
Classical and Quantum Gravity

PAPER

Gravitational wave memory and the wave equation
To cite this article: David Garfinkle 2022 Class. Quantum Grav. 39 135010

 

View the article online for updates and enhancements.

You may also like

Classical and quantum analysis of 3D
electromagnetic pp-wave spacetime
T Pailas, N Dimakis, A Karagiorgos et al.

-

Spritz: a new fully general-relativistic
magnetohydrodynamic code
F Cipolletta, J V Kalinani, B Giacomazzo
et al.

-

Low-dose x-ray CT simulation from an
available higher-dose scan
Masoud Elhamiasl and Johan Nuyts

-

This content was downloaded from IP address 66.97.27.10 on 14/06/2022 at 16:18



Classical and Quantum Gravity

Class. Quantum Grav. 39 (2022) 135010 (13pp) https://doi.org/10.1088/1361-6382/ac7203

Gravitational wave memory and the wave

equation

David Garfinkle∗

Department of Physics, Oakland University, Rochester, MI 48309,
United States of America
Leinweber Center for Theoretical Physics, Randall Laboratory of Physics,
University of Michigan, Ann Arbor, MI 48109-1120, United States of America

E-mail: garfinkl@oakland.edu

Received 19 January 2022, revised 2 May 2022
Accepted for publication 17 May 2022
Published 8 June 2022

Abstract

Gravitational wave memory and its electromagnetic analog are shown to be
straightforward consequences of the wave equation. FromMaxwell’s equations
one can derive a wave equation for the electric field, while from the Bianchi
identity one can derive a wave equation for the Riemann tensor in linearized
gravity. Memory in both cases is derived from the structure of the source of
those wave equations.
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1. Introduction

Gravitational wave memory is a residual effect on the gravitational wave detector left after
the gravitational wave has passed. It was first found in linearized gravity by Zeldovich and
Polnarev [1] and then in full nonlinear general relativity by Christodoulou [2]. That gravita-
tional radiation has such residual effects is already surprising; but perhaps evenmore surprising
is that the amount of the memory is encoded in the asymptotic behavior of the escaping matter
[1] and energy [2].

In [3] gravitational wave memory was calculated and expressed in terms of the trans-
verse–traceless part of the metric perturbation. In [4] a relation between memory and BMS
supertranslations is calculated. While the work in [3, 4] is entirely reasonable, it has given
rise to somewhat odd and narrow views. Under the influence of [3] a widespread view has
developed that gravitational wave memory is nothing but a property of the transverse traceless
metric perturbation and can only be understood in this way. And under the influence of [4] an
even more widespread view has developed that gravitational wave memory is nothing but a
property of BMS symmetry, and can only be understood in this way.
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As an alternative to the points of view generated by the work of [3, 4], we note that the
main properties of memory can be explained in terms of simple properties of the flat spacetime
wave equation. The relevant properties of the wave equation are given in section 2. Then these
properties are used to treat the electromagnetic analog of gravitational wave memory [5] in
section 3. Gravitational wave memory is treated in section 4 and conclusions are given in
section 5.

2. Wave equation

Let Ψ satisfy the Minkowski spacetime wave equation

∂a∂aΨ = −4πS (1)

for some source term S. The retarded solution of equation (1) is

Ψ(t,�x) =
∫

d3y
S(tr,�y)
|�x −�y|

. (2)

Here the retarded time tr is given by the relation

t − tr = |�x −�y|. (3)

That is, the integration in equation (2) is done over the past light cone of the point (t,�x).
Nowwe would like to know the behavior ofΨ at large distances in outgoing null directions.

We therefore suppose that �x = rr̂ where r is large and r̂ is a unit vector. We also introduce the
null coordinate u given by u = t− r. As long as at all places where the source is nonzero we
have |�y| ≪ r, we can approximate 1/|�x −�y| by 1/r. Thus equation (2) becomes

Ψ(u, r, r̂) =
1
r

∫

d3y S(tr,�y), (4)

while equation (3) becomes

tr = u+ r − |rr̂ −�y| (5)

Now for any interval (u1, u2), integrate equation (4) over this interval to obtain

∫ u2

u1

du Ψ(u, r, r̂) =
1
r

∫ u2

u1

du
∫

d3y S(tr,�y). (6)

However, the Jacobian of the transformation between the (u,�y) coordinates and the (tr,�y)
coordinates is unity, so we can also write equation (6) as

∫ u2

u1

du Ψ(u, r, r̂) =
1
r

∫

M

d4y S(tr,�y). (7)

Here the integral is over the spacetime region M between the past light cones of the points
(u2, r, r̂) and (u1, r, r̂) (see figure 1).
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Figure 1. Past lightcones Cu2 with vertex (u2, r, r̂) (upper cone) and Cu1 with vertex
(u1, r, r̂) (lower cone). The spacetime volume M being integrated over is the region
between the two cones. (Note: despite the limitations of the figure, each cone extends
infinitely to the past).

