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Abstract

With the great advancement of experimental tools, a tremendous amount of biomolec-
ular data has been generated and accumulated in various databases. The high dimen-
sionality, structural complexity, the nonlinearity, and entanglements of biomolecular
data, ranging from DNA knots, RNA secondary structures, protein folding configura-
tions, chromosomes, DNA origami, molecular assembly, to others at the macromolecular
level, pose a severe challenge in their analysis and characterization. In the past few
decades, mathematical concepts, models, algorithms, and tools from algebraic topology,
combinatorial topology, computational topology, and topological data analysis, have
demonstrated great power and begun to play an essential role in tackling the biomolec-
ular data challenge. In this work, we introduce biomolecular topology, which concerns
the topological problems and models originated from the biomolecular systems. More
specifically, the biomolecular topology encompasses topological structures, properties
and relations that are emerged from biomolecular structures, dynamics, interactions,
and functions. We discuss the various types of biomolecular topology from structures
(of proteins, DNAs, and RNAs), protein folding, and protein assembly. A brief discussion
of databanks (and databases), theoretical models, and computational algorithms, is pre-
sented. Further, we systematically review related topological models, including graphs,
simplicial complexes, persistent homology, persistent Laplacians, de Rham-Hodge the-
ory, Yau-Hausdorff distance, and the topology-based machine learning models.
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1 Introduction

A major trend for biology in the 21st century is its transition from phenomenological and de-
scriptive sciences to quantitative and predictive sciences. This transition happens due to the
generation and accumulation of a gigantic amount of data, which are systematically organized
and deposited in various databanks, such as GenBank, Protein Data Bank (PDB), Electron
Microscopy Data Bank (EMDB), etc. The availability of the huge amount of experimental
data provides both unprecedented opportunities and great challenges for mathematicians.205

Among them, biomolecular structure-function relationships have the most profound impact
on bioengineering and biomedicine, and are widely regarded as the “holy grail”.206 Mathe-
matically, geometry plays a very important role in biological sciences. Geometric tools and
modeling not only help to visualize biological data,60,170 but also fill the gap between theoret-
ical models and structural information.3,30 A prominent example is the virtual screening in
drug design,113,175 where the drug candidates match with the concave regions of the biomolec-
ular targets geometrically, just like a key to a lock. The combination of geometrical models
with physical models, particularly quantum mechanics and molecular mechanics, contributes
tremendously to biophysics and biochemistry.50,172

However, biomolecular geometrical measurements have always been plagued by exces-
sive structural details and are computationally expensive. In contrast, topology studies the
fundamental characteristics of spaces - such as connectivity, dimensionality, and continuous
transformation - so topological tools can dramatically reduce the irrelevant structural de-
tails and preserve only the intrinsic information.206 In particular, algebraic topology97,154 has
the unique advantage in the quantitatively description of intrinsic network properties. For
instance, it has been used in the characterization of the underling functional networks gener-
ated from different brain regions based on the neural activity.85 Topological invariants have
also demonstrated great advantages in characterizing biomolecular structures, and have been
used in DNA supercoiling,176 Flp and Cre recombination,195 assembly of virus capsids,193,210

and the design of DNA origami.52,178 In particular, knot invariants have been widely used in
the modeling and analysis of DNA packing, recombination, and replication.9,10,73

Recently, persistent homology, a new branch of algebraic topology, has been proposed to
bridge traditional topology and geometry, and provide a potentially revolutionary approach
to complex biomolecular systems.206 The essential idea is to introduce a filtration process and
measure homology groups by their “lifespans” during the process.44,72,232 Different from tra-
ditional topological models, the “lifespan” measurement provides a family of geometric char-
acterizations of the topological invariants. Persistent homology has been successfully applied
in the analysis of protein structure, flexibility, dynamics, and function.35,78,216–218,222 With
the ever-increasing data, the exceptional power of topology in dimensionality and complexity
reduction has attracted enormous attention.41,71 Topological data analysis (TDA) has been
developed as one of the most promising apparatus for data science.41,141 In particular, topolog-
ical machine learning and deep learning models have delivered amazing results in drug design
which is one of the most challenging fields in modern biology.34,36–38,214 Based on topological
representation and featurization, these (deep) learning models have achieved state-of-the-art
results in the prediction of protein-ligand binding affinity, protein-protein binding free energy,
and mutation-induced protein folding stability change. Topological models have consistently

3



delivered the best results in D3R Grand Challenges, a worldwide annual competition series in
computer-aided drug design.158,160 Their tremendous successes have demonstrated the great
potential of topological models in data analysis and biological science.

The current paper offers a brief review of a new area called biomolecular topology. To
avoid confusion, biomolecular topology in this paper refer to as the topological properties and
relations that are emerged from biomolecular structures, dynamics, and functions. We discuss
the challenging topological problems, methods, algorithms, and models originated from/for
the biomolecular systems. In particular, our focus is protein topology, including protein struc-
tures, protein folding, protein complexes, and protein assemblies. We also discuss the related
topological problems, including protein folding pathways, binding affinity predictions, assem-
bly mechanisms, etc, and the various databanks related to these problems. The other focus
of the paper is a general introduction of the related topological tools and models, including
Gaussian network model, simplicial complexes, persistent homology, persistent Laplacian, de
Rham-Homology, Yau-Hausdorff distance, and topology-based machine learning models.

The paper is organized as follows. Section 2 is devoted to biomolecular topological proper-
ties. We discuss topological problems in protein structures, protein folding, protein assembly,
and DNA/RNA structures. A review of the topological models and topological data analysis
is given discussed in Section 3. The paper ends with a conclusion.

2 Topology for biomolecules

Biological sciences are arguably one of the most important subjects that have fundamen-
tally changed our society and world. During the past few decades, the research on biology
has undergone a transition from phenomenological and descriptive sciences to quantitative
and predictive sciences. Tremendous topological challenges and problems have arisen from
biomolecular structures, dynamics, and functions. In this section, we provide a very brief
introduction to these problems. Our focuses are protein structures, folding, and assembly,
although DNA and RNA are discussed as well.

2.1 Protein structure

Protein is made up of the amino acid, which contains an amine group (NH2), a carboxyl
group (COOH), as well as a unique side chain (known as R group) specific to each of 20
amino acids. The NH2 group from one amino acid can interact with the COOH group from
another, to form a peptide bond. One H2O molecule is generated in this process, which
composes the H atom from NH2 and the OH group from COOH. With these covalent peptide
bonds, a chain or a sequence of amino acids, called a polypeptide, is formed and becomes the
primary structure of the protein. However, in order for the protein to perform its function,
the polypeptide has to be further arranged or folded into a three dimensional (3D) structure,
i.e., the protein conformation. As illustrated in Fig. 1 (A), the amino acids within a segment
of polypeptide chain can interact with each other to form two types of secondary structures,
i.e., alpha-helix and beta-sheet. These secondary structure components will further fold into
a more complicated 3D structure, known as the protein tertiary structure. It should be
noticed that formation of the secondary and tertiary structures is largely due to the non-
covalent interactions, such as hydrogen bonding, ionic interactions, van der Waals forces,
hydrophobic interactions, and electrostatic interaction. However, these structures are often
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Figure 1: The topology for proteins. (A) A general review of protein structures, including primary structure,
secondary structure, tertiary structure and quaternary structure. (B)The secondary-structure-based protein
classification into three types, i.e., all-Alpha, all-Beta, mixed-Alpha-and-Beta. (C) The illustration of a
simulated protein folding process by using steered molecular dynamics. (D) The illustration of three types of
protein complexes, including protein-protein, protein-DNA/RNA, and protein-ligand. (E) The illustration of
the icosahedra symmetry structures for two virus capsid structures (PDB IDs: 2WWS and 1M4X).
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further stabilized by covalent disulfide bridges. Finally, if more than one polypeptide chains
(or subunits) exist simultaneously in a protein-protein complex, it is usually called the protein
quaternary structure.

Currently, there are more than 188,000 biomolecular structures in the PDB. The avail-
ability of this huge amount of biomolecular 3D structures brings a great opportunity for an
in-depth understanding of the protein functions and mechanisms. The detailed comparison
and classification is a key step in biomolecular data analysis. Two databanks, i.e., CATH and
SCOPe (structural classification of proteins-extended), are built to classify all the available
protein structures into hierarchical categories. In both databanks, protein structures are split
into individual polypeptide chains. By comparison, structurally or functionally conserved
polypeptide regions are identified and are defined as protein domains. The information of
secondary structures, domains, and their topological structures are used in the classification.
Specifically, in CATH, protein structures are classified into four levels, i.e., class (C), architec-
ture (A), topology (T), and homologous superfamily (H), thus the name CATH. Proteins are
divided according to their secondary structures into three types, i.e., all-alpha, all-beta, and
mixed-alpha-and-beta. Figure 1 (B) illustrates these three types. The protein structures are
classified into many architecture types, including roll, barrel, sandwich, ribbon, trefoil, pro-
peller, clam, etc. The subdivision is mainly based on the secondary structure arrangement.
Further description is given to protein fold topology in the biophysics sense. It focuses on
the details of how the secondary structure elements are connected, that is the topology of the
common structural features. Finally, the evolution information is considered and the highly
conserved domains are called homologous at the homologous superfamily level. The SCOPe
databank uses a similar way for structural classification.

