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 10 
Abstract 11 
Improvements in microscopy software and hardware have dramatically increased the pace of 12 
image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data. 13 
Although tools for segmenting and tracking bacteria within time-lapse images exist, most require 14 
human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce 15 
DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single 16 
cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses 17 
deep convolutional neural networks to extract single-cell information from time-lapse images, 18 
requiring no human input after training. DeLTA 2.0 retains all the functionality of the original 19 
version, which was optimized for bacteria growing in the mother machine microfluidic device, but 20 
extends results to two-dimensional growth environments. Two-dimensional environments 21 
represent an important class of data because they are more straightforward to implement 22 
experimentally, they offer the potential for studies using co-cultures of cells, and they can be used 23 
to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking 24 
are significantly more challenging tasks in two-dimensions due to exponential increases in the 25 
number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic 26 
resistant and susceptible cells, and also track pole age and growth rate across generations. In 27 
addition to the two-dimensional capabilities, we also introduce several major improvements to the 28 
code that increase accessibility, including the ability to accept many standard microscopy file 29 
formats as inputs and the introduction of a Google Colab notebook so users can try the software 30 
without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than 31 
10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates 32 
around 1%, making it a powerful tool for analyzing time-lapse microscopy data.  33 
 34 
Author Summary 35 
Time-lapse microscopy can generate large image datasets which track single-cell properties like 36 
gene expression or growth rate over time. Deep learning tools are very useful for analyzing these 37 
data and can identify the location of cells and track their position. In this work, we introduce a new 38 
version of our Deep Learning for Time-lapse Analysis (DeLTA) software, which includes the 39 
ability to robustly segment and track bacteria that are growing in two dimensions, such as on 40 
agarose pads or within microfluidic environments. This capability is essential for experiments 41 
where spatial and positional effects are important, such as conditions with microbial co-cultures, 42 
cell-to-cell interactions, or spatial patterning. The software also tracks pole age and can be used to 43 
analyze replicative aging. These new features join other improvements, such as the ability to work 44 
directly with many common microscopy file formats. DeLTA 2.0 can reliably track hundreds of 45 
cells with low error rates, making it an ideal tool for high throughput analysis of microscopy data. 46 
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 47 
Introduction 48 
The automation of hardware and software for microscopy has resulted in researchers’ ability to 49 
generate massive datasets containing images of cells over time. For example, in a recent high 50 
throughput experiment Bakshi et al. imaged 108 Escherichia coli over days by acquiring 705 field 51 
of views every few minutes [1]. Additionally, recent studies have used closed-loop microscopy 52 
and optogenetic platforms to control gene expression in single cells in real time [2–4]. These 53 
improvements in microscopy have motivated the need for automated image analysis, as traditional 54 
approaches that require manual error correction cannot keep pace with the size of these new 55 
datasets or the rate at which they can be acquired. More generally, segmentation and tracking have 56 
historically required intensive user input as well as custom image processing code or experimental 57 
modifications such as the use of dedicated fluorophores [1,5–8]. These requirements limit 58 
throughput and can introduce burdensome experimental constraints. 59 
 60 
To address this, researchers need tools that are rapid, accurate, and require minimal input from the 61 
user. This combination of needs is well suited for deep learning-based approaches, and deep 62 
convolutional neural networks have enabled fast and accurate analysis of images. Specifically, the 63 
U-Net architecture has emerged as the state-of-the-art convolutional neural network for biomedical 64 
applications [9]. U-Net uses a “U”-shaped network architecture with a contraction path, where 65 
successive convolutional layers are applied to feature maps that are progressively down-sampled, 66 
followed by a symmetric expansion path where the low-resolution but high-level encoding of the 67 
input image is up-sampled back to the original resolution. In addition, skip-connections are used 68 
to concatenate finer detail feature maps used in the contraction path with up-sampled feature maps 69 
in the expansion path. Skip-connections allow the network to retain high-resolution information 70 
needed to construct the mask at the end of the network.  This approach has been widely successful 71 
for segmentation of cells [10–14] and for tracking cells from frame-to-frame within time-lapse 72 
images [11,13]. 73 
 74 
Here, we focus on analysis of bacterial time-lapse microscopy data in two-dimensional settings 75 
such as agarose pads or within microfluidic chips. With rapid cell cycle times, small cell sizes, and 76 
high throughput microfluidic devices, it is possible for researchers to generate large datasets 77 
containing thousands of single cells over periods of hours or days. As a result, researchers can use 78 
statistical analysis to study the subtle and complex effects of cell-to-cell heterogeneity, gene 79 
expression dynamics, and cell-to-cell interactions in isogenic populations [1,6]. This has led to 80 
fundamental discoveries related to antibiotic resistance [8,15], and has allowed for accurate 81 
characterization of genetic parts and circuits [16]. Further, single-cell time-lapse analysis has 82 
revealed that cell division in E. coli is asymmetrical, where daughter cells receiving the ‘old’ pole 83 
grow more slowly than daughter cells receiving the ‘new’ pole [17]. However, these effects are 84 
subtle, necessitating measurements of many division events to determine statistically significant 85 
effects [18]. Until recently, such studies necessitated painstaking semi-manual analysis and 86 
curation of microscopy data. Software based on traditional image analysis techniques such as 87 
Schnitzcells [19], Oufti [20], and SuperSegger [21] all require significant user input and post-88 
processing. A few recent studies have proposed deep learning models for bacterial cell 89 
