or growth rate over time. Deep learning tools are very useful for analyzing these 37
data and can identify the location of cells and track their position. In this work, we introduce a new 38
version of our Deep Learning for Time-lapse Analysis (DeLTA) software, which includes the 39
ability to robustly segment and track bacteria that are growing in two dimensions, such as on 40
agarose pads or within microfluidic environments. This capability is essential for experiments 41
where spatial and positional effects are important, such as conditions with microbial co-cultures, 42
cell-to-cell interactions, or spatial patterning. The software also tracks pole age and can be used to 43
analyze replicative aging. These new features join other improvements, such as the ability to work 44
directly with many common microscopy file formats. DeLTA 2.0 can reliably track hundreds of 45
cells with low error rates, making it an ideal tool for high throughput analysis of microscopy data. 46

 2

 47
Introduction 48
The automation of hardware and software for microscopy has resulted in researchers’ ability to 49
generate massive datasets containing images of cells over time. For example, in a recent high 50
throughput experiment Bakshi et al. imaged 108 Escherichia coli over days by acquiring 705 field 51
of views every few minutes [1]. Additionally, recent studies have used closed-loop microscopy 52
and optogenetic platforms to control gene expression in single cells in real time [2–4]. These 53
improvements in microscopy have motivated the need for automated image analysis, as traditional 54
approaches that require manual error correction cannot keep pace with the size of these new 55
datasets or the rate at which they can be acquired. More generally, segmentation and tracking have 56
historically required intensive user input as well as custom image processing code or experimental 57
modifications such as the use of dedicated fluorophores [1,5–8]. These requirements limit 58
throughput and can introduce burdensome experimental constraints. 59
 60
To address this, researchers need tools that are rapid, accurate, and require minimal input from the 61
user. This combination of needs is well suited for deep learning-based approaches, and deep 62
convolutional neural networks have enabled fast and accurate analysis of images. Specifically, the 63
U-Net architecture has emerged as the state-of-the-art convolutional neural network for biomedical 64
applications [9]. U-Net uses a “U”-shaped network architecture with a contraction path, where 65
successive convolutional layers are applied to feature maps that are progressively down-sampled, 66
followed by a symmetric expansion path where the low-resolution but high-level encoding of the 67
input image is up-sampled back to the original resolution. In addition, skip-connections are used 68
to concatenate finer detail feature maps used in the contraction path with up-sampled feature maps 69
in the expansion path. Skip-connections allow the network to retain high-resolution information 70
needed to construct the mask at the end of the network. This approach has been widely successful 71
for segmentation of cells [10–14] and for tracking cells from frame-to-frame within time-lapse 72
images [11,13]. 73
 74
Here, we focus on analysis of bacterial time-lapse microscopy data in two-dimensional settings 75
such as agarose pads or within microfluidic chips. With rapid cell cycle times, small cell sizes, and 76
high throughput microfluidic devices, it is possible for researchers to generate large datasets 77
containing thousands of single cells over periods of hours or days. As a result, researchers can use 78
statistical analysis to study the subtle and complex effects of cell-to-cell heterogeneity, gene 79
expression dynamics, and cell-to-cell interactions in isogenic populations [1,6]. This has led to 80
fundamental discoveries related to antibiotic resistance [8,15], and has allowed for accurate 81
characterization of genetic parts and circuits [16]. Further, single-cell time-lapse analysis has 82
revealed that cell division in E. coli is asymmetrical, where daughter cells receiving the ‘old’ pole 83
grow more slowly than daughter cells receiving the ‘new’ pole [17]. However, these effects are 84
subtle, necessitating measurements of many division events to determine statistically significant 85
effects [18]. Until recently, such studies necessitated painstaking semi-manual analysis and 86
curation of microscopy data. Software based on traditional image analysis techniques such as 87
Schnitzcells [19], Oufti [20], and SuperSegger [21] all require significant user input and post-88
processing. A few recent studies have proposed deep learning models for bacterial cell 89
segmentation such as MiSiC [10], DeepCell [22], and Cheetah [14], and yeast cell segmentation 90
in Yeastnet [12] and Cell-DETR [23], however to our knowledge there is no integrated deep 91
learning segmentation and tracking pipeline for two-dimensional time-lapse analysis of bacteria. 92

 3

 93
In previous work, we developed the Deep Learning for Time-lapse Analysis (DeLTA) pipeline to 94
analyze single-cell growth and gene expression in microscopy images [11]. DeLTA uses two 95
instances of the U-Net model to segment and then track cells. This allows for rapid and robust 96
analysis of time-lapse movies. The original version of DeLTA focused on segmentation and 97
tracking of cells in the ‘mother machine’ microfluidic device [24] where bacteria are constrained 98
to narrow chambers where they grow in a single file line. This powerful design simplifies image 99
analysis and enables experiments that run for many hours or days. However, this constrained 100
geometry is not well suited for the study of two-dimensional effects such as diffusion of chemical 101
signals, proximity-based effects, or co-cultures with mixed populations of cells. Two-dimensional 102
configurations, ranging from microcolonies growing on agarose pads to microfluidic growth 103
chambers, can be used to measure spatial dynamics of cell-to-cell interactions. Examples include 104
quorum sensing [25] and the effect of efflux pumps on neighboring cells in the presence of 105
antibiotics [26]. Segmenting and tracking cells in two dimensions are more challenging than for 106
cells constrained within the mother machine. Segmentation becomes more difficult as 107
microcolonies grow because images can contain hundreds of cells, where any given cell may have 108
neighbors on all sides. The complexity associated with tracking also increases dramatically. In 109
contrast to mother machine data, where frame-to-frame assignments can be limited to the small 110
number of cells within the chamber (typically <10 cells), two-dimensional environments need to 111
consider hundreds of possible assignments. Further, cells can move in any direction and may move 112
large distances, for example if there is drift over the course of the movie. 113
 114
In this manuscript we introduce DeLTA 2.0, a new version of DeLTA that segments and tracks 115
cells in two dimensions. DeLTA 2.0 retains all the functionality of the original version and is fully 116
compatible with mother machine data. In order to make our approach adaptable to different use 117
cases, we minimized the number of pre- and post-processing steps so that most of the analysis is 118
performed by the trainable models. The new version is available open source and uses a fully 119
Python implementation. We have also introduced other improvements to the code to increase 120
accessibility, such as the ability to work with images of arbitrary size and to accept many common 121
microscopy file formats as inputs. We show that DeLTA 2.0 can segment and track co-cultures of 122
bacteria growing on agarose pads and within microfluidic chambers. In addition to fluorescence 123
and cell length, DeLTA 2.0 also records pole age. We use this to record replicative aging and 124
compare the growth rate across generations. DeLTA 2.0 performs well on crowded images and 125
requires no human intervention. The code, installation instructions, and datasets are available open 126
source on Gitlab. We also provide a Google Colab notebook for users to rapidly test DeLTA 2.0 127
on their own data. 128
 129
Results 130
DeLTA 2.0 can track cell length, growth rate, fluorescence, and progeny over time for cells 131
growing in a two-dimensional microcolony. The algorithm takes microscopy images as inputs. It 132
then uses two U-Net convolutional neural network models, one for segmentation and one for 133
tracking, performs lineage reconstruction, and outputs single-cell data (Fig 1A). Segmentation 134
generates information about cell morphology and can be used to identify both normal and 135
filamented cells (Fig 1B-C). The tracking step reliably tracks cells across frames, recording 136
division events when they occur (Fig 1D). Lineage reconstruction determines how cells are 137
associated across generations and records features such as pole age (Fig 1E). The algorithm outputs 138

