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Abstract—Inspired by the path coordination problem
arising from robo-taxis, warehouse management, and
mixed-vehicle routing, we model a group of heterogeneous
players responding to stochastic demands as a congestion
game under Markov decision process dynamics. Players
share a common state-action space but have unique transi-
tion dynamics, and each player’s unique cost is a function
of the joint state-action probability distribution. For a class
of player cost functions, we formulate the player-specific
optimization problem, prove equivalence between the Nash
equilibrium and the solution of a potential minimization
problem, and derive dynamic programming approaches to
solve the Nash equilibrium. We apply this game to model
multi-agent path coordination and introduce congestion-
based cost functions that enable players to complete
individual tasks while avoiding congestion with their oppo-
nents. Finally, we present a learning algorithm for finding
the Nash equilibrium that has linear complexity in the num-
ber of players. We demonstrate our game model on a
multi-robot warehouse path coordination problem, in which
robots autonomously retrieve and deliver packages while
avoiding congested paths.

Index Terms—Markov decision process, stochastic
games, path planning, congestion games.

I. INTRODUCTION

AS autonomous path planning algorithms become widely-
adapted by aeronautical, robotics, and operational sec-

tors [1], [2], the standard assumption that the operating
environment is stationary is no longer sufficient. More likely,
autonomous players share the operating environment with
other players who may have conflicting objectives. While the
possibility for multi-agent conflicts has pushed single-agent
path planning towards greater emphasis on robust planning
and collision avoidance, we believe that the overarching goal
should be to consider other players’ trajectories and achieve
optimality with respect to the multi-agent dynamics.

We focus on the scenario where a group of heteroge-
neous players collectively perform path planning in response
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to stochastic demands. We are inspired by fleets of robo-
taxis fulfilling ride demands while avoiding congestion in
traffic [3] and warehouse robots retrieving packages under
dynamic arrival rates [4], [5] while avoiding collisions. The
common feature in these applications is that the players must
plan with respect to a forecasted demand distribution rather
than a deterministic demand. We assume that the desirable
outcome is a competitive equilibrium. Beyond competitive set-
tings, a competitive equilibrium can be used in cooperative
settings to ensure that each player achieves identical costs
and each demand is optimally fulfilled with respect to other
demands, thus ensuring a degree of fairness.

We propose MDP congestion games as a theoretical frame-
work for analyzing the resulting path coordination problem.
By leveraging common congestion features in multi-agent path
planning, our key contribution is reducing the N-player cou-
pled MDP problem to a single potential minimization problem.
As a result, we can use optimization techniques to analyze the
Nash equilibrium as well as apply gradient descent methods
to compute it.

Contributions: To address the lack of game-theoretical mod-
els for path coordination under MDP dynamics, we propose an
MDP congestion game with finite players and heterogeneous
player costs and dynamics. We define Bellman equation-type
conditions for the Nash equilibrium and provide a necessary
and sufficient condition for the existence of a game potential.
For a subset of player costs, we show equivalence between
the Nash equilibrium and the global solution of the potential
minimization problem, and provide sufficient conditions for
a unique Nash equilibrium. For multi-player path coordina-
tion, we study a class of cost functions that allows players
to have different sensitivities to the total congestion and to
find congestion-free paths that optimally achieve their indi-
vidual objectives. Finally, we provide a distributed algorithm
that converges to the Nash equilibrium and give rates of its
convergence. We demonstrate our model and algorithm on a
2D autonomous warehouse problem where robots retrieve and
deliver packages with stochastic arrival times while sharing a
common navigation space.

II. RELATED WORK

An MDP congestion game [6] is a stochastic population
game and is related to potential mean field games [7], [8] in the
discrete time and state-action space [9] and mean field games
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on graphs [10]. In this letter, we extend our previous frame-
work from continuous populations of identical MDP decision
makers [6] to a finite number of heterogenous MDP decision
makers. In the continuous population case, MDP congestion
games have been analyzed for constraint satisfaction in [11]
and sensitivity to hyperparameters in [12].

