oo NOOTULLPA, WN B

A A D PAPEAEDDDWWWWWWWWWWNNNNNNNNMNNNRPRRPRRRRRRRR
OoOu b WNREPOOONOOCUDWNREROOONOUUPDDWNREROOONOUPED WNEO

DeLTA 2.0: A deep learning pipeline for quantifying
single-cell spatial and temporal dynamics

Owen M. O’Connor!?, Razan N. Alnahhas'?, Jean-Baptiste Lugagne!>*, Mary J. Dunlop'>*

! Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
2 Biological Design Center, Boston University, Boston, Massachusetts, USA
* jlugagne@bu.edu (JBL); * mjdunlop@bu.edu (MID)

Abstract

Improvements in microscopy software and hardware have dramatically increased the pace of
image acquisition, making analysis a major bottleneck in generating quantitative, single-cell data.
Although tools for segmenting and tracking bacteria within time-lapse images exist, most require
human input, are specialized to the experimental set up, or lack accuracy. Here, we introduce
DeLTA 2.0, a purely Python workflow that can rapidly and accurately analyze images of single
cells on two-dimensional surfaces to quantify gene expression and cell growth. The algorithm uses
deep convolutional neural networks to extract single-cell information from time-lapse images,
requiring no human input after training. DeLTA 2.0 retains all the functionality of the original
version, which was optimized for bacteria growing in the mother machine microfluidic device, but
extends results to two-dimensional growth environments. Two-dimensional environments
represent an important class of data because they are more straightforward to implement
experimentally, they offer the potential for studies using co-cultures of cells, and they can be used
to quantify spatial effects and multi-generational phenomena. However, segmentation and tracking
are significantly more challenging tasks in two-dimensions due to exponential increases in the
number of cells. To showcase this new functionality, we analyze mixed populations of antibiotic
resistant and susceptible cells, and also track pole age and growth rate across generations. In
addition to the two-dimensional capabilities, we also introduce several major improvements to the
code that increase accessibility, including the ability to accept many standard microscopy file
formats as inputs and the introduction of a Google Colab notebook so users can try the software
without installing the code on their local machine. DeLTA 2.0 is rapid, with run times of less than
10 minutes for complete movies with hundreds of cells, and is highly accurate, with error rates
around 1%, making it a powerful tool for analyzing time-lapse microscopy data.

Author Summary

Time-lapse microscopy can generate large image datasets which track single-cell properties like
gene expression or growth rate over time. Deep learning tools are very useful for analyzing these
data and can identify the location of cells and track their position. In this work, we introduce a new
version of our Deep Learning for Time-lapse Analysis (DeLTA) software, which includes the
ability to robustly segment and track bacteria that are growing in two dimensions, such as on
agarose pads or within microfluidic environments. This capability is essential for experiments
where spatial and positional effects are important, such as conditions with microbial co-cultures,
cell-to-cell interactions, or spatial patterning. The software also tracks pole age and can be used to
analyze replicative aging. These new features join other improvements, such as the ability to work
directly with many common microscopy file formats. DeLTA 2.0 can reliably track hundreds of
cells with low error rates, making it an ideal tool for high throughput analysis of microscopy data.

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92

Introduction

The automation of hardware and software for microscopy has resulted in researchers’ ability to
generate massive datasets containing images of cells over time. For example, in a recent high
throughput experiment Bakshi et al. imaged 10% Escherichia coli over days by acquiring 705 field
of views every few minutes [1]. Additionally, recent studies have used closed-loop microscopy
and optogenetic platforms to control gene expression in single cells in real time [2—4]. These
improvements in microscopy have motivated the need for automated image analysis, as traditional
approaches that require manual error correction cannot keep pace with the size of these new
datasets or the rate at which they can be acquired. More generally, segmentation and tracking have
historically required intensive user input as well as custom image processing code or experimental
modifications such as the use of dedicated fluorophores [1,5-8]. These requirements limit
throughput and can introduce burdensome experimental constraints.

To address this, researchers need tools that are rapid, accurate, and require minimal input from the
user. This combination of needs is well suited for deep learning-based approaches, and deep
convolutional neural networks have enabled fast and accurate analysis of images. Specifically, the
U-Net architecture has emerged as the state-of-the-art convolutional neural network for biomedical
applications [9]. U-Net uses a “U”-shaped network architecture with a contraction path, where
successive convolutional layers are applied to feature maps that are progressively down-sampled,
followed by a symmetric expansion path where the low-resolution but high-level encoding of the
input image is up-sampled back to the original resolution. In addition, skip-connections are used
to concatenate finer detail feature maps used in the contraction path with up-sampled feature maps
in the expansion path. Skip-connections allow the network to retain high-resolution information
needed to construct the mask at the end of the network. This approach has been widely successful
for segmentation of cells [10—14] and for tracking cells from frame-to-frame within time-lapse
images [11,13].

Here, we focus on analysis of bacterial time-lapse microscopy data in two-dimensional settings
such as agarose pads or within microfluidic chips. With rapid cell cycle times, small cell sizes, and
high throughput microfluidic devices, it is possible for researchers to generate large datasets
containing thousands of single cells over periods of hours or days. As a result, researchers can use
statistical analysis to study the subtle and complex effects of cell-to-cell heterogeneity, gene
expression dynamics, and cell-to-cell interactions in isogenic populations [1,6]. This has led to
fundamental discoveries related to antibiotic resistance [8,15], and has allowed for accurate
characterization of genetic parts and circuits [16]. Further, single-cell time-lapse analysis has
revealed that cell division in E. coli is asymmetrical, where daughter cells receiving the ‘old’ pole
grow more slowly than daughter cells receiving the ‘new’ pole [17]. However, these effects are
subtle, necessitating measurements of many division events to determine statistically significant
effects [18]. Until recently, such studies necessitated painstaking semi-manual analysis and
curation of microscopy data. Software based on traditional image analysis techniques such as
Schnitzcells [19], Oufti [20], and SuperSegger [21] all require significant user input and post-
processing. A few recent studies have proposed deep learning models for bacterial cell
segmentation such as MiSiC [10], DeepCell [22], and Cheetah [14], and yeast cell segmentation
in Yeastnet [12] and Cell-DETR [23], however to our knowledge there is no integrated deep
learning segmentation and tracking pipeline for two-dimensional time-lapse analysis of bacteria.

