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Abstract— In most instances, flapping wing robots have
emulated the “synchronous” actuation of insects in which the
wingbeat timing is generated from a time-dependent, rhythmic
signal. The internal dynamics of asynchronous insect flight
muscle enable high-frequency, adaptive wingbeats with mini-
mal direct neural control. In this paper, we investigate how
the delayed stretch-activation (dSA) response of asynchronous
insect flight muscle can be transformed into a feedback control
law for flapping wing robots that results in stable limit cycle
wingbeats. We first demonstrate - in theory and simulation -
the mechanism by which asynchronous wingbeats self-excite.
Then, we implement the feedback law on a dynamically-scaled
robophysical model as well as on an insect-scale robotic flapping
wing. Experiments on large- and small-scale robots demonstrate
good agreement with the theory results and highlight how
dSA parameters govern wingbeat amplitude and frequency.
Lastly, we demonstrate that asynchronous actuation has several
advantages over synchronous actuation schemes, including the
ability to rapidly adapt or halt wingbeats in response to external
loads or collisions through low-level feedback control.

I. INTRODUCTION

The field of bioinspired flapping-wing micro-air vehicles
(FWMAVs) has seen major advancements in the last decade.
Researchers have achieved controlled flight on tethered [1],
[2] and untethered [3]–[6] FWMAVs at the centimeter scale.
They have integrated sensors [7]–[10] and implemented
robots with a wide range of actuators including piezo bending
actuators, mini DC motors [11]–[13], soft DEA actuators
[14], and electromagnetic coils [15]. Others have devel-
oped autonomous control algorithms that (given sufficient
knowledge of the state of the robot) can achieve not just
stable hovering, but also impressive feats of agility [16]. The
design, fabrication, and control tools now exist to design
novel FWMAVs capable of flight.

However, the performance of such robots still lags behind
that of their insect muses. The agility and versatility of
insects like flies, bees, and dragonflies is unmatched by
any FWMAV at similar scales. Untethered FWMAVs at
the centimeter scale must be supplied with extremely high-
power energy sources—lasers [17] or high-wattage light
sources [3]—while insects are efficient enough to sustain
flight over long distances during foraging and migration [18],
[19]. Additionally, FWMAVs are often much more delicate
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Fig. 1. a) Insects such as moths use synchronous actuation. This is char-
acterized by a periodic signal from an internal source with rate ωwingbeat.
b) Bumblebees are an example of an insect using asynchronous actuation.
This is characterized by feedback, where the rate of the mechanical system
ωmech interacts with the rate of the feedback ωfeedback to produce the
wingbeat.

than insects, constructed of 100-micron-thin carbon fiber,
thin polymer sheets, and brittle piezoelectric materials. The
dynamics of flight are sensitive to changes in mechanical
properties (wing geometry, inertia, etc.), and yet insects are
able to continue to fly despite damage caused by the envi-
ronment or other animals [20], [21]. There is still much for
us to learn about how insects achieve their impressive flight
performance and translate these into advances in robotics.

Flapping wing insects can be classified into one of two
actuation strategies: synchronous and asynchronous (Fig. 1).
Insects such as moths generate wingbeats through a periodic
signal generated by the nervous system that is “synchronous”
with the wingbeat, while insects such as bees rely on a
strain-dependent response of the muscle to generate self-
excited wingbeats whose frequency is higher than signals
from the nervous system and therefore “asynchronous” from
the neural signals. Asynchronous muscle actuation is thought
to provide several distinct advantages to flying insects, in-
cluding high wingbeat frequency (wbf), adaptive behavior
after wing damage [22], separation of power and control, and
improved efficiency [23]–[25]. To the authors knowledge,
all previous actuation of flapping wing robots have relied
on synchronous actuation strategies. We hypothesize that
asynchronous actuation methods provide adaptive behaviors
that could be beneficial for flapping wing robots.