Model-based multi-agent path planning is typically solved
via graph-based searches [13] and mixed integer linear pro-
gramming [14]. Reinforcement learning is also a viable
method for solving multi-agent path planning [1], [15]. In
most scenarios, the path planning problem is modeled as an
MDP [16], [17]. In particular, [17] adopts a stochastic game
model for human-robot collision avoidance, but focuses more
on algorithm development than game structure analysis.

III. HETEROGENEOUS MDP CONGESTION GAME

Consider a finite number of players [N] = {1, . . . , N} with
a shared finite state-action space given by ([S], [A]) in time
interval T = {0, 1, . . . , T}. Each player i has individual time-
varying transition probabilities given by Pi ∈ RTSSA

+ , where at
time t, Pi

ts′sa is the transition probability from state s to state
s′ using action a satisfying the simplex constraints:

∑

s′
Pi

ts′sa = 1, ∀(i, t, s, a) ∈ [N] × [T] × [S] × [A]. (1)

State-Action Distribution: At time t, let player i’s state be
si(t) ∈ [S] and action taken be ai(t) ∈ [A], then xi

tsa =
P[si(t) = s, ai(t) = a] is player i’s probability of being in state
s taking action a at time t. Player i’s state-action probability
trajectory over time period T is xi ∈ R(T+1)SA, its state-action
distribution. We use X (Pi, zi

0) to denote the set of all feasi-
ble state-action distributions under transition dynamics Pi and
initial condition zi

0 ∈ RS
+, where zi

0s = P[si(0) = s] is player
i’s probability of starting in state s.

X (Pi, zi
0) :=

{

xi ∈ R(T+1)SA
+

∣∣∣∣
∑

a

xi
0sa = zi

0s,∀s ∈ [S],

∑

s′,a

Pi
tss′axi

(t−1)s′a =
∑

a

xi
tsa, ∀(t, s) ∈ [T] × [S]




. (2)

The joint state-action distribution of all players is given by

x = (x1, . . . , xN) ∈ RN(T+1)SA
+ . (3)

We assume that x is fully observable and may denote it as
x = (xi, x−i) where x−i = (xj)j∈[N]/{i}.

Player Costs: Similar to stochastic games, the player costs
are continuously differentiable functions of x: player i incurs
a cost !i

tsa(x) for taking action a at state s and time t.

!i
tsa : RN(T+1)SA

+ '→ R, ∀(i, t, s, a) ∈ [N] × T × [S] × [A]. (4)

Compared to stochastic games where player costs are coupled
to the opponent policies, (4) is better suited to model colli-
sion events. For example, the expectation of the log-barrier
function for players i and j at time t can be modeled as∑

s,s′∈[S](
∑

a xi
tsa)(

∑
a xj

ts′a) log(ds,s′), in which ds,s′ denotes
the distance between states s, s′ ∈ [S].

The cost vector of (!1, . . . !N) (4) is given by
ξ : RN(T+1)SA

+ '→ RN(T+1)SA
+ ,

ξ(x) = [!1
011(x), !

1
012(x), . . . , !

N
TSA(x)] ∈ RN(T+1)SA

+ . (5)

We assume that ξ has a positive definite gradient in x.
Assumption 1: The player cost vector ξ (5) satisfies

∇ξ(x) * 0 for all x (3) where xi ∈ X (Pi, xi
0), ∀i ∈ [N].

For the class of player costs considered in Section III-B,
Assumption 1 implies that the player costs strictly increase as
the number of players increases.

Coupled MDPs: Given an initial distribution zi
0 ∈ RS

+ and
fixed state-action distributions x−i (3), player i solves the
following optimization problem under MDP dynamics.

min
xi

∑

t,s,a

∫ xi
tsa

0
!i

tsa(u
i, x−i)∂ui

tsa s.t. xi ∈ X (Pi, zi
0). (6)

In (6), each integral is taken over ui
tsa, the (t, s, a)th element

of ui. When !i
tsa(x) is constant for all (t, s, a) ∈ T × [S]× [A],

player i solves a standard linear program MDP.
Dynamic Programming: At a joint state-action distribution

x (3), player i’s cost-to-go in (6) can be recursively defined
via Q-value functions [18] as

Qi
Tsa(x) := !i

Tsa(x),

Qi
(t−1)sa(x) := !i

(t−1)sa(x) +
∑

s′
Pi

ts′samin
a′

Qi
t,s′a′(x),

∀ t ∈ [T] (7)

The optimal solution of (6) can be stated using (7).
Theorem 1: Under Assumption 1, xi (2) uniquely mini-

mizes (6) with respect to the state-action distribution x−i if
and only if its associated Qi(xi, x−i) (7) satisfies

xi
tsa > 0 ⇒ Qi

tsa(x
i, x−i) = min

a′
Qi

tsa′(xi, x−i), (8)

for all (t, s, a) ∈ T × [S]× [A]. I.e., xi is optimal for (6) if and
only if every action played with nonzero probability achieves
the minimum cost-to-go (7) among available actions.

