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Studying the human microbiome has gained substantial interest in re-
cent years, and a common task in the analysis of these data is to cluster
microbiome compositions into subtypes. This subdivision of samples into
subgroups serves as an intermediary step in achieving personalized diagno-
sis and treatment. In applying existing clustering methods to modern micro-
biome studies, including the American Gut Project (AGP) data, we found
that this seemingly standard task, however, is very challenging in the mi-
crobiome composition context, due to several key features of such data.
Standard distance-based clustering algorithms generally do not produce re-
liable results, as they do not take into account the heterogeneity of the cross-
sample variability among the bacterial taxa, while existing model-based ap-
proaches do not allow sufficient flexibility for the identification of complex
within-cluster variation from cross-cluster variation. Direct applications of
such methods generally lead to overly dispersed clusters in the AGP data,
and such a phenomenon is common for other microbiome data. To overcome
these challenges, we introduce Dirichlet-tree multinomial mixtures (DTMM)
as a Bayesian generative model for clustering amplicon sequencing data in
microbiome studies. DTMM models the microbiome population with a mix-
ture of Dirichlet-tree kernels that utilizes the phylogenetic tree to offer a more
flexible covariance structure in characterizing within-cluster variation, and it
provides a means for identifying a subset of signature taxa that distinguish
the clusters. We perform extensive simulation studies to evaluate the perfor-
mance of DTMM, compare it to state-of-the-art model-based and distance-
based clustering methods in the microbiome context and carry out a validation
study on a publicly available longitudinal data set to confirm the biological
relevance of the clusters. Finally, we report a case study on the fecal data from
the AGP to identify compositional clusters among individuals with inflamma-
tory bowel disease and diabetes. Among our most interesting findings is that
enterotypes (i.e., gut microbiome clusters) are not always defined by the most
dominant taxa, as previous analyses had assumed, but can involve a number
of less abundant taxa which cannot be identified with existing distance-based
and method-based approaches.

1. Introduction. The human microbiome is the collective genomes of all microbes that
inhabit the human body. It has been associated with various aspects of our physiology
(Karlsson et al. (2013), Qin et al. (2012), Turnbaugh et al. (2009)) and is suggested as a way
toward precision medicine (Kuntz and Gilbert (2017)). The development of next-generation
sequencing strategies enables us to profile the microbiome fast and economically through ei-
ther amplicon sequencing on target genes (usually the 16S ribosomal RNA gene) or shotgun
sequencing on the entire microbial genome. In this work we focus on datasets obtained from
amplicon sequencing studies. Traditionally, the sequencing reads are sent to preprocessing
pipelines, such as QIIME (Caporaso et al. (2010)), to construct clusters named operational
taxonomic units (OTUs), based on certain predefined similarity threshold (typically 97%).
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In contrast, more recently developed pipelines, such as DADA2 (Callahan et al. (2016)), di-
rectly resolve amplicon sequence variants (ASVs) which is shown to outperform OTUs in
terms of accuracy and interpretability (Callahan, McMurdie and Holmes (2017)). OTUs and
ASVs serve as the unit for downstream statistical analyses and provide the same interface:
each sample is a vector of counts on a list of units (OTUs or ASVs), representing the compo-
sition of the underlying community. The methodology developed in this work applies to both
OTUs and ASVs; we thus use the customary OTU to refer to the unit.

Given the heterogeneous nature of microbiome samples, a useful idea in microbiome anal-
ysis is to first group individual samples into clusters and seek to understand the relation of
these clusters with the host environment and other health outcomes. For example, in the con-
text of the human gut microbiome, these clusters are referred to as “enterotypes” (Arumugam
et al. (2011), Costea et al. (2018)) which are shown to be associated with long-term dietary
habits and risks for obesity and Crohn’s disease (Holmes, Harris and Quince (2012), Quince
et al. (2013), Wu et al. (2011)).