93

94

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138

In previous work, we developed the Deep Learning for Time-lapse Analysis (DeLTA) pipeline to
analyze single-cell growth and gene expression in microscopy images [11]. DeLTA uses two
instances of the U-Net model to segment and then track cells. This allows for rapid and robust
analysis of time-lapse movies. The original version of DeLTA focused on segmentation and
tracking of cells in the ‘mother machine’ microfluidic device [24] where bacteria are constrained
to narrow chambers where they grow in a single file line. This powerful design simplifies image
analysis and enables experiments that run for many hours or days. However, this constrained
geometry is not well suited for the study of two-dimensional effects such as diffusion of chemical
signals, proximity-based effects, or co-cultures with mixed populations of cells. Two-dimensional
configurations, ranging from microcolonies growing on agarose pads to microfluidic growth
chambers, can be used to measure spatial dynamics of cell-to-cell interactions. Examples include
quorum sensing [25] and the effect of efflux pumps on neighboring cells in the presence of
antibiotics [26]. Segmenting and tracking cells in two dimensions are more challenging than for
cells constrained within the mother machine. Segmentation becomes more difficult as
microcolonies grow because images can contain hundreds of cells, where any given cell may have
neighbors on all sides. The complexity associated with tracking also increases dramatically. In
contrast to mother machine data, where frame-to-frame assignments can be limited to the small
number of cells within the chamber (typically <10 cells), two-dimensional environments need to
consider hundreds of possible assignments. Further, cells can move in any direction and may move
large distances, for example if there is drift over the course of the movie.

In this manuscript we introduce DeLTA 2.0, a new version of DeLTA that segments and tracks
cells in two dimensions. DeL TA 2.0 retains all the functionality of the original version and is fully
compatible with mother machine data. In order to make our approach adaptable to different use
cases, we minimized the number of pre- and post-processing steps so that most of the analysis is
performed by the trainable models. The new version is available open source and uses a fully
Python implementation. We have also introduced other improvements to the code to increase
accessibility, such as the ability to work with images of arbitrary size and to accept many common
microscopy file formats as inputs. We show that DeLTA 2.0 can segment and track co-cultures of
bacteria growing on agarose pads and within microfluidic chambers. In addition to fluorescence
and cell length, DeLTA 2.0 also records pole age. We use this to record replicative aging and
compare the growth rate across generations. DeLTA 2.0 performs well on crowded images and
requires no human intervention. The code, installation instructions, and datasets are available open
source on Gitlab. We also provide a Google Colab notebook for users to rapidly test DeLTA 2.0
on their own data.

Results

DeLTA 2.0 can track cell length, growth rate, fluorescence, and progeny over time for cells
growing in a two-dimensional microcolony. The algorithm takes microscopy images as inputs. It
then uses two U-Net convolutional neural network models, one for segmentation and one for
tracking, performs lineage reconstruction, and outputs single-cell data (Fig 1A). Segmentation
generates information about cell morphology and can be used to identify both normal and
filamented cells (Fig 1B-C). The tracking step reliably tracks cells across frames, recording
division events when they occur (Fig 1D). Lineage reconstruction determines how cells are
associated across generations and records features such as pole age (Fig 1E). The algorithm outputs

139
140
141
142

143
144

145
146
147
148
149
150
151
152
153
154
155
156
157
158
159

single-cell resolution information for all cells within a field of view (Fig 1F). No human
intervention is required to specify any input parameters. This is in sharp contrast to other methods,
which typically require inputs, such as cell size or cell type [10,19-21,27].

o

A
£
Lineage 54
. . g
— [Segmentation | —» Tracking = reconstruction —_ Ez
00 200 400 600
Microscopy Time (mins)
Images Single-cell data
B
C 20

Counts
>

o 1 2 3 4
Cell length (um)

€
=2
- C Y) 4
o |
I 2 /)) v :
3 ’ A
E Old pole e
00 100 200 300 400 500 600
Time (mins)
New pole

Fig 1. Segmentation and tracking of cells within a microcolony. (A) DeLTA pipeline consists of segmentation,
tracking, and lineage reconstruction. (B) Segmentation example with phase contrast image containing an E. coli
microcolony, which is input into a U-Net convolutional neural network to obtain segmentation results. (C) Histogram
of cell lengths. Inset shows a zoomed-out version with outliers included. (D) Cell tracking between frames.
Representative examples of cell tracking with and without division are shown with a phase contrast image of the
‘previous frame’ on the left, a phase contrast image of the ‘current frame’ in the middle, and a greyscale image of the
‘prediction’ on the right. The ‘current frame’ also shows the tracking prediction overlayed. The ‘prediction’ shows
the U-Net output with the ground truth overlayed (S1 Fig). (E) Lineage reconstruction keeps track of cell lineages and
records pole age. (F) Plot of cell lengths over time. Black line is a representative example of one cell’s length as it
grows and divides; all cells in the microcolony are shown in grey.

DeLTA 2.0 can process datasets of various dimensions quickly and robustly. To evaluate its speed
and accuracy, we used a movie from the literature that had been segmented and tracked with
manual correction that DeLTA had not been trained on (Methods). It took 8 mins and 49 secs to
conduct complete analysis of this time-lapse movie containing 69 frames, where the final frame
contains 232 E. coli cells (S1 Movie). This analysis was conducted on a desktop computer with a

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205

Nvidia Quadro P4000 graphics card. In addition to being fast, DeLTA also has a low error rate.
For the 3,286 cells segmented in the test set, there was a segmentation error rate of 0.01%. We
defined a correct segmentation prediction as any case where the cell annotation in the model
prediction had more than three quarters of its pixels overlapping with the ground truth data. This
allows subtle differences between the prediction and ground truth to be considered acceptable,
such as slight discrepancies in the exact location of the cell perimeter. In addition, if the model
made a prediction where it erroneously connected two cells together, we defined this as two errors.
Erroneously predicting a split cell was counted as one error. Because it can be difficult to assess
the exact frame at which a cell divides, we did not count predictions where the model determined
division events to be up to three frames later or earlier than in the ground truth as an error. Other
metrics for assessing segmentation errors also showed good agreement with our findings that error
rates are low (S2A Fig). The segmentation model tends to slightly under-segment due to emphasis
on getting the cell borders classified correctly (S2B Fig). To assess the tracking error rate, we
processed 6 movies of E. coli growing on agarose pads that the model had not been trained on. Out
of the 17,622 tracking events, we measured an average error rate of 1.02%. We defined a correct
prediction as a case where the cell assignment from one timepoint to the next matched the ground
truth. Cases where the model assigned two cells as the daughters of a cell from the previous frame
when there was in fact no division event, and cases where the model assigned no cell when the cell
was in fact still within the field of view, were counted as tracking errors.

The DeLTA 2.0 algorithm has several improvements over the original version of DeLTA [11].
The new code is a purely Python workflow; movies do not need to be pre- and post-processed in
Matlab. This transition allows the entire pipeline to exist in an open-source framework. We do
provide code that can be used to convert the output to a Matlab file for users that are more
comfortable working in this environment for post-processing data. In addition, in DeLTA 2.0 we
take advantage of the Bio-Formats toolbox for Python [28,29]. This allows users to work directly
with images in many common formats that are output via microscopy software, including nd2, czi,
ome-tiff files, and many more, without the need for any preformatting. We also made updates to
the code that increase its flexibility, while optimizing for performance. For example, DeLTA 2.0
can accept input images of various sizes. For large images (>512x512 pixels), DeLTA 2.0 will
automatically crop the image into smaller windows for segmentation and then stitch the outputs
back together. We note that large movies can cause memory issues, however the size limit at which
this occurs will depend upon the configuration of the system on which it is run. For example, in
our configuration the analysis of a time-lapse experiment with images of 1024x1024 pixels over
865 timepoints used 14GB of computer memory.