segmentation such as MiSiC [10], DeepCell [22], and Cheetah [14], and yeast cell segmentation 90 
in Yeastnet [12] and Cell-DETR [23],  however to our knowledge there is no integrated deep 91 
learning segmentation and tracking pipeline for two-dimensional time-lapse analysis of bacteria. 92 
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 93 
In previous work, we developed the Deep Learning for Time-lapse Analysis (DeLTA) pipeline to 94 
analyze single-cell growth and gene expression in microscopy images [11]. DeLTA uses two 95 
instances of the U-Net model to segment and then track cells. This allows for rapid and robust 96 
analysis of time-lapse movies. The original version of DeLTA focused on segmentation and 97 
tracking of cells in the ‘mother machine’ microfluidic device [24] where bacteria are constrained 98 
to narrow chambers where they grow in a single file line. This powerful design simplifies image 99 
analysis and enables experiments that run for many hours or days. However, this constrained 100 
geometry is not well suited for the study of two-dimensional effects such as diffusion of chemical 101 
signals, proximity-based effects, or co-cultures with mixed populations of cells. Two-dimensional 102 
configurations, ranging from microcolonies growing on agarose pads to microfluidic growth 103 
chambers, can be used to measure spatial dynamics of cell-to-cell interactions. Examples include 104 
quorum sensing [25] and the effect of efflux pumps on neighboring cells in the presence of 105 
antibiotics [26]. Segmenting and tracking cells in two dimensions are more challenging than for 106 
cells constrained within the mother machine. Segmentation becomes more difficult as 107 
microcolonies grow because images can contain hundreds of cells, where any given cell may have 108 
neighbors on all sides. The complexity associated with tracking also increases dramatically. In 109 
contrast to mother machine data, where frame-to-frame assignments can be limited to the small 110 
number of cells within the chamber (typically <10 cells), two-dimensional environments need to 111 
consider hundreds of possible assignments. Further, cells can move in any direction and may move 112 
large distances, for example if there is drift over the course of the movie.   113 
 114 
In this manuscript we introduce DeLTA 2.0, a new version of DeLTA that segments and tracks 115 
cells in two dimensions. DeLTA 2.0 retains all the functionality of the original version and is fully 116 
compatible with mother machine data. In order to make our approach adaptable to different use 117 
cases, we minimized the number of pre- and post-processing steps so that most of the analysis is 118 
performed by the trainable models. The new version is available open source and uses a fully 119 
Python implementation. We have also introduced other improvements to the code to increase 120 
accessibility, such as the ability to work with images of arbitrary size and to accept many common 121 
microscopy file formats as inputs. We show that DeLTA 2.0 can segment and track co-cultures of 122 
bacteria growing on agarose pads and within microfluidic chambers. In addition to fluorescence 123 
and cell length, DeLTA 2.0 also records pole age. We use this to record replicative aging and 124 
compare the growth rate across generations. DeLTA 2.0 performs well on crowded images and 125 
requires no human intervention. The code, installation instructions, and datasets are available open 126 
source on Gitlab. We also provide a Google Colab notebook for users to rapidly test DeLTA 2.0 127 
on their own data. 128 
 129 
Results 130 
DeLTA 2.0 can track cell length, growth rate, fluorescence, and progeny over time for cells 131 
growing in a two-dimensional microcolony. The algorithm takes microscopy images as inputs. It 132 
then uses two U-Net convolutional neural network models, one for segmentation and one for 133 
tracking, performs lineage reconstruction, and outputs single-cell data (Fig 1A). Segmentation 134 
generates information about cell morphology and can be used to identify both normal and 135 
filamented cells (Fig 1B-C). The tracking step reliably tracks cells across frames, recording 136 
division events when they occur (Fig 1D). Lineage reconstruction determines how cells are 137 
associated across generations and records features such as pole age (Fig 1E). The algorithm outputs 138 
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single-cell resolution information for all cells within a field of view (Fig 1F). No human 139 
intervention is required to specify any input parameters. This is in sharp contrast to other methods, 140 
which typically require inputs, such as cell size or cell type [10,19–21,27]. 141 
 142 

 143 
Fig 1. Segmentation and tracking of cells within a microcolony. (A) DeLTA pipeline consists of segmentation, 144 
tracking, and lineage reconstruction. (B) Segmentation example with phase contrast image containing an E. coli 145 
microcolony, which is input into a U-Net convolutional neural network to obtain segmentation results. (C) Histogram 146 
of cell lengths. Inset shows a zoomed-out version with outliers included. (D) Cell tracking between frames. 147 
Representative examples of cell tracking with and without division are shown with a phase contrast image of the 148 
‘previous frame’ on the left, a phase contrast image of the ‘current frame’ in the middle, and a greyscale image of the 149 
‘prediction’ on the right. The ‘current frame’ also shows the tracking prediction overlayed. The ‘prediction’ shows 150 
the U-Net output with the ground truth overlayed (S1 Fig). (E) Lineage reconstruction keeps track of cell lineages and 151 
records pole age. (F) Plot of cell lengths over time. Black line is a representative example of one cell’s length as it 152 
grows and divides; all cells in the microcolony are shown in grey. 153 
 154 
DeLTA 2.0 can process datasets of various dimensions quickly and robustly. To evaluate its speed 155 
and accuracy, we used a movie from the literature that had been segmented and tracked with 156 
manual correction that DeLTA had not been trained on (Methods). It took 8 mins and 49 secs to 157 
conduct complete analysis of this time-lapse movie containing 69 frames, where the final frame 158 
contains 232 E. coli cells (S1 Movie). This analysis was conducted on a desktop computer with a 159 
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Nvidia Quadro P4000 graphics card. In addition to being fast, DeLTA also has a low error rate. 160 
For the 3,286 cells segmented in the test set, there was a segmentation error rate of 0.01%. We 161 
defined a correct segmentation prediction as any case where the cell annotation in the model 162 
prediction had more than three quarters of its pixels overlapping with the ground truth data. This 163 
allows subtle differences between the prediction and ground truth to be considered acceptable, 164 