 4

single-cell resolution information for all cells within a field of view (Fig 1F). No human 139
intervention is required to specify any input parameters. This is in sharp contrast to other methods, 140
which typically require inputs, such as cell size or cell type [10,19–21,27]. 141
 142

 143
Fig 1. Segmentation and tracking of cells within a microcolony. (A) DeLTA pipeline consists of segmentation, 144
tracking, and lineage reconstruction. (B) Segmentation example with phase contrast image containing an E. coli 145
microcolony, which is input into a U-Net convolutional neural network to obtain segmentation results. (C) Histogram 146
of cell lengths. Inset shows a zoomed-out version with outliers included. (D) Cell tracking between frames. 147
Representative examples of cell tracking with and without division are shown with a phase contrast image of the 148
‘previous frame’ on the left, a phase contrast image of the ‘current frame’ in the middle, and a greyscale image of the 149
‘prediction’ on the right. The ‘current frame’ also shows the tracking prediction overlayed. The ‘prediction’ shows 150
the U-Net output with the ground truth overlayed (S1 Fig). (E) Lineage reconstruction keeps track of cell lineages and 151
records pole age. (F) Plot of cell lengths over time. Black line is a representative example of one cell’s length as it 152
grows and divides; all cells in the microcolony are shown in grey. 153
 154
DeLTA 2.0 can process datasets of various dimensions quickly and robustly. To evaluate its speed 155
and accuracy, we used a movie from the literature that had been segmented and tracked with 156
manual correction that DeLTA had not been trained on (Methods). It took 8 mins and 49 secs to 157
conduct complete analysis of this time-lapse movie containing 69 frames, where the final frame 158
contains 232 E. coli cells (S1 Movie). This analysis was conducted on a desktop computer with a 159

Microscopy
images

A

Single-cell data

B
C

D

F

2 ȝP2 ȝP

5 ȝP

Tracking: no division

Tracking: division event

��ȝP��ȝP

0 1 2 3 4
0

5

10

15

20

C
ou
nt
s

0 7 14

0 200 400 600
Time (mins)

0

2

4

6

C
el
l L
en
gt
h

Cell length (ȝm)

0 100 200 300 400 500 600
Time (mins)

0

1

2

3

4

5

6

7

8

C
el
l l
en
gt
h
(ȝ
m
)

Segmentation Tracking Lineage
reconstruction

E Old pole

New pole

 5

Nvidia Quadro P4000 graphics card. In addition to being fast, DeLTA also has a low error rate. 160
For the 3,286 cells segmented in the test set, there was a segmentation error rate of 0.01%. We 161
defined a correct segmentation prediction as any case where the cell annotation in the model 162
prediction had more than three quarters of its pixels overlapping with the ground truth data. This 163
allows subtle differences between the prediction and ground truth to be considered acceptable, 164
such as slight discrepancies in the exact location of the cell perimeter. In addition, if the model 165
made a prediction where it erroneously connected two cells together, we defined this as two errors. 166
Erroneously predicting a split cell was counted as one error. Because it can be difficult to assess 167
the exact frame at which a cell divides, we did not count predictions where the model determined 168
division events to be up to three frames later or earlier than in the ground truth as an error. Other 169
metrics for assessing segmentation errors also showed good agreement with our findings that error 170
rates are low (S2A Fig). The segmentation model tends to slightly under-segment due to emphasis 171
on getting the cell borders classified correctly (S2B Fig). To assess the tracking error rate, we 172
processed 6 movies of E. coli growing on agarose pads that the model had not been trained on. Out 173
of the 17,622 tracking events, we measured an average error rate of 1.02%. We defined a correct 174
prediction as a case where the cell assignment from one timepoint to the next matched the ground 175
truth. Cases where the model assigned two cells as the daughters of a cell from the previous frame 176
when there was in fact no division event, and cases where the model assigned no cell when the cell 177
was in fact still within the field of view, were counted as tracking errors. 178
 179
The DeLTA 2.0 algorithm has several improvements over the original version of DeLTA [11]. 180
The new code is a purely Python workflow; movies do not need to be pre- and post-processed in 181
Matlab. This transition allows the entire pipeline to exist in an open-source framework. We do 182
provide code that can be used to convert the output to a Matlab file for users that are more 183
comfortable working in this environment for post-processing data. In addition, in DeLTA 2.0 we 184
take advantage of the Bio-Formats toolbox for Python [28,29]. This allows users to work directly 185
with images in many common formats that are output via microscopy software, including nd2, czi, 186
ome-tiff files, and many more, without the need for any preformatting. We also made updates to 187
the code that increase its flexibility, while optimizing for performance. For example, DeLTA 2.0 188
can accept input images of various sizes. For large images (>512x512 pixels), DeLTA 2.0 will 189
automatically crop the image into smaller windows for segmentation and then stitch the outputs 190
back together. We note that large movies can cause memory issues, however the size limit at which 191
this occurs will depend upon the configuration of the system on which it is run. For example, in 192
our configuration the analysis of a time-lapse experiment with images of 1024x1024 pixels over 193
865 timepoints used 14GB of computer memory. 194
 195
Since the original DeLTA code was optimized for images from the mother machine, where cells 196
are constrained to one-dimensional chambers, tracking was relatively straightforward. In two 197
dimensions, tracking is a more complex task and the number of cells that need to be tracked 198
simultaneously increases dramatically. It can be challenging to identify which cells are associated 199
with which lineage. To improve tracking speed, we crop a 256x256 pixel area around the cell of 200
interest. This approach works because a single cell is expected to remain in the immediate vicinity 201
of where it was in the preceding frame, so it is reasonable to restrict the search for daughter cells 202
to the local area. These coordinates are then used to crop the three other inputs (previous phase 203
contrast image, current phase contrast image, and current segmentation). The dimensions of these 204
cropping windows can be changed in the configuration file. 205