Now, we specialize to the case where S is a total divergence, that is where there is a current
Qa for which S = ∂aQ

a. Then denoting the flat spacetime volume element by ǫabcd we have
∫

M

Sǫabcd =

∫

M

∂eQ
eǫabcd =

∫

∂M

Qanaǫ̃bcd (8)

Here ∂M is the boundary ofM, na is a normal to ∂M, and ǫ̃bcd is a volume element on ∂M
satisfying

ǫabcd = 4n[aǫ̃bcd] (9)

The reason for this somewhat complicated statement of Gauss’ theorem is that the boundary
is a null surface (see e.g. appendix B of [6]). Using equation (8) in (7) we obtain

∫ u2

u1

du Ψ(u, r, r̂) =
1
r

[

∫

Cu2

Qanaǫ̃bcd −

∫

Cu1

Qanaǫ̃bcd

]

. (10)

Here Cu1 (resp. Cu2) is the past light cone of the point (u1, r, r̂) (resp. (u2, r, r̂)), and we have
chosen the past pointing null normal vector for both the integral over Cu1 and the integral
over Cu2 .

Note that given our assumption that |�y| ≪ r, it follows that tr in equation (5) is well
approximated by

tr = u+ r̂ ·�y. (11)

That is, our integrals over null cones become integrals over null planes. (This is just the well
known property of Minkowski spacetime that the limit as the vertex tends to null infinity of a
null cone is a null plane). Thus equation (10) becomes

∫ u2

u1

du Ψ(u, r, r̂) =
1
r

[

∫

Pu2

Qanaǫ̃bcd −

∫

Pu1

Qanaǫ̃bcd

]

. (12)
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Here Pu1 is the null plane given by tr = u1 + r̂ ·�y and correspondingly for Pu2 .
Note that from equation (11) it follows that the components of the normal vector are

given by

n0 = 1, ni = −r̂i, (13)

and therefore from equation (9) that

ǫ̃123 = 1 (14)

We now check the consistency of our assumption that |�y| ≪ r. Suppose that the source S is
concentrated along the world line of an object or light ray with velocity �v. That is a world line
satisfying �y = �y0 + �vtr. Then we find from equation (11) that

�y = �y0 +
�v(u+ r̂ ·�y0)
1− r̂ · �v

(15)

Thus we find that our assumption is consistent provided that the quantity 1− r̂ · �v does not
vanish. For objects traveling slower than light, 1− r̂ · �v > 0 so our assumption is consistent.
Even for objects traveling at the speed of light, 1− r̂ · �v > 0 provided that �v does not point in
the direction of r̂. Thus in order to use the results of this section, we must check that any null
part of the source S vanishes whenever it points in the r̂ direction.

3. Electromagnetic memory

The electromagnetic analog of gravitational wavememory [5] is a kick (i.e. change in velocity)
received by a test charge. Since a test charge of charge q and mass m satisfies the equation of
motion

m�̈x = q�E, (16)

It follows that the kick received by the test charge is

∆�v =
q

m

∫ ∞

−∞

�E dt. (17)

To apply the method of section 2 we need to find an equation for the components of the
electric field that is a wave equation with source. Recall that Maxwell’s equations are

∂αFβγ + ∂βFγα + ∂γFαβ = 0, (18)

∂αFαβ = −4π jβ. (19)

Here Fαβ is the Faraday tensor and jα is the electromagnetic current four-vector. Applying ∂γ

to equation (18) and using (19) we obtain

∂γ∂γFαβ = −4π(∂α jβ − ∂β jα) (20)

4
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Thus, each Cartesian component of the Faraday tensor is a solution of the wave equation. In
particular, the i component of the electric field is Ei = Fi0 so we find