Since the original DeLTA code was optimized for images from the mother machine, where cells
are constrained to one-dimensional chambers, tracking was relatively straightforward. In two
dimensions, tracking is a more complex task and the number of cells that need to be tracked
simultaneously increases dramatically. It can be challenging to identify which cells are associated
with which lineage. To improve tracking speed, we crop a 256x256 pixel area around the cell of
interest. This approach works because a single cell is expected to remain in the immediate vicinity
of where it was in the preceding frame, so it is reasonable to restrict the search for daughter cells
to the local area. These coordinates are then used to crop the three other inputs (previous phase
contrast image, current phase contrast image, and current segmentation). The dimensions of these
cropping windows can be changed in the configuration file.

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245

To reduce overfitting, DeLTA 2.0 uses several new data augmentation operations while training.
In addition to operations such as random shifting, scaling, rotation, flipping, and illumination,
which were present in the original software, we added three new functions, two for segmentation
and one for tracking. To help deal with an occasional out of focus frame, we added a blurring
function that slides a Gaussian kernel over the image (Methods). In addition, electronic noise is
another issue when dealing with biological samples where the minimization of the total exposure
to excitation light decreases the signal-to-noise ratio of the camera’s sensor. To deal with this, we
added a function that adds Gaussian noise (Methods). To simulate exaggerated cell movement
during tracking, such as when an agarose pad dries out and causes the field of view to shift over
time, we wrote a new augmentation function that introduces image translations between different
timepoints (Methods). These operations help expand the training dataset and allow the model to
generalize to realistic conditions.

Because drift of cells within images is a common concern for some applications, we further
characterized the algorithm’s performance under shifts of different sizes (S3 Fig). When the cell
density is low, DeLTA can reliably handle shifts of up to ~30 pixels per timepoint in our images,
which corresponds to ~4 um. This problem is exacerbated in conditions where the frame is
crowded with cells. When the cell density is high, performance begins to degrade after shifts of
~15 pixels, or ~2 um. Thus, optimizing experimental conditions to minimize drift is important for
high quality analysis.

To showcase the utility of DeLTA 2.0, we performed several experiments where we grew E. coli
microcolonies on agarose pads and analyzed the output. First, we used DeLTA 2.0 to distinguish
differences in growth rate between antibiotic resistant and susceptible cells grown in the same field
of view. In this experiment, we mixed two strains of E. coli, one containing a tetracycline resistance
gene and a constitutively expressed red fluorescent protein (RFP) reporter, and the other without
the resistance gene and containing a green fluorescent protein (GFP) reporter. We grew cells in a
co-culture on an agarose pad containing an inhibitory concentration of tetracycline (0.5 pg/ml).
DeLTA 2.0 reliably segmented cells within the image (Fig 2A). The tetracycline resistance gene
allowed the RFP-expressing cells to grow well whereas the tetracycline sensitive GFP-expressing
cells grew very slowly (Fig 2B). The RFP and GFP fluorescence of individual cells can be plotted
over time and shows the two distinct strains (Fig 2C). By extracting mean fluorescence levels for
all cells within the time-lapse images, we found that fluorescence levels for the two populations
were well-separated and maintained over time, as would be expected for the constitutive reporters.
We also used DeLTA 2.0 to calculate the individual cell growth rates with respect to fluorescence.
We observed two distinct clusters, corresponding to RFP cells that grew normally and GFP cells
that grew slowly or did not grow (Fig 2D). These results highlight the ability to track cells with
different properties simultaneously within the same movie.

246
247

248
249
250
251
252
253
254
255
256

257
258
259
260
261
262
263
264
265

A t=0mins t = 200 mins c

2000

GFP

Fluorescence (a.u.) Fluorescence (a.u.)

Phase

1000]

o

10000+

RFP

5000

Fluorescence

0+ —
0 25 50 75 100 125 150 175 200

Overlay
Time (mins)
[Resistant

B Susceptible

[Resistant D
[Susceptible

B 40

Resistant

Growth Rate (1/hr)

Susceptible

<

Fig 2. Resistant and susceptible strains of E. coli on agarose pads containing an inhibitory concentration of
tetracycline. (A) Phase contrast images and associated fluorescence overlays. RFP expressing cells contain a
tetracycline resistance gene and GFP expressing cells do not. The magenta and green cell outlines in the fluorescence
overlay represent the resistant and susceptible cells, respectively. Region of interest boxes show the areas represented
in (B). (B) Representative examples of antibiotic resistant and susceptible cells tracked over time. (C) RFP and GFP
fluorescence tracked for individual cells over time. (D) GFP fluorescence versus RFP fluorescence for single cells
plotted against growth rate. Fluorescence values are the averages over all the frames for that cell. For growth rate
calculations, only cells that were present at t = 150 min were tracked, which is a time point mid-to-late in the movie.
The analysis omits those cells that enter the field of view after t = 150 min since the growth rates become noisier with
less data. Three resistant cell outliers with growth rates of ~1.4 1/hr are omitted from this view.

DeLTA 2.0 is well suited for measuring growth and gene expression for many cells within an
image. Because of this, another potential application is the study of replicative aging within
bacterial microcolonies. Recently studies have shown that non-genetic differences may be passed
down to offspring, causing a modest but measurable change in growth rate [7,17,18,30,31]. This
can be tracked by recording pole age over time. Rod shaped bacteria have two poles, where one
end of the cell is referred to as the ‘old’ pole if it was passed down from the mother. The pole
formed after division is referred to as the ‘new’ pole (Fig 3A).

266
267

268
269
270
271
272
273
274
275
276
277
278
279

280
281
282
283
284
285
286
287
288
289
290
291

t=0mins t=20 mins Cell with
unknown poles

Mother

Daughter

Segmentation

Granddaughter
Great
Unknown Pole age granddaugther
poles identified
C
Daughter 1o Granddaughter Great granddaugther
. 1.2
% *
1.0 __*** 1.0 1.01
£ 0.8 0.81 0.8
o
© 0.6 0.61 0.6 1
S
8 041 0.41 0.4
O]
0.21 0.21 0.21
0.0- 0.0 0.0-
(0] N (e]e] NO NN ON OOO NOO ONO NNO ONN NNN NON OON

Fig 3. Pole age and its impact on growth rate. (A) Schematic showing how poles are passed down during a division.
When a cell divides, the newly formed poles are defined as the ‘new’ poles (white dot) whereas the poles that were
passed down from the mother are defined as the ‘old’ poles (black dot). Scale bar, 2 pum. (B) Pole assignment
schematic. When the mother cell with known poles divides, the daughter cell that inherits the mother’s old pole is
denoted ‘O’ whereas the daughter that inherits the mother’s new pole is ‘N.” For each generation, either an O or an
N is appended to the pole history. (C) Growth rate within each generation. The growth rate of an individual cell is
calculated for the period right after the mother’s division until right before the cell divides again. To reduce noise,
only cells present for at least three frames were included in the analysis. Daughters (n = 11,246 cells; two tailed
unpaired t-test; p-value *** < 0.001), granddaughters (n = 10,726 cells; a one-way ANOVA with post hoc Tukey test
used for statistical analysis. Statistical significance: ‘OO’ and ‘NO’ versus ‘NN’ and ‘ON’; p-value ** < 0.01), and
great granddaughters (n = 10,217 cells; a one-way ANOVA with post hoc Tukey test used for statistical analysis.
Statistical significance: ‘OO0’ and ‘NOO’ versus ‘ONN’,’NNN’,’NON’, and ‘OON’; p-value * < 0.05). Error bars
show standard error of the mean.