 6

 206
To reduce overfitting, DeLTA 2.0 uses several new data augmentation operations while training. 207
In addition to operations such as random shifting, scaling, rotation, flipping, and illumination, 208
which were present in the original software, we added three new functions, two for segmentation 209
and one for tracking. To help deal with an occasional out of focus frame, we added a blurring 210
function that slides a Gaussian kernel over the image (Methods). In addition, electronic noise is 211
another issue when dealing with biological samples where the minimization of the total exposure 212
to excitation light decreases the signal-to-noise ratio of the camera’s sensor. To deal with this, we 213
added a function that adds Gaussian noise (Methods). To simulate exaggerated cell movement 214
during tracking, such as when an agarose pad dries out and causes the field of view to shift over 215
time, we wrote a new augmentation function that introduces image translations between different 216
timepoints (Methods). These operations help expand the training dataset and allow the model to 217
generalize to realistic conditions. 218
 219
Because drift of cells within images is a common concern for some applications, we further 220
characterized the algorithm’s performance under shifts of different sizes (S3 Fig). When the cell 221
density is low, DeLTA can reliably handle shifts of up to ~30 pixels per timepoint in our images, 222
which corresponds to ~4 µm. This problem is exacerbated in conditions where the frame is 223
crowded with cells. When the cell density is high, performance begins to degrade after shifts of 224
~15 pixels, or ~2 µm. Thus, optimizing experimental conditions to minimize drift is important for 225
high quality analysis. 226
 227
To showcase the utility of DeLTA 2.0, we performed several experiments where we grew E. coli 228
microcolonies on agarose pads and analyzed the output. First, we used DeLTA 2.0 to distinguish 229
differences in growth rate between antibiotic resistant and susceptible cells grown in the same field 230
of view. In this experiment, we mixed two strains of E. coli, one containing a tetracycline resistance 231
gene and a constitutively expressed red fluorescent protein (RFP) reporter, and the other without 232
the resistance gene and containing a green fluorescent protein (GFP) reporter. We grew cells in a 233
co-culture on an agarose pad containing an inhibitory concentration of tetracycline (0.5 µg/ml). 234
DeLTA 2.0 reliably segmented cells within the image (Fig 2A). The tetracycline resistance gene 235
allowed the RFP-expressing cells to grow well whereas the tetracycline sensitive GFP-expressing 236
cells grew very slowly (Fig 2B). The RFP and GFP fluorescence of individual cells can be plotted 237
over time and shows the two distinct strains (Fig 2C). By extracting mean fluorescence levels for 238
all cells within the time-lapse images, we found that fluorescence levels for the two populations 239
were well-separated and maintained over time, as would be expected for the constitutive reporters. 240
We also used DeLTA 2.0 to calculate the individual cell growth rates with respect to fluorescence. 241
We observed two distinct clusters, corresponding to RFP cells that grew normally and GFP cells 242
that grew slowly or did not grow (Fig 2D). These results highlight the ability to track cells with 243
different properties simultaneously within the same movie. 244
 245

 7

 246
Fig 2. Resistant and susceptible strains of E. coli on agarose pads containing an inhibitory concentration of 247
tetracycline. (A) Phase contrast images and associated fluorescence overlays. RFP expressing cells contain a 248
tetracycline resistance gene and GFP expressing cells do not. The magenta and green cell outlines in the fluorescence 249
overlay represent the resistant and susceptible cells, respectively. Region of interest boxes show the areas represented 250
in (B). (B) Representative examples of antibiotic resistant and susceptible cells tracked over time. (C) RFP and GFP 251
fluorescence tracked for individual cells over time. (D) GFP fluorescence versus RFP fluorescence for single cells 252
plotted against growth rate. Fluorescence values are the averages over all the frames for that cell. For growth rate 253
calculations, only cells that were present at t = 150 min were tracked, which is a time point mid-to-late in the movie. 254
The analysis omits those cells that enter the field of view after t = 150 min since the growth rates become noisier with 255
less data. Three resistant cell outliers with growth rates of ~1.4 1/hr are omitted from this view. 256
 257
DeLTA 2.0 is well suited for measuring growth and gene expression for many cells within an 258
image. Because of this, another potential application is the study of replicative aging within 259
bacterial microcolonies. Recently studies have shown that non-genetic differences may be passed 260
down to offspring, causing a modest but measurable change in growth rate [7,17,18,30,31]. This 261
can be tracked by recording pole age over time. Rod shaped bacteria have two poles, where one 262
end of the cell is referred to as the ‘old’ pole if it was passed down from the mother. The pole 263
formed after division is referred to as the ‘new’ pole (Fig 3A). 264
 265

t = 0 mins t = 200 mins

Phase

Fluorescence
 Overlay

Resistant

Susceptible

t = 0 mins 40 80 120 200

A

B

C

D

160

2 ȝP2 ȝP

��ȝP��ȝP

Resistant
Susceptible

G
FP

Fl
uo
re
sc
en
ce
 (a
.u
.)

R
FP

Fl
uo
re
sc
en
ce
 (a
.u
.)

5 ȝP5 ȝP

Time (mins)

2 ȝP2 ȝP

Resistant
Susceptible

0

1000

2000

0 25 50 75 100 125 150 175 200
0

5000

10000

GFP Fluorescence (a.u.)
RF
P F
luo
res
cen
ce
(a.u
.)

G
ro
w
th
 R
at
e
(1
/h
r)

 8

 266
Fig 3. Pole age and its impact on growth rate. (A) Schematic showing how poles are passed down during a division. 267
When a cell divides, the newly formed poles are defined as the ‘new’ poles (white dot) whereas the poles that were 268
passed down from the mother are defined as the ‘old’ poles (black dot). Scale bar, 2 µm. (B) Pole assignment 269
schematic. When the mother cell with known poles divides, the daughter cell that inherits the mother’s old pole is 270
denoted ‘O’ whereas the daughter that inherits the mother’s new pole is ‘N.’ For each generation, either an O or an 271
N is appended to the pole history. (C) Growth rate within each generation. The growth rate of an individual cell is 272
calculated for the period right after the mother’s division until right before the cell divides again. To reduce noise, 273
only cells present for at least three frames were included in the analysis. Daughters (n = 11,246 cells; two tailed 274
unpaired t-test; p-value *** ≤ 0.001), granddaughters (n = 10,726 cells; a one-way ANOVA with post hoc Tukey test 275
used for statistical analysis. Statistical significance: ‘OO’ and ‘NO’ versus ‘NN’ and ‘ON’; p-value ** ≤ 0.01), and 276
great granddaughters (n = 10,217 cells; a one-way ANOVA with post hoc Tukey test used for statistical analysis. 277
Statistical significance: ‘OOO’ and ‘NOO’ versus ‘ONN’,’NNN’,’NON’, and ‘OON’; p-value * ≤ 0.05). Error bars 278
show standard error of the mean. 279
 280
To date, many experiments studying pole age have been conducted in the mother machine 281
microfluidic device due to the ease of tracking cells [7,17,24]. However, a limitation of this 282
approach is that it is only possible to track cells for a small number of generations because older 283
generations are swept out of the imaging chamber while the mother cell’s old pole stays at the dead 284
end of the chamber. For this reason, the original DeLTA algorithm did not track pole age 285
information, and in a division event the algorithm simply assigned the cell closest to the dead end 286
of the chamber to be the mother and the other cell to be the daughter. However, on two-dimensional 287
surfaces cells can be aligned in any orientation, therefore DeLTA 2.0 assigns old and new poles 288
after division based on the position of the septum. To highlight the ability to track pole age over 289
time, we analyzed a movie of E. coli growing in unstressed conditions. At t = 0, we do not know 290
the history of the cells, so the poles are initially unassigned (Fig 3B). After division, the mother’s 291