In applying this strategy to analyze several modern microbiome data sets, including the
American Gut Project (AGP) (McDonald, Birmingham and Knight (2015), McDonald et al.
(2018)), however, we found that reliably clustering microbiome samples is, in fact, very chal-
lenging. Off-the-shelf clustering algorithms, such as k-means, Partitioning Around Medoids
(PAM) and hierarchical clustering that are distance-based, are not satisfactory when applied
to microbiome data. This is true even when using popular distance metrics specifically tai-
lored for microbiome compositions, such as the Bray–Curtis dissimilarity and the Unifrac
distances (Lozupone and Knight (2005)). Other authors, including Koren et al. (2013), also
showed that, in clustering microbiome compositions, different methods for selecting the num-
ber of clusters in distance-based methods can yield inconsistent results and that these algo-
rithms are highly sensitive to the distance metrics chosen. We believe a main reason for such
inconsistency is that different distance metrics induce different weighting on the OTUs that
are inconsistent with the actual patterns of heterogeneous cross-sample variability in the data.

In addition, we have found that existing nondistance-based methods, such as those based
on probabilistic models like mixtures, also suffer similar issues for microbiome composi-
tional data. In particular, the arguably most widely used model-based approach for clustering
microbiome data, called the Dirichlet multinomial mixture (DMM) model (Holmes, Harris
and Quince (2012)), which adopts a multinomial sampling scheme and generates the sample-
specific multinomial parameters from a finite mixture of Dirichlet components, often results
in very large and overly dispersed clusters. A key reason for this phenomenon, we believe,
is the model’s lack of flexibility in characterizing the cross-sample variability which, in turn,
hampers the ability to differentiate within-cluster variability from between-cluster variability.
In particular, the single dispersion (also called concentration) parameter of the Dirichlet dis-
tribution is insufficient for characterizing the often complex variation among samples within
each cluster. Moreover, the Dirichlet distribution implies a priori independence among OTU
compositions, up to the sum to one constraint (Aitchison (1982)), which is restrictive in the
microbiome context (Wang and Zhao (2017)).

To overcome these difficulties and achieve more reliable cluster analysis on the AGP study
and other microbiome data, we introduce a new probabilitistic model for clustering micro-
biome compositions, called Dirichlet-tree multinomial mixtures (DTMM). Similar to the
DMM, our method uses mixture modeling to achieve clustering under the Bayesian inference
framework. The difference is twofold. First, by utilizing a natural hierarchical relationship
among the OTUs in terms of the phylogenetic tree, DTMM adopts the Dirichlet-tree distri-
bution (DT) (Dennis (1991), Wang and Zhao (2017)) as the mixture component, in contrast
to the Dirichlet component used by DMM. The DT mixing component incorporates multi-
ple dispersion parameters, one for each node in the phylogenetic tree, thereby allowing more
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flexible and realistic cross-sample variation among the OTUs. In addition, motivated by the
fact that microbiome clusters are often determined by a subset of the taxa, we incorporate a
model selection feature into the DTMM framework that allows: (i) the signature taxa that dis-
tinguish the clusters to be identified and (ii) the common features across clusters (e.g., groups
of “house-keeping” taxa) to be more accurately characterized through borrowing information
among clusters.

With the proposed method we report a case study of the AGP data to find and explore
enterotypes of samples that are diagnosed with inflammatory bowel disease (IBD) or diabetes.
Enterotypes have been established and compared among samples from different geographical
locations (Arumugam et al. (2011), Costea et al. (2018)) or with different host dietary patterns
(Wu et al. (2011)). Our analysis provides another important facet to this thread of work. Both
IBD and diabetes were shown to be related to the human gut microbiome (Kostic, Xavier and
Gevers (2014), Qin et al. (2012)). It is thus natural to expect different enterotype patterns in
samples with these diseases. Interestingly and contrary to traditional wisdom, our analysis
shows that enterotypes are not always characterized by a small number of highly abundant
dominant taxa but can arise from combinations of several taxa.

The rest of the paper is organized as follows. In Section 2 we introduce a phylogenetic tree-
based decomposition of the multinomial counts and proposes the DTMM model for clustering
OTU counts based on this decomposition. In Section 3 we conduct a series of representative
numerical experiments to evaluate the performance of DTMM. We also validate the clusters
found by DTMM with a longitudinal microbiome dataset for which the actual clustering
pattern is roughly known, due to the experiment design. In Section 4 we report our case study
of the AGP data. Section 5 concludes with a few remarks.