2.2 Protein folding

Protein folding is a process in which randomly coiled polypeptides fold into their (unique) 3D
structures. Figure 1 (C) illustrates a simulated protein folding process. Although exceptions
have been found for Anfinsen’s dogma,7 most functional proteins are well-folded with a unique
3D structure. More importantly, misfolded or disordered proteins can usually cause serious
diseases, including Mad-cow disease, Parkinson’s disease, Alzheimer’s disease, etc. In general,
these diseases usually involve misfolded intermediate structures, such as Amyloid β, Tau
protein, α−synuclein, prions, etc. These misfolded structures can be then assembled into
toxic oligomers with common amyloid folds.

So far, the prediction of the protein folding pathway remains to be a challenge both theoret-
ically and computationally. In the folding funnel hypothesis, a well-folded protein structure
has the global minimum of the Gibbs free energy. In contrast, misfolded configurations or
intermediate folding structures, have higher free energies, thus they are kinetically favored
but are thermodynamically unstable. Various experimental tools, such as atomic force mi-
croscopy, optical tweezers, and bio-membrane force probe, have been devised to study the
unfolding force distribution, stable intermediates, and transitional non-native states. Com-
putationally, steered molecular dynamics (SMD) is proposed to explore the inverse process
of protein folding.80,102,104 Despite the progress from experimental and computational works,
the folding mechanism remains elusive. This is mainly due to the reason that protein folding
is a highly complex and dynamic process, which involves a huge number of degrees of freedom.
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Recently, machine learning and deep learning models have demonstrated great power in
protein 3D structure prediction.207 In particular, AlphaFold (and AlphaFold 2) has revolu-
tionized the area of protein-structure prediction, and is widely regarded as one of milestone
events in structural biology and biophysics.110,192

2.3 Protein complex

Proteins are involved in almost all biological processes. Although some proteins function
independently, the vast majority of proteins form protein complexes with other molecules,
including proteins, DNA, RNA, ions, and ligands, to achieve their biological functions. Fig-
ure 1 (D) illustrates the three types of protein complexes that exist widely. The formation
of a protein complex is known as molecular recognition, and the components from the com-
plex demonstrate molecular complementarity. Non-covalent interactions, such as hydrogen
bonding, hydrophobic forces, van der Waals forces, π − π interactions, electrostatic inter-
action, etc, as well as solvent effects, play the dominant role in the molecular recognition.
Various databanks for 3D structures of these complexes are available, for instance, PDBbind
(http://www.pdbbind.org.cn/), PDIdb (http://melolab.org/pdidb/web/content/home), and
Protein-Protein Interaction Affinity Database (https://bmm.crick.ac.uk/ bmmadmin/Affinity/).
The interaction networks from the protein complexes are also available in databanks, such as
BioGRID (https://thebiogrid.org/) and STRING (https://string-db.org/).

Protein-DNA complex The protein-DNA complexes play a fundamental role in both the
maintenance and regulation of genetic information. In a cell nucleus, the DNA sequence binds
with proteins to form histones, which are further packed into highly complicated chromosome
structures with the help of various scaffold proteins. The protein-DNA complexes also control
and regulate various biological processes, including DNA transcription, DNA repair, DNA
expression, etc.

Protein-ligand complex The protein-ligand complexes are important for biological signal
transmission. The ligand-mediated signal transmission is essential to all life processes. Bio-
logically, a ligand can bind to a certain specific site of a protein to activate (or deactivate)
some biological functions. The binding affinity can vary greatly for different systems, and the
binding proteins can have large conformational changes. The protein-ligand binding mecha-
nism is a hot research area in drug discovery. The prediction of potential binding sites (hot
spots) and binding affinities is of essential importance for efficient drug design and discovery.

Recently, machine learning-based models have demonstrated their great power in binding
affinity prediction with a much higher accuracy than all traditional models4,27,76,109,125,128,182,186,212

. These learning models can be classified into two classes, i.e., target-based approaches and
ligand-based approaches. In target-based approaches, molecular descriptors from proteins
and protein-ligand complexes are considered as the input for learning models. In contrast,
ligand-based approaches usually make use of features only from ligands. The performance
of both two classes highly relies on the selection of molecular descriptors. In fact, molecular
descriptors or fingerprints are essential to all learning models for molecular data analysis in
materials, chemistry, and biology.136,166

Molecular descriptors can be obtained from structural, chemical, physical, and biological
properties. Molecular descriptors from structural properties can be one-dimensional (1D), two-
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dimensional (2D), three-dimensional (3D), and four-dimensional (4D).136,166 The 1D molecular
descriptors include atom counts, bond counts, molecular weight, fragment counts, functional
group counts, and other summarized general properties. The 2D molecular descriptors include
topological indices, graph properties, combinatorial properties, molecular profiles, autocorre-
lation coefficients, etc. There are more than 5,000 types of 2D descriptors that are widely used
in QSAR/QSPR models. The 3D molecular descriptors include molecular surface properties,
volume properties, autocorrelation descriptors, substitute constants, quantum mechanical de-
scriptors, etc. A related higher computational cost is usually required for the generation of
3D molecular descriptors. The 4D chemical descriptors are a series of 3D descriptors for
configurations from a dynamic process.

Recently, topological data analysis (TDA)72,232 and other advanced mathematics have been
considered for biomolecular characterization and description34,38,157 and achieved great success
in various steps of drug design, including protein-ligand binding affinity prediction,37–39,161,162

protein stability change upon mutation prediction,34,36 toxicity prediction,214 solvation free
energy prediction,196,197 partition coefficient and aqueous solubility,215 binding pocket detec-
tion,228 etc. These models have also demonstrated great advantages over traditional molecular
representations in D3R Grand challenges.158–160 Molecular descriptors can be combined to-
gether to form a large-sized vector, known as molecular fingerprints. Based on structural
properties, there are various methods and models for the systematical generation of molecular
fingerprints, including substructure key-based fingerprints,69 path-based fingerprints,95,163 cir-
cular fingerprints,174 pharmacophore fingerprints,121,184 and encoded fingerprints. Moreover,
deep learning models, such as autoencoder, CNN, GNN, and Transformer, have also been
used in molecular fingerprint generation.59,70,146,171,211,221 The molecular descriptors and fin-
gerprints are widely used in QSAR/QSPR models and machine learning models for material,
chemical, and biological data analysis.

Protein-protein complex Protein-protein interactions (PPIs) play an essential role in a
wide range of biological processes and mechanisms, including cell metabolism, signaling, pro-
tein transport, and immune system.83,86 They can be affected by protein mutations and
genetic variations, which may result in disease and drug resistance.167 The understanding
of PPIs, in particular PPIs upon mutations, is significant to various biomedical applications,
including disease-associated mutation analysis, drug design, and therapeutic intervention.83,86

Efficient computational methods and models have been developed for the evaluation PPI
binding affinity, in particular, PPI binding affinity changes upon mutations (∆∆G). These
models can be grouped into three categories, including molecular dynamic (MD)-based models,
statistical energy-based models, and machine learning models. MD-based models, including
FoldX,93 Rosetta,117 zone equilibration of mutants (ZEMu),68 single amino acid mutation-
induced changes in binding free energy (SAAMBE),164 and others,83 usually characterize the
binding affinity of PPIs with various physical energy terms, including van der Waals interac-
tions, electrostatic energies, hydrogen bonds, solvation energy, etc. Based on the contacts at
atomic, residual, or coarse-grained levels, statistical-energy-based models have been proposed,
such as BindProfX,220 BeAtMuSiC,64 contact potentials,150 Profile-score,187 and Dcomplex.130

These models extract various intermolecular potentials from experimental structures to study
PPI binding affinity. With the great advancements in data accumulation, learning models and
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computational power, data-driven machine learning models have been developed and achieved
the state-of-the-art results in PPI analysis.179

The fast-growing interests in PPI based machine learning models are mainly due to the de-
velopment of various PPI databases in the past few decades, including Alanine scanning ener-
getics database (ASEdb),189 protein-protein interactions thermodynamic database (PINT),120

structural kinetic and energetic database of mutant protein interactions (SKEMPI),149 a
database of binding affinity change upon mutations (DACUM),81 antibody-bind database
(AB-Bind),180 protein-protein complex mutation thermodynamics (PROXiMATE),108 kinetic
and thermodynamic database of mutant protein interactions (dbMPIKT),129 and SKEMPI
2.0.106 SKEMPI 2.0 is the combination of several databases including SKEMPI, AB-Bind,
PROXiMATE, and dbMPIKT with manually curated data from the literature. It contains
a total of 7,085 mutations on various types of protein complexes, such as protease-inhibitor,
antibody-antigen, and TRC-pMHC complexes. More specifically, there are about 3,000 single-
point alanine mutations, about 2,000 single-point non-alanine mutations, and roughly 2,000
multi-point mutations.

With the ever-increasing PPI data, a great amount of data-driven learning models have
been developed,83,179 such as mCSM,173 ELASPIC,185 BindProf,28 MutaBind,227 iSEE,82 MuPIPR,230

ProAffiMuSeq,107 GeoPPI,134 and so on. In general, these data-driven models can be clas-
sified into two types, i.e., featurization-based machine learning models and end-to-end deep
learning models. For the machine learning models, different types of PPI information from
sequences, inter-residue interactions, evolutionary conservation, dynamic properties, energy
terms, pharmacophore descriptors, structure-based descriptors, and others, are used as input
features for machine learning models, such as support vector machine (SVM), random forest
(RF), gradient boost trees (GBT), etc. Note that these input features are generated by using
mathematical, physical, chemical, and biological models. For end-to-end deep learning mod-
els, proteins are usually represented as surfaces, graphs, or networks with embedded vectors
or one-hot-vectors.29,77 The intrinsic features for PPIs are automatically learned and implic-
itly represented in deep learning models. The most commonly used deep learning models
for PPIs are graph neural networks (GNN) and geometric learning models. Even with the
great advancements, generating highly efficient molecular featurization, which is key to the
performance of learning models, is still a challenging problem.136,166 Recently, advanced math-
ematical tools, in particular topological data analysis are used in molecular representation and
featurization.34,38,145,157 Their combination with learning models have achieved great success
in various steps of drug design. In particular, the TopNetTree model has demonstrated great
power in predicting protein-protein binding affinity changes upon mutations.198 It outperforms
all existing models and provides great insights for the SARS-CoV-2 mutations.54,201

A detailed summery of topology-based machine learning models can be found in Section
3.8.