A B

C

Old
Poles

New
Poles

t = 0 mins t = 20 mins

Unknown
poles

Pole age
identified

P
ha
se

S
eg
m
en
ta
tio
n

&
 p
ol
es

O

NN

OON

ONOO

N

OOO ONN ONO NNO NNN

NO

NOONONGreat
granddaugther

Cell with
unknown poles

Mother

Daughter

Granddaughter

** *

Daughter Granddaughter Great granddaugther

G
ro
w
th
 ra
te
 (1
/h
r)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O N OO NO NN ON OOO NOO ONO NNO ONN NNN NON OON

 9

poles that are passed down become the ‘old’ poles and the newly divided poles are the ‘new’ poles 292
of the daughters. This proceeds over subsequent generations. To keep track of this, we denote the 293
daughter that receives the old pole as ‘O’ and the new pole as ‘N’. When these daughter cells 294
divide, they form cells that are granddaughters of the original mother cell. We append an O or N 295
at the end of the pole sequence to record this. For example, the cell that inherits the original old 296
pole is denoted OO and its sibling is ON. This continues through the generations, such that great 297
granddaughters of the original mother have three letters in their pole sequence (e.g. OON). 298
 299
First, we compared the growth rate of the old and new pole daughters from time-lapse movies of 300
E. coli growing in unstressed conditions. Consistent with prior literature [17,18,30], we found that 301
old pole (O) daughters grew more slowly than the new pole (N) daughters (Fig 3C). Next, we used 302
the rich generational information provided by DeLTA 2.0 to test for differences in growth rate 303
between granddaughters and great granddaughters with different pole ages. We found that growth 304
rate differences were dependent on which pole the cell most recently received. For instance, OO 305
and NO had growth rates that were lower than the NN and ON (Fig 3C). Therefore, the old versus 306
new pole influence upon growth rate is dominated by effects that extend back only one generation. 307
This result was consistent with great granddaughters as well, where growth rates tended to be 308
slower in cells that most recently received an old pole (OOO, NOO, ONO, NNO) than in those 309
that received a new pole (ONN, NNN, NON, OON). These results demonstrate how pole age 310
information can be tracked with DeLTA 2.0, enabling studies on replicative aging. 311
 312
Finally, to test the generality of the algorithm we analyzed a time-lapse movie of >1,000 B. subtilis 313
cells growing in a microfluidic device. This movie was generated in a different laboratory than 314
any of the data that was included in the training set and no data from this movie were included in 315
training. Using the previously trained model with no modifications, we analyzed the new movie 316
and obtained excellent results (S2 Movie). The performance of DeLTA 2.0 on conditions it has 317
not been trained for demonstrates its adaptability. Cropping to remove chamber edges and training 318
to ignore device features such as support posts could further improve performance. This result 319
highlights the broad potential for impact of DeLTA 2.0 in image analysis of two-dimensional 320
bacterial cultures. 321
 322
Discussion 323
In this work, we developed a deep learning pipeline that can process time-lapse images of bacterial 324
microcolonies and output single-cell data. Utilizing the U-Net convolutional neural network 325
architecture, the model can rapidly segment and track cells frame-to-frame with a low error rate. 326
We applied this to successfully differentiate growth rates between sensitive and resistant strains of 327
E. coli growing on an agarose pad. This demonstrates DeLTA’s new ability to measure co-culture 328
dynamics, which are hard to capture in devices like the mother machine. DeLTA 2.0 retains all the 329
functionality of the original version of DeLTA and can now be used on mother machine data or 330
microcolonies of bacteria growing in two dimensions. 331
 332
The analysis pipeline is centered around the two trainable models for segmentation and tracking. 333
We avoided hard-coding ad hoc rules such as pre- and post-processing steps or lineage 334
reconstruction rules to the greatest extent possible. The current models work very well on standard 335
rod-shaped bacteria such as E. coli (S1 Movie) and B. subtilis (S2 Movie). This suggests that 336
analysis of cells with similar morphologies such as other Bacillus, Pseudomonas, and Salmonella 337

 10

species will be straightforward. DeLTA 2.0 may require further training for cases where the 338
appearance of the cells deviates from the data the current models were trained on. For example, 339
although the models can handle some elongated cells (Fig 1B-C), they are not currently optimized 340
for cells with highly filamented morphologies or cells undergoing stress. However, since we 341
avoided embedding rules in the code that are specific to our use case, we anticipate that DeLTA 342
can be adapted not only to new morphologies after re-training but also to different organisms. For 343
example, Fox et al. used DeLTA 1.0 to train a model to segment yeast cells with high accuracy 344
[2]. 345
 346
Although segmentation works efficiently and has a low error rate, the model sometimes makes 347
incorrect predictions about distinct cells being connected (S4 Fig). In particular, if movie frames 348
are acquired at a high frequency, for example every minute or less, the segmentation model can 349
fluctuate in its decision to split a cell undergoing division, which then complicates tracking. Within 350
isolated images, these errors can be difficult to catch, even for humans. However, by looking at 351
earlier and later frames it is usually possible to identify such errors because cells cannot divide and 352
then merge back together. As a potential future direction, deep learning architectures that use time-353
series information such as recurrent neural networks could be combined with our models to 354
improve segmentation by incorporating temporal context. 355
 356
The tracking model runs robustly but can slow down when there are hundreds of cells in the image. 357
Because every cell in the frame creates an input for the tracking model, this increases exponentially 358
as the bacterial microcolony grows. At present, for movies with many cells, tracking is the current 359
bottleneck for processing, whereas segmentation is comparatively faster. For example, S2 Movie, 360
which has 100 frames and over 1000 cells in each frame takes a total time of ~1 hour to process 361
with our system configuration, with over 50 minutes attributed to calculating the tracking events. 362
Future efforts to optimize the tracking algorithm could help to address this by avoiding methods 363
that scale linearly with the number of cells. In addition, initial tests suggest that it may be possible 364
to decrease the size of the convolutional neural network by removing layers, though this would 365
likely need to be customized for specific applications (S5 Fig). This could be applied to the 366
segmentation or tracking model. 367
 368
Overall, DeLTA can now process two-dimensional movies accurately and capture spatial 369
dynamics in a high throughput manner with no human intervention. It works with many common 370
microscopy file formats and extracts single-cell features such as cell poles, length, lineage, and 371
fluorescence levels automatically and saves data into Python and Matlab compatible formats. As 372
many microbiology researchers work with these types of data, we envision that this software can 373
be used to increase the throughput of microscopy image analysis. 374
 375
 376
Methods 377
 378
Implementation and network architecture 379
Code, installation instructions, and datasets are on Gitlab: https://gitlab.com/dunloplab/delta. 380
Documentation for the software is available at: https://delta.readthedocs.io/en/latest/. We also 381
provide a Google Colab notebook, which allows users to test DeLTA 2.0 with their own data 382
without installing the code on their local machine: 383