Proof: Let F(xi, x−i) = ∑
t,s,a

∫ xi
tsa

0 !i
tsa(u

i, x−i)∂ui
tsa, then

∂F(xi, x−i)/∂xi = !(xi, x−i). We then apply Proposition A1
to (6) and the theorem’s results follow directly.

When all players jointly achieve the optimal cost-to-go (8),
a stable equilibrium for unilateral optimality is achieved.

Definition 1 (Nash Equilibrium): The joint state-action dis-
tribution x̂ = [x̂1, . . . , x̂N] (3) is a Nash equilibrium if
(x̂i, Qi(x̂)) satisfies (8) for all i ∈ [N].

A. Potential Optimization Form
We are interested in MDP congestion games that can be

reduced from the coupled MDPs (6) to a single minimization
problem given by

min
x1,...,xN

F(x), s.t. xi ∈ X (Pi, zi
0), ∀ i ∈ [N], (9)

where F is the potential function of the corresponding game.
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Definition 2 (Potential Function): We say an MDP con-
gestion game with player costs {!i}i∈[N] (4) has a potential
function F:RN(T+1)SA '→ R if F satisfies

∂F(x)

∂xi
tsa

= !i
tsa(x), ∀ (i, t, s, a) ∈ [N] × T × [S] × [A]. (10)

The following assumption on {!i}i∈[N] is necessary and
sufficient for the existence of F [19, eqn. 2.44].

Assumption 2: For all (i, t, s, a), (i′, t′, s′, a′) ∈ [N] × T ×
[S] × [A], the player costs {!i}i∈[N] satisfy

∂!i
tsa(x)

∂xi′
t′s′a′

= ∂!i′
t′s′a′(x)

∂xi
tsa

. (11)

Remark 1: Assumption 2 is equivalent to F being conser-
vative: ∀ x1, x2 ∈ {xi

tsa | (i, t, s, a) ∈ [N] × T × [S] × [A]},

∂2F(x)/∂x1∂x2 = ∂2F(x)/∂x2∂x1. (12)

In other words, the Jacobian of ξ (5), ∂ξ(x)/∂x, is symmetrical.
Verifying the existence of F (10) is non-trivial. However, if

F exists, the solution of (9) is the Nash equilibrium [20].
Theorem 2: If the player costs {!i}i∈[N] (4) satisfy

Assumption 1,
1) the potential function (Definition 2) exists,
2) x̂ (3) is the global optimal solution of (9) if and only if

x̂ is a Nash equilibrium (Definition 1).
Proof: We prove statement 1 by showing that Assumption 1

implies Assumption 2: if ∇ξ(x) * 0 for all feasible joint
state-action distributions x (3), then ∇ξ(x) is symmetrical and
satisfies (11). Next, we show the forward direction of state-
ment 2. If (x̂1, . . . x̂N) minimizes (9), then for each i ∈ [N],
x̂i minimizes (22) at x̂−i. From Proposition A1, x̂i satisfies (8)
for all i ∈ [N], therefore x̂ is a Nash equilibrium. To show
the reverse direction of 2, if (8) is satisfied for all i ∈ [N], x̂i

is coordinate-wise optimal for coordinate i (Proposition A1).
Under Assumption 1, (9) has a strictly convex differentiable
objective with separable convex constraints X (Pi, zi

0)—each
xi is constrained independently of xj, ∀j ∈ [N]/{i}, then the
jointly coordinate-wise optimal x̂ is the global optimal solution
of (9) [21, Th. 4.1].

B. Path Coordination as an MDP Congestion Game
We now model the path coordination problem as an MDP

congestion game and demonstrate how players can achieve
individual objectives while avoiding each other.