2.4 Protein assembly

Protein assembly, which is the protein quaternary structure, is an essential functional form
of macromolecules. Biologically, one or several kinds of proteins can assemble under certain
symmetric rules into a macromolecular structure. Among the protein assembly structures,
the one that has attracted the most attention from mathematicians is virus capsid, which is
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Figure 2: The illustration of DNA/RNA topology. (A) The six types of DNA structures, including A-duplex,
B-duplex, Z-duplex, triplex, G-quadruplex, and Holiday junction. (B) The simulated chromosome structures
for mammalian genome. (C) A simulated RNA secondary structure by using ViennaRNA. (D) Illustration of
a DNA origami (PDB ID:4V5X).

the virus shell structure made from proteins.
Protein assembly is an important topic in mathematical virology, which is a new math-

ematical area for the study of virus capsid structures and their assembly mechanism194 and
mathematical modeling of viral evolution, transmission, and their impacts on diagnostics,
small molecular drugs, antibody therapies, and vaccines.53,54,199,200 Historically, it has been
found that icosahedral symmetry occurs predominantly in virus structures.226 As illustrated in
Figure 1 (E) , viruses usually adopt the icosahedral symmetry for their capsid shell. Proteins
on the capsid are highly ordered and aggregated in clusters (or capsomeres) of three, five and
six. To explain the organizational principles, Caspar and Klug propose a series of polyhedra
that encode the locations of the proteins.45 Their model is used to reconstruct and classify
the viral capsid structures from the experimental data. Recently, Twarock has proposed viral
tiling theory by using the Coxeter group theory.193,210 Other than the family of polyhedra in
the Caspar-Klug theory, the viral tiling model can generate a new finite series of polyhedra,
called the triacontahedral series, which significantly enhance the performance of traditional
models.
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2.5 DNA/RNA topology

DNAs and RNAs are molecular repositories of genetic information. Their structures have var-
ious interesting topological properties. Other than the common double helix structures, which
are usually found in the B-form of DNA, various other forms exist, including A-helix, Z-helix,
Triplex, G-quadruplex and Holiday Junction. Figure 2(A) illustrates these different topologi-
cal structures. Various databases are constructed for the study of DNA structures and their
interactions, including nucleic acid databank (http://ndbserver.rutgers.edu/), nucleic acid-
ligand database (NALDB)(http://bsbe.iiti.ac.in/bsbe/naldb/HOME.php), and G-quadruplex
ligands database (http://www.g4ldb.org/ci2/index.php).

Chromosomes are the physical realization of genetic information. It is composed of DNA-
protein complexes and is one of important cellular entities.24,100 Chromosome is essential
for supporting essential biological functions, such as DNA replication, transcription, repair of
DNA damage, chromosome translocation, and others.48,51 More interestingly, chromosomes
have highly complicated hierarchical structures, which can be studied by chromosome confor-
mation capture techniques.63,65,126 Essentially, a contact frequency matrix can be generated
and a 3D structure can be reconstructed. Figure 2(B) illustrates the chromosome structure
from the mammalian genome.183

There are various types of RNAs, including ribosomal RNA(rRNA), messenger RNA(mRNA),
transfer RNA(tRNA), and others. Compared with DNAs, RNAs are smaller in their sizes and
tend to fold into complicated secondary structures. The understanding of how an RNA se-
quence folds into a specific secondary structure is key to RNA engineering. Under the energy
minimization hypothesis, an RNA sequence will fold into its configuration only when the loop
region energies are minimized and their stacked pairs are maximized. Various algorithms
and combinatorial models are developed to solve the RNA secondary structure design prob-
lem.98,99,177 An example of RNA secondary structure is demonstrated in Figure 2(C). It is
generated by using ViennaRNA Web Service (http://nibiru.tbi.univie.ac.at/forna/).

Other than the generic information, DNAs and RNAs have been used as synthetic materi-
als. Essentially, the sequences of DNAs and RNAs can be specially designed so that they can
be engineered into some unique 3D structures. In particular, DNA nanotechnology can be
used to assemble nanoscale DNA structures with various structures. One of the most promis-
ing DNA nanotechnologies is DNA origami. The transformation of a flat sheet of paper into a
highly ordered structure through folding and sculpting techniques is called origami. In DNA
origami, specially-designed long DNA strands are folded into highly complicated 3D structures
with the help of short staple DNA strands. An example of a DNA origami (PDB ID: 4V5X)
is demonstrated in Figure 2(D). Highly complicated topological structures can be achieved by
the careful design of DNA sequence information.52,178

3 Topological models for biomolecules

Topological representations and modeling are of vital importance for the analysis of biomolecu-
lar data. In general, a biomolecule can be characterized from different topological perspectives
based on its intrinsic properties that we are interested in. For instance, if one wants to know
the knot or supercoil properties of proteins or DNAs, one can consider their backbone struc-
tures and topologically characterize them as continuous strings. If one wants to perform a
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Figure 3: Topological representation of a protein. (A) The chain representation of a protein. The coil chain is
composed of Beta-sheets and Alpha-complexes. (B) The graph representation of a protein. (C) The simplicial
complex representation of a protein.

molecule dynamic simulation, one must consider all the covalent and non-covalent bonds be-
tween the atoms. Mathematically, various topological models can be used in biomolecular
data analysis and prediction, including graphs, simplicial complexes, hypergraphs, homology,
spectral, Hodge-Laplacian, and others. A briefing introduction of these models is given in this
section.

3.1 Graph and network

Graph or network models are the most widely used models in biomolecular representations
among all topological representations,.11,12,105,112,124 For instance, elastic network models,
including Gaussian network model (GNM), anisotropic network model (ANN), and others,
are popular tools for the study of biomolecular flexibility and normal modes.61 In molecular
dynamic models, biomolecular networks are constructed based on atomic covalent bonds.
Other than the characterization of intramolecular interactions, graphs and networks are also
key models for the characterization of intermolecular interactions. Figure 3 (B) illustrates a
graph representation of a protein.

Mathematically, one can build up various types of matrices based on a graph, and use
them to study molecular topological information. One of them is the Laplacian matrix L. For
instance, in GNM, for a protein with N number of Cα atoms, an N by N Laplacian matrix
can be constructed as,

Lij =


−1 i 6= j and rij ≤ rc

0 i 6= j and rij > rc

−
∑N

i 6=j Lij i = j

. (1)

Here rij is the distance between ith- and jth-atoms, and rc is a predefined cutoff distance.
In GNM, if two atoms are within the cutoff distance, they are assumed to be “connected”.
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The spectral information from the Laplacian matrix is used for the characterization of protein
flexibility.61

Another important connection matrix is Hessian matrix.61 If one defines the coordinate
of the ith-atom as (xi, yi, zi), a 3N × 3N Hessian matrix can be constructed with local 3× 3
off-diagonal matrix Hij as,

Hij = − 1

r2
ij

 (xj − xi)(xj − xi) (xj − xi)(yj − yi) (xj − xi)(zj − zi)
(yj − yi)(xj − xi) (yj − yi)(yj − yi) (yj − yi)(zj − zi)
(zj − zi)(xj − xi) (zj − zi)(yj − yi) (zj − zi)(zj − zi)

 (2)

i, j = 1, 2, · · · , N, i 6= j and rij ≤ rc.

The diagonal part is the negative summation of the off diagonal elements:

Hii = −
∑
i 6=j

Hij, ∀i = 1, 2, · · · , N. (3)

Hessian matrix is widely used in biomolecular normal mode analysis.11,61

3.2 Simplicial complex

Simplicial complex is a very important concept in topology.62,154 Recently, simplicial com-
plexes have been used in the study of data, in particular, the characterization of complex
connection information within/between data.119 Simplicial complex is able to provide richer
information than graph models, which only characterize pair-wise interactions. Computation-
ally, one can construct simplicial complexes from various types of data, including point-clouds,
matrices, volumetric functions, networks, graphs, and others. Simplicial complex is one of the
essential mathematical tools for data sciences and computer sciences.

Geometrically, 0-simplex means a point, 1-simplex means a line segment, 2-simplex means
a triangle, 3-simplex means a tetrahedron, etc. An n-simplex can be regarded as a polyhe-
dron spanned by n + 1 geometrically independent points (they are not in any hyperplane of
dimension n) in the Euclidean space Rn. In mathematical language, a (geometric) n-simplex
spanned by n+ 1 geometrically independent points a0, . . . , an is given by

σn = {
n∑
i=0

tia
i|0 ≤ ti ≤ 1,

n∑
i=0

ti = 1} ⊆ Rn.

Simplices are the basic units of a simplicial complex, and the construction of a simplicial
complex from a graph or dataset usually starts with simplices. A simplicial complex K in the
Euclidean space Rn is a collection of simplices in Rn such that

(i) Every face of a simplex of K is in K;

(ii) The intersection of any two simplices of K is either empty, or a common face of them.