A key specialization in asynchronous muscle is a phe-
nomenon called delayed stretch activation (dSA), wherein,
after an activated muscle is stretched, its tension will con-
tinue to increase, reaching a peak that is delayed in time
w.r.t. the stretch. (Fig 2a). Two such muscles arranged
antagonistically in the insect thorax tend to naturally oscillate
due to the time delay in stretch-activated peak force, flapping
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Fig. 2. Qualitative comparison of muscle and transfer function responses.
a) The force activation response of the muscle of a giant water bug to a step
strain. muscle diagram adapted from [35] and data adapted from [25]. b)
Response of the dSA transfer function to a strain-rate impulse is qualitatively
similar given the right choices of µ, r3, and κ.

the wings with no direct input from the nervous system.
Biologists have studied asynchronous muscle in isolation
by carefully removing the muscles from the insect thorax
and applying techniques adapted from materials science such
as tension increases in response to stretching [26]–[28].
Their results have been used to characterize asynchronous
muscle as an active material and compare muscle behavior
across species [25] and between lines of transgenic flies
[29]. However, biologists have been typically interested in
the elusive bio-molecular dynamics from which the dSA
phenomenon arises. To enable asynchronous actuation in
FWMAVs, it is necessary to characterize the system level
behavior of asynchronous flight: the dynamical interactions
between asynchronous muscle, the elastic thorax [30] and
the complex aerodynamic forces on the wing [31]. One way
to tease out the complexities of such integrated biological
systems is to use robophysical methods [32], [33]. By
building a robotic model of the biological system where we
may control individual system parameters, we may be able
to more clearly understand the relationships between system
parameters and observed behavior.

In this manuscript, we seek to establish principles of
asynchronous actuation for flapping wing robots and to
demonstrate some unique properties of dSA actuation for
adaptive and resilient flapping wing dynamics. We begin by
deriving the dynamical equations for dSA and show that it
is dynamically similar to a second-order low-pass filter on
the strain rate of the muscle. We then integrate the dSA
feedback law with the nonlinear equations of motion of a
“spring-wing” system with aerodynamic drag and elastic
energy storage [34]. Using the equations of motion, we
derive conditions for the existence of stable limit cycles and
use a combination of simulation and robophysical model
experiments as validation.

We then present further experiments in the robophysical
model that show that an asynchronously-actuated robot has
a compelling ability to rapidly adapt wingbeats and respond
to collisions with no direct control. Lastly, we implement
dSA feedback in an insect-scale flapping wing as a proof of
concept towards creating a full asynchronous FWMAV.

II. THE DYNAMICS OF DSA
The first step towards integrating dSA into a robotic

flapping system is to express the observed behavior of
asynchrononus muscle as a function of the state of the
system. The time-dependent force response (fstep) of the
muscle to a step change in its length (see Fig. 2a) has been
parameterized as the sum of three exponents [35]:

fstep(t) = K2e
−r2t +K3(1− e−r3t) +K4e

−r4t + c (1)

Each term corresponds to a phase of the response: An
extremely fast decay (r2 >> wbf), a slower rise (r3 ≈
wbf), and a very slow decay (r4 << wbf). The constant
c represents the passive stiffness of the muscle. This 7-term
model is fitted to stretch-and-hold data collected from insect
muscle fibers and used to evaluate the behavior of the muscle.

To ease the complexity of analyzing the behavior of a
system with dSA forcing, we focus on the Phase 3 and 4
dynamics, the slow rise and slower decay. We choose to
focus on the r3 term in particular because it has been shown
to vary linearly with wbf across a range of insects [25]. The
very fast dSA dynamics (Phase 2) are effectively damped out
by the spring-mass-damper dynamics of an elastic flapping
wing. Setting K3 = K4 = 1, c = 1, and defining the ratio
of the slower rates, κ = r4/r3, we can write:

fstep(t) = −e−r3t + e−κr3t (2)

Since r4 > r3, κ ∈ [0, 1], and typically is in the range of
0.01− 0.3 in insects [25]. By tuning r3 and κ and adjusting
the peak amplitude via a muscle “strength” term, µ, we
can match the shape of the asynchronous muscle response
(Fig. 2b).