∂γ∂γEi = −4π(∂i j0 − ∂0 ji) (21)

The right hand side of equation (21) is of the form −4π∂aQ
a where the currentQa is given by

Qμ
= δμi j0 − δμ0 ji. (22)

Using equation (13) we have

Qana = −(r̂i j0 + ji) (23)

Note that there is a different Qμ for each component of the Faraday tensor. That is there is
a tensorQμ

αβ such that

∂γ∂γFαβ = −4π∂μQ
μ
αβ. (24)

Here the tensor Qμ
αβ is given by

Qμ
αβ = δμα jβ − δμβ jα. (25)

The Qμ in equation (22) is Qμ
i0. Nonetheless, for simplicity of expression we will stick with

the notation of equation (22) rather than writing our expressions in terms of Qμ
αβ .

Define the projection operator Pi j by

Pi j ≡ δi j − r̂ir̂ j (26)

That is, Pi j projects into the space orthogonal to r̂. Then we find from equation (23) that

Qana = r̂i(− j0 − r̂ ·�j)− Pi
k jk = r̂i( j

μnμ)− Pi
k jk (27)

However
∫

jμnμ is the total charge and is thus the same quantity whether the integral is
done over the null plane P∞ or the null plane P−∞. This can be seen more clearly in terms
of the null cones Cu1 and Cu2 of figure 1. Since ∂μ j

μ = 0 it follows that
∫

M∂μ j
μ = 0 where

M is the spacetime region bounded by the null cones Cu1 and Cu2 . Then using Gauss’ theorem
(and since we are assuming that no charge is coming in from past null infinity) it follows that
∫

Cu2
j μnμ =

∫

Cu1
j μnμ. However the null plane P∞ is just the limit of the null cone Cu2 as first

r→∞ and then u2 →∞. Similarly, the null plane P−∞ is just the limit of the null cone Cu1 as
first r→∞ and then u1 →−∞. It then follows that

∫

P∞
j μnμ =

∫

P−∞
j μnμ. Note that each of

the quantities
∫

P∞
j μnμ and

∫

P−∞
j μnμ is nonzero.However, they are the same nonzero quantity.

And since in equation (12) these quantities contribute to the memorywith opposite sign, it then
follows that the total contribution to the memory from both quantities together is zero.

Thus applying equation (27) to equation (12) we find that the electromagnetic memory is
given by

∫ ∞

−∞

Ei dt =
1
r

[

−

∫

P∞

Pi
k jk d

3y +

∫

P−∞

Pi
k jk d

3y

]

. (28)

As pointed out in [9–11]. There are two different definitions of transverse fields used to
describe radiation: a local algebraic definition involving projection using Pi j and a nonlocal
definition using divergence-free tensors. In our treatment, it is the simple, local, algebraic
definition that is relevant for memory.
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As in [5] we will assume the following behavior of the charges at early and at late times:
at early times the sources of charge consist of isolated bodies traveling at constant velocity. At
late times the sources of charge consist both of such bodies and of an outgoing radiation of
charge that travels along null directions (as happens for the massless Maxwell–Klein–Gordon
equation [8]). Now consider a single isolated body with charge e and four-velocity
uμ = γ(1,�v). The integral over the null plane of jμ must point in the direction of uμ and yield
e when contracted with nμ. It then follows that

∫

Pu

d3y j μ =
euμ

γ(1− r̂ · �v)
. (29)

We then find that

∫

Pu

d3y Pi
k jk =

ePi
kvk

1− r̂ · �v
. (30)

We now consider the contribution of the outgoing radiation of charge to the memory. As
before, we use the notation tr for the time coordinate of the y coordinate system. However,
we will use the notation ry, r̂y and dΩy to denote respectively the radial coordinate, radial unit
vector, and solid angle of the y coordinate system. Then at late times the current of the outgoing
radiation of charge takes the form

j μ = r−2
y Lq(tr − ry, r̂y)ℓ

μ. (31)

Here the null vector ℓμ is ℓμ = tμ + r̂μy where tμ is the unit vector in the time direction. The
quantity Lq is the charge radiated per unit solid angle per unit time. Define the quantity Fq by

Fq(r̂y) ≡
∫ ∞

−∞

Lq(s, r̂y) ds. (32)

Then Fq(r̂y) is the total charge radiated per unit solid angle. Now consider the null plane
Pu2 with u2 large and positive. On that null plane we have tr = u2 + ryr̂ · r̂y so applying
equation (31) we obtain