 11

https://colab.research.google.com/drive/1UL9oXmcJFRBAm0BMQy_DMKg4VHYGgtxZ. 384
 385
The U-Nets are implemented in TensorFlow/Keras. We developed a fully-integrated pipeline that 386
can compile single-cell data from Bio-Formats compatible files or TIFF image sequences, but we 387
also provide simpler scripts and data that illustrate the core principles of our algorithm for easy 388
adaptation to different use cases. In S1 Table, we have listed the packages and exact versions that 389
we use in our environment to run DeLTA 2.0. Both the segmentation and tracking models 390
implement a U-Net neural network architecture. The tracking model inputs a phase contrast image 391
and segmentation from the current and previous frame and outputs a greyscale image of the 392
predicted tracking event (S1 Fig). In the original version of DeLTA [11], the tracking model uses 393
a softmax function as the final activation layer and a categorical cross-entropy loss function to 394
produce three greyscale output images with 1’s in each layer representing the mother cell, daughter 395
cell, and background, respectively. In DeLTA 2.0, the tracking model uses a sigmoid function as 396
the final activation layer and a pixelwise-weighted binary cross-entropy loss function to produce 397
a single greyscale output image with 1’s representing tracked cells (mother and potential daughter) 398
and 0’s representing the background and the cells that did not track to the input cell. 399
 400
Loss functions and training 401
To train both models, we implemented a pixelwise-weighted binary cross-entropy loss function, 402
as in the original U-Net paper [9]. This loss function was adapted from the binary cross-entropy 403
function in Tensorflow/Keras which measures the pixelwise loss of a sample. The loss is multiplied 404
elementwise with the weight map to magnify or reduce the loss (S6 Fig). Lastly, we normalized 405
the loss based on the sum of the total weight map to evenly distribute how much each sample 406
updates the model. Overall, the loss function determines the difference between the model output 407
and the ground truth, which is then used to update the weights within the model. As in Ronneberger 408
et al. [9], our loss function takes a weight map as an extra input to assign more importance to 409
certain pixels in the ground truth during training. We used custom weight maps to improve 410
segmentation on rod-shaped bacteria by increasing weights for the center of the cells and the 411
borders between the cells. We also minimize weight on the background, where background is 412
defined as anything in the image that is not a cell or border (S7 Fig). More specifically, we 413
maximized the weights for the skeletons of the cells and borders, which are pixel-wide 414
representations of binary objects in images [32]. Determining the exact borders of the cells by eye 415
is hard and partially arbitrary. To prevent the model from learning these arbitrary cell-border 416
interfaces, we reduced the weights in these areas (S7 Fig). In addition, the background weights 417
were set to be variable, where the weight increased with respect to an incorrect prediction (S8 Fig). 418
The model outputs a number between 0 and 1, with 0 representing the background and 1 419
representing a cell. Since we had high confidence in the ground truths for the background, we were 420
able to set the values of the weight map for the background to be equal to the actual prediction for 421
the background. If the model incorrectly predicted a cell for a pixel that is background, then there 422
would be a high value for that pixel in the weight map. Alternatively, if the model correctly 423
predicted background for a pixel that was background, then there would be a low value for that 424
pixel in the weight map. This method allows the model to efficiently recognize and discard debris 425
and reduce overfitting on the background. Our code includes a function to automatically generate 426
these weight maps from the ground truth segmentations. Custom weight maps were also 427
implemented for the tracking model, although they were found to be less critical to training a 428
successful model. The weight map was similarly generated by applying morphological operations 429

 12

to the segmentation of all cells in the current frame and the ground truth. The skeleton of the 430
ground truth cell was set to the highest weight while other cells’ pixels were set to decreasing 431
weights depending on the distance from the tracked cell (S1B Fig). The function generating these 432
maps is also provided in our software. 433
 434
In addition to the data augmentation operations described in the original version of DeLTA [11], 435
two new data augmentations were used while training the segmentation model. We used the 436
blurring function GaussianBlur from the OpenCV package which convolves a 5x5 Gaussian kernel 437
over the image. For the noise function we used the random.normal function from the numpy 438
package which outputs random samples from a Gaussian distribution into an array the same size 439
as the image. This is added to the original image and rescaled back to a range between 0 and 1. 440
Both the blurring and noise functions are applied to all input images with user-specified standard 441
deviations. We set 1 and 0.03 to be the default standard deviations for the blurring and noise 442
functions, respectively. 443
 444
To simulate exaggerated cell movement during tracking, such as when an agarose pad dries out 445
and causes the field of view to shift over time, we added a function that randomly shifts the inputs 446
containing the current frame (microscopy image of the current frame, segmentation mask of all the 447
cells in the current frame, ground truth, and weight map) up to a user-specified number of pixels 448
(e.g. 5 pixels). These operations help expand the training dataset and allow the model to generalize 449
to realistic conditions. 450
 451
The segmentation model used to quantify the error rate was trained for 600 epochs with 300 steps 452
per epoch and a batch size of 1. The Adam optimizer was used with a learning rate of 10-4. The 453
tracking model used to quantify the error rate was trained for 500 epochs with 300 steps per epoch 454
and a batch size of 2. The Adam optimizer was used with a learning rate of 10-5. In all cases, the 455
models converged during these training period. For example, S9 Fig shows convergence results 456
for segmentation model training. 457
 458
Training set generation and testing 459
For the segmentation training dataset, the initial segmentations were generated semi-automatically 460
by an expert using the interactive learning and segmentation toolkit Ilastik [33]. This accounted 461
for 11% of the final training set. Once the segmentation model was performing well on the test 462
data, which we defined as being more than 95% accurate, we used it to generate more training 463
data. Incorrect DeLTA 2.0 outputs, like segmentations that connect two distinct cells together, 464
were manually corrected. Processed DeLTA outputs accounted for 36% of the training set. 465
Additionally, we incorporated published segmentation data from van Vliet et al. [34] where cells 466
were segmented and tracked to measure the spatial dynamics of gene expression in bacterial 467
microcolonies. We obtained the cell segmentation and tracking data from the ETH archive: 468
https://doi.org/10.5905/ethz-1007-77. On this dataset, we performed operations to improve the 469
data quality including smoothing filters, dilation, erosion, and skeletonize functions. These data 470
accounted for the remaining 53% of the training set. The final training set had 307 training 471
examples from sixty movies, with a maximum of 10 frames per movie to increase sample diversity. 472
Each training example consisted of a phase contrast image as the input, the corresponding 473
segmented ground truth, and a pre-generated weight map used in the loss function (S7 Fig). The 474