To reflect the congestion level of each state-action, we first
define a congestion distribution as the weighted sum of
individual state-action distributions.

y :=
∑

i∈[N]

αixi ∈ R(T+1)SA, αi > 0, ∀i ∈ [N], (13)

where αi is player i’s impact factor. If all players contribute
to congestion equally, αi = 1 ∀i ∈ [N].

Player Costs: We derive a class of player costs that sat-
isfy Assumption 1, incorporate congestion-based penalties,
and enable players to pursue individual objectives. For all

(i, t, s, a) ∈ [N] × T × [S] × [A], the player cost is given by

!i
tsa(y, xi) = αifts

(
∑

a′
ytsa′

)

+ αigtsa(ytsa) + hi
tsa(x

i
tsa), (14)

where αi is the same as in (13), fts : R '→ R is the state-
dependent congestion and takes the congestion level of (t, s)
as input, gtsa : R '→ R is the state-action-dependent conges-
tion and takes the congestion level of (t, s, a) as input, and
hi

tsa : R '→ R is the player-specific objective and takes player
i’s probability of being in (t, s, a) as input. Player-specific
objectives such as obstacle avoidance and target reachability
can be incorporated as constant offsets in hi.

Remark 2 (Effect of αi): The impact factor αi scales player
i’s relative impact on the total congestion and the total con-
gestion’s impact on player i. When αi < αj, player i impacts
congestion less and cares about the congestion less than player
j. When αi > αj, player i impacts congestion more and cares
about the congestion more than player j.

The potential function (10) of the game with costs (14) is

F(x) =
∑

t,s

∫ ∑
a′ ytsa′

0
fts(u)∂u +

∑

t,s,a

∫ ytsa

0
gtsa(u)∂u

+
∑

i,t,s,a

∫ xi
tsa

0
hi

tsa(u)∂u. (15)

Remark 3: Congestion costs f and g must be identical for
all players in order for a potential (Definition 2) to exist.

Example 1 (Road-Sharing Vehicles): Consider a sedan
(player 1, α1 = 1) and a trailer (player 2, α2 = 2) sharing
a road network modeled by [S] × [A]. Player i wants to reach
state si ∈ [S]. The player-specific objective is hi

tsa(x
i
tsa) =

−1[s = si] + εixi
tsa, where 1[w] is 1 when w is true and 0

otherwise. The term εixi
tsa where εi > 0 encourages player i

to randomize its policy over all optimal actions. Players expe-
rience state-based congestion as fts(w) = exp(w). The player
cost (14) is !i

tsa(y, xi) = αi exp(
∑

a′ ytsa′) + εixi
tsa − 1[s = si].

Corollary 1: Player costs of form (14) satisfy Assumption 1
if hi

tsa(·) is strictly increasing and fts(·), gtsa(·) are non-
decreasing ∀(i, t, s, a) ∈ [N] × T × [S] × [A].

Proof: Let IZ be an identity matrix of size Z × Z, 1Z be
a ones vector of size Z × 1, ,α = [α1, . . . ,αN] ∈ RN×1,
h(x) = [h1(x), . . . , hN(x)] ∈ RN(T+1)SA, and ⊗ be a Kronecker
product. We define the matrices M = ,α ⊗ I(T+1)SA and
J = (I(T+1)S⊗1.

A )M, and verify that Mx = y, [Jx]ts = ∑
a′ ytsa′

∀(t, s) ∈ T × [S], and ξ(x) = J.f (Jx) + M.g(Mx) + h(x). Let
w = Jx, we can take ξ ’s gradient as ∇ξ(x) = J.∇f (w)J +
M.∇g(y)M + ∇h(x). Under Corollary assumptions, ∇f (w)

and ∇g(y) are non-negative diagonal matrices and ∇h(x) is
a strictly positive diagonal matrix. Therefore, ∇ξ(x) * 0.

Remark 4: Corollary 1 implies that a strictly increasing hi

is crucial to ensuring a unique Nash equilibrium. Therefore,
hi can be interpreted as a regularization term.