such as slight discrepancies in the exact location of the cell perimeter. In addition, if the model 165 
made a prediction where it erroneously connected two cells together, we defined this as two errors. 166 
Erroneously predicting a split cell was counted as one error. Because it can be difficult to assess 167 
the exact frame at which a cell divides, we did not count predictions where the model determined 168 
division events to be up to three frames later or earlier than in the ground truth as an error. Other 169 
metrics for assessing segmentation errors also showed good agreement with our findings that error 170 
rates are low (S2A Fig). The segmentation model tends to slightly under-segment due to emphasis 171 
on getting the cell borders classified correctly (S2B Fig). To assess the tracking error rate, we 172 
processed 6 movies of E. coli growing on agarose pads that the model had not been trained on. Out 173 
of the 17,622 tracking events, we measured an average error rate of 1.02%. We defined a correct 174 
prediction as a case where the cell assignment from one timepoint to the next matched the ground 175 
truth. Cases where the model assigned two cells as the daughters of a cell from the previous frame 176 
when there was in fact no division event, and cases where the model assigned no cell when the cell 177 
was in fact still within the field of view, were counted as tracking errors. 178 
 179 
The DeLTA 2.0 algorithm has several improvements over the original version of DeLTA [11]. 180 
The new code is a purely Python workflow; movies do not need to be pre- and post-processed in 181 
Matlab. This transition allows the entire pipeline to exist in an open-source framework. We do 182 
provide code that can be used to convert the output to a Matlab file for users that are more 183 
comfortable working in this environment for post-processing data. In addition, in DeLTA 2.0 we 184 
take advantage of the Bio-Formats toolbox for Python [28,29]. This allows users to work directly 185 
with images in many common formats that are output via microscopy software, including nd2, czi, 186 
ome-tiff files, and many more, without the need for any preformatting. We also made updates to 187 
the code that increase its flexibility, while optimizing for performance. For example, DeLTA 2.0 188 
can accept input images of various sizes. For large images (>512x512 pixels), DeLTA 2.0 will 189 
automatically crop the image into smaller windows for segmentation and then stitch the outputs 190 
back together. We note that large movies can cause memory issues, however the size limit at which 191 
this occurs will depend upon the configuration of the system on which it is run. For example, in 192 
our configuration the analysis of a time-lapse experiment with images of 1024x1024 pixels over 193 
865 timepoints used 14GB of computer memory. 194 
 195 
Since the original DeLTA code was optimized for images from the mother machine, where cells 196 
are constrained to one-dimensional chambers, tracking was relatively straightforward. In two 197 
dimensions, tracking is a more complex task and the number of cells that need to be tracked 198 
simultaneously increases dramatically. It can be challenging to identify which cells are associated 199 
with which lineage. To improve tracking speed, we crop a 256x256 pixel area around the cell of 200 
interest. This approach works because a single cell is expected to remain in the immediate vicinity 201 
of where it was in the preceding frame, so it is reasonable to restrict the search for daughter cells 202 
to the local area. These coordinates are then used to crop the three other inputs (previous phase 203 
contrast image, current phase contrast image, and current segmentation). The dimensions of these 204 
cropping windows can be changed in the configuration file. 205 
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 206 
To reduce overfitting, DeLTA 2.0 uses several new data augmentation operations while training. 207 
In addition to operations such as random shifting, scaling, rotation, flipping, and illumination, 208 
which were present in the original software, we added three new functions, two for segmentation 209 
and one for tracking. To help deal with an occasional out of focus frame, we added a blurring 210 
function that slides a Gaussian kernel over the image (Methods). In addition, electronic noise is 211 
another issue when dealing with biological samples where the minimization of the total exposure 212 
to excitation light decreases the signal-to-noise ratio of the camera’s sensor. To deal with this, we 213 
added a function that adds Gaussian noise (Methods). To simulate exaggerated cell movement 214 
during tracking, such as when an agarose pad dries out and causes the field of view to shift over 215 
time, we wrote a new augmentation function that introduces image translations between different 216 
timepoints (Methods). These operations help expand the training dataset and allow the model to 217 
generalize to realistic conditions. 218 
 219 
Because drift of cells within images is a common concern for some applications, we further 220 
characterized the algorithm’s performance under shifts of different sizes (S3 Fig). When the cell 221 
density is low, DeLTA can reliably handle shifts of up to ~30 pixels per timepoint in our images, 222 
which corresponds to ~4 µm. This problem is exacerbated in conditions where the frame is 223 
crowded with cells. When the cell density is high, performance begins to degrade after shifts of 224 
~15 pixels, or ~2 µm. Thus, optimizing experimental conditions to minimize drift is important for 225 
high quality analysis.  226 
 227 
To showcase the utility of DeLTA 2.0, we performed several experiments where we grew E. coli 228 
microcolonies on agarose pads and analyzed the output. First, we used DeLTA 2.0 to distinguish 229 
differences in growth rate between antibiotic resistant and susceptible cells grown in the same field 230 
of view. In this experiment, we mixed two strains of E. coli, one containing a tetracycline resistance 231 
gene and a constitutively expressed red fluorescent protein (RFP) reporter, and the other without 232 
the resistance gene and containing a green fluorescent protein (GFP) reporter. We grew cells in a 233 
co-culture on an agarose pad containing an inhibitory concentration of tetracycline (0.5 µg/ml). 234 
DeLTA 2.0 reliably segmented cells within the image (Fig 2A). The tetracycline resistance gene 235 
allowed the RFP-expressing cells to grow well whereas the tetracycline sensitive GFP-expressing 236 
cells grew very slowly (Fig 2B). The RFP and GFP fluorescence of individual cells can be plotted 237 
over time and shows the two distinct strains (Fig 2C). By extracting mean fluorescence levels for 238 
all cells within the time-lapse images, we found that fluorescence levels for the two populations 239 