 13

test movie used to evaluate the segmentation model was colony 150310-05 from the trpL data zip 475
file from van Vliet et al. [34] on the ETH archive. 476
 477
For the tracking training dataset, we used a modified version of the Matlab script used in DeLTA 478
1.0 to generate the initial training examples. Instead of showing the whole frame in the graphical 479
user interface, the modified script showed a zoomed-in 75x75 pixel box around the cell of interest. 480
In addition, the modified script had one output consisting of the mother and daughter cell whereas 481
the original script had three outputs for the mother cell, daughter cell, and background. The Matlab 482
script was used to produce 15% of the training set. Each training example consisted of four inputs, 483
one output, and one weight map. The inputs were the phase contrast of the previous frame, 484
segmentation of the cell of interest in the previous frame, phase contrast of the current frame, and 485
segmentation of all the cells in the current frame (S1A Fig). The output is a segmentation mask for 486
the cell(s) that the cell of interest in the previous frame tracked to. The weight map is used in the 487
loss function. Once the tracking model was performing with more than 99% accuracy on test data, 488
we used it to generate more training data. Movies with images taken 5 minutes apart were 489
processed using DeLTA 2.0 and then new training examples were generated by tracking cells 490
across longer time intervals. Instead of tracking from the frame immediately before the current 491
timepoint, cells were tracked from a frame from two or three timepoints before. This allowed us 492
to generalize to longer acquisition intervals and to situations where the cells grew faster or travelled 493
further between frames. These processed DeLTA outputs accounted for 20% of the training set. In 494
addition, published tracking data from van Vliet et al. was incorporated to increase the training set 495
size, accounting for 65% of all the training examples. The final tracking training set had 23,655 496
examples. The test movies used to evaluate the tracking model were colony 140408-01 from the 497
cib data zip file; colonies 151029_E1-1, 151029_E1-5, and 151101_E3-12 from the rpsM data zip 498
file; and colonies 150309-04 and 150310-05 from the trpL data zip file from van Vliet et al. [34]. 499
 500
Time-lapse microscopy experiments 501
Overnight cultures of E. coli MG1655 were diluted 1:100 and allowed to grow for 1-2 hours in LB 502
medium. For the co-culture experiment, we included 30 µg/mL of kanamycin for plasmid 503
maintenance. We created the co-culture with a 1:5 dilution by mixing 0.5 µL of the resistant strain 504
and 0.5 µL of the susceptible strain with 4 µL of LB medium. For the pole age experiment, the 505
culture was diluted 1:100 in MGC media (M9 salts supplemented with 2 mM MgSO4, 0.2% 506
glycerol, 0.01% casamino acids, 0.15 μg/ml biotin, and 1.5 μM thiamine). A 1:100 dilution was 507
used to decrease cell density. For both experiments, 1-1.5 µL of the diluted samples were added 508
to prewarmed 1.5% low melting temperature agarose pads made with MGC media. Samples were 509
prepared and imaged as described in Young, et al. [19]. A Nikon Ti-E microscope was used with 510
a 100x oil objective for all microscopy experiments. 511
 512
In the co-culture experiment, E. coli MG1655 were transformed with a single plasmid, either with 513
tetracycline resistance or without. Both plasmids originated from the BioBrick plasmid library 514
(pBbA7k) [35]. The plasmid for the resistant cells harbors both a tetracycline resistant gene and 515
red fluorescent protein gene (rfp) (pBbA7k-RFP-tetA), while the sensitive cells contain only green 516
fluorescent protein (gfp) (pBbA7k-sfGFP). The pads contained 30 µg/mL kanamycin for plasmid 517
maintenance and 0.5 µg/mL tetracycline. Phase contrast, GFP, and RFP fluorescence images were 518
taken every 5 minutes. 519
 520

 14

In the pole age experiment, E. coli MG1655 was used and no antibiotics were present in the culture. 521
Phase contrast images were taken every 5 minutes. 522
 523
We calculated the growth rate as: 524
 525

 𝐺𝑟𝑜𝑤𝑡ℎ	𝑅𝑎𝑡𝑒 = !!"!!"#
!!"#

× #
∆%
 526

 527
Where Lt is the cell length at time t, Lt-1 is the length at time t-1, and Dt is the difference in time 528
between t and t-1 (5 min = 0.083 hr in our movies). Growth rates were measured for one generation. 529
For example, to measure the growth rate of OO, measurements start when O divides into OO and 530
end when OO divides into OON and OOO. However, no information about the growth rate of O 531
is used to calculate the growth rate of OO. The growth rate is the average across the timepoints 532
within this generation. To reduce noise, growth rates were only recorded in the analysis if cells 533
were present for at least three frames. 534
 535
Testing impact of frame shifts on tracking 536
We considered three representative conditions and performed tracking under artificial frame shifts 537
(S3 Fig). The conditions were cases of “low,” “medium,” and “high” cell density, which we 538
defined as having <5, 20-25, and >200 cells in the field of view. We calculated the percent overlap 539
between the model prediction and ground truth for all tracking events as the frame was artificially 540
shifted. For each tracking event, the field of view was shifted over 11 different distances ranging 541
from 1 to 100 pixels, which correspond to 0.129 to 12.9 µm, and each distance was applied in all 542
four cardinal directions to generate a total of 48 shifts plus one unshifted version. The time-lapse 543
movie used for this analysis was colony 151101_E3-12 from the rpsM zip file from van Vliet et 544
al. [6]. 545
 546
 547
 548
Acknowledgements 549
We thank Virgile Andreani for carefully evaluating the code, Michael Sheets for testing initial 550
versions of DeLTA 2.0, and members of the Dunlop Lab for helpful discussions. Prof. Avigdor 551
Eldar and Dr. Jordi van Gestel generously provided the original images presented in S2 Movie. 552
We thank Dr. Simon van Vliet for useful discussion regarding his datasets. 553
 554

 15

References 555
1. Bakshi S, Leoncini E, Baker C, Cañas-Duarte SJ, Okumus B, Paulsson J. Tracking bacterial lineages 556

in complex and dynamic environments with applications for growth control and persistence. 557
Nature Microbiology. 2021;6. doi:10.1038/s41564-021-00900-4 558

2. Fox ZR, Fletcher S, Fraisse A, Aditya C, Sosa S. MicroMator: Open and Flexible Software for 559
Reactive Microscopy. bioRxiv. 2021; 1–9. 560

3. Rullan M, Benzinger D, Schmidt GW, Milias-Argeitis A, Khammash M. An Optogenetic Platform 561
for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation. Molecular Cell. 562
2018;70: 745-756.e6. doi:10.1016/j.molcel.2018.04.012 563

4. Chait R, Ruess J, Bergmiller T, Tkačik G, Guet CC. Shaping bacterial population behavior through 564
computer-interfaced control of individual cells. Nature Communications. 2017;8. 565
doi:10.1038/s41467-017-01683-1 566

5. Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interactions govern the 567
dynamics and functions of microbial communities. Nature Ecology and Evolution. 2020;4: 366–568
375. doi:10.1038/s41559-019-1080-2 569

6. van Vliet S, Dal Co A, Winkler AR, Spriewald S, Stecher B, Ackermann M. Spatially Correlated Gene 570
Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell 571
Interactions. Cell Systems. 2018;6: 496-507.e6. doi:10.1016/j.cels.2018.03.009 572