To date, many experiments studying pole age have been conducted in the mother machine
microfluidic device due to the ease of tracking cells [7,17,24]. However, a limitation of this
approach is that it is only possible to track cells for a small number of generations because older
generations are swept out of the imaging chamber while the mother cell’s old pole stays at the dead
end of the chamber. For this reason, the original DeLTA algorithm did not track pole age
information, and in a division event the algorithm simply assigned the cell closest to the dead end
of the chamber to be the mother and the other cell to be the daughter. However, on two-dimensional
surfaces cells can be aligned in any orientation, therefore DeLTA 2.0 assigns old and new poles
after division based on the position of the septum. To highlight the ability to track pole age over
time, we analyzed a movie of E. coli growing in unstressed conditions. At t = 0, we do not know
the history of the cells, so the poles are initially unassigned (Fig 3B). After division, the mother’s

292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

poles that are passed down become the ‘old’ poles and the newly divided poles are the ‘new’ poles
of the daughters. This proceeds over subsequent generations. To keep track of this, we denote the
daughter that receives the old pole as ‘O’ and the new pole as ‘N’. When these daughter cells
divide, they form cells that are granddaughters of the original mother cell. We append an O or N
at the end of the pole sequence to record this. For example, the cell that inherits the original old
pole is denoted OO and its sibling is ON. This continues through the generations, such that great
granddaughters of the original mother have three letters in their pole sequence (e.g. OON).

First, we compared the growth rate of the old and new pole daughters from time-lapse movies of
E. coli growing in unstressed conditions. Consistent with prior literature [17,18,30], we found that
old pole (O) daughters grew more slowly than the new pole (N) daughters (Fig 3C). Next, we used
the rich generational information provided by DeLTA 2.0 to test for differences in growth rate
between granddaughters and great granddaughters with different pole ages. We found that growth
rate differences were dependent on which pole the cell most recently received. For instance, OO
and NO had growth rates that were lower than the NN and ON (Fig 3C). Therefore, the old versus
new pole influence upon growth rate is dominated by effects that extend back only one generation.
This result was consistent with great granddaughters as well, where growth rates tended to be
slower in cells that most recently received an old pole (OOO, NOO, ONO, NNO) than in those
that received a new pole (ONN, NNN, NON, OON). These results demonstrate how pole age
information can be tracked with DeLTA 2.0, enabling studies on replicative aging.

Finally, to test the generality of the algorithm we analyzed a time-lapse movie of >1,000 B. subtilis
cells growing in a microfluidic device. This movie was generated in a different laboratory than
any of the data that was included in the training set and no data from this movie were included in
training. Using the previously trained model with no modifications, we analyzed the new movie
and obtained excellent results (S2 Movie). The performance of DeL.TA 2.0 on conditions it has
not been trained for demonstrates its adaptability. Cropping to remove chamber edges and training
to ignore device features such as support posts could further improve performance. This result
highlights the broad potential for impact of DeLTA 2.0 in image analysis of two-dimensional
bacterial cultures.

Discussion

In this work, we developed a deep learning pipeline that can process time-lapse images of bacterial
microcolonies and output single-cell data. Utilizing the U-Net convolutional neural network
architecture, the model can rapidly segment and track cells frame-to-frame with a low error rate.
We applied this to successfully differentiate growth rates between sensitive and resistant strains of
E. coli growing on an agarose pad. This demonstrates DeLTA’s new ability to measure co-culture
dynamics, which are hard to capture in devices like the mother machine. DeLTA 2.0 retains all the
functionality of the original version of DeLTA and can now be used on mother machine data or
microcolonies of bacteria growing in two dimensions.

The analysis pipeline is centered around the two trainable models for segmentation and tracking.
We avoided hard-coding ad hoc rules such as pre- and post-processing steps or lineage
reconstruction rules to the greatest extent possible. The current models work very well on standard
rod-shaped bacteria such as E. coli (S1 Movie) and B. subtilis (S2 Movie). This suggests that
analysis of cells with similar morphologies such as other Bacillus, Pseudomonas, and Salmonella

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383

species will be straightforward. DeLTA 2.0 may require further training for cases where the
appearance of the cells deviates from the data the current models were trained on. For example,
although the models can handle some elongated cells (Fig 1B-C), they are not currently optimized
for cells with highly filamented morphologies or cells undergoing stress. However, since we
avoided embedding rules in the code that are specific to our use case, we anticipate that DeLTA
can be adapted not only to new morphologies after re-training but also to different organisms. For
example, Fox ef al. used DeLTA 1.0 to train a model to segment yeast cells with high accuracy

[2].

Although segmentation works efficiently and has a low error rate, the model sometimes makes
incorrect predictions about distinct cells being connected (S4 Fig). In particular, if movie frames
are acquired at a high frequency, for example every minute or less, the segmentation model can
fluctuate in its decision to split a cell undergoing division, which then complicates tracking. Within
isolated images, these errors can be difficult to catch, even for humans. However, by looking at
earlier and later frames it is usually possible to identify such errors because cells cannot divide and
then merge back together. As a potential future direction, deep learning architectures that use time-
series information such as recurrent neural networks could be combined with our models to
improve segmentation by incorporating temporal context.

The tracking model runs robustly but can slow down when there are hundreds of cells in the image.
Because every cell in the frame creates an input for the tracking model, this increases exponentially
as the bacterial microcolony grows. At present, for movies with many cells, tracking is the current
bottleneck for processing, whereas segmentation is comparatively faster. For example, S2 Movie,
which has 100 frames and over 1000 cells in each frame takes a total time of ~1 hour to process
with our system configuration, with over 50 minutes attributed to calculating the tracking events.
Future efforts to optimize the tracking algorithm could help to address this by avoiding methods
that scale linearly with the number of cells. In addition, initial tests suggest that it may be possible
to decrease the size of the convolutional neural network by removing layers, though this would
likely need to be customized for specific applications (S5 Fig). This could be applied to the
segmentation or tracking model.