were well-separated and maintained over time, as would be expected for the constitutive reporters. 240 
We also used DeLTA 2.0 to calculate the individual cell growth rates with respect to fluorescence. 241 
We observed two distinct clusters, corresponding to RFP cells that grew normally and GFP cells 242 
that grew slowly or did not grow (Fig 2D). These results highlight the ability to track cells with 243 
different properties simultaneously within the same movie.  244 
 245 
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 246 
Fig 2. Resistant and susceptible strains of E. coli on agarose pads containing an inhibitory concentration of 247 
tetracycline. (A) Phase contrast images and associated fluorescence overlays. RFP expressing cells contain a 248 
tetracycline resistance gene and GFP expressing cells do not. The magenta and green cell outlines in the fluorescence 249 
overlay represent the resistant and susceptible cells, respectively. Region of interest boxes show the areas represented 250 
in (B). (B) Representative examples of antibiotic resistant and susceptible cells tracked over time. (C) RFP and GFP 251 
fluorescence tracked for individual cells over time. (D) GFP fluorescence versus RFP fluorescence for single cells 252 
plotted against growth rate. Fluorescence values are the averages over all the frames for that cell. For growth rate 253 
calculations, only cells that were present at t = 150 min were tracked, which is a time point mid-to-late in the movie. 254 
The analysis omits those cells that enter the field of view after t = 150 min since the growth rates become noisier with 255 
less data. Three resistant cell outliers with growth rates of ~1.4 1/hr are omitted from this view. 256 
 257 
DeLTA 2.0 is well suited for measuring growth and gene expression for many cells within an 258 
image. Because of this, another potential application is the study of replicative aging within 259 
bacterial microcolonies. Recently studies have shown that non-genetic differences may be passed 260 
down to offspring, causing a modest but measurable change in growth rate [7,17,18,30,31]. This 261 
can be tracked by recording pole age over time. Rod shaped bacteria have two poles, where one 262 
end of the cell is referred to as the ‘old’ pole if it was passed down from the mother. The pole 263 
formed after division is referred to as the ‘new’ pole (Fig 3A). 264 
 265 
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 266 
Fig 3. Pole age and its impact on growth rate. (A) Schematic showing how poles are passed down during a division. 267 
When a cell divides, the newly formed poles are defined as the ‘new’ poles (white dot) whereas the poles that were 268 
passed down from the mother are defined as the ‘old’ poles (black dot). Scale bar, 2 µm. (B) Pole assignment 269 
schematic. When the mother cell with known poles divides, the daughter cell that inherits the mother’s old pole is 270 
denoted ‘O’ whereas the daughter that inherits the mother’s new pole is ‘N.’  For each generation, either an O or an 271 
N is appended to the pole history. (C) Growth rate within each generation. The growth rate of an individual cell is 272 
calculated for the period right after the mother’s division until right before the cell divides again. To reduce noise, 273 
only cells present for at least three frames were included in the analysis. Daughters (n = 11,246 cells; two tailed 274 
unpaired t-test; p-value *** ≤ 0.001), granddaughters (n = 10,726 cells; a one-way ANOVA with post hoc Tukey test 275 
used for statistical analysis. Statistical significance: ‘OO’ and ‘NO’ versus ‘NN’ and ‘ON’; p-value ** ≤ 0.01), and 276 
great granddaughters (n = 10,217 cells; a one-way ANOVA with post hoc Tukey test used for statistical analysis. 277 
Statistical significance: ‘OOO’ and ‘NOO’ versus ‘ONN’,’NNN’,’NON’, and ‘OON’; p-value * ≤ 0.05). Error bars 278 
show standard error of the mean.  279 
 280 
To date, many experiments studying pole age have been conducted in the mother machine 281 
microfluidic device due to the ease of tracking cells [7,17,24].  However, a limitation of this 282 
approach is that it is only possible to track cells for a small number of generations because older 283 
generations are swept out of the imaging chamber while the mother cell’s old pole stays at the dead 284 
end of the chamber. For this reason, the original DeLTA algorithm did not track pole age 285 
information, and in a division event the algorithm simply assigned the cell closest to the dead end 286 
of the chamber to be the mother and the other cell to be the daughter. However, on two-dimensional 287 
surfaces cells can be aligned in any orientation, therefore DeLTA 2.0 assigns old and new poles 288 
after division based on the position of the septum. To highlight the ability to track pole age over 289 
time, we analyzed a movie of E. coli growing in unstressed conditions. At t = 0, we do not know 290 
the history of the cells, so the poles are initially unassigned (Fig 3B). After division, the mother’s 291 
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poles that are passed down become the ‘old’ poles and the newly divided poles are the ‘new’ poles 292 
of the daughters. This proceeds over subsequent generations. To keep track of this, we denote the 293 
daughter that receives the old pole as ‘O’ and the new pole as ‘N’. When these daughter cells 294 
divide, they form cells that are granddaughters of the original mother cell. We append an O or N 295 
at the end of the pole sequence to record this. For example, the cell that inherits the original old 296 
pole is denoted OO and its sibling is ON. This continues through the generations, such that great 297 
granddaughters of the original mother have three letters in their pole sequence (e.g. OON). 298 
 299 
First, we compared the growth rate of the old and new pole daughters from time-lapse movies of 300 
E. coli growing in unstressed conditions. Consistent with prior literature [17,18,30], we found that 301 
old pole (O) daughters grew more slowly than the new pole (N) daughters (Fig 3C). Next, we used 302 
the rich generational information provided by DeLTA 2.0 to test for differences in growth rate 303 
between granddaughters and great granddaughters with different pole ages. We found that growth 304 
rate differences were dependent on which pole the cell most recently received. For instance, OO 305 
and NO had growth rates that were lower than the NN and ON (Fig 3C). Therefore, the old versus 306 
new pole influence upon growth rate is dominated by effects that extend back only one generation. 307 
This result was consistent with great granddaughters as well, where growth rates tended to be 308 
slower in cells that most recently received an old pole (OOO, NOO, ONO, NNO) than in those 309 
that received a new pole (ONN, NNN, NON, OON). These results demonstrate how pole age 310 
information can be tracked with DeLTA 2.0, enabling studies on replicative aging. 311 