7. Bergmiller T, Andersson AMC, Tomasek K, Balleza E, Kiviet DJ, Hauschild R, et al. Biased 573
partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic 574
heterogeneity. Science. 2017;356: 311–315. doi:10.1126/science.aaf4762 575

8. el Meouche I, Dunlop MJ. Heterogeneity in efflux pump expression predisposes antibiotic-576
resistant cells to mutation. Science. 2018;362: 686–690. doi:10.1126/science.aar7981 577

9. Ronneberger O, Fischer P, Brox T. 2015-U-Net. arXiv. 2015; 1–8. 578

10. Panigrahi S, Murat D, Gall A le, Martineau E, Goldlust K, Fiche J-B, et al. MiSiC, a general deep 579
learning-based method for the high-throughput cell segmentation of complex bacterial 580
communities. bioRxiv. 2020; 2020.10.07.328666. doi:10.1101/2020.10.07.328666 581

11. Lugagne J-B, Lin H, Dunlop MJ. DeLTA: Automated cell segmentation, tracking, and lineage 582
reconstruction using deep learning. Asthagiri AR, editor. PLOS Computational Biology. 2020;16: 583
e1007673. doi:10.1371/journal.pcbi.1007673 584

12. Salem D, Li Y, Xi P, Phenix H, Cuperlovic-Culf M, Kærn M. Yeastnet: Deep-learning-enabled 585
accurate segmentation of budding yeast cells in bright-field microscopy. Applied Sciences 586
(Switzerland). 2021;11. doi:10.3390/app11062692 587

13. Xu YKT, Call CL, Sulam J, Bergles DE. Automated in vivo Tracking of Cortical Oligodendrocytes. 588
Frontiers in Cellular Neuroscience. 2021;15. doi:10.3389/fncel.2021.667595 589

 16

14. Pedone E, de Cesare I, Zamora-Chimal CG, Haener D, Postiglione L, la Regina A, et al. Cheetah: A 590
Computational Toolkit for Cybergenetic Control. ACS Synthetic Biology. 2021. 591
doi:10.1021/acssynbio.0c00463 592

15. Rossi NA, el Meouche I, Dunlop MJ. Forecasting cell fate during antibiotic exposure using 593
stochastic gene expression. Communications Biology. 2019;2: 1–7. doi:10.1038/s42003-019-594
0509-0 595

16. Shao B, Rammohan J, Anderson DA, Alperovich N, Ross D, Voigt CA. Single-cell measurement of 596
plasmid copy number and promoter activity. Nature Communications. 2021;12. 597
doi:10.1038/s41467-021-21734-y 598

17. Łapińska U, Glover G, Capilla-Lasheras P, Young AJ, Pagliara S. Bacterial ageing in the absence of 599
external stressors. Philosophical Transactions of the Royal Society B: Biological Sciences. 600
2019;374. doi:10.1098/rstb.2018.0442 601

18. Stewart EJ, Madden R, Paul G, Taddei F. Aging and Death in an Organism That Reproduces by 602
Morphologically Symmetric Division. Kirkwood T, editor. PLoS Biology. 2005;3: e45. 603
doi:10.1371/journal.pbio.0030045 604

19. Young JW, Locke JCW, Altinok A, Rosenfeld N, Bacarian T, Swain PS, et al. Measuring single-cell 605
gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nature 606
Protocols. 2012;7: 80–88. doi:10.1038/nprot.2011.432 607

20. Paintdakhi A, Parry B, Campos M, Irnov I, Elf J, Surovtsev I, et al. Oufti: An integrated software 608
package for high-accuracy, high-throughput quantitative microscopy analysis. Molecular 609
Microbiology. 2016;99: 767–777. doi:10.1111/mmi.13264 610

21. Stylianidou S, Brennan C, Nissen SB, Kuwada NJ, Wiggins PA. SuperSegger: robust image 611
segmentation, analysis and lineage tracking of bacterial cells. Molecular Microbiology. 2016;102: 612
690–700. doi:10.1111/mmi.13486 613

22. van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, et al. Deep Learning 614
Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. PLoS 615
Computational Biology. 2016. doi:10.1371/journal.pcbi.1005177 616

23. Prangemeier T, Reich C, Koeppl H. Attention-Based Transformers for Instance Segmentation of 617
Cells in Microstructures. Proceedings - 2020 IEEE International Conference on Bioinformatics and 618
Biomedicine, BIBM 2020. 2020; 700–707. doi:10.1109/BIBM49941.2020.9313305 619

24. Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, et al. Robust growth of escherichia 620
coli. Current Biology. 2010;20: 1099–1103. doi:10.1016/j.cub.2010.04.045 621

25. van Gestel J, Bareia T, Tenennbaum B, Dal Co A, Guler P, Aframian N, et al. Short-range quorum 622
sensing controls horizontal gene transfer at micron scale in bacterial communities. Nature 623
Communications. 2021;12: 1–11. doi:10.1038/s41467-021-22649-4 624

26. Wen X, Langevin AM, Dunlop MJ. Antibiotic export by efflux pumps affects growth of neighboring 625
bacteria. Scientific Reports. 2018;8: 1–9. doi:10.1038/s41598-018-33275-4 626

 17

27. Ducret A, Quardokus EM, Brun Y v. MicrobeJ, a tool for high throughput bacterial cell detection 627
and quantitative analysis. Nature Microbiology. 2016;1: 1–7. doi:10.1038/nmicrobiol.2016.77 628

28. Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, et al. Metadata matters: Access 629
to image data in the real world. Journal of Cell Biology. 2010;189: 777–782. 630
doi:10.1083/jcb.201004104 631

29. McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, et al. CellProfiler 632
3.0: Next-generation image processing for biology. PLoS Biology. 2018;16: 1–17. 633
doi:10.1371/journal.pbio.2005970 634

30. Rang CU, Peng AY, Poon AF, Chao L. Ageing in Escherichia coli requires damage by an extrinsic 635
agent. Microbiology (United Kingdom). 2012;158: 1553–1559. doi:10.1099/mic.0.057240-0 636

31. Clark MW, Yie AM, Eder EK, Dennis RG, Basting PJ, Martinez KA, et al. Periplasmic acid stress 637
increases cell division asymmetry (Polar Aging) of Escherichia coli. PLoS ONE. 2015;10: 1–14. 638
doi:10.1371/journal.pone.0144650 639

32. Lee TC, Kashyap RL, Chu CN. Building Skeleton Models via 3-D Medial Surface Axis Thinning 640
Algorithms. CVGIP: Graphical Models and Image Processing. 1994;56: 462–478. 641
doi:https://doi.org/10.1006/cgip.1994.1042 642

33. Sommer C, Straehle C, Ullrich K, Hamprecht F a. ILASTIK : INTERACTIVE LEARNING AND 643
SEGMENTATION TOOLKIT Heidelberg Collaboratory for Image Processing (HCI), University of 644
Heidelberg. Eighth IEEE International Symposium on Biomedical Imaging (ISBI). 2011; 230–233. 645