C. Frank-Wolfe Learning Dynamics
We find the Nash equilibrium of MDP congestion games

by leveraging single-agent dynamic programming.
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Algorithm 1 Frank-Wolfe With Dynamic Programming

Require: {!i}i∈[N], {Pi}i∈[N], {zi
0}i∈[N], N, [S], [A], T .

Ensure: {x̂i
tsa}t∈T ,s∈[S],a∈[A].

1: xi0 ∈ X (Pi, zi
0) ∈ R(T+1)SA, ∀ i ∈ [N].

2: for k = 1, 2, . . . , do
3: for i = 1, . . . , N do
4: Cik = !i([x1k, . . . , xNk])
5: π i = MDP(Cik, Pi, [S], [A], T , zi

0)
6: bik = RETRIEVEDENSITY(P, zi

0, π i) / Alg. 2
7: xi(k+1) =

(
1 − 2

k+1

)
xik + 2

k+1 bik

8: end for
9: end for

Algorithm 2 Retrieving State-Action Distribution From π

Require: P, z, π .
Ensure: {dtsa}t∈T ,s∈[S],a∈[A]

1: d0sπ0s = zs, ∀s ∈ [S]
2: for t = 1, . . . , T do
3: dts(πts) = ∑

a
∑

s′ Ptss′ad(t−1)s′a, ∀ s ∈ [S]
4: end for

In Algorithm 1, players access an oracle that evaluates the
player costs. In line 5, π i ∈ [A](T+1)S is any optimal determin-
istic policy for the finite time MDP with cost Cik, transition
probability Pi, and initial distribution zi

0. We use value iteration
to recursively find π i as

Vi
Ts = min

a
Cik

Tsa, π i
Ts ∈ argmin

a
Cik

Tsa,

Vi
(t−1)s = min

a
Cik

(t−1)sa +
∑

s′
Pi

ts′saVi
ts′ ∀t ∈ [T]

π i
(t−1)s ∈ argmin

a
Cik

(t−1)sa +
∑

s′
Pi

ts′saVi
ts′ ∀t ∈ [T] (16)

Algorithm 1 then retrieves the corresponding state-action den-
sity bik via Algorithm 2 and combines it with the current
state-action density xik to derive the next joint state-action
density. All steps within lines 4 to 7 are parallelizable.

Theorem 3: Under Assumption 1, Algorithm 1 converges
towards the Nash equilibrium x̂ = (x̂1, . . . , x̂N) as

α

2

∑

i∈[N]

∥∥∥xik − x̂i
∥∥∥

2

2
≤ 2CF

k + 2
(17)

where CF is the potential function F’s (10) curvature constant
given by

CF = sup
xi,si∈X (Pi,zi

0)
γ∈[0,1]

wi=xi+γ (si−xi)

2
γ 2



F(s) − F(x) −
∑

i∈[N]

(xi − wi).!i(x)



.

Proof: Algorithm 1 is a straight-forward implementation
of [22, Algorithm 2]. From Assumption 1, ∇ξ(x̂) * 0.
Therefore, the potential function F is strongly convex and sat-
isfies α

2
∑

i∈[N]

∥∥xik − x̂i
∥∥2

2 ≤ F(xk)− F(x̂). Equation (17) then
follows directly from [22, Th. 1].

Remark 5 (Scalability): Algorithm 1 has linear complexity
in the number of players.

Fig. 1. Operation environment for multi-robot warehouse scenario.

IV. MULTI-AGENT PATH COORDINATION

We apply our game model to a multi-agent pick up
and delivery scenario with stochastic package arrival times.
As shown in Figure 1, N players navigate a 2D space.
Each player’s goal is to transport packages from the pick
up chutes to the drop off chutes while avoiding colli-
sion with others. Code for the simulation is available at
https://github.com/lisarah/mdp_path_coordination.

A. Stationary MDP Model
Players operate in a two dimensional grid world with 5 rows

and 10 columns. In addition to capturing location, each state
also dictates whether the robot is in pick up or delivery mode.
The state space is given by

[S] = {(v, w, m)|1 ≤ v ≤ 5, 1 ≤ w ≤ 10, m ∈ {1, 2}}.
At each state, available actions are [A] = {u, d, r, l, s}, cor-
responding to up, down, right, left, stay. Player transition
dynamics and rewards are stationary in time. The transition
probability of each state (v, w, m) extends the location-based
transition probabilities P0.