 312 
Finally, to test the generality of the algorithm we analyzed a time-lapse movie of >1,000 B. subtilis 313 
cells growing in a microfluidic device. This movie was generated in a different laboratory than 314 
any of the data that was included in the training set and no data from this movie were included in 315 
training. Using the previously trained model with no modifications, we analyzed the new movie 316 
and obtained excellent results (S2 Movie). The performance of DeLTA 2.0 on conditions it has 317 
not been trained for demonstrates its adaptability. Cropping to remove chamber edges and training 318 
to ignore device features such as support posts could further improve performance. This result 319 
highlights the broad potential for impact of DeLTA 2.0 in image analysis of two-dimensional 320 
bacterial cultures. 321 
 322 
Discussion 323 
In this work, we developed a deep learning pipeline that can process time-lapse images of bacterial 324 
microcolonies and output single-cell data. Utilizing the U-Net convolutional neural network 325 
architecture, the model can rapidly segment and track cells frame-to-frame with a low error rate. 326 
We applied this to successfully differentiate growth rates between sensitive and resistant strains of 327 
E. coli growing on an agarose pad. This demonstrates DeLTA’s new ability to measure co-culture 328 
dynamics, which are hard to capture in devices like the mother machine. DeLTA 2.0 retains all the 329 
functionality of the original version of DeLTA and can now be used on mother machine data or 330 
microcolonies of bacteria growing in two dimensions. 331 
 332 
The analysis pipeline is centered around the two trainable models for segmentation and tracking. 333 
We avoided hard-coding ad hoc rules such as pre- and post-processing steps or lineage 334 
reconstruction rules to the greatest extent possible. The current models work very well on standard 335 
rod-shaped bacteria such as E. coli (S1 Movie) and B. subtilis (S2 Movie). This suggests that 336 
analysis of cells with similar morphologies such as other Bacillus, Pseudomonas, and Salmonella 337 
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species will be straightforward. DeLTA 2.0 may require further training for cases where the 338 
appearance of the cells deviates from the data the current models were trained on. For example, 339 
although the models can handle some elongated cells (Fig 1B-C), they are not currently optimized 340 
for cells with highly filamented morphologies or cells undergoing stress. However, since we 341 
avoided embedding rules in the code that are specific to our use case, we anticipate that DeLTA 342 
can be adapted not only to new morphologies after re-training but also to different organisms. For 343 
example, Fox et al. used DeLTA 1.0 to train a model to segment yeast cells with high accuracy 344 
[2].  345 
 346 
Although segmentation works efficiently and has a low error rate, the model sometimes makes 347 
incorrect predictions about distinct cells being connected (S4 Fig). In particular, if movie frames 348 
are acquired at a high frequency, for example every minute or less, the segmentation model can 349 
fluctuate in its decision to split a cell undergoing division, which then complicates tracking. Within 350 
isolated images, these errors can be difficult to catch, even for humans. However, by looking at 351 
earlier and later frames it is usually possible to identify such errors because cells cannot divide and 352 
then merge back together. As a potential future direction, deep learning architectures that use time-353 
series information such as recurrent neural networks could be combined with our models to 354 
improve segmentation by incorporating temporal context. 355 
 356 
The tracking model runs robustly but can slow down when there are hundreds of cells in the image. 357 
Because every cell in the frame creates an input for the tracking model, this increases exponentially 358 
as the bacterial microcolony grows. At present, for movies with many cells, tracking is the current 359 
bottleneck for processing, whereas segmentation is comparatively faster. For example, S2 Movie, 360 
which has 100 frames and over 1000 cells in each frame takes a total time of ~1 hour to process 361 
with our system configuration, with over 50 minutes attributed to calculating the tracking events. 362 
Future efforts to optimize the tracking algorithm could help to address this by avoiding methods 363 
that scale linearly with the number of cells. In addition, initial tests suggest that it may be possible 364 
to decrease the size of the convolutional neural network by removing layers, though this would 365 
likely need to be customized for specific applications (S5 Fig). This could be applied to the 366 
segmentation or tracking model. 367 
 368 
Overall, DeLTA can now process two-dimensional movies accurately and capture spatial 369 
dynamics in a high throughput manner with no human intervention. It works with many common 370 
microscopy file formats and extracts single-cell features such as cell poles, length, lineage, and 371 
fluorescence levels automatically and saves data into Python and Matlab compatible formats. As 372 
many microbiology researchers work with these types of data, we envision that this software can 373 
be used to increase the throughput of microscopy image analysis. 374 
 375 
 376 
Methods 377 
 378 
Implementation and network architecture 379 
Code, installation instructions, and datasets are on Gitlab: https://gitlab.com/dunloplab/delta. 380 
Documentation for the software is available at: https://delta.readthedocs.io/en/latest/. We also 381 
provide a Google Colab notebook, which allows users to test DeLTA 2.0 with their own data 382 
without installing the code on their local machine:  383 
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https://colab.research.google.com/drive/1UL9oXmcJFRBAm0BMQy_DMKg4VHYGgtxZ. 384 
 385 
The U-Nets are implemented in TensorFlow/Keras. We developed a fully-integrated pipeline that 386 
can compile single-cell data from Bio-Formats compatible files or TIFF image sequences, but we 387 
also provide simpler scripts and data that illustrate the core principles of our algorithm for easy 388 
adaptation to different use cases. In S1 Table, we have listed the packages and exact versions that 389 
we use in our environment to run DeLTA 2.0. Both the segmentation and tracking models 390 
implement a U-Net neural network architecture. The tracking model inputs a phase contrast image 391 
and segmentation from the current and previous frame and outputs a greyscale image of the 392 
predicted tracking event (S1 Fig). In the original version of DeLTA [11], the tracking model uses 393 
a softmax function as the final activation layer and a categorical cross-entropy loss function to 394 
produce three greyscale output images with 1’s in each layer representing the mother cell, daughter 395 