∫

Pu2

d3y Pi
k jk =

∫

dΩy

∫ ∞

0
r2y dry r

−2
y Lq(u2 − ry(1− r̂ · r̂y), r̂y)Pikr̂

k
y. (33)

Then changing the variable of integration from ry to s ≡ u2 − ry(1− r̂ · r̂y) and applying
equation (32) we obtain

∫

Pu2

d3y Pi
k jk =

∫

dΩy

Fq(r̂y)Pikr̂ky
1− r̂ · r̂y

(34)

Note that despite the fact that the denominator can vanish, the integrand in equation (34)
is non-singular, because the denominator only vanishes when r̂y = r̂ and that is also where
the numerator vanishes. Also note that for the case where Fq(r̂y) is a constant, the integral in
equation (34) vanishes. Thus if one considers an expansion of Fq(r̂y) in spherical harmonics,
it is only the ℓ > 0 spherical harmonics that contribute to the memory.
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Finally applying the results of equations (30) and (34) to equation (28) we find that the total
electromagnetic memory is

∫ ∞

−∞

Ei dt =
1
r

⎡

⎣−

∫

dΩy

Fq(r̂y)Pikr̂ky
1− r̂ · r̂y

−
∑

late

e(ℓ)Pi
jv(ℓ) j

1− r̂ · �v(ℓ)
+

∑

early

e(ℓ)Pi
jv(ℓ) j

1− r̂ · �v(ℓ)

⎤

⎦ . (35)

Here the first sum is over all late time isolated bodies with charges e(ℓ) and velocities �v(ℓ), while
the second sum is the corresponding sum for the early time isolated bodies.

4. Gravitational wave memory

For two nearby objects in free fall, their separation si satisfies

s̈i = Ri00 js
j, (36)

where the 0 direction is the rest frame of the objects. We apply equation (36) in the asymptotic
region, i.e. at large distances in null directions. Then the permanent change in separation∆si

satisfies

∆si = Mi j(r, r̂)s
j, (37)

where the tensorMi j(r, r̂) (which we will call the memory tensor) is given by

Mi j(r, r̂) =
∫ ∞

−∞

Vi j(u, r, r̂) du, (38)

with the tensor Vi j(u, r, r̂) (which we will call the velocity tensor) given by

Vi j(u, r, r̂) =
∫ u

−∞

dũ (Ri00 j(ũ, r, r̂)). (39)

To apply the method of section 2 we need to find an equation for the components of the
Riemann tensor that is a wave equation with source. We will treat only weak gravitational
fields and work to linear order in perturbation theory. Then the Bianchi identity is

∂αRβγδǫ + ∂βRγαδǫ + ∂γRαβδǫ = 0. (40)

Note that as in [7] using the perturbed Riemann tensor rather than the perturbed metric yields
results that are manifestly gauge invariant, and where there is no need to choose a gauge.
Contracting equation (40) with the Minkowski spacetime inverse metric ηαǫ we obtain

∂αRβγδα = ∂γRβδ − ∂βRγδ. (41)

Then applying ∂α to equation (40) and using equation (41) we obtain

∂α∂αRβγδǫ = ∂β
(

∂δRǫγ − ∂ǫRδγ

)

+ ∂γ
(

∂ǫRδβ − ∂δRǫβ

)

. (42)
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Thus each Cartesian component of the Riemann tensor is a solution of the wave equation with
source. In particular we have

∂α∂αRi00 j = ∂i
(

∂0R0 j − ∂ jR00
)

+ ∂0
(

∂ jR0i − ∂0Ri j
)

. (43)

Thus we have ∂α∂αRi00 j = −4π∂μQ
μ where

Qμ
=

1
4π

[

δμ0
(

∂0Ri j − ∂ jR0i
)

+ δμi
(

∂ jR00 − ∂0R0 j
)]

(44)

Analogously to the electromagnetic case, there is a Qμ for each component of the Riemann
tensor. That is, there is a tensorQμ

αβγδ such that

∂ν∂νRαβγδ = −4π∂μQ
μ
αβγδ. (45)

Thus, we could write our expressions in terms ofQμ
αβγδ but we will not do so.