Location-Based Transition: Let u = (v, w) denote the loca-
tion component of the state. At each location, each action
either points to a feasible target utarg(a) or is infeasible. The
set of all feasible targets from u is N (u). When a target exists,
players have 1 > q > 0 chance of reaching it and 1−q chance
of reaching other states in N (u).

P0
u′ua =






q u′ = utarg(a),
1−q

|N (u)| u′ ∈ N (u)/{utarg(a)},
0 otherwise.

(18)

When the target location is infeasible, the player transitions
into a neighboring state u′ ∈ N (u) at random.

P0
u′ua =

{ 1
|N (u)| u′ ∈ N (u),

0 otherwise.
(19)

Full Transition Dynamics: Within the same mode, players
transition between locations via dynamics P0. Player modes
transition at pick up chutes P and drop off chutes D.

1) When player i is in mode 1 (pick up) and about to tran-
sition into pi ∈ P , player i’s mode has ri probability of
switching to mode 2 (drop off).
{

Pi
t(pi,2)sa = riP0

tpiua,

Pi
t(pi,1)sa = (1 − ri)P0

tpiua,
∀s = (u, 1), s ∈ [S].
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Fig. 2. ‖·‖2 of player i ’s state-action distribution over Algorithm 1
iterations.

2) When player i is in mode 2 and about to transition into
di ∈ D, player i switches to mode 1 with probability 1.

{
Pi

t(di,1)sa = P0
tdiua,

Pi
t(pi,2)sa = 0,

∀s = (u, 2), s ∈ [S].

Here, ri ∈ R denotes the probability of package arrival when
player i is in pi. Modeled as an independent Poisson process
with rate λi and interval )t = 1s, ri = exp(−λi)t).

B. Player Costs
For all (t, s, a) ∈ T × [S] × [A] and congestion distribution

y (13), player i’s cost is given by

!i
tsa(y, xi) = εxi

tsa − ci
tsa + αifts(y).

The player-specific objective ci
tsa is defined as

ci
t(v,w,m)a =






1 (v, w) = pi, m = 1,

1 (v, w) = di, m = 2,

0 otherwise.
(20)

The congestion function is strictly state-based and is an
exponential function given by

ft(v,w,m)(y) = −β exp



β(
∑

m′∈{1,2}

∑

a′∈[A]

yt(v,w,m′)a′ − 1)



, (21)

where αi > 0 for all (t, s, a) ∈ T × [S] × [A]. As opposed
to (14), function (21) calculates the congestion in (v, w, ·)
using both (v, w, 1)’s and (v, w, 2)’s congestion level.

C. Simulation Results
We simulate the path coordination game using parameters

from Table I. Player i’s pick up locations is the ith element of
P = {(4, wi)|wi ∈ [8, 7, 2]}, and its drop-off location is the ith

element of D = {(0, wi)|wi ∈ [4, 5, 8]}. At t = 0, players are
initialized at their drop off location.

We run Algorithm 1 for 100 iterations, where line 5 is
solved via value iteration (16). The two norm of xi is shown
in Figure 2 as a function of the algorithm iterations, where the
state-action densities stabilize in about 20 steps. Performance
is evaluated by: 1) expected number of collisions, 2) expected
packages delivery time, 3) worst package delivery time. The
results for 100 random trials are visualized in Figures 3 and 4.

We compare the jointly optimal congestion-free wait time
computed using Algorithm 1 to the shortest wait time available

Fig. 3. Collisions per player as a function of MDP time step t .

Fig. 4. Average waiting time per package, worst case waiting time per
package, and average number of collisions in T for each player.

TABLE I
PARAMETERS FOR SIMULATION ENVIRONMENT

in the absence of opponents. Each path is the number of
steps to complete the drop off-pick up-drop off cycle. Based
on the pick-up and drop-off locations, each player’s shortest
wait time without opponents is 16, 12, 20 respectively. This
matches well with the average wait time shown in Figure 4.

We set the player impact factors as {0.5, 1, 1.5} as in Table I.
From Figure 4, the impact factors directly correlate with the
rate of collision players experience. Player 0 impacts conges-
tion the least and is the least sensitive to congestion. As a
result, it encountered the most collisions. Player 2 impacts
congestion the most and is the most sensitive to congestion.
As a result, it encountered the least collisions. The collision
rate is spread out evenly over T (Figure 3).