cell, and background, respectively. In DeLTA 2.0, the tracking model uses a sigmoid function as 396 
the final activation layer and a pixelwise-weighted binary cross-entropy loss function to produce 397 
a single greyscale output image with 1’s representing tracked cells (mother and potential daughter) 398 
and 0’s representing the background and the cells that did not track to the input cell. 399 
 400 
Loss functions and training 401 
To train both models, we implemented a pixelwise-weighted binary cross-entropy loss function, 402 
as in the original U-Net paper [9]. This loss function was adapted from the binary cross-entropy 403 
function in Tensorflow/Keras which measures the pixelwise loss of a sample. The loss is multiplied 404 
elementwise with the weight map to magnify or reduce the loss (S6 Fig). Lastly, we normalized 405 
the loss based on the sum of the total weight map to evenly distribute how much each sample 406 
updates the model. Overall, the loss function determines the difference between the model output 407 
and the ground truth, which is then used to update the weights within the model. As in Ronneberger 408 
et al. [9], our loss function takes a weight map as an extra input to assign more importance to 409 
certain pixels in the ground truth during training. We used custom weight maps to improve 410 
segmentation on rod-shaped bacteria by increasing weights for the center of the cells and the 411 
borders between the cells. We also minimize weight on the background, where background is 412 
defined as anything in the image that is not a cell or border (S7 Fig). More specifically, we 413 
maximized the weights for the skeletons of the cells and borders, which are pixel-wide 414 
representations of binary objects in images [32]. Determining the exact borders of the cells by eye 415 
is hard and partially arbitrary. To prevent the model from learning these arbitrary cell-border 416 
interfaces, we reduced the weights in these areas (S7 Fig). In addition, the background weights 417 
were set to be variable, where the weight increased with respect to an incorrect prediction (S8 Fig). 418 
The model outputs a number between 0 and 1, with 0 representing the background and 1 419 
representing a cell. Since we had high confidence in the ground truths for the background, we were 420 
able to set the values of the weight map for the background to be equal to the actual prediction for 421 
the background. If the model incorrectly predicted a cell for a pixel that is background, then there 422 
would be a high value for that pixel in the weight map. Alternatively, if the model correctly 423 
predicted background for a pixel that was background, then there would be a low value for that 424 
pixel in the weight map. This method allows the model to efficiently recognize and discard debris 425 
and reduce overfitting on the background. Our code includes a function to automatically generate 426 
these weight maps from the ground truth segmentations. Custom weight maps were also 427 
implemented for the tracking model, although they were found to be less critical to training a 428 
successful model. The weight map was similarly generated by applying morphological operations 429 
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to the segmentation of all cells in the current frame and the ground truth. The skeleton of the 430 
ground truth cell was set to the highest weight while other cells’ pixels were set to decreasing 431 
weights depending on the distance from the tracked cell (S1B Fig). The function generating these 432 
maps is also provided in our software. 433 
 434 
In addition to the data augmentation operations described in the original version of DeLTA [11], 435 
two new data augmentations were used while training the segmentation model. We used the 436 
blurring function GaussianBlur from the OpenCV package which convolves a 5x5 Gaussian kernel 437 
over the image. For the noise function we used the random.normal function from the numpy 438 
package which outputs random samples from a Gaussian distribution into an array the same size 439 
as the image. This is added to the original image and rescaled back to a range between 0 and 1. 440 
Both the blurring and noise functions are applied to all input images with user-specified standard 441 
deviations. We set 1 and 0.03 to be the default standard deviations for the blurring and noise 442 
functions, respectively.  443 
 444 
To simulate exaggerated cell movement during tracking, such as when an agarose pad dries out 445 
and causes the field of view to shift over time, we added a function that randomly shifts the inputs 446 
containing the current frame (microscopy image of the current frame, segmentation mask of all the 447 
cells in the current frame, ground truth, and weight map) up to a user-specified number of pixels 448 
(e.g. 5 pixels). These operations help expand the training dataset and allow the model to generalize 449 
to realistic conditions. 450 
 451 
The segmentation model used to quantify the error rate was trained for 600 epochs with 300 steps 452 
per epoch and a batch size of 1. The Adam optimizer was used with a learning rate of 10-4. The 453 
tracking model used to quantify the error rate was trained for 500 epochs with 300 steps per epoch 454 
and a batch size of 2. The Adam optimizer was used with a learning rate of 10-5. In all cases, the 455 
models converged during these training period. For example, S9 Fig shows convergence results 456 
for segmentation model training.  457 
 458 
Training set generation and testing 459 
For the segmentation training dataset, the initial segmentations were generated semi-automatically 460 
by an expert using the interactive learning and segmentation toolkit Ilastik [33]. This accounted 461 
for 11% of the final training set. Once the segmentation model was performing well on the test 462 
data, which we defined as being more than 95% accurate, we used it to generate more training 463 
data. Incorrect DeLTA 2.0 outputs, like segmentations that connect two distinct cells together, 464 
were manually corrected. Processed DeLTA outputs accounted for 36% of the training set. 465 
Additionally, we incorporated published segmentation data from van Vliet et al. [34] where cells 466 
were segmented and tracked to measure the spatial dynamics of gene expression in bacterial 467 
microcolonies. We obtained the cell segmentation and tracking data from the ETH archive: 468 
https://doi.org/10.5905/ethz-1007-77. On this dataset, we performed operations to improve the 469 
data quality including smoothing filters, dilation, erosion, and skeletonize functions. These data 470 
accounted for the remaining 53% of the training set. The final training set had 307 training 471 
examples from sixty movies, with a maximum of 10 frames per movie to increase sample diversity. 472 
Each training example consisted of a phase contrast image as the input, the corresponding 473 