Applying equations (10), (43) and (44) to equation (39) we obtain

Vi j(u, r, r̂) =
1
r

∫

Cu

d3y
1
4π

[

∂0Ri j − ∂ jR0i − r̂i
(

∂ jR00 − ∂0R0 j

)]

. (46)

Herewe have used the fact (see appendixA) that the source falls off sufficiently fast as u→−∞
so there is no contribution from the light cone at u1 where u1 →−∞. Similarly, the source falls
off sufficiently fast at large u that limu→∞Vi j(u, r, r̂) = 0. Since the relative velocity of the two
nearby objects is proportional to Vi j this means that gravitational waves in asymptotically flat
spacetime do not produce a kick. Now integrating equation (46) we obtain

∫ u2

u1

du Vi j(u, r, r̂) =
1
r

∫

M

d4y
1
4π

[

∂0Ri j − ∂ jR0i + r̂i
(

∂0R0 j − ∂ jR00
)]

, (47)

where as beforeM is the spacetime region between the past light cone of (u2, r, r̂) and the past
light cone of (u1, r, r̂). However, the integrand in equation (47) is a total divergence: we have

1
4π

[

∂0Ri j − ∂ jR0i + r̂i
(

∂0R0 j − ∂ jR00
)]

= ∂μQ̃
μ, (48)

where the current Q̃μ is given by

Q̃μ
=

1
4π

[

δμ0Ri j − δμ jR0i + r̂i
(

δμ0R0 j − δμ jR00
)]

, (49)

and therefore we find that

Q̃μnμ =
1
4π

[

Ri j + R0ir̂ j + R0 jr̂i + R00r̂ir̂ j
]

(50)

However, from the Einstein field equations we have Rμν/(4π) = 2Tμν − Tgμν , which with

some straightforward but tedious algebra allows us to rewrite equation (50) as Q̃μnμ = S1 + S2
where S1 and S2 are given by

S1 =
(

T0μnμ + Tm
μnμr̂

m
)

(δi j + r̂ir̂ j) − 2Ti
μnμr̂ j − 2T j

μnμr̂i (51)

S2 = 2

(

Pi
mP j

n −
1
2
PmnPi j

)

Tmn. (52)
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Here the projection operator PimP j
n − (1/2)PmnPi j projects symmetric tensors into the space

of symmetric trace-free tensors orthogonal to r̂.
The reason for the somewhat complicated looking decomposition of Q̃μnμ is that one can

show that S1 makes zero contribution to the memory. The argument is essentially the same
as the one in the previous section that showed that terms proportional to jμnμ made no net
contribution to the electromagnetic memory. This is because

∫

T0μnμ is the total energy and
∫

Tkμnμ is the total spatial momentum. All terms in equation (51) thus give the same contri-
bution whether the integral is done over the null plane P∞ or the null plane P−∞. Since in
equation (12) the terms in the integral over P−∞ contribute with the opposite sign to the terms
in the integral over P∞, it follows that the net contribution to the memory of S1 is zero.

Therefore the memory tensor is given by

Mi j(r, r̂) =
2
r

[
∫

P∞

d3y

(

Pi
mP j

n −
1
2
PmnPi j

)

Tmn −

∫

P−∞

d3y

(

Pi
mP j

n −
1
2
PmnPi j

)

Tmn

]

.

(53)

At early times the stress–energy consists of isolated bodies traveling along timelike
geodesics. At late times the stress–energy consists of such isolated bodies along with out-
going radiation. Consider the contribution of one isolated body to the memory. Let m be the
mass of the body and uμ = γ(1,�v) be its four-velocity. Then the integral of T μν over the null
plane must be proportional to uμuν . Furthermore, since the total energy of the body is γm, it
follows that the integral over the null plane of T0νnν must equal γm. It then follows that

∫

Pu

d3y Tμν
=

muμuν

γ(1− r̂ · �v)
. (54)

We therefore have

∫

Pu

d3y

(

Pi
mP j

n −
1
2
PmnPi j

)

Tmn =
mγ

(

Pi
mP j

n − 1
2P

mnPi j
)

vmvn
1− r̂ · �v

. (55)

We now consider the contribution of outgoing radiation to the memory. As before, we use
the notation of tr for the time coordinate of the y coordinate system, and ry, r̂y and dΩy to denote
respectively the radial coordinate, radial unit vector, and solid angle of the y coordinate system.
Then at late times the stress–energy of the outgoing radiation takes the form