Another equivalent description of simplicial complexes is the abstract simplicial complex. Let
V be an ordered set. An abstract simplicial complex K is a collection of finite nonempty
subsets of V , such that if σ is an element in K, so is every nonempty subset of σ. The abstract
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simplicial complex is a combinatorial version of simplicial complex. Figure 3 (C) illustrates a
simplicial complex representation for a protein.

One can obtain different simplicial complexes, such as neighborhood complexes, Docker
complexes, and Hom complexes from a graph. This gives the possibility of using topological
methods to deal with problems in graph theory. The Kneser conjecture was proved in 1978
by L. Lovász, who used the connectivity of neighborhood complexes to give the lower bound
of the chromatic number of Kneser graphs.115

Example 3.1. Cěch complex and Vietoris-Rips complex.
Given a collection of points V = {a0, a1, a2, . . . , ai, . . . } in Euclidean space Rn, the Cěch
complex44 Cε is the abstract simplicial complex whose k-simplices are determined by unordered
(k + 1)-tuples of points in V whose closed ε/2-ball neighborhoods have a point of common
intersection.

Given a collection of points V = {a0, a1, a2, . . . , ai, . . . } in the Euclidean space Rn, the
Vietoris-Rips complex41,71 Rε is the abstract simplicial complex whose simplices are the set
of points in V which are pairwise within distance ε.

Example 3.2. Neighborhood complex.
Let G be a graph. The neighborhood complex of G is the (abstract) simplicial complex N (G)
defined as follows: its vertices are all non-isolated vertices of G, and its simplices are all the
subsets of V (G) that have a common neighbor.

Example 3.3. Path complex.
A generalization of the notion of simplicial complex is the path complex for directed graphs.87–89

Let V be a finite set. For any integer n ≥ 0, an elementary n-path is a sequence v0v1 · · · vn
of vertices in V . A path complex on a nonempty finite set V is a nonempty collection P
of elementary paths on V such that if v0v1 · · · vn ∈ P then also v0v1 · · · vn−1 and v1v2 · · · vn
belong to P . Let K be an abstract simplicial complex defined over the finite ordered set V .
Each simplex σ ∈ K can be regarded as an ordered sequence with vertices in V . Recall that
the face maps of the simplicial complex K = {Kn}n≥0 are defined by

di : Kn → Kn−1, di{v0, . . . , vn} = {v0, . . . , vi−1, vi+1, . . . , vn}

for {v0, . . . , vn} ∈ Kn and i = 0, 1, . . . , n. If σ ∈ Kn, then d0σ, dnσ ∈ Kn−1. This implies that
a simplicial complex is indeed a path complex.

Let G = (V,E) be a simple digraph, that is, a directed graph having no multiple edges or
graph loops. An allowed p-path on G is a sequence

v0v1 · · · vn, v0, v1, . . . , vn ∈ V

such that (vi−1, vi) ∈ E, i = 1, 2, . . . , n. Denote Pn(G) the set of all allowed p-paths. In
particular, we have P0 = V and P1 = E. It can be directly verified that the family {Pn} of all
allowed paths is a path complex. This path complex, denoted by P(G), is the path complex
of the digraph G.
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3.3 Homology group

The homology group is a fundamental homotopy invariant.97,153 In applications, homology
groups are more computable relative to other homotopy invariants. The success of persistent
homology in data analysis and machine learning is due to the characteristics of homology
groups. Firstly, as a topological invariant, the homology group captures the overall structure
and stable features of data. Secondly, homotopy groups can describe the date-sets which are
independent of metric. However, homotopy groups are flexible as features, a more feasible
method is the persistent homology which will be introduced later.

Let G be an abelian group. Recall that a p-chain on a simplicial complex K is the Abelian
group generated by the p-simplices in K with coefficients in G, denoted by Cp(K;G). Each
element in Cp(K;G) can be written as

x =
∑
i∈I

giσi, gi ∈ G, σi ∈ Kp,

where I is a finite set and Kp is the set of p-simplices in K. A chain group of K is a collection
of p-chains {Cp(K;G)}p≥0.

Let V (K) be a ordered set of the vertices in a simplicial complex K. Then each p-simplex
of K can be written as

σp = {v0, . . . , vp}, vi ∈ V (K), v0 < v1 < · · · < vp,

and we sometimes write σp = v0 · · · vp for convenience. The face maps are defined by

di : Kp → Kp−1,

v0 · · · vp 7→ v0 · · · vi−1vi+1 · · · vp

for 0 ≤ i ≤ p. We have a boundary operator

∂p : Cp(K;G)→ Cp−1(K;G)

given by ∂pσp =
p∑
i=0

(−1)idiσp. It can be verified that ∂p−1∂p = 0. Then there is a long sequence

· · · → Cp(K;G)
∂p→ Cp−1(K;G)

∂p−1→ · · · ∂1→ C0(K;G)
∂0→ 0,

which is called the simplicial chain complex of K, denoted by {Cp(K;G), ∂p}p≥0. The p-th
homology group of K is defined as the quotient group

Hp = ker ∂p/im ∂p+1,

where ker ∂p = {x ∈ Cp(K;G)|∂p(x) = 0} and im ∂p+1 = {∂p+1x|x ∈ Cp+1(K;G)}. The p-th
Betti number βp of K is the rank of the p-th homology group of K.

Note that the 0-th homology group of K describes the number of path connected compo-
nents of K, i.e.,

H0(K;G) ∼=
r︷ ︸︸ ︷

G⊕ · · · ⊕G,
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where r is he number of path connected components of K. It is obvious that β0(K) = r.
Especially, if K is path connected, we have

H0(K;G) ∼= G.

The homology group is a topological invariant that can describe the intrinsic connection
information of the data. However, sometimes the features of data described by homology
groups are too flexible and rough. Besides, the simplicial complex obtained from a data-set
also depends on the scale of our observation. To solve the problem, persistent homology that
can describe the topological structures at different scales has been proposed.

Graph (or network) data play an important role in data sciences. Graph-based topology
models have attracted great attentions recently. Among them is the path homology model.

Let P be a path complex over a set V . Let F be a field. We denote Λn the F-linear space
generated by all the elementary n-paths, that is,

Λn = {
∑

v0,...,vn∈V

av0v1···vnev0v1···vn|av0v1···vn ∈ F}.

Here {ev0v1···vn , v0, . . . , vn ∈ V } is the basis of Λn. Then Λ = {Λn} is a chain complex with the
differential ∂n : Λn → Λn−1 given by

∂nev0v1···vn =
n∑
k=0

(−1)kev0···v̂k···vn , n ≥ 1,

where v0 · · · v̂k · · · vn means omission of the index vk. For n = 0, we set ∂0ev = 0, ev ∈ Λ0.
Now, we denote An the F-linear space generated by all the elementary n-paths from P , that
is,

An = An(P) = {
∑

v0,...,vn∈V

av0v1···vnev0v1···vn|v0v1 · · · vn ∈ Pn, av0v1···vn ∈ F}.

It is obvious that A = {An} is a subspace of Λ. However, A does not have to be a chain
complex. For example, let G = (V,E) with V = {0, 1, 2} and E = {(0, 1), (1, 2)}. Then

A0 = span{e0, e1, e2}, A1 = span{e01, e12}, A2 = span{e012}.

Note that ∂e012 = e01 − e02 + e12. But e02 /∈ A1. One motivation is to get a chain complex
from A. Let

Ω0 = Ω0(P) = A0, Ωn = Ωn(P) = {σ ∈ An|∂σ ∈ An−1}, n ≥ 1.

It can be verified that ∂Ωn ⊆ Ωn−1. Then Ω = {Ωn} is a chain complex with differential
∂ : Ωn → Ωn−1. The path homology of the path complex P is defined as

Hn(P) = Hn(Ω∗(P)) =
ker ∂|Ωn

im∂|Ωn+1

.

In particular, if P is a simplicial complex, then the path homology of P coincides with the
usual homology of P . One interesting interpretation of path homology is as follows. By abuse
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of language, it can be verified that Ω is the largest chain complex contained in A. Let Ξ be
the minimal chain complex containing A in Λ. Then we have

Hn(Ω∗) ∼= Hn(Ξ∗), n ≥ 0.

The path homology is an important invariant of digraphs which shows many excellent prop-
erties. The reader may refer to the works by A. Grigor’yan, Yu. Muranov, and S.-T. Yau et
al87,90–92 for more details on path homology.

3.4 Persistent homology

Persistent homology has been used to characterize biomolecular structures, flexibility, dynam-
ics, and functions.35,44,78,216–218,222 Essentially, persistent homology provides a representation
that retains the geometric information of the topological invariants, so that it works as a
bridge between geometry and topology. It captures the intrinsic topological structure proper-
ties and discards all the other irrelevant information. For data analysis, persistent homology
delivers a topological simplification of the high-dimensional and highly complicated data.

The filtration is one of the fundamental objects to build persistent homology. Let R∗ be
the category of real number with morphisms given by a→ b for a ≤ b. Commonly, a filtration
(of simplicial complexes) is a functor F : R∗ → Simp from the category of real numbers to
the category of simplicial complexes satisfying

F(a) ⊆ F(b), for a ≤ b.

Two typical examples of filtration are the Cěch complexes and the Vietoris-Rips. For example,
the filtration Vietoris-Rips complex is given by F(ε) = Rε for ε ∈ R. It is obviously that
Rε ↪→ Rε′ is an inclusion of simplicial complexes for any ε ≤ ε′.

The persistence module is a classical tool to describe persistent homology.232 Let R be a
commutative ring with unit. A persistence module is a functor M : R∗ → ModR from the
category of real numbers to the category of R-modules. More precisely, a persistence module
is a family of R-modules {Mp}p∈R together with R-module morphisms Mp → Mq for p ≤ q
such that:

(i) fp→p = id;

(ii) fq→r ◦ fp→q = fp→r for p ≤ q ≤ r.