A. A Linear Systems Model of the dSA phenomenon
The expression in Eq. 2 is the response of the system to a

step in the muscle strain, which is equivalent to an impulse in
the strain rate. This implies that Eq. 2 is the impulse response
of the muscle, given strain rate as the input. We can express
the forcing function as a convolution of the impulse response
with the strain rate,

fdSA(t) = g(t) ∗ v(t) ,
∫ ∞
0

g(τ)v(t− τ)dτ (3)

where g(t) = −e−r3t + e−κr3t.
In the Laplace domain, convolution is a multiplication

rather than an integration, i.e. FdSA(s) = G(s)V (s). Taking
the Laplace transform of the response function g(t) as
defined in Eq. 2, we get the transfer function G(s) which
transforms the velocity feedback input to the dSA forcing
output:

L(g(t)) = G(s) =
r3(1− κ)

s2 + r3(1 + κ)s+ κr23

=
α1

s2 + α2s+ α3
(4)

where we’ve defined 3 parameters, α1, α2, and α3 for con-
venience. The dSA phenomenon, therefore, is qualitatively
similar to a second-order low-pass filter on the velocity, fed
back to the muscle as a force command.

2077

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on July 24,2022 at 15:12:18 UTC from IEEE Xplore.  Restrictions apply. 



B. The asynchronous spring-wing system equations

The Laplace representation of dSA allows us to express
the dynamics of asynchronous actuation as an ODE. In
the Laplace domain, the force output is the product of the
transfer function and the velocity input:

FdSA(s) =

[
α1

s2 + α2s+ α3

]
V (s) = GdSA(s)V (s) (5)

We can distribute the denominator of G(s) and take the
inverse Laplace transform:

s2FdSA(s) + α2sFdSA(s) + α3FdSA(s) = α1V (s) (6)

L−1 ⇒ f̈dSA + α2ḟdSA + α3fdSA = α1v (7)

We can then connect the dSA actuation dynamics to the
nonlinear “spring-wing” equation that is commonly used
[34], [36], [37] to describe flapping systems with internal
elasticity. In terms of inertia I , stiffness k, drag torque term
Γ, and the applied torque τapplied, the spring-wing equation
takes the form:

Iθ̈ + kθ + Γ|θ̇|θ̇ = τapplied (8)

The asynchronous muscle dynamics dictate the torque ap-
plied to the system and are scaled by a gain coefficient, µ
(units: Nm rad−1), so we may write the combined equations
of motion:

mθ̈ + kθ + Γ|θ̇|θ̇ − µfdSA = 0

f̈dSA + α2ḟdSA + α3fdSA − α1θ̇ = 0 (9)

Solving these equations simultaneously gives the trajectory
of the flapping wing, θ(t). The prevalence of asynchronous
insects that employ dSA actuation suggests that this system
can produce stable limit cycle oscillations from the balance
between quadratic aerodynamic damping and strain-rate de-
pendent muscle actuation. However, this is not guaranteed; it
is possible that this simplified model lacks some feature that
is critical to creating stable oscillations. We must evaluate
the dynamics of this system to understand the conditions
that lead to stable oscillations as well as learn if there
are combinations of feedback and mechanical parameters
which produce more exotic dynamical behaviors (exponential
growth, chaos, etc.) that should be avoided in a robot
implementation.

C. Asynchronous wingbeats result from a linear instability

The stationary state,
[
θ, θ̇, fdSA, ḟdSA

]
= 0, is a fixed point

of the asynchronous dynamical system (Eq. 9). We now seek
to understand if this fixed point is stable or unstable. We ask
the following question: if there is a small perturbation to the
closed-loop system with dSA feedback, will oscillations tend
to decay back to the origin or will they grow?