2. Method.

2.1. DM and DMM. Consider a microbiome dataset with OTU counts of n samples
y1,y2, . . . ,yn. Each sample is a vector of counts of the M OTUs in the study denoted by
� = {OTU2,OTU2, . . . ,OTUM} = {ω1,ω2, . . . ,ωM}. Let the ith sample and the counts in
that sample be yi = (yi1, yi2, . . . , yiM) and Ni = ∑M

j=1 yij , where yij is the count of OTU j .
The samples can be stacked into an OTU table, denoted by Y , as shown in Table 1. In this
work we treat the total counts Ni ’s as given since they are artificial quantities that depend on
the sequencing depth. We consider the following Dirichlet-multinomial model (DM) (Knights
et al. (2011), La Rosa et al. (2012)):

(1) yi | Ni,pi

ind∼ Mult(Ni,pi ) and pi | α iid∼ Dir(α),

where pi = (pi1,pi2, . . . , piM), pij is the probability that a count in sample i belongs to
OTU j , α = (α1, α2, . . . , αM) with αj > 0 for j = 1, . . . ,M .

Viewing each sample as randomly drawn from an underlying community characterized by
its multinomial parameter (Holmes, Harris and Quince (2012)), DM models all the commu-
nities as realizations of a single metacommunity governed by α. Holmes, Harris and Quince

TABLE 1
An n × M OTU table

Sample ω1 ω2 · · · ωM Sum

1 y11 y12 · · · y1M N1
2 y21 y22 · · · y2M N2
...

...
...

. . .
...

...

n yn1 yn2 · · · ynM Nn
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(2012) extend DM to Dirichlet multinomial mixtures (DMM) by replacing the single Dirich-
let prior in DM with a finite mixture of K Dirichlets,

(2) pi | π,α1, . . . ,αK
iid∼

K∑
k=1

πk Dir(αk) and π = (π1, . . . , πK) ∼ Dir(b0),

where αk = (αk1, αk2, . . . , αkM), π the weights of the metacommunities with
∑K

k=1 πk = 1,
πk ≥ 0 for k = 1, . . . ,K . In DMM each sample is viewed as a draw from a unique community
that is itself drawn from one of the K metacommunities.

As a clustering method, DMM has several limitations. Most importantly, it could not ad-
equately model the within-cluster variation of the microbial composition. This can be seen
by writing the cluster-specific Dirichlet parameter αk as αk = αk0 · ᾱk , where ᾱk , lying in
the (M − 1)-dimensional simplex, represents the prior mean of the multinomial probabilities
in cluster k; αk0 = ∑M

j=1 αj determines the within-cluster variation of all these probabilities
around ᾱk simultaneously. Second, the multinomial parameters in DM are modeled inde-
pendently, up to the sum to one constraint (Mosimann (1962)), which is not suitable in the
microbiome context since the OTUs are functionally and evolutionarily related. Although
DMM is specified within the Bayesian framework, the posterior inference is performed by
optimization through an EM algorithm with Laplace approximations of the marginal likeli-
hoods. When the number of OTUs is moderate, which is typical in microbiome studies, these
techniques are numerically unstable and cannot provide reliable uncertainty quantifications.

2.2. Dirichlet-tree multinomial mixtures. OTUs in a microbiome study are evolutionarily
related. Typically, this relationship can be summarized into a rooted phylogenetic tree, where
each internal node can be viewed as a “taxa” that represents the most recent common ancestor
of its descendant OTUs. Let T = T (I,U;E) be a rooted full binary phylogenetic tree over
the M OTUs in the study, where I , U and E denote the set of internal nodes, leaves and
edges of T , respectively. We denote each node A ∈ I ∪U by the set of its descendant OTUs.
In particular, A = � denotes the root of T ; A = {ωj } represents the leaf that contains OTU j

for j = 1, . . . ,M . With our notation, U = {{ω} : ω ∈ �}. For A ∈ I , let Al and Ar be the left
and right children of A, respectively. For A ∈ I ∪ U \ {�}, let Ap be its parent and As be its
sibling (i.e., the node in T that has the same parent as A).

Given T , it can be shown that the multinomial likelihood of yi factorizes into a series of
binomial likelihoods at the internal nodes of T ,

(3) LM(yi | pi ) ∝ ∏
{A:A∈I}

LB

(
yi(Al) | yi(A), θi(A)

)
,

where

(4)
yi(A) = ∑

{j :ωj∈A}
yij , θi(A) =

∑
{j :ωj∈Al} pij∑
{j :ωj∈A} pij

,

and yi(Al) | yi(A), θi(A)
ind∼ Binom

(
yi(A), θi(A)

)
.