Let F : R∗ → Simp be a filtration. For real numbers a ≤ b, we have an inclusion of simplicial
complexes

F(a) ↪→ F(b),

it induces a morphism of homology groups

H∗(F(a);F)→ H∗(F(b);F)

with coefficients F. It can be verified that H∗(F(−);F) is a persistence module. The
(a, b)-persistent homology of F , denoted by Ha→b

∗ (F), is the image of the induced map
H∗(F(a);F)→ H∗(F(b);F). The (a, b)-persistent homology characterizes the generators that
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are born at time a and survive to time b. Compared with the usual homology, persistent
homology gives rigid and computable features of data. Recently, multidimensional or multi-
parameter persistent homology have been extensively studied.123 The essential idea is to
consider multidimensional filtration and persistence modules.

The persistent path homology56 is another new variant of the persistent homology theory.
Let D be the category of digraphs, the morphisms are given by the digraph maps. A filtration
of digraphs is a functor G : R∗ → D from the category of real numbers to the category of
digraphs, that is,

(i) Ga ∈ D;

(ii) Denote fa→b : Ga → Gb for a ≤ b. Then fb→c ◦ fa→b = fa→c for a ≤ b ≤ c.

The (a, b)-persistent path homology of G, denoted by Ha→b
∗ (G), is the image of the map

H∗(G(a);F) → H∗(G(b);F) induced by a → b. Here, F is the coefficient field. More gen-
erally, let F : R∗ → Path be a filtration of path complexes, that is, a functor from the
category of real numbers to the category of path complexes. Then the (a, b)-persistent path
homology of F is defined to be

im(H∗(F(a);F)→ H∗(F(b);F)),

where H∗(F(a);F)→ H∗(F(b);F) is induced by a→ b.

Example 3.4 (Edge-based filtration). Given a weighted directed network, that is, a digraph
G = (V,E) with a weight function w : E → R. Let Ea = {(u, v) ∈ E|w(u, v) ≤ a}, and let
Ga = (V,Ea). Then {Ga}a∈R gives a filtration of digraphs. The persistent path homology of
(G,w) is given by Ha→b

∗ (G) = im(H∗(Ga;F)→ H∗(Gb;F)).

Example 3.5 (Path-based filtration). Let P be a filtration of path complexes, and let w be
a weighted function w : P → R. Then Pa = {x ∈ P |w(x) ≤ a} defines a filtration of path
complexes. The persistent path homology of (P,w) is given by Ha→b

∗ (F) = im(H∗(Fa;F) →
H∗(Fb;F)).

The filtration process is vital to all the persistent homology models. Other than the above
approaches, network-based filtration models can be obtained from time-dependent network
growing processes. With the strong connections to graph data, the persistent path homology
will have great potential in various applications.

3.5 Persistent Laplacian

Persistent Laplacian is a recent promotion of topological data analysis derived from a series of
methods such as spectral graph theory, circuit theory and persistent homology together with
a topological view of the combinatorial Laplacian on simplicial complexes.144

In spectral graph theory,57 the graph Laplacian plays a fundamental role in optimization
problems on graphs,122,137,156 the efficient solution of equations118,135,181 and the network
circuit theory.23,67,138 Coincidentally, the Laplacian is not only a typical operator on graph
but also an important concept in the de Rham Hodge theory on manifolds.26 The Laplacian
on de Rham complex is derived from the coboundary operators and the inner product on
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differential forms. Lim discussed Hodge Laplacians on graphs.127 The similarity and difference
between Hodge Laplacians and graph Laplacians were studied169 Omitting the geometry, the
natural idea is to consider a (co)chain complex with a specific inner product structure, which
leads us to the combinatorial Laplacian. From the perspective of topology, the combinatorial
Laplacian could appear in the studying of various objects such as graphs, manifolds, simplicial
complexes or even hypergraphs.

In recent years, the combinatorial Laplacian has been widely concerned and studied in the-
ory and application.94,96,116,139,147 In the de Rham Hodge theory, the Laplacian determines
the de Rham cohomology of manifolds, which indicates the potential to follow the persis-
tence of Laplacians. Recently, researchers begin to pay attention to persistent Laplacians.144

However, the ideas were outlined in earlier papers55,202 in 2019. Compared to persistent ho-
mology, persistent Laplacians offer additional nonharmonic eigenfunctions and eigenvlues for
data analysis. Let K be a simplicial complex, and let C∗(K;R) be the chain group of K. We
fix an inner product

〈·, ·〉 : C∗(K;R)× C∗(K;R)→ R

on C∗(K;R). Note that the inner product on C∗(K;R) always exists, since we can at least
take

〈σ, τ〉 =

{
wσ ∈ R+, if σ = τ ;
0, otherwise.

Let ∂∗p : Cp−1(K;R) → Cp(K;R) be the adjoint operator of the operator ∂p : Cp(K;R) →
Cp−1(K;R). The p-th combinatorial Laplacian of K is defined by

∆K
p = ∂p+1 ◦ ∂∗p+1 + ∂∗p ◦ ∂p.

In particular, we consider the case 〈σ, τ〉 = δστ , or equivalently, the function

w : K → R+

above by taking wσ = 1 for each σ ∈ K. Let Bp be the representation matrix of ∂p respect
to fixed bases of Cp and Cp−1 with a given order. In this case, the coboundary operator
δp : Cp−1(K;R) → Cp(K;R) induced by ∂p is consistent with the adjoint operator ∂∗p :
Cp−1(K;R) → Cp(K;R), i.e., the representation matrix of ∂∗p is exactly Bp with respect to
the dual bases of Cp and Cp−1. Moreover, the representation matrix of the p-th combinatorial
Laplacian is given by

Lp = Bp+1B
T
p+1 +BT

p Bp.

Similar to persistent homology, the persistent Laplacian works on a filtration of simplicial
complexes. Let F : R∗ → Simp be a filtration of simplicial complexes of finite type. For real
numbers a < b, we have an inclusion

F(a) ↪→ F(b),

which induces a morphism of chain complexes

C∗(F(a),R) ↪→ C∗(F(b),R).
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Let F(∞) =
⋃
a∈R
F(a) and C∗ = C∗(F(∞),R). We endow an inner product 〈·, ·〉 on C∗. As

a subspace of C∗, the chain complex C∗(F(a),R) can inherit an inner product structure from
C∗ and a boundary operator given by the restriction

∂ap = ∂p|Cp(F(a),R) : Cp(F(a),R)→ Cp−1(F(a),R).

Here, ∂∗ is the boundary operator on C∗. For convenience, we write Ca
p = Cp(F(a),R). Denote

the subspace
Ca,b
p = {x ∈ Cb

p|∂bpx ∈ Ca
p−1}

the preimage of Ca
p−1 in Cb

p−1 under ∂bp. Then we have a linearly operator

∂a,bp = ∂bp|Ca,b
p

: Ca,b
p → Ca

p−1,

which induces an adjoint operator

(∂a,bp )∗ : Ca
p−1 → Ca,b

p

with respect to the inner product 〈·, ·〉. Consider the following diagram:

Ca
p+1

∂ap+1 //
� _

��

Ca
p

∂ap //
� _

��

(∂a,bp+1)∗{{

Ca
p−1

(∂ap )∗
oo

� _

��

Ca,b
p+1

∂a,bp+1
;;

nN

||
Cb
p+1

∂bp+1 // Cb
p

∂bp // Cb
p−1

The p-th persistent Laplacian144 is defined by

∆a,b
p = ∂a,bp+1 ◦ (∂a,bp+1)∗ + (∂ap )∗ ◦ ∂ap .

In particular, if a = b, we have ∆a,b
p = ∆a

p, which is exactly the combinatorial Laplacian on Ca
p .

The following result shows that the persistent Laplacians indicate persistent Betti numbers of
persistent homology.

Theorem 3.6. 144 For each integer p ≥ 0, we have that βa,bp = nullity(∆a,b
p ) . Here,

nullity(∆a,b
p ) denotes the number of zero eigenvalues of ∆a,b

p .

The persistence of the operator ∆a,b
p is worth considering for many reasons. An interesting

story is the persistent Hodge decomposition theorem of combinatorial version.

Theorem 3.7 (Persistent Hodge decomposition theorem). Let F : R∗ → Simp be a
filtration of simplicial complexes of finite type. Then

Ca
p (F) = ker ∆a,b

p ⊕ im∂a,bp+1 ⊕ im(∂ap )∗.
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Proof. We will first prove
ker ∆a,b

p = ker(∂a,bp+1)∗ ∩ ker ∂ap . (4)

Indeed, it can be directly verified that ker ∆a,b
p ⊇ ker(∂a,bp+1)∗ ∩ ker ∂ap . On the other hand, if

ω ∈ ker(∆a,b
p ), then we have

0 =〈∆a,b
p ω,∆a,b

p ω〉
=〈∂a,bp+1 ◦ (∂a,bp+1)∗ω + (∂ap )∗ ◦ ∂apω, ∂

a,b
p+1 ◦ (∂a,bp+1)∗ω + (∂ap )∗ ◦ ∂apω〉

=〈∂a,bp+1 ◦ (∂a,bp+1)∗ω, ∂a,bp+1 ◦ (∂a,bp+1)∗ω〉+ 〈(∂ap )∗ ◦ ∂apω, (∂ap )∗ ◦ ∂apω〉

since ∂ap ◦ ∂
a,b
p+1 ◦ (∂a,bp+1)∗ω = ∂bp ◦ ∂bp+1 ◦ (∂a,bp+1)∗ω = 0. The positive definiteness of the inner

product implies that
∂a,bp+1 ◦ (∂a,bp+1)∗ω = 0, (∂ap )∗ ◦ ∂apω = 0.