The nonlinear system described in Eqs. 9 can be redefined
with a new state vector σ = [θ, θ̇, fdSA, ḟdSA]

σ̇1 = σ2
σ̇2 = − k

mσ1 − Γ|σ2|σ2 + µ
mσ3

σ̇3 = σ4
σ̇4 = α1σ2 − α3σ3 − α2σ4

(10)
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Fig. 3. Plots of amplitude and frequency of dSA limit-cycle oscillations
as a function of r3/ωn and µ/I . Red lines indicate calculated stability
boundaries separating stable limit-cycle oscillations (large µ, r3) from
stationary behavior (small µ, r3) from equation 14. Stars indicate the x-
and y-intercepts of the stability curve, (Eq.16). a) Amplitude of oscillation
grows with increasing µ and non-monotonically varies with r3. Inset shows
the real component of the eigenvalue of the linearized system which shows
qualitative agreement with the non-linear system. b) Frequency decreases
with increasing both µ and r3.

We next linearize about the point σ = 0, constructing the
Jacobian and the linear dynamics about the stationary state:

σ̇ =


0 1 0 0

− k
m 0 µ

m 0
0 0 0 1
0 α1 −α3 −α2

σ (11)

The growth or decay of perturbations from the stationary
state are determined by the eigenvalues of the Jacobian. The
characteristic equation for the linearized system is

λ4+α2λ
3+(

k

m
+α3)λ2+(

k

m
α2−

µ

m
α1)λ+

k

m
α3 = 0 (12)

with four eigenvalues λj = aj + iωj .
The sign of the real part of the largest eigenvalue dictates

whether a perturbation away from the stationary point will
tend to decay (stable) or grow (unstable). Understanding the
conditions on the stability boundary will enable us to choose
relevant feedback parameters to induce oscillations.

We can determine the boundary between decaying and
growing solutions by setting the real part of the eigenvalue to
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zero, e.g. λ∗ = iω, where ω is the frequency of oscillation.
Plugging in for λ∗ and separating the real and imaginary
parts, we get two equations:

Real : ω4 − (kI + α3)ω2 + k
Iα3 = 0

Imag : k
Iα2 − µ

I α1 − α2ω
2 = 0

(13)

We are specifically interested in how the parameters µ and
r3 influence the onset of asynchronous oscillations due to the
instability of the stationary point. We define ω2

n = k/I as
the natural frequency of the system and µ̂ = µ/I .

The first equation is quadratic in ω2. Solving and using the
definitions of α1, α2 and α3, we get two solutions: ω2 = κr23
and ω2 = ω2

n. Plugging each into the second equation, we
get a pair of equations:

⊕ → µ̂ =
1 + κ

1− κ
(ω2
n − κr23) (14)

	 → µ̂ = 0 (15)

Eq. 15 gives the trivial conditions (zero feedback gain = no
oscillations), but Eq. 14 defines a relationship between the
strength of the dSA feedback and its rate parameter, plotted
in Fig. 3 (red line). The two equations define 4 quadrants
in the r3 − µ plane where perturbations tend to either grow
or decay. In the current work, we’ll focus just on the two
regions that exist for µ > 0.

D. Emergence and properties of dSA limit cycles

In the previous section we demonstrated that, for certain
dSA parameters, the stationary state is unstable and oscilla-
tions will grow. In a system with nonlinear damping (i.e.
quadratic aerodynamic damping) a limit cycle may form
where the system oscillates such that the energy input from
the muscle over one period exactly balances the energy dissi-
pated by the environment. Unlike linear damping, dissipation
from quadratic damping is amplitude-dependent, resulting in
a stable amplitude and frequency that depends on system
and aerodynamic properties. In order to control flapping
oscillations, we need to understand how the amplitude and
frequency of oscillations vary with the system parameters.
We can study the behavior of the system via numerical
simulation since the nonlinear system presents challenges to
deriving analytical solutions.