Note that, for j = 1, . . . ,M , there is a unique path Pj = A
j
0 = � → A

j
1 → ·· · → A

j
lj

→
{ωj } in T connecting the root with {ωj } such that

(5) pij =
lj∏

l=0

θi

(
A

j
l

)
.

We denote θ i = {θi(A) : A ∈ I}. Let θ i = tr(pi ) and pi = tr−1(θ i ) be the “tree-based ratio
transform” and the “inverse tree-based ratio transform” defined in (4) and (5). pi and θ i give
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FIG. 1. A tree-based generation of pex.

two equivalent parameterizations of the distribution of yi . Figure 1 gives an example of how
a specific multinomial parameter pex = ( 5

12 , 5
12 , 1

6 , 1
6 , 1

12 , 1
12) on six OTUs can be generated

sequentially along a given tree.
The likelihood factorization in (3) provides an orthogonal decomposition of the empirical

evidence about pi into pieces of evidence about θi(A) at A ∈ I which suggests a divide-and-
conquer strategy of doing inference on pi through learning the branching probability θ i . To
this end, we model the binomial parameters with independent beta variables,

(6) θi(A) | θ(A), τ (A)
ind∼ Beta

(
θ(A)τ(A),

(
1 − θ(A)

)
τ(A)

)
, for all A and i,

where θ(A) ∈ (0,1) is the mean of θi(A) and τ(A) > 0 is a dispersion parameter that controls
the variability of θi(A) around its mean. Note that the independent betas on θ i , together with
the relation in (5), induce a joint model on pi which falls into the family of Dirichlet-tree
distributions (DT) (Dennis (1991)). Let θ = {θ(A) : A ∈ I} and τ = {τ(A) : A ∈ I}; we shall
denote the Dirichlet-tree model on pi as

(7) pi = tr−1(θ i ), θ i ∼ DTT (θ,τ ).

When τ(A) = τ(Al) + τ(Ar) for every A ∈ I that has nonleaf children, DT degenerates to
the Dirichlet distribution. Without this constraint, DT offers a more flexible way to model the
variability of pi around its cluster centroid.

DT also induces a more flexible covariance structure than the Dirichlet distribution. This
can be seen by considering the covariance between any two different categories j1 and j2.
Suppose that the first (L + 1) nodes in Pj1 and Pj2 are shared, and let the shared path be
� = A0 → A1 → ·· · → AL. It can be shown that (Dennis (1991))

(8) Cov(pij1,pij2) =
[

τ(AL)

τ(AL) + 1

∏
1≤t≤L

[a(At ) + 1]τ(At−1)

a(At )[τ(At−1) + 1] − 1
]
E(pij1)E(pij2),

where a(At ) = θ(At−1)τ (At−1) if At is the left child of At−1 and a(At ) = (1 − θ(At−1)) ×
τ(At−1) otherwise. In DT the covariance between categories depends not only on their
means and the sum of the pseudo counts as in the Dirichlet distribution but also on the
tree structure. This offers a more flexible covariance structure among OTU counts gov-
erned by the phylogenetic information. For example, since a(At ) < τ(At−1), [a(At ) +
1]τ(At−1)/a(At )[τ(At−1) + 1] > 1, pij1 and pij2 can be positively correlated if j1 and
j2 share a series of common ancestors in the phylogenetic tree. On the other hand, if j1
and j2 are far away in the phylogenetic tree such that their only common ancestor is �,
Cov(pij1,pij2) = −E(pij1)E(pij2)/(τ (�) + 1), as in the Dirichlet distribution. When the
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phylogenetic tree gives decent summaries of the functional relationship among OTUs, this
introduces suitable covariance structure among the OTU counts and can improve the infer-
ence substantially.

DT has been used for microbiome modelings in various contexts for different purposes.
For example, Wang and Zhao (2017) apply the DT multinomial model to study the associ-
ation between OTU counts and a set of covariates; Tang, Ma and Nicolae (2018) and Mao,
Chen and Ma (2020) use the tree decomposition to motivate a divide-and-conquer strategy to
increase the statistical power when comparing the OTU composition of groups of samples.