Then we have
0 = 〈∂a,bp+1 ◦ (∂a,bp+1)∗ω, ω〉 = 〈(∂a,bp+1)∗ω, (∂a,bp+1)∗ω〉,

which implies that (∂a,bp+1)∗ω = 0 in view of the definiteness of the inner product. Similarly,

we have ∂apω = 0. Thus ω ∈ ker(∂a,bp+1)∗ ∩ ker ∂ap .

For any α ∈ Ca,b
p+1, β ∈ Ca

p−1, we have

〈∂a,bp+1α, (∂
a
p )∗β〉 = 〈∂ap ◦ ∂

a,b
p+1α, β〉 = 0,

which shows that im∂a,bp+1 and im(∂ap )∗ are orthogonal. Now, we will prove

ker ∆a,b
p = (im∂a,bp+1)⊥ ∩ (im(∂ap )∗)⊥. (5)

By Formula (4), we have ker ∆a,b
p ⊆ (im∂a,bp+1)⊥ ∩ (im(∂ap )∗)⊥. If ω ∈ (im∂a,bp+1)⊥ ∩ (im(∂ap )∗)⊥,

then we have
〈(∂a,bp+1)∗ω, x〉 = 〈ω, ∂a,bp+1x〉 = 0, for any x ∈ Ca,b

p+1.

It follows that (∂a,bp+1)∗ω = 0 in Ca,b
p+1. Similarly, we have ∂apω = 0 in Ca

p−1. By Fomular (4), we
obtain

ω ∈ ker(∂a,bp+1)∗ ∩ ker ∂ap = ker ∆a,b
p ,

which leads to the desired result.

Let ω ∈ Ca
p , and let v1, . . . , vn be an orthogonal basis of ker ∆a,b

p . Denote ω0 =
n∑
i=0

〈ω, vi〉vi.

Then we have
〈ω − ω0, vi〉 = 0, i = 1, . . . , n,

which implies that ω′ = ω − ω0 ∈ im∂a,bp+1 + im(∂ap )∗ = im∂a,bp+1 ⊕ im(∂ap )∗ in terms of Formular
(5). Similarly, ω′ can be written as

ω′ = ω1 + ω2, ω1 ∈ im∂a,bp+1, ω2 ∈ im(∂ap )∗.

Then we have ω = ω0 + ω1 + ω2, ω0 ∈ ker ∆a,b
p , ω1 ∈ im∂a,bp+1, ω2 ∈ im(∂ap )∗. Moreover, a

straightforward calculation shows that the decomposition is unique.
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A notable result is that the persistent Laplacian indicates the persistent homology.

Theorem 3.8. Let F : R∗ → Simp be a filtration of simplicial complexes of finite type. Then
the morphism

ρ : ker(∆a,b
p )→ Ha→b

p (F), ω 7→ [ω]. (6)

is an isomorphism of abelian groups for all a < b, p ∈ N.

Proof. By Formula (4), the map ρ is well defined. Let ρ(ω) = 0 for ω ∈ ker(∆a,b
p ). Then we

have
ω = ∂bp+1α, α ∈ Cb

p+1.

Noting that ω ∈ Ca
p , we can write ω = ∂a,bp+1α and α ∈ Ca,b

p+1. It follows that

0 = (∂a,bp+1)∗ω = (∂a,bp+1)∗∂a,bp+1α,

which implies that ω = ∂a,bp+1α = 0 by the positive definiteness of inner product. Thus ρ
is an injection. For any nonzero element z ∈ Ha→b

p (F), we choose a representative element
ω ∈ ker ∂ap ∩ ker ∂bp such that z = [ω]. By Theorem 3.7, we have a decomposition

ω = ω0 + ω1, ω0 ∈ ker ∆a,b
p , ω1 ∈ im∂a,bp+1.

Note that im∂a,bp+1 ⊆ im∂bp+1, we have [ω] = [ω0]. Then we have ρ(ω0) = z, thus ρ is a
surjection.

Remark 3.9. For a < b, the inclusion j : Ca
∗ ↪→ Cb

∗ of chain complexes induces a morphism of
homology groups

Hp(j) : Hp(C
a
∗ )→ Hp(C

b
∗).

The Hodge theorem says that Hp(C
a
∗ )
∼= ker ∆a

p, where ∆a
p = ∂ap+1◦(∂ap+1)∗+(∂ap )∗◦∂ap . Hence,

we have a morphism of abelian groups ker ∆a
p → ker ∆b

p induced by Hp(j). However, it does
not always hold that j(ω) ∈ ker ∆b

p for ω ∈ ker ∆a
p. Let ω ∈ Ca

p . By the Hodge decomposition
theorem, we have

ω = ω0 + ω1, ω0 ∈ ker ∆a,b
p , ω1 ∈ im∂a,bp+1.

Define ha,bp : ker ∆a
p → ker ∆b

p by ha,bp (ω) = ω0. The proof of Theorem 3.8 shows that Hp(j) is
given by ha,bp . Moreover, we have im(ha,bp ) = ker ∆a,b

p .

From the above theorem, we can identify the data {ker(∆a,b
p )}a,b∈R,p∈N with the the persis-

tent homology data {Ha→b
p (F)}a,b∈R,p∈N. Moveover, these two kinds of data provide the same

barcode.
Another interesting aspect is that the image of ∆a,b

p seems to be stable, or precisely, we
have

im(∆a,b
p ) ⊆ im(∆a,c

p ), p ≥ 0

for any a ≤ b ≤ c. It can be obtained directly by the fact Ha,b
p (F) ⊆ Ha,c

p (F) and the
persistent Hodge decomposition theorem.

The persistent Laplacian is heavily depend on the up-persistent ∆a,b
p,up = ∂a,bp+1 ◦ (∂a,bp+1)∗,

which is regarded as a Schur complement.40 The monotonicity and stability of up-persistent
Laplacian eigenvalues have been proved. Note that the persistent Laplacian provides both
topological and spectral information for the characterization of data. Persistent homology
based models have been used in molecular data analysis.203,208,209
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3.6 Persistent de Rham-Hodge theory

The evolutionary de Rham-Hodge method can be regarded as a variant of persistent Laplacian
in geometry. In fact, the idea of the evolutionary de Rham-Hodge method is earlier than the
persistent Laplacian.55,229

The de Rham-Hodge theory establishes the relationship between the de Rham cohomology
of an oriented closed Riemannian manifold and the harmonic forms. It is widely used in
differential geometry, algebraic geometry, partial differential equations, algebraic topology,
etc.8,13,46,47,152 Additionally, it also appears frequently in physics, data science and computer
science.21,33,79,140,151

The Laplacian operator plays a fundamental role in the de Rham-Hodge theory. We
establish the notations to introduce the Laplacian on de Rham complexes. Let M be a
compact oriented Riemannian n-manifold without boundary. Let x1, . . . , xn be an orthogonal
basis of M , and let dx1, . . . , dxn be the dual basis of x1, . . . , xn. Denote Ωp(M) the space of
all the differential p-forms on M . The de Rham complex Ω∗(M) is a cochain complex with
differential operators dp : Ωp(M)→ Ωp+1(M), p ≥ 0 given by

dp(fdxα1 ∧ · · · ∧ dxαp) =
n∑
i=1

∂f

∂xi
dxi ∧ dxα1 ∧ · · · ∧ dxαp .

Note that there is a codifferential operator

(dp)∗ : Ωp+1(M)→ Ωp(M)

adjoint to dp with respect to the L2 inner product given by

(α, β) =

∫
M

α ∧ ?β.

Here, ? is the Hodge star operator .142 The Laplacian operator ∆p : Ωp(M) → Ωp(M) on de
Rham complex is defined by

∆p = (dp)∗ ◦ dp + dp−1 ◦ (dp−1)∗.

This definition is consistent with the definition of combinatorial Laplacian. Recall that the
space of harmonic p-forms Hp = {ω ∈ Ωp(M)|∆pω = 0} on a manifold M is isomorphic to
the cohomology of M ,26 i.e.,

Hp ∼= Hp
DR(M) ∼= Hp(M,R),

where Hp
DR(M) = Hp(Ω∗(M)). By the Hodge composition theorem, we have

Ωp(M) = Hp ⊕ imdp ⊕ im(dp)∗, p ∈ N,

and each element ω ∈ Ωp(M) has a unique decomposition. Let h = {hp}p∈N be a family of
linear maps given by

hp : Ωp(M)→ Hp, hp(ω) = ω0,
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where ω = ω0 + ω1 + ω2, ω0 ∈ Hp, ω1 ∈ imdp, ω2 ∈ im(dp)∗.
From now on, the manifolds considered are always assumed to be compact oriented Rie-

mannian manifolds without boundary!. The evolutionary de Rham-Hodge method is to con-
sider the Laplacian with respect to a (smooth) filtration of manifolds, the evolution of man-
ifolds. Let R∗ be the category of real number with morphisms given by a → b for a ≤ b.
Generally, an evolution (or filtration) of manifolds is a functor M : R∗ → Mani from the
category of real numbers to the category of smooth manifolds such that

ja,b :M(a) ↪→M(b), for a ≤ b

is an immersion. For real numbers a ≤ b, we have a morphism of de Rham complexes

j∗a,b = Ω∗(ja,b) : Ω∗(M(b))→ Ω∗(M(a)),

which leads to the following commutative diagram.