Overall, DeLTA can now process two-dimensional movies accurately and capture spatial
dynamics in a high throughput manner with no human intervention. It works with many common
microscopy file formats and extracts single-cell features such as cell poles, length, lineage, and
fluorescence levels automatically and saves data into Python and Matlab compatible formats. As
many microbiology researchers work with these types of data, we envision that this software can
be used to increase the throughput of microscopy image analysis.

Methods

Implementation and network architecture

Code, installation instructions, and datasets are on Gitlab: https://gitlab.com/dunloplab/delta.
Documentation for the software is available at: https://delta.readthedocs.io/en/latest/. We also
provide a Google Colab notebook, which allows users to test DeLTA 2.0 with their own data
without installing the code on their local machine:

10

384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

https://colab.research.google.com/drive/1UL90XmcJFRBAMOBMQy DMKg4VHY GgtxZ.

The U-Nets are implemented in TensorFlow/Keras. We developed a fully-integrated pipeline that
can compile single-cell data from Bio-Formats compatible files or TIFF image sequences, but we
also provide simpler scripts and data that illustrate the core principles of our algorithm for easy
adaptation to different use cases. In S1 Table, we have listed the packages and exact versions that
we use in our environment to run DeLTA 2.0. Both the segmentation and tracking models
implement a U-Net neural network architecture. The tracking model inputs a phase contrast image
and segmentation from the current and previous frame and outputs a greyscale image of the
predicted tracking event (S1 Fig). In the original version of DeLTA [11], the tracking model uses
a softmax function as the final activation layer and a categorical cross-entropy loss function to
produce three greyscale output images with 1°s in each layer representing the mother cell, daughter
cell, and background, respectively. In DeLLTA 2.0, the tracking model uses a sigmoid function as
the final activation layer and a pixelwise-weighted binary cross-entropy loss function to produce
a single greyscale output image with 1’s representing tracked cells (mother and potential daughter)
and 0’s representing the background and the cells that did not track to the input cell.

Loss functions and training

To train both models, we implemented a pixelwise-weighted binary cross-entropy loss function,
as in the original U-Net paper [9]. This loss function was adapted from the binary cross-entropy
function in Tensorflow/Keras which measures the pixelwise loss of a sample. The loss is multiplied
elementwise with the weight map to magnify or reduce the loss (S6 Fig). Lastly, we normalized
the loss based on the sum of the total weight map to evenly distribute how much each sample
updates the model. Overall, the loss function determines the difference between the model output
and the ground truth, which is then used to update the weights within the model. As in Ronneberger
et al. [9], our loss function takes a weight map as an extra input to assign more importance to
certain pixels in the ground truth during training. We used custom weight maps to improve
segmentation on rod-shaped bacteria by increasing weights for the center of the cells and the
borders between the cells. We also minimize weight on the background, where background is
defined as anything in the image that is not a cell or border (S7 Fig). More specifically, we
maximized the weights for the skeletons of the cells and borders, which are pixel-wide
representations of binary objects in images [32]. Determining the exact borders of the cells by eye
is hard and partially arbitrary. To prevent the model from learning these arbitrary cell-border
interfaces, we reduced the weights in these areas (S7 Fig). In addition, the background weights
were set to be variable, where the weight increased with respect to an incorrect prediction (S8 Fig).
The model outputs a number between 0 and 1, with 0 representing the background and 1
representing a cell. Since we had high confidence in the ground truths for the background, we were
able to set the values of the weight map for the background to be equal to the actual prediction for
the background. If the model incorrectly predicted a cell for a pixel that is background, then there
would be a high value for that pixel in the weight map. Alternatively, if the model correctly
predicted background for a pixel that was background, then there would be a low value for that
pixel in the weight map. This method allows the model to efficiently recognize and discard debris
and reduce overfitting on the background. Our code includes a function to automatically generate
these weight maps from the ground truth segmentations. Custom weight maps were also
implemented for the tracking model, although they were found to be less critical to training a
successful model. The weight map was similarly generated by applying morphological operations

11

430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474

to the segmentation of all cells in the current frame and the ground truth. The skeleton of the
ground truth cell was set to the highest weight while other cells’ pixels were set to decreasing
weights depending on the distance from the tracked cell (S1B Fig). The function generating these
maps is also provided in our software.

In addition to the data augmentation operations described in the original version of DeLTA [11],
two new data augmentations were used while training the segmentation model. We used the
blurring function GaussianBlur from the OpenCV package which convolves a 5x5 Gaussian kernel
over the image. For the noise function we used the random.normal function from the numpy
package which outputs random samples from a Gaussian distribution into an array the same size
as the image. This is added to the original image and rescaled back to a range between 0 and 1.
Both the blurring and noise functions are applied to all input images with user-specified standard
deviations. We set 1 and 0.03 to be the default standard deviations for the blurring and noise
functions, respectively.

To simulate exaggerated cell movement during tracking, such as when an agarose pad dries out
and causes the field of view to shift over time, we added a function that randomly shifts the inputs
containing the current frame (microscopy image of the current frame, segmentation mask of all the
cells in the current frame, ground truth, and weight map) up to a user-specified number of pixels
(e.g. 5 pixels). These operations help expand the training dataset and allow the model to generalize
to realistic conditions.

The segmentation model used to quantify the error rate was trained for 600 epochs with 300 steps
per epoch and a batch size of 1. The Adam optimizer was used with a learning rate of 10, The
tracking model used to quantify the error rate was trained for 500 epochs with 300 steps per epoch
and a batch size of 2. The Adam optimizer was used with a learning rate of 10, In all cases, the
models converged during these training period. For example, S9 Fig shows convergence results
for segmentation model training.

Training set generation and testing

For the segmentation training dataset, the initial segmentations were generated semi-automatically
by an expert using the interactive learning and segmentation toolkit Ilastik [33]. This accounted
for 11% of the final training set. Once the segmentation model was performing well on the test
data, which we defined as being more than 95% accurate, we used it to generate more training
data. Incorrect DeLTA 2.0 outputs, like segmentations that connect two distinct cells together,
were manually corrected. Processed DeLTA outputs accounted for 36% of the training set.
Additionally, we incorporated published segmentation data from van Vliet ef al. [34] where cells
were segmented and tracked to measure the spatial dynamics of gene expression in bacterial
microcolonies. We obtained the cell segmentation and tracking data from the ETH archive:
https://doi.org/10.5905/ethz-1007-77. On this dataset, we performed operations to improve the
data quality including smoothing filters, dilation, erosion, and skeletonize functions. These data
accounted for the remaining 53% of the training set. The final training set had 307 training
examples from sixty movies, with a maximum of 10 frames per movie to increase sample diversity.
Each training example consisted of a phase contrast image as the input, the corresponding
segmented ground truth, and a pre-generated weight map used in the loss function (S7 Fig). The

12

475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520

test movie used to evaluate the segmentation model was colony 150310-05 from the trpL data zip
file from van Vliet et al. [34] on the ETH archive.