Tμν
= r−2

y L (tr − ry, r̂y)ℓ
μℓν , (56)

where the null vector ℓμ is ℓμ = tμ + r̂μy and tμ is the unit vector in the time direction. The
quantity L is the energy radiated per unit solid angle per unit time. Define the quantity F by

F(r̂y) ≡
∫ ∞

−∞

L (s, r̂y) ds. (57)

ThenF(r̂y) is the total energy radiated per unit solid angle. Nowconsider the null planePu2 with
u2 large and positive. On that null plane we have tr = u2 + ryr̂ · r̂y so applying equation (56)
we obtain

9
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∫

Pu2

d3y

(

Pi
mP j

n −
1
2
PmnPi j

)

Tmn

=

∫

dΩy

∫ ∞

0
r2y dry r

−2
y L(u2 − ry(1− r̂ · r̂y), r̂y)

(

PimP jn −
1
2
PmnPi j

)

r̂my r̂
n
y . (58)

Then changing the variable of integration from ry to s ≡ u2 − ry(1− r̂ · r̂y) and applying
equation (57) we obtain

∫

Pu2

d3y

(

Pi
mP j

n −
1
2
PmnPi j

)

Tmn =

∫

dΩy

F(r̂y)
(

PimP jn −
1
2PmnPi j

)

r̂my r̂
n
y

1− r̂ · r̂y
(59)

Note that despite the fact that the denominator can vanish, the integrand in equation (59) is
non-singular, because the denominator only vanishes when r̂y = r̂ and that is also where the
numerator vanishes. One can show that for the case where F(r̂y) is any combination of ℓ = 0
and ℓ = 1 spherical harmonics, the integral in equation (59) vanishes. Thus it is only the ℓ > 1
spherical harmonics that contribute to the memory.

Finally applying the results of equations (55) and (59) to equation (53) we find that the total
gravitational wave memory is

Mi j =
2
r

[

∫

dΩy

F(r̂y)
(

PimP jn −
1
2PmnPi j

)

r̂my r̂
n
y

1− r̂ · r̂y

+
∑

late

m(ℓ)γ(ℓ)
(

PimP jn −
1
2PmnPi j

)

vm(ℓ)v
n
(ℓ)

1− r̂ · �v(ℓ)

−
∑

early

m(ℓ)γ(ℓ)
(

PimP jn −
1
2PmnPi j

)

vm(ℓ)v
n
(ℓ)

1− r̂ · �v(ℓ)

⎤

⎦ . (60)

Here the first sum is over all late time isolated bodies with massesm(ℓ) and velocities �v(ℓ), while
the second sum is the corresponding sum for the early time isolated bodies.

5. Conclusion

We now contrast the approach of this paper to the approaches of [3, 4]. As noted e.g. in [12]
the transverse–traceless part of the metric perturbation (which is the basis of the approach of
[3]) is one of a set of variables that is gauge invariant, but non-local. In contrast, the perturbed
Riemann tensor, which we use in this paper, is both gauge invariant and local. Why would
one go to the trouble of introducing and using a set of non-local gauge invariant variables
when there is a simple and obvious set of local gauge invariant variables that one can use
instead? Historically, I think the choice was made for ease of calculation: the metric has fewer
indices than the Riemann tensor. Nonetheless, it is not widely understood that a choice has been
made, and that there is another (and conceptually simpler) way to treat gravitational radiation.
Therefore the calculational simplicity of the usual approach to gravitational radiation has been
purchased at the cost of a certain conceptual confusion.

One can think of the metric perturbation hαβ as a potential for the perturbed Riemann tensor
Rαβγδ , analogous to the way that the electromagnetic vector potential Aα is a potential for the
Faraday tensor Fαβ . Thus one way to express the difference between our approach and that
of [4] is that we emphasize field strengths (Fαβ and Rαβγδ), while [4] emphasizes potentials
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and their gauge groups. This emphasis on potentials and gauge groups is entirely appropriate
for quantum field theory, and indeed one of the main purposes of [4] is to point out relations
between gravitational wave memory and certain concepts in quantum field theory.