We simulated the nonlinear equations of motion from Eq.
10 in Matlab (R2021a, Mathworks) using the ode45 solver.
We chose mechanical parameters (k, I,Γ) that matched those
of a robophysical experimental system that we will use
section III. We selected 0.8 as an arbitrary value for κ and
the results are independent of this choice. We computed
intercepts of Eq. 14,

r∗3 =
ωn√
κ
, µ̂∗ =

1 + κ

1− κ
ω2
n (16)

and defined ranges of µ̂ and r3 from 0 to 3 times the
intercept value. We ran simulations at each configuration and
computed the amplitude and frequency of oscillations, which
were typically sinusoidal. The results are shown in Fig. 3.

Water
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Simulink Desktop 
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a b

Fig. 4. a) Diagram of the dynamically-scaled robotic model and control
scheme. b) A photo of the system

Our simulations confirm that the stability boundary in Eq.
14 does divide the plane into oscillatory and non-oscillatory
regions. Additionally, there is a clear trend that shows that
increasing µ̂ leads to an increase in flapping amplitude and
a decrease in flapping frequency. The change in frequency
is predicted by linear eigenvalue analysis (Fig. 3b, inset).
However, when amplitudes get very high (high µ̂), nonlinear
drag effects become more significant, causing the lines of
constant frequency to deviate from the linear predictions.
This discrepancy underlines the importance of considering
the inherent nonlinearity of the system.

It is important to note that many of the configurations
shown in Fig. 3 are simply impractical. At high µ̂, low r3, we
see oscillation amplitudes well above 360 degrees, whereas
a hinge on a flapping robot would be expected to have a
maximum angle of only ∼90 degrees. This limitation, in
addition to limits on the torque and max displacement of a
potential actuator, means that in practice, dSA feedback will
need to have a relatively small µ̂.

III. IMPLEMENTATION IN A SCALED ROBOTIC MODEL

In this section we describe experiments on a dynamically-
scaled robotic flapping wing, a so-called robophysical system
since it employs robotics and feedback and is coupled to real
environmental physics. The system has well-characterized
mechanical parameters and is easily modified thanks to its
modular design, enabling a range of tests that would be more
difficult at a smaller scale.

A. Design of an asynchronous robotic spring-wing

The robophysical system we use in this study (Fig. 4) was
adapted from a similar system described in [34]. It consists of
an elastic element (a molded silicone torsion spring), a main
shaft supported by a thrust bearing and radial air bearings,
an optical rotary encoder (4096 CPR, US Digital), and a
rigid, fixed-pitch acrylic wing in water. The inertia can be
changed by fixing one of a set of inertia plates to the main
shaft. Data collection and control of the system is done via
a DAQ (PCIe 6323, NI) and Simulink Desktop Real-Time
(SLDRT, Mathworks), which enables hardware-in-the-loop
control at a rate of 1000 samples/s.

We use a brushless DC motor (D6374 150KV, ODrive
Robotics) and a motor driver to capable of closed-loop torque
control at 10 kHz. The angular position of the wing is
used as the input to a SLDRT model that implements the
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Fig. 5. Results of increasing µ while keeping the mechanical parameters
and r3 constant (k = 416Nm rad−1, I = 1.96 × 10−3kg m2, r3 =
35s−1, and κ = 0.5). a) Three representative plots in the time domain: no
oscillation (µ too low), a borderline case, and stable oscillations (µ large
enough). b) The amplitude of oscillation increases as µ increases, and c)
the frequency decreases slightly.

dSA transfer function (Eq. 4), multiplies the output by the
strength, µ, and sends a torque command to the motor via
USB, as shown in Fig. 4a. The direct torque control method
eliminates the need to explicitly integrate the motor dynamics
into the asynchronous ODE.