In this work we replace the Dirichlet component in DMM with DT mixing components
to give a more suitable clustering model for microbiome data. In DMM, if the counts of one
or a small number of OTUs are highly variable, the single dispersion parameter would be
estimated large in adjustment of this variation. As a result, less variable cluster signatures
contained in other OTUs would be buried, and the samples would be modeled as drawn from
a single or otherwise small number of highly heterogeneous clusters. In contrast, the set of
dispersion parameters in DT are able to account for different levels of variation across OTUs
and thus prevent the signals from being contaminated by the noises.

Specifically, we take the multinomial sampling scheme as in DMM. Following (7), let

(9) θ i | π,
{(

θ∗
k,τ

∗
k

)}K
k=1

iid∼
K∑

k=1

πkDTT
(
θ∗

k,τ
∗
k

)
and π = (π1, . . . , πK) ∼ Dir(b0),

where (θ∗
k,τ

∗
k)

iid∼ DTT (θ0, ν0) × F(τ ), DTT (θ0;ν0) the population model for the cluster
centroids, F(τ ) = ∏

A∈I FA(τ(A)) the model for the within-cluster dispersion. Note that
(θ∗

k,τ
∗
k) determines the kth meta-community. We shall for now refer to this model as the

Dirichlet-tree multinomial mixtures (DTMM).

2.3. Discriminative taxa selection. In DMM all OTUs are treated equally in the clus-
tering procedure. In many applications, however, it is expected that only a (possibly small)
subset of OTUs determine the underlying clusters. When this is the case, not only can iden-
tifying these signature taxa enhance the sensitivity for separating the clusters, but it will also
improve the interpretability of the resulting inference.

In this section we incorporate automatic taxa selection into DTMM. At the same time,
in specifying the DTMM model we adopt a standard nonparametric modeling approach in
dealing with the difficulty in setting the number of clusters beforehand by replacing the finite
mixture with a Dirichlet process (DP) mixture. Formally, for A ∈ I , let γ (A) ∈ {0,1} be an
indicator of whether node A can be contributive to the latent clustering: γ (A) = 1, if A can
play a role in defining clusters, and 0 otherwise. If γ (A) = 1, A is “active” in clustering, and
we allow different clusters to have cluster-specific branching probabilities at A; otherwise, A

is “inactive,” and we force all the clusters at A to share the same branching probability. For
this reason we shall refer to γ (A) and λ(A) as the activation indicator and the prior activation
probability on A. Let γ = {γ (A) : A ∈ I} be the collection of activation indicators of all the
internal nodes.

Let F(·) be a probability measure on (0,∞) and δx(·) the Dirac measure. The model can
be written in the following hierarchical form:

• sampling model on yi :

(10) yi | Ni,pi

ind∼ Mult(Ni,pi );
• model for the sample-specific compositional probability vector pi :

(11) pi = tr−1(θ i ) and θ i | θ ′
i ,τ

′
i

ind∼ DTT
(
θ ′

i ,τ
′
i

);



1482 J. MAO AND L. MA

• model for the cluster-specific branching probabilities:

(12)
(
θ ′

i ,τ
′
i

) | G iid∼ G and G∼ DP
(
G0(θ ,τ | γ , θ̃, τ̃ );β);

• the base measure in DP:

(13)

G0(θ,τ | γ , θ̃, τ̃ )

= ∏
A∈I

GA
0

(
θ(A), τ (A) | γ (A), θ̃(A), τ̃ (A)

)
,

GA
0

(
θ(A), τ (A) | γ (A) = 1, θ̃ (A), τ̃ (A)

)
= Beta

(
θ0(A)ν0(A),

(
1 − θ0(A)

)
ν0(A)

) × FA(τ),

GA
0

(
θ(A), τ (A) | γ (A) = 0, θ̃ (A), τ̃ (A)

)
= δ(θ̃(A),τ̃ (A));

• priors for the parameters in the base measure: for A ∈ I ,

(14)

γ (A)
ind∼ Binom

(
λ(A)

)
,

(
θ̃ (A), τ̃ (A)

) ind∼ Beta
(
θ0(A)ν0(A),

(
1 − θ0(A)

)
ν0(A)

) × FA(τ),

λ(A)
ind∼ Beta

(
a0(A), b0(A)

)
.