V. CONCLUSION

We derived a class of N player, weighted potential games
under heterogeneous MDP dynamics and applied it to multi-
agent path coordination. For these games, we showed equiv-
alence between the unique Nash equilibrium and the global
solution of a potential minimization problem, which we solved
via gradient descent and single-player dynamic programming.
Future work includes deriving learning-based solutions for the
games and integrating partially observable scenarios in which
players have local observations only.

APPENDIX

Proposition 1: Under Assumption 1, consider the problem

min
xi

F(xi, x−i) s.t. xi ∈ X (Pi, zi
0). (22)
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where for i ∈ [N] and x−i, the objective F : RN(T+1)SA '→ R
satisfies ∂F(xi, x−i)/∂xi = !i(xi, x−i) ∀xi ∈ X (Pi, zi

0), then x̂i

minimizes (22) if and only if Qi(x̂i, x−i) in (7) satisfies (8).
Proof: Because (22) has linear constraints and ∂2F(x)/∂x2

i
= ∂!i(x)/∂xi * 0 by assumption, (22)’s unique minimizer
satisfies the first order KKT conditions. Consider the dual vari-
ables µi ∈ R(T+1)SA

+ for xi ≥ 0 and νi ∈ R(T+1)SA for the
equality constraints in X (Pi, zi

0) (2). The Lagrangian of (22)
is L(xi, νi, µi) = F(xi, x−i) − ∑

t,s,a µi
tsaxi

tsa + ∑
s νi

0s(x
i
0s −∑

a xi
0sa) + ∑

s,t ν
i
ts(
∑

s′a Pi
tss′axi

(t−1)sa − ∑
a xi

tsa). The KKT
conditions are 1) primal feasibility xi ∈ X (Pi, zi

0), 2) dual
feasibility µi ≥ 0, 3) complementary slackness µi

tsaxi
tsa = 0,

∀(t, s, a) ∈ T × [S] × [A], and 4) stationarity condition, given
∀(t, s, a) ∈ T × [S] × [A] as

{
!i

tsa(x) +∑
s′ Pi

(t+1)s′saν
i
(t+1)s′ = νi

ts + µi
tsa t 3= T,

!i
Tsa(x) = νi

Ts + µi
Tsa t = T.

(23)

We can show that (x̂i, x−i) satisfies the KKT conditions above
if and only if it satisfies (8). To simplify notation, we use Qi

tsa
to denote Qi

tsa(x̂
i, x−i).

(⇒): suppose (x̂i, νi, µi) satisfies the KKT conditions.
When x̂i

tsa > 0, νi
ts represents the value function and νi

ts +µi
tsa

represents Q-value. When x̂i
tsa = 0, we shift (νi, µi) to

(ν̂i, µ̂i) to generate the optimal Q-values. To this end, define
λi ∈ R(T+1)SA, )i ∈ R(T+1)S, µ̂i ∈ R(T+1)SA, ν̂i ∈ R(T+1)S

recursively from t = T . At T = t, let )i
(T+1)s′ = 0 ∀s′ ∈ [S].

All other variables are recursively defined as

λi
tsa = µi

tsa +
∑

s′
Pi

(t+1)s′sa)
i
(t+1)s′,

)i
ts = min

a′
λi

tsa′,

µ̂i
tsa = λi

tsa − )i
ts,

ν̂i
ts = νi

ts + )i
ts. (24)

At time t, let the condition x̂i
tsa > 0 implies λi

tsa = 0 be
denoted as K(t). We can show that K(t) implies K(t−1): from
complementary slackness, x̂i

(t−1)sa > 0 implies µi
(t−1)sa = 0.