B. Controlling amplitude and frequency in a real system

We tested the effect of changing the value of µ in the
robotic model while holding r3 constant. We chose a value
of r3 = 35s−1 = 2.4ωn, and κ = 0.5, which places this
configuration on the side of the stability boundary that should
mean that it oscillates as long as µ > 0. However, choosing a
small value for µ, we find that an initial perturbation actually
tends to decay back to zero (Fig. 5a-i). We don’t model
friction in our simulations, but we can see that as
µ̂ → 0 in Fig. 3a, the oscillation amplitude approaches
zero. When friction is present in the system, arbitrarily small
amplitudes are not possible, so the oscillation decays - dSA
isn’t strong enough to overcome friction. Increasing µ leads
to a ”borderline” case where the system oscillates for a few
periods before decaying again (Fig. 5a-ii). When µ finally
crosses the threshold, stable oscillations result. We observe
a linear relationship between µ and amplitude for µ > 0.05
(4899 deg/Nm, R2 > 0.99), as well as a subtle decrease in
oscillation frequency with increasing µ (Fig. 5, b and c)

C. Exemplary behaviors of dSA flapping wing systems

Beyond the control of flapping amplitude and frequency,
we are able to examine novel behaviors of dSA flapping
systems via the robophysical model. We observed that the
asynchronous system was able to naturally adapt to changes
in its mechanical properties. Additionally, the system features
an extremely fast response to collisions with environmental
obstacles, reducing the potential for serious damage to the
wings or wing transmission.

1) Adaptation to changing mechanical parameters: Fig-
ure 6a shows the results of an experiment where additional
mass is suddenly added to an inertia plate. One might expect
that the addition of extra inertia would cause the amplitude
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Fig. 6. The asynchronous spring-wing adapts to changes in its mechanical
system properties. a) When extra mass is added to the inertia plate on
the large-scale robot model, the system transitions to a new amplitude and
frequency. b) When we varied the inertia over a large range, we saw that
increasing inertia decreases the frequency and increases the amplitude of
the wingbeat

to decrease, as the motor now needs to move more mass.
However, we see that as soon as the inertia of the system
changes at t = t∗, the asynchronous flapper adjusts to the
new loads on the system, actually increasing in amplitude and
decreasing frequency. It adapts to the new system properties.
Keeping the same values of r3 and µ, we measured amplitude
and frequency of oscillation for 4 different inertias (a roughly
3-fold range). Figure 6b shows that this trend continues,
suggesting that the product of amplitude and frequency
remains roughly constant.

A robot with an adaptive control scheme like this is
able to respond to changes to its mechanical properties
automatically. This is qualitatively similar to the adaptive
oscillators explored for legged-locomotion, in which robots
adjust gait and frequency when loads are added [38]. Damage
to a wing or accumulation of debris may cause changes in
wing inertia that would seriously impact the performance of
a synchronously driven robot whose frequency is dictated
by the resonance curve of the transmission and wings [39].
An asynchronously-driven robot, on the other hand, would
simply adapt to a new frequency and amplitude that may still
enable it to fly. As FWMAVs move from safe laboratory con-
ditions to the more unpredictable world-at-large, adaptation
to new situations will be ever more critical.

2) Fast response to collisions with the environment:
Another inevitable consequence of operating in unstructured
environments is collisions. The brittle actuator materials and
delicate microstructures that make up typical FWMAVs make
it all the more important to avoid or mediate damage from
collisions. We wanted to investigate the response of the
asynchronous system to a collision with a rigid object in
the environment.