For the tracking training dataset, we used a modified version of the Matlab script used in DeLTA
1.0 to generate the initial training examples. Instead of showing the whole frame in the graphical
user interface, the modified script showed a zoomed-in 75x75 pixel box around the cell of interest.
In addition, the modified script had one output consisting of the mother and daughter cell whereas
the original script had three outputs for the mother cell, daughter cell, and background. The Matlab
script was used to produce 15% of the training set. Each training example consisted of four inputs,
one output, and one weight map. The inputs were the phase contrast of the previous frame,
segmentation of the cell of interest in the previous frame, phase contrast of the current frame, and
segmentation of all the cells in the current frame (S1A Fig). The output is a segmentation mask for
the cell(s) that the cell of interest in the previous frame tracked to. The weight map is used in the
loss function. Once the tracking model was performing with more than 99% accuracy on test data,
we used it to generate more training data. Movies with images taken 5 minutes apart were
processed using DeLTA 2.0 and then new training examples were generated by tracking cells
across longer time intervals. Instead of tracking from the frame immediately before the current
timepoint, cells were tracked from a frame from two or three timepoints before. This allowed us
to generalize to longer acquisition intervals and to situations where the cells grew faster or travelled
further between frames. These processed DeLTA outputs accounted for 20% of the training set. In
addition, published tracking data from van Vliet et al. was incorporated to increase the training set
size, accounting for 65% of all the training examples. The final tracking training set had 23,655
examples. The test movies used to evaluate the tracking model were colony 140408-01 from the
cib data zip file; colonies 151029 EI-1, 151029 E1-5,and 151101 E3-12 from the rpsM data zip
file; and colonies 150309-04 and 150310-05 from the trpL data zip file from van Vliet et al. [34].

Time-lapse microscopy experiments

Overnight cultures of E. coli MG1655 were diluted 1:100 and allowed to grow for 1-2 hours in LB
medium. For the co-culture experiment, we included 30 pg/mL of kanamycin for plasmid
maintenance. We created the co-culture with a 1:5 dilution by mixing 0.5 pL of the resistant strain
and 0.5 pL of the susceptible strain with 4 uL. of LB medium. For the pole age experiment, the
culture was diluted 1:100 in MGC media (M9 salts supplemented with 2 mM MgSO4, 0.2%
glycerol, 0.01% casamino acids, 0.15 pg/ml biotin, and 1.5 pM thiamine). A 1:100 dilution was
used to decrease cell density. For both experiments, 1-1.5 uL of the diluted samples were added
to prewarmed 1.5% low melting temperature agarose pads made with MGC media. Samples were
prepared and imaged as described in Young, ef al. [19]. A Nikon Ti-E microscope was used with
a 100x oil objective for all microscopy experiments.

In the co-culture experiment, E. coli MG1655 were transformed with a single plasmid, either with
tetracycline resistance or without. Both plasmids originated from the BioBrick plasmid library
(pBbA7k) [35]. The plasmid for the resistant cells harbors both a tetracycline resistant gene and
red fluorescent protein gene (rfp) (pBbA7k-RFP-tetA), while the sensitive cells contain only green
fluorescent protein (gfp) (pBbA7k-sfGFP). The pads contained 30 pg/mL kanamycin for plasmid
maintenance and 0.5 pg/mL tetracycline. Phase contrast, GFP, and RFP fluorescence images were
taken every 5 minutes.

13

521
522
523
524
525

526

527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554

In the pole age experiment, E. coli MG1655 was used and no antibiotics were present in the culture.
Phase contrast images were taken every 5 minutes.

We calculated the growth rate as:

Li—Li, 1
Growth Rate = —-2 x —
Li_y At

Where L; is the cell length at time ¢, L., is the length at time #-/, and At is the difference in time
between ¢ and #-1 (5 min = 0.083 hr in our movies). Growth rates were measured for one generation.
For example, to measure the growth rate of OO, measurements start when O divides into OO and
end when OO divides into OON and OOO. However, no information about the growth rate of O
is used to calculate the growth rate of OO. The growth rate is the average across the timepoints
within this generation. To reduce noise, growth rates were only recorded in the analysis if cells
were present for at least three frames.

Testing impact of frame shifts on tracking

We considered three representative conditions and performed tracking under artificial frame shifts
(S3 Fig). The conditions were cases of “low,” “medium,” and “high” cell density, which we
defined as having <5, 20-25, and >200 cells in the field of view. We calculated the percent overlap
between the model prediction and ground truth for all tracking events as the frame was artificially
shifted. For each tracking event, the field of view was shifted over 11 different distances ranging
from 1 to 100 pixels, which correspond to 0.129 to 12.9 um, and each distance was applied in all
four cardinal directions to generate a total of 48 shifts plus one unshifted version. The time-lapse
movie used for this analysis was colony 151101 E3-12 from the rpsM zip file from van Vliet et
al. [6].

Acknowledgements

We thank Virgile Andreani for carefully evaluating the code, Michael Sheets for testing initial
versions of DeLTA 2.0, and members of the Dunlop Lab for helpful discussions. Prof. Avigdor
Eldar and Dr. Jordi van Gestel generously provided the original images presented in S2 Movie.
We thank Dr. Simon van Vliet for useful discussion regarding his datasets.

14

555 References

556 1. Bakshi S, Leoncini E, Baker C, Cafas-Duarte SJ, Okumus B, Paulsson J. Tracking bacterial lineages
557 in complex and dynamic environments with applications for growth control and persistence.
558 Nature Microbiology. 2021;6. doi:10.1038/s41564-021-00900-4

559 2. Fox ZR, Fletcher S, Fraisse A, Aditya C, Sosa S. MicroMator: Open and Flexible Software for

560 Reactive Microscopy. bioRxiv. 2021; 1-9.

561 3. Rullan M, Benzinger D, Schmidt GW, Milias-Argeitis A, Khammash M. An Optogenetic Platform
562 for Real-Time, Single-Cell Interrogation of Stochastic Transcriptional Regulation. Molecular Cell.
563 2018;70: 745-756.e6. doi:10.1016/j.molcel.2018.04.012

564 4. Chait R, Ruess J, Bergmiller T, Tkacik G, Guet CC. Shaping bacterial population behavior through
565 computer-interfaced control of individual cells. Nature Communications. 2017;8.

566 doi:10.1038/s41467-017-01683-1

567 5. Dal Co A, van Vliet S, Kiviet DJ, Schlegel S, Ackermann M. Short-range interactions govern the
568 dynamics and functions of microbial communities. Nature Ecology and Evolution. 2020;4: 366—
569 375. doi:10.1038/s41559-019-1080-2

570 6. van Vliet S, Dal Co A, Winkler AR, Spriewald S, Stecher B, Ackermann M. Spatially Correlated Gene
571 Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell

572 Interactions. Cell Systems. 2018;6: 496-507.e6. doi:10.1016/j.cels.2018.03.009

573 7. Bergmiller T, Andersson AMC, Tomasek K, Balleza E, Kiviet DJ, Hauschild R, et al. Biased

574 partitioning of the multidrug efflux pump AcrAB-TolC underlies long-lived phenotypic

575 heterogeneity. Science. 2017;356: 311-315. doi:10.1126/science.aaf4762

576 8. el Meouche |, Dunlop MJ. Heterogeneity in efflux pump expression predisposes antibiotic-

577 resistant cells to mutation. Science. 2018;362: 686—690. doi:10.1126/science.aar7981

578 9. Ronneberger O, Fischer P, Brox T. 2015-U-Net. arXiv. 2015; 1-8.