segmented ground truth, and a pre-generated weight map used in the loss function (S7 Fig). The 474 
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test movie used to evaluate the segmentation model was colony 150310-05 from the trpL data zip 475 
file from van Vliet et al. [34] on the ETH archive.  476 
 477 
For the tracking training dataset, we used a modified version of the Matlab script used in DeLTA 478 
1.0 to generate the initial training examples. Instead of showing the whole frame in the graphical 479 
user interface, the modified script showed a zoomed-in 75x75 pixel box around the cell of interest. 480 
In addition, the modified script had one output consisting of the mother and daughter cell whereas 481 
the original script had three outputs for the mother cell, daughter cell, and background. The Matlab 482 
script was used to produce 15% of the training set. Each training example consisted of four inputs, 483 
one output, and one weight map. The inputs were the phase contrast of the previous frame, 484 
segmentation of the cell of interest in the previous frame, phase contrast of the current frame, and 485 
segmentation of all the cells in the current frame (S1A Fig). The output is a segmentation mask for 486 
the cell(s) that the cell of interest in the previous frame tracked to. The weight map is used in the 487 
loss function. Once the tracking model was performing with more than 99% accuracy on test data, 488 
we used it to generate more training data. Movies with images taken 5 minutes apart were 489 
processed using DeLTA 2.0 and then new training examples were generated by tracking cells 490 
across longer time intervals. Instead of tracking from the frame immediately before the current 491 
timepoint, cells were tracked from a frame from two or three timepoints before. This allowed us 492 
to generalize to longer acquisition intervals and to situations where the cells grew faster or travelled 493 
further between frames. These processed DeLTA outputs accounted for 20% of the training set. In 494 
addition, published tracking data from van Vliet et al. was incorporated to increase the training set 495 
size, accounting for 65% of all the training examples. The final tracking training set had 23,655 496 
examples. The test movies used to evaluate the tracking model were colony 140408-01 from the 497 
cib data zip file; colonies 151029_E1-1, 151029_E1-5, and 151101_E3-12 from the rpsM data zip 498 
file; and colonies 150309-04 and 150310-05 from the trpL data zip file from van Vliet et al. [34].   499 
 500 
Time-lapse microscopy experiments 501 
Overnight cultures of E. coli MG1655 were diluted 1:100 and allowed to grow for 1-2 hours in LB 502 
medium. For the co-culture experiment, we included 30 µg/mL of kanamycin for plasmid 503 
maintenance. We created the co-culture with a 1:5 dilution by mixing 0.5 µL of the resistant strain 504 
and 0.5 µL of the susceptible strain with 4 µL of LB medium. For the pole age experiment, the 505 
culture was diluted 1:100 in MGC media (M9 salts supplemented with 2 mM MgSO4, 0.2% 506 
glycerol, 0.01% casamino acids, 0.15 μg/ml biotin, and 1.5 μM thiamine). A 1:100 dilution was 507 
used to decrease cell density. For both experiments, 1-1.5 µL of the diluted samples were added 508 
to prewarmed 1.5% low melting temperature agarose pads made with MGC media. Samples were 509 
prepared and imaged as described in Young, et al. [19]. A Nikon Ti-E microscope was used with 510 
a 100x oil objective for all microscopy experiments.  511 
 512 
In the co-culture experiment, E. coli MG1655 were transformed with a single plasmid, either with 513 
tetracycline resistance or without. Both plasmids originated from the BioBrick plasmid library 514 
(pBbA7k) [35]. The plasmid for the resistant cells harbors both a tetracycline resistant gene and 515 
red fluorescent protein gene (rfp) (pBbA7k-RFP-tetA), while the sensitive cells contain only green 516 
fluorescent protein (gfp) (pBbA7k-sfGFP). The pads contained 30 µg/mL kanamycin for plasmid 517 
maintenance and 0.5 µg/mL tetracycline. Phase contrast, GFP, and RFP fluorescence images were 518 
taken every 5 minutes.  519 
 520 
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In the pole age experiment, E. coli MG1655 was used and no antibiotics were present in the culture. 521 
Phase contrast images were taken every 5 minutes.  522 
 523 
We calculated the growth rate as:  524 
 525 

      𝐺𝑟𝑜𝑤𝑡ℎ	𝑅𝑎𝑡𝑒 = !!"!!"#
!!"#

× #
∆%
 526 

  527 
Where Lt is the cell length at time t, Lt-1 is the length at time t-1, and Dt is the difference in time 528 
between t and t-1 (5 min = 0.083 hr in our movies). Growth rates were measured for one generation. 529 
For example, to measure the growth rate of OO, measurements start when O divides into OO and 530 
end when OO divides into OON and OOO. However, no information about the growth rate of O 531 
is used to calculate the growth rate of OO. The growth rate is the average across the timepoints 532 
within this generation. To reduce noise, growth rates were only recorded in the analysis if cells 533 
were present for at least three frames.  534 
 535 
Testing impact of frame shifts on tracking 536 
We considered three representative conditions and performed tracking under artificial frame shifts 537 
(S3 Fig). The conditions were cases of “low,” “medium,” and “high” cell density, which we 538 
defined as having <5, 20-25, and >200 cells in the field of view. We calculated the percent overlap 539 
between the model prediction and ground truth for all tracking events as the frame was artificially 540 
shifted. For each tracking event, the field of view was shifted over 11 different distances ranging 541 
from 1 to 100 pixels, which correspond to 0.129 to 12.9 µm, and each distance was applied in all 542 
four cardinal directions to generate a total of 48 shifts plus one unshifted version. The time-lapse 543 
movie used for this analysis was colony 151101_E3-12 from the rpsM zip file from van Vliet et 544 
al. [6]. 545 
 546 
 547 
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Supporting Information Captions 656 
 657 
 658 
Supporting Figure Captions 659 
 660 
S1 Fig. Schematic showing how the tracking model uses the inputs to make predictions. (A) 661 
The four inputs are concatenated into one array and processed by the model, which outputs a 662 
greyscale image of the cell tracked (or cells, in the case of a division event). (B) Ground truth and 663 
custom weight map for tracking. 664 
 665 
S2 Fig. Accuracy of the segmentation model. (A) For each frame in the movie we plotted the 666 
intersection-over-union (IOU) / Jaccard index, Dice score / F1 coefficient. Error rate, as defined 667 
in the manuscript, is also shown. (B) The proportion of pixels that were True Positives (TP) + True 668 
Negatives (TN), False Positives (FP), and False Negatives (FN) for each frame in the movie. Note 669 