We fixed an inertia plate fitted with vertical posts to the
robotic model and set the system to oscillate. At t = t∗,
we interrupted the motion of the system by causing a post
to collide with an obstacle. We observed that the system
stopped almost immediately, well within a single period (Fig.
7). Very shortly after the angular velocity is reduced to zero,
the dSA feedback also goes to zero, causing the actuator to
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stop driving the wing.
In the synchronous forcing case, represented by the light-

colored trace in Fig. 7, the actuator would be oblivious to the
collision and continues to apply torque to the wing after it
has already stopped, potentially causing damage to the wing
structure. The low-level feedback inherent to asynchronous
actuation enables the system to respond immediately, reduc-
ing the potential for damage. In addition, as soon as the
system is perturbed again, after it is clear of the obstacle,
it resumes flapping at the same amplitude and frequency.
The asynchronous system naturally avoids damage and does
it within a single oscillation period, with no need for an
explicit command to stop actuation. It may serve as a sort
of distributed control, offloading some need for the flight
controller to respond to environmental disturbances.

IV. INSECT-SCALE ASYNCHRONOUS FLAPPING WING

As a proof-of-concept demonstration, we implemented dSA
feedback on an insect-scale robotic wing. The wing appa-
ratus, consisting of a thin polymer wing (15mm x 5mm
x 0.1mm) supported by a carbon fiber frame, a PZT bi-
morph bending actuator, and a transmission, is based on
the design from [1] (see Fig. 8a). Here, we used a single
wing supported by acrylic brackets instead of a carbon fiber
airframe. We aligned a fiber optic displacement sensor (D21,
Philtec) with the tip of the actuator to track the actuator
displacement. Oscillations were induced by an aerodynamic
perturbation provided by a toy vortex ring gun (Zero Blaster,
zerotoys.com). We recorded high speed video of the system
from the top down as the vortex crossed the wing. Frames
from the video can be seen in Fig. 8b.

The output from the displacement sensor was fed into an
DAQ (PCIe 6343, NI) and used as input to the same SLDRT
model that implemented the dSA feedback law described in
Section III. To close the loop via dSA feedback, we took
the derivative of the displacement to get velocity and fed
the velocity into the dSA transfer function 4 with r3 = 225
Hz (∼ 3ωn). The output was converted to voltage and fed
through an amplifier to the PZT control signal, inducing
bending in the actuator. As with the large-scale robotic
model, we slowly increased µ until stable oscillations were
observed. Fig. 8 shows the result of two tests: one with µ too
small to overcome friction, and one large enough to induce
oscillations. Larger values of µ may have provided larger
amplitudes, but we used this minimum µ value in our testing
to avoid overloading the actuator and the robot.
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Fig. 8. a) Robobee wing experiment diagram, side and top views and
photo of the setup. b) High-speed video stills before, during, and after vortex
perturbation. c) Wingbeat dynamics when µ value is too low (top) and when
µ is increased above the oscillation threshold (bottom). Numbered regions
correspond to the images in b.

V. CONCLUSION & FUTURE WORK

In this paper we derive and study the first dynamical
system representation of asynchronous wingbeat actuation
in flapping wing robots and insects. The dSA feedback
control law that we have described here is a novel method
of achieving flapping in robots. Asynchronous actuation in
current FWMAVs is simple to implement and requires only
1) a state estimate via strain gauge, encoder, gyroscope, or
other sensor and 2) knowledge of the internal dynamics
of the actuator. The method can be applied to a wide
range of actuators using relatively simple analog hardware or
digital logic. The resulting system naturally oscillates while
powered and can be controlled by adjusting the feedback
parameters - or by changing the mechanical properties (e.g.
wing inertia) of the robot.

While our implementation of asynchronous actuation re-
lied on actuators, sensors, and a feedback loop, the dSA
response of insect flight muscle is “material” property of
the muscle. Thus asynchronous wingbeats emerge from the
lowest level of mechanical feedback within asynchronous
insects. Recent efforts to incorporate strain-based sensing
withing piezoelectric actuators [40], [41] show promise for
incorporating the sensing component of dSA into mobile
micro-robots. However, future work to engineer low-level
sensing and actuation feedback properties into active materi-
als and circuits will be of great interest for future FWMAVs.
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