For simplicity, we shall refer to this model with taxa selection and infinite mixture still sim-
ply as the Dirichlet-tree multinomial mixtures (DTMM). The graphical model representation
of DTMM is shown in Figure 2. Note that G in (12) is supported on a countable number of
values since samples from a Dirichlet process are discrete, implying ties in the i.i.d. samples
(θ ′

i ,τ
′
i )’s and thus a clustering on i. This becomes clear with the stick-breaking construction

FIG. 2. A graphical model representation of DTMM.
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FIG. 3. An alternative graphical model representation of DTMM.

of the Dirichlet process (Sethuraman (1994)) from which we can rewrite (11) and (12) as

(15)

pi | π,
{(

θ∗
k,τ

∗
k

)}∞
k=1

iid∼
∞∑

k=1

πkDTT
(
θ∗

k,τ
∗
k

)
,

πk = vk

k−1∏
j=1

(1 − vj ), where v1, v2, . . . | β iid∼ Beta(1, β),

(
θ∗

k,τ
∗
k

) iid∼ G0(θ,τ | γ , θ̃, τ̃ ).

For i = 1, . . . , n, let ci ∈ N
+ be the cluster label for the ith sample such that pi |

ci, {(θ∗
k,τ

∗
k)}∞k=1 ∼ DTT (θ∗

ci
,τ ∗

ci
). We can equivalently illustrate DTMM, as in Figure 3. For

comparison, we can introduce the latent cluster labels to DMM and DTMM without taxa se-
lection and write their graphical model representations, as in Figure 4 and Figure 5. Figure 5
and Figure 3 illustrate how DTMM is generalized in this section.

Prior specification. To complete the model specification, we need to choose a0(A),
b0(A), θ0(A), ν0(A) and FA(τ) for each A ∈ I . Ideally, informative prior knowledge shall
be incorporated in choosing these parameters. If, instead, no prior knowledge is available, we
treat these parameters (priors) as global such that they do not depend on A and remove the
“(A)” from the notation.

FIG. 4. A graphical model representation of DMM.
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FIG. 5. A graphical model representation of DTMM without taxa selection.

For λ we could set a0 = b0 = 1 such that λ has a uniform distribution a priori, which yields
the following prior probability on the γ (A)’s (Scott and Berger (2010)):

(16) Pr(γ ) = 1

M

(
M − 1∑
A∈I γ (A)

)−1

.

This prior allows multiplicity adjustment in the taxa selection. A default choice for (θ0, ν0)

is (0.5,1) which yields the Jeffrey’s prior on θ∗
k (A) and θ∗(A). For F(γ ), any prior with

a reasonably large support that covers a wide range of dispersion levels can be chosen. For
example, we let F(τ) have density f (τ) = (τ × 5 log 10)−11(0.1≤τ≤104) which is equivalent
to putting the Unif(−1,4) prior on log10 τ . In our software we use a discrete approximation
of this prior induced by drawing log10 τ uniformly from {−1,−0.5,0,0.5,1, . . . ,4}.

Model behavior. In our formulation, θ and τ with a superscript “∗” are cluster-specific
parameters that govern the centroid and the within-cluster variance of each cluster. θ and
τ with a “∼” on top are parameters that determine the centroids and the variability of the
shared base distribution. For i = 1, . . . , n, recall that ci ∈ N

+ is the cluster label for the ith
sample. Moreover, let c = (c1, c2, . . . , cn), c∗ the set of distinct values in c, and k∗ = |c∗|
the number of distinct clusters. We note that the actual values of ci bear no significance and
thus assume that the ci ’s take integer values between 1 and |c∗|. At each node A ∈ I , γ (A)

serves as a selector: θ̃ (A) and τ̃ (A) become relevant only if γ (A) = 0. If γ (A) = 1, they are
masked and not used by the model. We note that this masking happens at the level of the base
distribution of the Dirichlet process mixture model. If γ (A) = 0, the base distribution GA

0 is a
point mass. Thus, (θ ′

i (A), τ ′
i (A)) must be the same, although (θ ′

i ,τ
′
i )’s may not be the same.