Subsequently, λi
(t−1)sa = 0 (24) if Pi

ts′sa)
i
ts′ = 0 ∀s′ ∈ [S]:

either Pi
ts′sa = 0 or Pi

ts′sax̂i
(t−1)sa = ∑

a′ x̂i
ts′a′ > 0. In the

second case, there exists a′ ∈ [A] such that x̂i
ts′a′ > 0, and

if K(t) holds, λi
ts′a′ = 0. By definition, )i

ts′ is non-negative
and must be zero. We conclude that Pi

ts′sa)
i
ts′ = 0 ∀s′ ∈ [S],

and K(t − 1) holds. At t = T , x̂i
Tsa > 0 implies µi

Tsa = 0 and
λi

Tsa = 0. Therefore, K(t) holds ∀t ∈ T .
By adding

∑
s′ Pi

(t+1)s′sa)
i
(t+1)s′ to (23) and simplifying it

via (24), we obtain
{

!i
tsa(x) +∑

s′ Pi
(t+1)s′saν̂

i
(t+1)s = ν̂i

ts + µ̂i
tsa t 3= T

!i
Tsa(x) = ν̂i

Ts + µ̂i
Tsa t = T.

(25)

We define Qi
tsa = ν̂i

ts + µ̂i
tsa. From (24), µ̂i

tsa is always
non-negative and µ̂i

tsa′ = 0 for some a′ ∈ [A]. Therefore
mina′ Qi

tsa′ = ν̂i
ts, and Qi substituted in (25) satisfies (7).

If x̂i
tsa > 0, then from K(t), λi

tsa = 0. Therefore, µ̂i
tsa = 0

and Qi
tsa = mina′ Qi

tsa′ . We conclude that Qi satisfies (8).

(⇐): we show that if Qi satisfies (8), then x̂i satisfies the
KKT conditions. Let νi

ts = mina′ Qi
tsa′ and µi

tsa = Qi
tsa − νi

ts
∀(t, s, a) ∈ T ×[S]×[A], then (x̂i, νi, µi) is a KKT point. Both
x̂i and µi satisfy primal/dual feasibility respectively. From (8),
x̂i

tsa > 0 implies that νi
ts = Qi

tsa and µi
tsa = 0. Since either

x̂i
tsa > 0 or x̂i

tsa = 0, complementary slackness x̂i
tsaµ

i
tsa = 0

holds ∀(t, s, a) ∈ T × [S] × [A]. Finally, the stationarity
condition (23) directly follows from (7).

REFERENCES

[1] K. Yun et al., “Multi-agent motion planning using deep learning for
space applications,” in Proc. ASCEND, 2020, p. 4233.

[2] J. Ota, “Multi-agent robot systems as distributed autonomous systems,”
Adv. Eng. Inform., vol. 20, no. 1, pp. 59–70, 2006.

[3] R. Vosooghi, J. Kamel, J. Puchinger, V. Leblond, and M. Jankovic,
“Robo-taxi service fleet sizing: Assessing the impact of user trust and
willingness-to-use,” Transport, vol. 46, no. 6, pp. 1997–2015, 2019.

[4] N. V. Kumar and C. S. Kumar, “Development of collision free path
planning algorithm for warehouse mobile robot,” Procedia Comput. Sci.,
vol. 133, pp. 456–463, Jan. 2018.

[5] Z. Li, A. V. Barenji, J. Jiang, R. Y. Zhong, and G. Xu, “A mechanism for
scheduling multi robot intelligent warehouse system face with dynamic
demand,” J. Intell. Manuf., vol. 31, no. 2, pp. 469–480, 2020.

[6] D. Calderone and S. Shankar, “Infinite-horizon average-cost Markov
decision process routing games,” in Proc. Intell. Transp. Syst., 2017,
pp. 1–6.

[7] J.-M. Lasry and P.-L. Lions, “Mean field games,” Jpn. J. Math., vol. 2,
no. 1, pp. 229–260, 2007.

[8] O. Guéant, “From infinity to one: The reduction of some mean field
games to a global control problem,” 2011, arXiv:1110.3441.

[9] D. A. Gomes, J. Mohr, and R. R. Souza, “Discrete time, finite state space
mean field games,” J. Math. Pures Appl., vol. 93, no. 3, pp. 308–328,
2010.

[10] O. Guéant, “Existence and uniqueness result for mean field games
with congestion effect on graphs,” Appl. Math. Optim., vol. 72, no. 2,
pp. 291–303, 2015.

[11] S. H. Li, Y. Yu, D. Calderone, L. Ratliff, and B. Açıkmeşe, “Tolling for
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