This bridge building between general relativity and quantum field theory is all well and
good. However, it should be noted that quantum field theory is both more complicated and
less well defined than (classical) general relativity. (And quantum gravity is far more com-
plicated and far less well defined than classical general relativity). One should therefore not
expect to find the best explanation of phenomena in the less abstruse theory by using the terms
and methods of the more abstruse one. Rather one should expect the reverse. For example [4],
notes a connection between gravitational wave memory and the infrared divergences of quan-
tum field theory. This connection is easily explained as follows: quantum field theory involves
Fourier transforming everything, even when the Fourier transformsmay not exist. In particular,
a smooth function f (t) with a memory (i.e. with two different limits f+ and f− as t→±∞),
has a Fourier transform g(k) for all nonzero k, and that Fourier transform diverges as k→ 0.
In this case memory provides a simple explanation for infrared divergences: not the other way
around.

In summary, this paper provides a conceptually simple explanation and perturbative deriva-
tion of electromagnetic and gravitational wave memory. The treatment uses no non-local vari-
ables, no potentials of any kind, no gauge transformations and no gauge groups, because all
these things are entirely unnecessary in this case. Instead the treatment uses only the flat space-
time wave equation and the structure of the field equations, when expressed in terms of local
gauge invariant variables.
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Appendix A. No gravitational kick

In this section we show that the integral over both early and late null planes of Qμnμ with
Qμ given by equation (44) vanishes. This will both validate expression (46) for the velocity
tensor and show that the velocity tensor vanishes at late times. Note that since a nonvanishing
velocity tensor at late time would mean that there is a gravitational kick, the main result of
this section is that there is no gravitational kick. Also note that it is sufficient to show that the
integral over the null plane of terms of the form ∂αRβγ vanishes, since the integral of Qμnμ
over the null plane consists of terms of that form. Recall that at early times the stress–energy
is that of isolated bodies, each travelling at constant velocity, whereas at late times, the stress
energy consists of both such isolated bodies and outgoing radiation. Consider the contribution
of a single isolated body and adopt the rest frame of the body to perform the calculation. Then
in this rest frame there is no time dependence of Rβγ . This means both that ∂0Rβγ = 0 and
that the integral over the null plane is the same as the integral over space in the rest frame.
But then the integral over the null plane of ∂iRβγ is equal to the integral over space of ∂iRβγ

11
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which is easily seen to vanish simply by performing the integral over the i coordinate first. This
validates equation (46) and shows that the contribution to the velocity tensor at late times from
each isolated body vanishes.

What remains is to show that the contribution of the radiation to the late time velocity tensor
vanishes. From equation (56) it follows that for the radiation at late times

1
4π

Rμν
= 2r−2

y L(tr − ry, r̂y)ℓ
μℓν. (A1)

Since there is only a finite amount of radiated energy, the function L vanishes at large posi-
tive and negative values of its first argument. Furthermore, since the null plane Pu2 is given
by tr − ry = u2 − r̂y(1− r̂ · r̂y), it follows that since u2 is large, we must also use large ry. It
then follows that for the integral over the null plane, we only need to compute ∂αRμν to order
r−2
y . However we have ∂i(r−2

y ) = −2r−3
y r̂yi and ∂ir̂y j = r−1

y (δi j − r̂yir̂y j). It then follows from
equation (A1) that to order r−2

y we have

1
4π

∂αR
μν

= −2r−2
y L̇(tr − ry, r̂y)ℓαℓ

μℓν. (A2)

Here L̇ denotes derivative of L with respect to its first argument. It then follows that
∫

Pu2

1
4π

∂αR
μν

= −2
∫

dΩy

∫ ∞

0
r2y dry r

−2
y L̇(u2 − r̂y(1− r̂ · r̂y), r̂y)ℓαℓ

μℓν . (A3)

Changing variables to s ≡ u2 − r̂y(1− r̂ · r̂y) we obtain
∫

Pu2

1
4π

∂αR
μν

= −2
∫

dΩy

∫ ∞

−∞

ds
L̇(s, r̂y)ℓαℓμℓν

1− r̂ · r̂y
. (A4)

Then performing the integral over s in equation (A4) we obtain zero, since the integral of L̇ is L
and since L vanishes at large positive and negative values of its argument.Thus all contributions
to the velocity tensor at large times vanish, which in turn implies that the velocity tensor at large
times vanishes. There is therefore no gravitational kick.

Note that the absence of a gravitational kick is a property of asymptotically flat spacetimes.
For example, as shown in [13] exact nonlinear plane waves provide a nonzero gravitational
kick.
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