579 10. Panigrahi S, Murat D, Gall A le, Martineau E, Goldlust K, Fiche J-B, et al. MiSiC, a general deep

580 learning-based method for the high-throughput cell segmentation of complex bacterial

581 communities. bioRxiv. 2020; 2020.10.07.328666. doi:10.1101/2020.10.07.328666

582 11. Lugagne J-B, Lin H, Dunlop MJ. DeLTA: Automated cell segmentation, tracking, and lineage

583 reconstruction using deep learning. Asthagiri AR, editor. PLOS Computational Biology. 2020;16:
584 €1007673. doi:10.1371/journal.pcbi.1007673

585 12. Salem D, Li Y, Xi P, Phenix H, Cuperlovic-Culf M, Kaern M. Yeastnet: Deep-learning-enabled

586 accurate segmentation of budding yeast cells in bright-field microscopy. Applied Sciences

587 (Switzerland). 2021;11. doi:10.3390/app11062692

588 13. Xu YKT, Call CL, Sulam J, Bergles DE. Automated in vivo Tracking of Cortical Oligodendrocytes.
589 Frontiers in Cellular Neuroscience. 2021;15. doi:10.3389/fncel.2021.667595

15

590
591
592

593
594
595

596
597
598

599
600
601

602
603
604

605
606
607

608
609
610

611
612
613

614
615
616

617
618
619

620
621

622
623
624

625
626

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Pedone E, de Cesare |, Zamora-Chimal CG, Haener D, Postiglione L, la Regina A, et al. Cheetah: A
Computational Toolkit for Cybergenetic Control. ACS Synthetic Biology. 2021.
doi:10.1021/acssynbio.0c00463

Rossi NA, el Meouche |, Dunlop MJ. Forecasting cell fate during antibiotic exposure using
stochastic gene expression. Communications Biology. 2019;2: 1-7. doi:10.1038/s42003-019-
0509-0

Shao B, Rammohan J, Anderson DA, Alperovich N, Ross D, Voigt CA. Single-cell measurement of
plasmid copy number and promoter activity. Nature Communications. 2021;12.
do0i:10.1038/s41467-021-21734-y

tapinska U, Glover G, Capilla-Lasheras P, Young AJ, Pagliara S. Bacterial ageing in the absence of
external stressors. Philosophical Transactions of the Royal Society B: Biological Sciences.
2019;374. doi:10.1098/rstb.2018.0442

Stewart EJ, Madden R, Paul G, Taddei F. Aging and Death in an Organism That Reproduces by
Morphologically Symmetric Division. Kirkwood T, editor. PLoS Biology. 2005;3: e45.
doi:10.1371/journal.pbio.0030045

Young JW, Locke JCW, Altinok A, Rosenfeld N, Bacarian T, Swain PS, et al. Measuring single-cell
gene expression dynamics in bacteria using fluorescence time-lapse microscopy. Nature
Protocols. 2012;7: 80—88. doi:10.1038/nprot.2011.432

Paintdakhi A, Parry B, Campos M, Irnov |, EIf J, Surovtsev |, et al. Oufti: An integrated software
package for high-accuracy, high-throughput quantitative microscopy analysis. Molecular
Microbiology. 2016;99: 767—777. doi:10.1111/mmi.13264

Stylianidou S, Brennan C, Nissen SB, Kuwada NJ, Wiggins PA. SuperSegger: robust image
segmentation, analysis and lineage tracking of bacterial cells. Molecular Microbiology. 2016;102:
690-700. d0i:10.1111/mmi.13486

van Valen DA, Kudo T, Lane KM, Macklin DN, Quach NT, DeFelice MM, et al. Deep Learning
Automates the Quantitative Analysis of Individual Cells in Live-Cell Imaging Experiments. PLoS
Computational Biology. 2016. doi:10.1371/journal.pcbi.1005177

Prangemeier T, Reich C, Koeppl H. Attention-Based Transformers for Instance Segmentation of
Cells in Microstructures. Proceedings - 2020 IEEE International Conference on Bioinformatics and
Biomedicine, BIBM 2020. 2020; 700-707. doi:10.1109/BIBM49941.2020.9313305

Wang P, Robert L, Pelletier J, Dang WL, Taddei F, Wright A, et al. Robust growth of escherichia
coli. Current Biology. 2010;20: 1099-1103. do0i:10.1016/j.cub.2010.04.045

van Gestel J, Bareia T, Tenennbaum B, Dal Co A, Guler P, Aframian N, et al. Short-range quorum
sensing controls horizontal gene transfer at micron scale in bacterial communities. Nature
Communications. 2021;12: 1-11. doi:10.1038/s41467-021-22649-4

Wen X, Langevin AM, Dunlop MJ. Antibiotic export by efflux pumps affects growth of neighboring
bacteria. Scientific Reports. 2018;8: 1-9. d0i:10.1038/s41598-018-33275-4

16

627
628

629
630
631

632
633
634

635
636

637
638
639

640
641
642

643
644
645

646
647
648

649
650
651

652
653
654
655

27.

28.

29.

30.

31.

32.

33.

34.

35.

Ducret A, Quardokus EM, Brun Y v. MicrobeJ, a tool for high throughput bacterial cell detection
and quantitative analysis. Nature Microbiology. 2016;1: 1-7. doi:10.1038/nmicrobiol.2016.77

Linkert M, Rueden CT, Allan C, Burel JM, Moore W, Patterson A, et al. Metadata matters: Access

to image data in the real world. Journal of Cell Biology. 2010;189: 777-782.
doi:10.1083/jcb.201004104

McQuin C, Goodman A, Chernyshev V, Kamentsky L, Cimini BA, Karhohs KW, et al. CellProfiler
3.0: Next-generation image processing for biology. PLoS Biology. 2018;16: 1-17.
doi:10.1371/journal.pbio.2005970

Rang CU, Peng AY, Poon AF, Chao L. Ageing in Escherichia coli requires damage by an extrinsic
agent. Microbiology (United Kingdom). 2012;158: 1553—1559. doi:10.1099/mic.0.057240-0

Clark MW, Yie AM, Eder EK, Dennis RG, Basting PJ, Martinez KA, et al. Periplasmic acid stress
increases cell division asymmetry (Polar Aging) of Escherichia coli. PLoS ONE. 2015;10: 1-14.
doi:10.1371/journal.pone.0144650

Lee TC, Kashyap RL, Chu CN. Building Skeleton Models via 3-D Medial Surface Axis Thinning
Algorithms. CVGIP: Graphical Models and Image Processing. 1994;56: 462-478.
doi:https://doi.org/10.1006/cgip.1994.1042