that these are pixelwise predictions as opposed to predictions per cell. TP and TN represent the 670 
rate of correct pixelwise predictions in the frame. FP represent the rate of erroneous predictions of 671 
pixels as part of a cell when the ground truth reports it as background. FN represent the rate of 672 
erroneous predictions of pixels as background. The test set (S1 Movie) was used to calculate these 673 
evaluation metrics. 674 
 675 
S3 Fig. Impact of frame shifts on tracking model performance. The average prediction in the 676 
four cardinal directions to ground truth overlap for 20 representative tracking events plotted as a 677 
function of the shift distance. Tracking model performance when (A) cell density is low (<5 cells 678 
in the frame), (B) medium (20-25 cells in the frame), or (C) high (>200 cells in the frame). As the 679 
shift distance increases, the performance decreases. The model generally performs better with 680 
fewer cells to track per frame. The black line represents the mean for each shift distance. 681 
 682 
S4 Fig. Limitations of segmentation. Two sequential phase contrast images of E. coli 683 
microcolonies with their respective segmentations. The red arrow points to an error where the 684 
model has incorrectly combined two cells into one. This type of error is very hard to correct out of 685 
context. 686 
 687 
S5 Fig. Reducing the size of the model to increase speed. Schematics showing different network 688 
architectures. (A) Original U-Net architecture that we use throughout the paper. (B) U-Net 689 
architecture without the bottom layer. (C) U-Net architecture without the bottom two layers. The 690 
model has been trained on segmentation as well as tracking for these reduced networks. The 691 
network in (C) runs twice as fast as the original network in (A) and sacrifices very little accuracy. 692 
 693 
S6 Fig. Schematic of the pixelwise binary cross-entropy loss function used to train the 694 
segmentation and tracking models. The inputs and outputs for the loss function are shown. The 695 
inputs include the ground truth (GT), the prediction made by the model (Pred), and the associated 696 
weight maps. The output is the pixelwise-weighted loss, which is a greyscale image. In step 1, the 697 
ground truth and prediction are used to calculate the binary cross-entropy loss. The first half of the 698 
equation measures the pixelwise loss associated with the model predicting background when the 699 
ground truth is a cell. The second half of the equation measures the pixelwise loss associated with 700 
the model predicting cell when the ground truth is background. In step 2, the weighted loss is 701 
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calculated by performing an elementwise multiplication of the weight map and the loss calculated 702 
in step 1. The weight map helps the model learn the more important features, such as cell borders. 703 
This schematic of the loss function is simplified for visualization purposes. For clarity, we also 704 
show how the pixelwise-weighted loss maps onto the prediction, where cyan regions highlight 705 
areas where the loss is emphasized in order to improve the model’s performance for these regions 706 
of the example image. 707 
 708 
S7 Fig. Training the model on segmentation with custom weight maps. Schematic showing 709 
two models trained on the same dataset with different weight maps. In this example, both U-Net 710 
models were trained for 600 epochs, 300 steps per epoch, with a batch size of 2. Inputs necessary 711 
to train the model include the phase contrast image, the associated segmented ground truth, and 712 
weight map. (A) Model trained with weight maps derived from the original U-Net paper. Green 713 
ovals show examples of errors. (B) Model trained with custom weight maps which were generated 714 
by applying morphological operations to the segmented ground truth. The model trained on the 715 
new weight maps performs better, as shown by the outputs on a test image. (C) To aid 716 
visualization, the ‘Overlay’ shows the custom weight map overlayed on the phase contrast image.  717 
The overlay shows that the weights are emphasized at the core of the cells (shown by red lines) 718 
and at the borders (shown by yellow lines). 719 
 720 
S8 Fig. Utilizing variable background weight maps for training the model on debris. A 721 
simplified schematic showing how the loss is calculated for a single input using weight maps. (A) 722 
Schematic showing the traditional use of weight maps. (B-C) Schematics showing the use of 723 
variable weight maps. The prediction is used to update the weight map. (B) The background weight 724 
map values are replaced by the background values in the prediction. This method forces the model 725 
to quickly learn to filter out debris as the weight map values for the background increase 726 
significantly when the model predicts debris as cells. (C) Conversely, when the model correctly 727 
classifies the debris as background, the weight map values for the background remain similar to 728 
the original values. 729 
 730 
S9 Fig. Loss history of segmentation model trained over 600 epochs. Loss of the model during 731 
training as a function of the total number of epochs. Only points where the model performance 732 
improves and loss reaches a new minimum are shown. There were no improvements in the last 85 733 
epochs, showing convergence. 734 
 735 
 736 
Supporting Movie Captions 737 
 738 
S1 Movie. Time-lapse movie of a bacterial microcolony analyzed with DeLTA 2.0. Phase 739 
contrast images containing E. coli cells outlined with different colors representing unique cells. 740 
Cells can be tracked by following their respective colors throughout the movie. White arrows 741 
indicate cell division events. White and colored dots refer to the new and old poles, respectively. 742 
This time-lapse movie was part of the test set used to calculate the error rate for tracking and 743 
segmentation. Timestamp shows time in HH:MM format. 744 
 745 
S2 Movie. Time-lapse movie of a dense bacterial microcolony growing in a microfluidic 746 
device analyzed by DeLTA 2.0. Phase contrast images show B. subtilis cells outlined with 747 
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different colors. Cells can be tracked by following their respective colors throughout the movie. 748 
White arrows indicate cell division events. White and colored dots refer to the new and old poles, 749 
respectively. Frame rate is one frame per minute. Original movie data were kindly provided by 750 
Prof. Avigdor Eldar and Dr. Jordi van Gestel. 751 
 752 
 753 
 754 
Supporting Table Captions 755 
 756 
S1 Table. Specific versions used in the environment to run DeLTA 2.0. Package name and 757 
respective number of the version that was used for analysis presented in this manuscript, as well 758 
as for other working installations. 759 
 760 