Ω0(M(a))d
0

//
OO

j0a,b

· · · // Ωp(M(a)) dp //
OO
jpa,b

Ωp+1(M(a)) dp+1
//

OO

jp+1
a,b

· · ·

Ω0(M(b)) d
0

// · · · // Ωp(M(b)) dp // Ωp+1(M(b)) dp+1
// · · ·

It induces a morphism of cohomology groups

jpa,b = Hp(ja,b) : Hp
DR(M(b))→ Hp

DR(M(a)).

Denote Hp
a the space of harmonic p-forms on M(a). By the Hodge theorem,26 the above

morphism can be identified with
h ◦ jpa,b : Hp

b → H
p
a.

The p-th persistent harmonic space is defined by

Hp
a→b = im(Hp

b → H
p
a).

The data of persistent harmonic spaces {Hp
a→b}a,b∈R,p∈N can be identified with the data of

persistent cohomology {Hp
a→b}a,b∈R,p∈N.

The de Rham complex Ω∗(M(a)), a ∈ R with the inner product (·, ·) can also produce a
persistent Laplacian similar as the combinatorial version. One notable difference is that the
morphism of de Rham complexes

j∗a,b : Ω∗(M(b))→ Ω∗(M(a)), a ≤ b

is a projection. The inner product and coboundary operators on Ω∗(M(a)) can be induced
by that on Ω∗(M(b)).

! The evolutionary de Rham-Hodge method also works for manifolds with boundaries that are leaded to appli-
cations.55 For simplicity, we only highlight the results for manifolds without boundaries.
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Now, denote Ωp
a = Ωp(M(a)), a ∈ R for the sake of simplicity. Let (jpa,b)

∗ be the adjoint of
jpa,b, then (jpa,b)

∗ is injective. Indeed, if (jpa,b)
∗x = 0, we have

0 = ((jpa,b)
∗x, y) = (x, jpa,by), for any y ∈ Ωp

b .

Since jpa,b is surjective, we have (x, z) = 0 for any z ∈ Ωp
a, which implies that x = 0. Now, we

denote
Ωp+1
a,b = {ω ∈ Ωp+1

b |(d
p
b)
∗ω ∈ (jpa,b)

∗Ωp
a}.

Define (da,b)
∗ : Ωp+1

a,b → Ωp
a as follows: let ω ∈ Ωp+1

a,b , then (dpb)
∗ω = (jpa,b)

∗α for a unique α ∈ Ωp
a

since (jpa,b)
∗ is an injection. And then we let (dpa,b)

∗ω = α. Note that

(jp−1
a,b )∗(dp−1

a )∗(dpa,b)
∗ω = (jp−1

a,b )∗(dp−1
a )∗α = (dp−1

b )∗(jpa,b)
∗α = (dp−1

b )∗(dpb)
∗ω = 0.

Since (jpa,b)
∗ is injective, we have (dp−1

a )∗(dpa,b)
∗ = 0. Let (da,b)

p be the adjoint of (dpa,b)
∗. Then

we have the following diagram.

Ωp−1
aOO

jp−1
a,b

OO

dp−1
a //

Ωp
a

(dp−1
a )∗

oo OO

jp+1
a,b

OO

dpa //
dpa,b

$$

Ωp+1
aOO

jp+1
a,b

OO

Ωp+1
a,b

(dpa,b)∗

dd

� r

$$

Ωp−1
b

dp−1
b // Ωp

b

dpb // Ωp+1
b

The p-th persistent Laplacian on the evolution of manifolds is defined as

∆p
a,b = dp−1

a ◦ (dp−1
a )∗ + (dpa,b)

∗ ◦ dpa,b.

Similar as Formula (4), we have

ker ∆p
a,b = ker(dp−1

a )∗ ∩ ker dpa,b. (7)

And we define the p-evolution harmonic space ! by Hp
a,b = ker ∆p

a,b.
Moreover, the persistent Hodge decomposition theorem for the evolution of manifolds is

also established.

Theorem 3.10 (Persistent Hodge decomposition theorem). Let M : R∗ → Mani be
an evolution of manifolds. Then

Ωp
a(M) = ker ∆p

a,b ⊕ imdp−1
a ⊕ im(dpa,b)

∗.

The proof of Theorem 3.10 is similar to that of Theorem 3.7. The following lemma indicates
the persistence of ker ∆p

a,b in a certain meaning and will be used in the proof of further theorem.

! The definition is somewhat different from the original.55 The ideas are originally from Guo-Wei Wei et al, and
we unify the notations here.
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Lemma 3.11. ker ∆p
a,b ⊆ ker ∆p

a.

Proof. Let α ∈ ker ∆p
a,b. By the Hodge decomposition theorem, we have

α = α0 + α1 + α2, α0 ∈ ker ∆p
a, α1 ∈ imdp−1

a , α2 ∈ im(dpa)
∗.

By formula (7), we have α = α0 + α2. Let α2 = (dpa)
∗β2. For any u ∈ Ωp+1

a,b , let v = (dpa,b)
∗u.

It follows that (dpb)
∗u = (jpa,b)

∗v by definition. Then we have

0 = (dpa,bα, u) = (α0 + (dpa)
∗β2, (d

p
a,b)
∗u) = (α0, v) + ((dpa)

∗β2, v)

for any v satisfying (jpa,b)
∗v ∈ im(dpb)

∗. Since (jpa,b)
∗(dpa)

∗β2 = (dpb)
∗(jp+1

a,b )∗β2, we choose v =
(dpa)

∗β2. Note that (α0, (d
p
a)
∗β2) = (dpaα0, β2) = 0. We have

((dpa)
∗β2, (d

p
a)
∗β2) = 0,

which implies (dpa)
∗β2 = 0. Hence, we obtain α = α0 ∈ ker ∆p

a. This completes the proof of
this lemma.

An interesting result says that the persistent harmonic space coincides with the persistent
evolution harmonic space.

Theorem 3.12. Let M : R∗ →Mani be an evolution of manifolds. Then

Hp
a,b = Hp

a→b, a < b, p ∈ N.

Proof. It is equivalent to proving ker ∆p
a,b = hpjpa,b(ker ∆p

b). Remember that

ker ∆p
a,b = ker(dp−1

a )∗ ∩ ker dpa,b, ker ∆p
b = ker(dp−1

b )∗ ∩ ker dpb .

(i) “⊇”. Let β ∈ ker ∆p
b . Indeed, for any u ∈ Ωp+1

a,b , let v = (dpa,b)
∗u. By definition, we have

(dpb)
∗u = (jpa,b)

∗v. It follows that

(dpa,bj
p
a,b(β), u) = (jpa,b(β), (dpa,b)

∗u) = (jpa,b(β), v) = (β, (jpa,b)
∗v) = (β, (dpb)

∗u).

Since (β, (dpb)
∗u) = (dpbβ, u) = 0, we have (dpa,bj

p
a,b(β), u) = 0 for any u ∈ Ωp+1

a,b , which implies
that dpa,bj

p
a,b(β) = 0. Thus we have

jpa,b(β) ∈ ker dpa,b. (8)

Since dpaj
p
a,b(β) = jpa,bd

p
b(β) = 0, we have jpa,b(β) ∈ ker dpa. By the Hodge decomposition

theorem, we obtain
jpa,b(β) = hpjpa,b(β) + γ, γ ∈ imdp−1

a . (9)

Recall that (dp−1
a )∗(dpa,b)

∗ = 0, we have dpa,bd
p−1
a = 0. It follows that dpa,bγ = 0. So we have

hpjpa,b(β) = jpa,b(β)− γ ∈ ker dpa,b.

It is obvious that hpjpa,b(β) ∈ ker(dpa)
∗. Thus hpjpa,b(β) ∈ ker ∆p

a,b.
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(ii) “⊆”. Let α ∈ ker ∆p
a,b. Since jpa,b is surjective, there is an element β ∈ Ωp

a,b such that
jpa,b(β) = α. Consider the Hodge decomposition of β given by

β = β0 + β1 + β2, β0 ∈ ker ∆p
b , β1 ∈ imdp−1

b , β2 ∈ im(dpb)
∗.

Let β1 = dp−1
b γ1 and β2 = (dpb)

∗γ2 for some γ1 ∈ Ωp−1
b , γ2 ∈ Ωp

b . Then we have

jpa,b(β1) = jpa,b(d
p−1
b γ1) = dp−1

a jp−1
a,b γ1 ∈ imdp−1

a . (10)

Since dpa,pα = 0 and dpa,bd
p−1
a = 0, we have dpa,b(j

p
a,b(β0) + jpa,b(β2)) = 0. For any u ∈ Ωp+1

a,b , let
v = (dpa,b)

∗u with (dpb)
∗u = (jpa,b)

∗v by definition. It follows that

0 =(dpa,b(j
p
a,b(β0) + jpa,b(β2)), u)

=((jpa,b(β0) + jpa,b(β2)), (dpa,b)
∗u)

=(jpa,b(β0), v) + (jpa,b(β2), v).

Note that (jpa,b(β0), v) = (β0, (j
p
a,b)
∗v) = (β0, (d

p
b)
∗u) = (dpbβ0, u) = 0. We have (jpa,b(β2), v) = 0

for any v satisfying (jpa,b)
∗v ∈ im(dpb)

∗. Choose v = (dpa)
∗dpaj

p
a,b(β2), then we have

(jpa,b(β2), (dpa)
∗dpaj

p
a,b(β2)) = (dpaj

p
a,b(β2), dpaj

p
a,b(β2)) = 0,

which implies that
dpaj

p
a,b(β2) = 0. (11)

Now, to get the desired result, we need to make further use of the inner product on the de
Rham complex. Note that jpa,b : Ωp

b → Ωp
a is given by

jpa,bβ = β ◦ ja,b = β|M(a), β ∈ Ωp
b ,

where ja,b :M(a) ↪→M(b). Now, we will show

dpb(j
p
a,b)
∗ = (jp+1

a,b )∗dpa.