Sommer C, Straehle C, Ullrich K, Hamprecht F a. ILASTIK : INTERACTIVE LEARNING AND
SEGMENTATION TOOLKIT Heidelberg Collaboratory for Image Processing (HCI), University of
Heidelberg. Eighth IEEE International Symposium on Biomedical Imaging (ISBI). 2011; 230-233.

van Vliet S, Dal Co A, Winkler AR, Spriewald S, Stecher B, Ackermann M. Spatially Correlated Gene

Expression in Bacterial Groups: The Role of Lineage History, Spatial Gradients, and Cell-Cell
Interactions. Cell Systems. 2018;6: 496-507.e6. doi:10.1016/j.cels.2018.03.009

Lee TS, Krupa RA, Zhang F, Hajimorad M, Holtz WJ, Prasad N, et al. BglBrick vectors and
datasheets: A synthetic biology platform for gene expression. Journal of Biological Engineering.
2011;5: 15-17. d0i:10.1186/1754-1611-5-12

17

656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Supporting Information Captions

Supporting Figure Captions

S1 Fig. Schematic showing how the tracking model uses the inputs to make predictions. (A)
The four inputs are concatenated into one array and processed by the model, which outputs a
greyscale image of the cell tracked (or cells, in the case of a division event). (B) Ground truth and
custom weight map for tracking.

S2 Fig. Accuracy of the segmentation model. (A) For each frame in the movie we plotted the
intersection-over-union (IOU) / Jaccard index, Dice score / F1 coefficient. Error rate, as defined
in the manuscript, is also shown. (B) The proportion of pixels that were True Positives (TP) + True
Negatives (TN), False Positives (FP), and False Negatives (FN) for each frame in the movie. Note
that these are pixelwise predictions as opposed to predictions per cell. TP and TN represent the
rate of correct pixelwise predictions in the frame. FP represent the rate of erroneous predictions of
pixels as part of a cell when the ground truth reports it as background. FN represent the rate of
erroneous predictions of pixels as background. The test set (S1 Movie) was used to calculate these
evaluation metrics.

S3 Fig. Impact of frame shifts on tracking model performance. The average prediction in the
four cardinal directions to ground truth overlap for 20 representative tracking events plotted as a
function of the shift distance. Tracking model performance when (A) cell density is low (<5 cells
in the frame), (B) medium (20-25 cells in the frame), or (C) high (>200 cells in the frame). As the
shift distance increases, the performance decreases. The model generally performs better with
fewer cells to track per frame. The black line represents the mean for each shift distance.

S4 Fig. Limitations of segmentation. Two sequential phase contrast images of E. coli
microcolonies with their respective segmentations. The red arrow points to an error where the
model has incorrectly combined two cells into one. This type of error is very hard to correct out of
context.

SS Fig. Reducing the size of the model to increase speed. Schematics showing different network
architectures. (A) Original U-Net architecture that we use throughout the paper. (B) U-Net
architecture without the bottom layer. (C) U-Net architecture without the bottom two layers. The
model has been trained on segmentation as well as tracking for these reduced networks. The
network in (C) runs twice as fast as the original network in (A) and sacrifices very little accuracy.

S6 Fig. Schematic of the pixelwise binary cross-entropy loss function used to train the
segmentation and tracking models. The inputs and outputs for the loss function are shown. The
inputs include the ground truth (GT), the prediction made by the model (Pred), and the associated
weight maps. The output is the pixelwise-weighted loss, which is a greyscale image. In step 1, the
ground truth and prediction are used to calculate the binary cross-entropy loss. The first half of the
equation measures the pixelwise loss associated with the model predicting background when the
ground truth is a cell. The second half of the equation measures the pixelwise loss associated with
the model predicting cell when the ground truth is background. In step 2, the weighted loss is

18

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747

calculated by performing an elementwise multiplication of the weight map and the loss calculated
in step 1. The weight map helps the model learn the more important features, such as cell borders.
This schematic of the loss function is simplified for visualization purposes. For clarity, we also
show how the pixelwise-weighted loss maps onto the prediction, where cyan regions highlight
areas where the loss is emphasized in order to improve the model’s performance for these regions
of the example image.

S7 Fig. Training the model on segmentation with custom weight maps. Schematic showing
two models trained on the same dataset with different weight maps. In this example, both U-Net
models were trained for 600 epochs, 300 steps per epoch, with a batch size of 2. Inputs necessary
to train the model include the phase contrast image, the associated segmented ground truth, and
weight map. (A) Model trained with weight maps derived from the original U-Net paper. Green
ovals show examples of errors. (B) Model trained with custom weight maps which were generated
by applying morphological operations to the segmented ground truth. The model trained on the
new weight maps performs better, as shown by the outputs on a test image. (C) To aid
visualization, the ‘Overlay’ shows the custom weight map overlayed on the phase contrast image.
The overlay shows that the weights are emphasized at the core of the cells (shown by red lines)
and at the borders (shown by yellow lines).

S8 Fig. Utilizing variable background weight maps for training the model on debris. A
simplified schematic showing how the loss is calculated for a single input using weight maps. (A)
Schematic showing the traditional use of weight maps. (B-C) Schematics showing the use of
variable weight maps. The prediction is used to update the weight map. (B) The background weight
map values are replaced by the background values in the prediction. This method forces the model
to quickly learn to filter out debris as the weight map values for the background increase
significantly when the model predicts debris as cells. (C) Conversely, when the model correctly
classifies the debris as background, the weight map values for the background remain similar to
the original values.

S9 Fig. Loss history of segmentation model trained over 600 epochs. Loss of the model during
training as a function of the total number of epochs. Only points where the model performance
improves and loss reaches a new minimum are shown. There were no improvements in the last 85
epochs, showing convergence.

Supporting Movie Captions

S1 Movie. Time-lapse movie of a bacterial microcolony analyzed with DeLTA 2.0. Phase
contrast images containing E. coli cells outlined with different colors representing unique cells.
Cells can be tracked by following their respective colors throughout the movie. White arrows
indicate cell division events. White and colored dots refer to the new and old poles, respectively.
This time-lapse movie was part of the test set used to calculate the error rate for tracking and
segmentation. Timestamp shows time in HH:MM format.

S2 Movie. Time-lapse movie of a dense bacterial microcolony growing in a microfluidic
device analyzed by DeLTA 2.0. Phase contrast images show B. subtilis cells outlined with

19

748
749
750
751
752
753
754
755
756
757
758
759
760

different colors. Cells can be tracked by following their respective colors throughout the movie.
White arrows indicate cell division events. White and colored dots refer to the new and old poles,
respectively. Frame rate is one frame per minute. Original movie data were kindly provided by
Prof. Avigdor Eldar and Dr. Jordi van Gestel.

Supporting Table Captions
S1 Table. Specific versions used in the environment to run DeLTA 2.0. Package name and

respective number of the version that was used for analysis presented in this manuscript, as well
as for other working installations.

20