34. van Vliet S, Dal Co A, Winkler AR, Spriewald S, Stecher B, Ackermann M. Spatially Correlated Gene 646
Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell 647
Interactions. Cell Systems. 2018;6: 496-507.e6. doi:10.1016/j.cels.2018.03.009 648

35. Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, et al. BglBrick vectors and 649
datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering. 650
2011;5: 15–17. doi:10.1186/1754-1611-5-12 651

 652
 653
 654
 655

 18

Supporting Information Captions 656
 657
 658
Supporting Figure Captions 659
 660
S1 Fig. Schematic showing how the tracking model uses the inputs to make predictions. (A) 661
The four inputs are concatenated into one array and processed by the model, which outputs a 662
greyscale image of the cell tracked (or cells, in the case of a division event). (B) Ground truth and 663
custom weight map for tracking. 664
 665
S2 Fig. Accuracy of the segmentation model. (A) For each frame in the movie we plotted the 666
intersection-over-union (IOU) / Jaccard index, Dice score / F1 coefficient. Error rate, as defined 667
in the manuscript, is also shown. (B) The proportion of pixels that were True Positives (TP) + True 668
Negatives (TN), False Positives (FP), and False Negatives (FN) for each frame in the movie. Note 669
that these are pixelwise predictions as opposed to predictions per cell. TP and TN represent the 670
rate of correct pixelwise predictions in the frame. FP represent the rate of erroneous predictions of 671
pixels as part of a cell when the ground truth reports it as background. FN represent the rate of 672
erroneous predictions of pixels as background. The test set (S1 Movie) was used to calculate these 673
evaluation metrics. 674
 675
S3 Fig. Impact of frame shifts on tracking model performance. The average prediction in the 676
four cardinal directions to ground truth overlap for 20 representative tracking events plotted as a 677
function of the shift distance. Tracking model performance when (A) cell density is low (<5 cells 678
in the frame), (B) medium (20-25 cells in the frame), or (C) high (>200 cells in the frame). As the 679
shift distance increases, the performance decreases. The model generally performs better with 680
fewer cells to track per frame. The black line represents the mean for each shift distance. 681
 682
S4 Fig. Limitations of segmentation. Two sequential phase contrast images of E. coli 683
microcolonies with their respective segmentations. The red arrow points to an error where the 684
model has incorrectly combined two cells into one. This type of error is very hard to correct out of 685
context. 686
 687
S5 Fig. Reducing the size of the model to increase speed. Schematics showing different network 688
architectures. (A) Original U-Net architecture that we use throughout the paper. (B) U-Net 689
architecture without the bottom layer. (C) U-Net architecture without the bottom two layers. The 690
model has been trained on segmentation as well as tracking for these reduced networks. The 691
network in (C) runs twice as fast as the original network in (A) and sacrifices very little accuracy. 692
 693
S6 Fig. Schematic of the pixelwise binary cross-entropy loss function used to train the 694
segmentation and tracking models. The inputs and outputs for the loss function are shown. The 695
inputs include the ground truth (GT), the prediction made by the model (Pred), and the associated 696
weight maps. The output is the pixelwise-weighted loss, which is a greyscale image. In step 1, the 697
ground truth and prediction are used to calculate the binary cross-entropy loss. The first half of the 698
equation measures the pixelwise loss associated with the model predicting background when the 699
ground truth is a cell. The second half of the equation measures the pixelwise loss associated with 700
the model predicting cell when the ground truth is background. In step 2, the weighted loss is 701

 19

calculated by performing an elementwise multiplication of the weight map and the loss calculated 702
in step 1. The weight map helps the model learn the more important features, such as cell borders. 703
This schematic of the loss function is simplified for visualization purposes. For clarity, we also 704
show how the pixelwise-weighted loss maps onto the prediction, where cyan regions highlight 705
areas where the loss is emphasized in order to improve the model’s performance for these regions 706
of the example image. 707
 708
S7 Fig. Training the model on segmentation with custom weight maps. Schematic showing 709
two models trained on the same dataset with different weight maps. In this example, both U-Net 710
models were trained for 600 epochs, 300 steps per epoch, with a batch size of 2. Inputs necessary 711
to train the model include the phase contrast image, the associated segmented ground truth, and 712
weight map. (A) Model trained with weight maps derived from the original U-Net paper. Green 713
ovals show examples of errors. (B) Model trained with custom weight maps which were generated 714
by applying morphological operations to the segmented ground truth. The model trained on the 715
new weight maps performs better, as shown by the outputs on a test image. (C) To aid 716
visualization, the ‘Overlay’ shows the custom weight map overlayed on the phase contrast image. 717
The overlay shows that the weights are emphasized at the core of the cells (shown by red lines) 718
and at the borders (shown by yellow lines). 719
 720
S8 Fig. Utilizing variable background weight maps for training the model on debris. A 721
simplified schematic showing how the loss is calculated for a single input using weight maps. (A) 722
Schematic showing the traditional use of weight maps. (B-C) Schematics showing the use of 723
variable weight maps. The prediction is used to update the weight map. (B) The background weight 724
map values are replaced by the background values in the prediction. This method forces the model 725
to quickly learn to filter out debris as the weight map values for the background increase 726
significantly when the model predicts debris as cells. (C) Conversely, when the model correctly 727
classifies the debris as background, the weight map values for the background remain similar to 728
the original values. 729
 730
S9 Fig. Loss history of segmentation model trained over 600 epochs. Loss of the model during 731
training as a function of the total number of epochs. Only points where the model performance 732
improves and loss reaches a new minimum are shown. There were no improvements in the last 85 733
epochs, showing convergence. 734
 735
 736
Supporting Movie Captions 737
 738
S1 Movie. Time-lapse movie of a bacterial microcolony analyzed with DeLTA 2.0. Phase 739
contrast images containing E. coli cells outlined with different colors representing unique cells. 740
Cells can be tracked by following their respective colors throughout the movie. White arrows 741
indicate cell division events. White and colored dots refer to the new and old poles, respectively. 742
This time-lapse movie was part of the test set used to calculate the error rate for tracking and 743
segmentation. Timestamp shows time in HH:MM format. 744
 745
S2 Movie. Time-lapse movie of a dense bacterial microcolony growing in a microfluidic 746
device analyzed by DeLTA 2.0. Phase contrast images show B. subtilis cells outlined with 747

 20

different colors. Cells can be tracked by following their respective colors throughout the movie. 748
White arrows indicate cell division events. White and colored dots refer to the new and old poles, 749
respectively. Frame rate is one frame per minute. Original movie data were kindly provided by 750
Prof. Avigdor Eldar and Dr. Jordi van Gestel. 751
 752
 753
 754
Supporting Table Captions 755
 756
S1 Table. Specific versions used in the environment to run DeLTA 2.0. Package name and 757
respective number of the version that was used for analysis presented in this manuscript, as well 758
as for other working installations. 759
 760