It is equivalent to proving (dpa)
∗jpa,b = jp+1

a,b (dpb)
∗. Let x1, . . . , xn be an orthogonal basis ofM(b).

It suffices to show

(dpa)
∗jpa,bfdxi1 ∧ . . . dxip = jp+1

a,b (dpb)
∗fdxi1 ∧ . . . dxip , f ∈ C∞(M(b)).

Recall that ja,b is an inclusion, we have

∂(f ◦ ja,b)
∂xik

=
∂f |M(a)

∂xik
=

(
∂f

∂xik

) ∣∣∣
M(a)

=
∂f ◦ ja,b
∂xik

, k = 1, . . . , p.

A straightforward calculation shows the desired result. Thus we have

dpb(j
p
a,b)
∗α = (jp+1

a,b )∗dpaα, for any α ∈ Ωp
a.
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By formula (11), we obtain that

0 = dpaj
p
a,b(β2) = dpaj

p
a,b(d

p
b)
∗γ2 = dpa(d

p
a)
∗jpa,bγ2.

In view of the positive definiteness of the inner product, we have

(dpa)
∗jp+1
a,b γ2 = 0.

It follows that
jpa,b(β2) = jpa,b(d

p
b)
∗γ2 = (dpa)

∗jp+1
a,b γ2 = 0.

Finally, by Lemma 3.11, we obtain that

α = hpα = hpjpa,bβ0,

which completes the proof.

The following corollary is a direct result of Theorem 3.12, which is essentially similar to
the case of combinatorial Laplacian shown in Theorem 3.8.

Corollary 3.13 (Persistent de Rham theorem). LetM : R∗ →Mani be an evolution of
manifolds. Then we have an isomorphism

Hp
a,b
∼= Hp

a→b(F), a ≤ b, p ∈ N.

It is obvious that
im(∆p

a,b) ⊆ im(∆p
a,c)

for any a ≤ b ≤ c, which reveals that the stability of the persistent Hodge Laplacian in some
sense.

Quite a few examples such as the multibody systems, benzene (C6H6), and buckminster-
fullerene (C60) show the practical application potential of the evolutionary Hodge Laplacian
in data analysis and molecular biology.55 Compared with the usual persistent homology,
the evolutionary Hodge Laplacian can describe the geometric progression together with the
topological persistence of data. In fact, persistent homology is not sensitive to homotopical
progression.

3.7 Yau-Hausdorff distance

A systematic comparison of DNA or protein sequences is one of the most important topics
in genome data analysis. Many classical mathematical models have been proposed, such as
multiple sequence alignment (MSA),6 moment vectors224 and feature vectors101 and so on,
to describe gene sequences. Among these methods, Yau-Hausdorff distance, as a metric,
provides an accurate and efficient representation of DNA or protein sequences by the careful
consideration of “translations” and “rotations”.190,191 The Yau-Hausdorff distance is based
on the graphical representation method,223,224 which gives a one-to-one mapping of DNA
sequence or protein sequence to a curves in a two-dimensional plane.
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A sequence s of length L over a finite set F can be written as N1N2 · · ·NL, where Nl ∈
F, l = 1, 2, . . . , L. The graphical representation of the sequence s is a piecewise function in
broken line patterns given by

f(0) = 0, f(l) = f(l − 1) + y(Nl), l = 1, · · · , L,

where y : F → [−1, 1] is a one-to-one function. For example, a DNA sequence can be written
as N1N2 · · ·NL, where Nl ∈ {A,C,G, T} representing the four nucleotides A, G, C and T .
The function y is chosen by y(A) = 1/3, y(C) = −1/3, y(G) = −2/3, y(T ) = 2/3.

To compare DNA or protein sequences, it is crucial to find a metric to match two-
dimensional curves under translation and rotation. The Hausdorff distance103,114 is a usual
criterion to measure the similarity between two-dimensional point sets. Let (X, ‖ · ‖) be a
metric space. For point sets A,B ⊆ X, the Hausdorff distance is defined by

h(A,B) = max{sup
a∈A

inf
b∈B
‖a− b‖, sup

b∈B
inf
a∈A
‖a− b‖}.

In early years, S. Yau et al began to find biological distance to characterize genetic sequences.66

The Hausdorff distance and modified Hausdorff distance was introduced to describe viral
genome phylogeny later.225 Let X be an Euclidean space, the minimum Hausdorff distance
between A and B under translation is given by

H(A,B) = inf
t∈X

max{ sup
a∈A+t

inf
b∈B
‖a− b‖, sup

b∈B
inf

a∈A+t
‖a− b‖}.

The Yau-Hausdorff distance, as a criterion that measures the similarity between two curves
to characterize similarity of sequences, is defined by

D(A,B) = max{sup
θ

inf
ϕ
H(Px(A

θ), Px(B
ϕ)), sup

ϕ
inf
θ
H(Px(A

θ), Px(B
ϕ))}.

Here, Px(A
θ) = {x cos θ − y sin θ|(x, y) ∈ A} denotes the one-dimensional point set given by

the projection of A on x-axis after being rotated counterclockwise by θ.

Remark 3.14. Recall that the Gromov-Hausdorff distance111 between two metric spaces is

dGH(X, Y ) = inf
(Z,dZ)

h(X, Y ),

where (Z, dZ) runs over all the metric spaces that X, Y can be isometrically embedded in.
The Mazur-Ulam Theorem says that an isometry between real normed linear spaces must
be an affine transformation, or more precisely, a composition of rotation and translation
transformations. The definition of Yau-Hausdorff distance has the consideration of Gromov-
Hausdorff distance in some sense.

The Yau-Hausdorff distance, proved as a metric, is so far one of the most accurate criteria
for comparing the gene sequences in view of the following aspects:

(i) It inherits the advantage of Hausdorff distance, which is one of the most useful criteria
to measure the similarity between two-dimensional point sets.
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Figure 4: The general process of topology data analysis (TDA)-based machine learning. There are general
four steps, including topological representation, topological analysis, topological feature, and topology-based
machine learning.

(ii) All rotation and translation transformations are taken into account to reduce the impact
of local differences on the overall differences.

(iii) It avoids the calculation of Hausdorff distance of two-dimensional sets, and can be
computed more efficiently.

Yau-Hausdorff method performs very well on the gene sequence analysis and validates many
known biological classifications such as DNA barcode, H1N1 virus and influenza virus.190

In addition, a three-dimensional Yau-Hausdorff method was introduced to compare protein
structures.191

3.8 Topology-based machine learning

Recently, TDA-based machine learning and deep learning models have achieved great suc-
cesses in drug design.34,36–38,214 The essential idea for TDA-based machine learning is to
extract topological information from the data with persistent homology, convent the topolog-
ical information into feature vectors, and input feature vectors into machine learning or deep
learning algorithms.165 Since persistent homology can generate unique topological features,
it can be used in both supervised learning and unsupervised learning approaches, includ-
ing PCA, Isomap, K-means, KNN, Naive-Bayes, spectral clustering, SVM, CNN, Tree-based
models, etc. As illustrated in Figure 4, TDA-based machine learning can be roughly divided
into four steps, i.e., topological representation, topological analysis, topological feature, and
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topology-based machine learning. For each step, various algorithms and softwares are avail-
able. For persistent homology analysis, we have JavaPlex,188 Perseus,155 Dipha,15 Dionysus,1

jHoles,22 GUDHI,143 Ripser,14 PHAT,17 DIPHA,16 R-TDA package,74 HERMES,204 etc. For
topological feature representation, we have persistent diagram (PD),148 persistent barcode
(PB),84 persistent landscape,31,32 persistent image,2 etc. To convert topological information
into topological features, we have barcode statistical,35 binning approach,34,38 image represen-
tation,34,38 persistent codebooks,25,231 etc.

It is worth mentioning that for TDA-based machine learning, a great promise comes
from new ways of topological representations that can incorporate more structure infor-
mation, including persistent local homology,5,18–20,75 element specific PH,34,36–38,214 weighted
PH,168,213 multidimensional PH,42,43,49,58,217,219 etc. Although many mathematical tools have
been widely used in various fields of biomolecular, more methods are under developing. The
topology methods have great development potential in biomolecular in view of the internal
relationships between topological structures and biomolecular functions. Some mathemat-
ical objects such as neighborhood complex, Hom complex, hypergraph have been used in
the modeling of the biomolecules. The persistent theories based on hypergraphs perform
well in molecular representations for drug design and protein-ligand binding affinity predic-
tion.131,132 The neighborhood complex has been introduced and applied to drug design.133 The
weighted hypergraph and Hom-complex are more general mathematical models for datasets
and biomolecular structure. New mathematical tools and new applications of mathematical
tools in biomolecules remain to be constantly discovered and developed.

4 Conclusion

In this paper, we introduce a new interdisciplinary area—biomolecular topology. Biomolecular
topology encompasses topological structures, properties, and relations that are emerged from
biomolecular structures, dynamics, interactions, and assemblies. With the availability of the
gigantic amount of biomolecular data from experiments, the topological data analysis (TDA)
and various topological models will become more and more important. Biomolecular topology
will emerge as an important research area in the transition of biology from phenomenological
and descriptive sciences to quantitative and predictive sciences.
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