In a special case, when γ (A) = 0 for all A ∈ I , the entire base distribution is a point mass,
and (θ ′

i ,τ
′
i )’s are all the same. In this case the cluster labels c are only nominal—the samples

are from a single cluster although it is possible that |c∗| > 1. Similarly, γ (A) as an OTU
selector is also nominal—A is not necessarily relevant to clustering even if γ (A) = 1. In real
applications, what we care about are not these “nominal” parameters c and γ per se, but their
“actual” counterparts. Specifically, let gi ∈ N

+ be the “actual” cluster label of sample i, and
let s(A) ∈ {0,1} be the “actual” indicator of whether A is relevant to clustering. Moreover,
let g = (g1, . . . , gn) and s = {s(A) : A ∈ I}. We have

(17) g =
{
c, if γ �= 0M−1 and c �= 1n,

1n, if γ = 0M−1 or c = 1n,
s =

{
γ , if c �= 1n, and γ �= 0M−1,

0M−1, if c = 1n or γ = 0M−1.

Unlike c and γ , g and s are directly interpretable. For example, A ∈ I is relevant to clustering
if and only if s(A) = 1. In microbiome applications it is typically expected that the samples
have a latent clustering pattern. Therefore, it is common that g = c and s = γ .
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2.4. Inference strategy. Under DTMM we are interested in inferring the nominal cluster
labels c and the nominal activation indicator γ from which the actual cluster labels g and
the actual activation indicators s can be obtained. Let y−i denote all observations other than
yi . Bayesian inference for DTMM can be achieved by constructing a Markov chain that
converges to the joint posterior of (c,γ ). Techniques for Dirichlet process mixture models,
such as those described in Neal (2000) or Ishwaran and James (2001), can be applied here.

For c ∈ c∗, let ψ∗
c = (θ∗

c ,τ
∗
c) be the parameters that define the cluster indicated by c (we

also let ψ∗
c(A) = (θ∗

c (A), τ ∗
c (A)) for A ∈ I). Similarly, let ψ̃ = (θ̃ , τ̃ ) be the shared param-

eters at the coupled nodes and ψ̃(A) = (θ̃(A), τ̃ (A)) for A ∈ I . The set of unknown param-
eters in DTMM is {{θ i , ci}ni=1, {ψ∗

c}k∗
c=1,γ , ψ̃, β,λ}. In this work we construct a collapsed

Gibbs sampler that iteratively samples from the joint posterior of (c,γ , β,λ). The key to our
inference strategy is to compute the marginal likelihoods of samples from a given cluster,
integrating out both the sample-specific parameter θ i and the cluster-specific parameter ψ∗

c .
This can be achieved numerically due to two facts. First, the beta-binomial conjugacy makes
it easy to integrate out θ i . Second, the tree-based decomposition of the Dirichlet distribu-
tion and the multinomial likelihood provides a divide-and-conquer strategy to marginalize
out the high-dimensional cluster-specific parameters ψ∗

c through performing a series of low-
dimensional integrals at the internal nodes of the tree.

Specifically, for any c ∈ c∗, let Y I
c = {yi : ci = c, i ∈ I } be a set of samples in cluster

c, where I ⊂ [n] := {1, . . . , n}. We also let Y c = Y [n]
c be the set of all samples in cluster

c and Y−i
c = Y

[n]\{i}
c be the set of samples in cluster c, excluding sample i. For A ∈ I , let

LA(Y I
c | ψ∗

c(A), γ (A), ψ̃(A)) be the marginal likelihood of Y I
c at node A by marginalizing

out the sample-specific parameters. The beta-binomial conjugacy yields

(18)

LA(
Y I

c | ψ∗
c(A), γ (A), ψ̃(A)

)
= ∏

{i∈I :ci=c}

(
yi(A)

yi(Al)

)
B(θ∗

c (A)τ ∗
c (A) + yi(Al), (1 − θ∗

c (A))τ ∗
c (A) + yi(Ar))

B(θ∗
c (A)τ ∗

c (A), (1 − θ∗
c (A))τ ∗

c (A))
.

We then further integrate out ψ∗
c(A) to obtain the marginal likelihood of Y I

c at node A, given
only the activation indicators and the base parameters,

LA
1

(
Y I

c

) :=
∫∫

LA(
Y I

c | ψ∗
c(A), γ (A) = 1, ψ̃(A)

)
d


(
ψ∗

c(A) | γ (A) = 1, ψ̃(A)
)

=
∫∫ ∏

{i∈I :ci=c}

(
yi(A)

yi(Al)

)

× B(θ(A)τ(A) + yi(Al), (1 − θ(A))τ (A) + yi(Ar))

B(θ(A)τ(A), (1 − θ(A))τ (A))

× θ(A)θ0(A)ν0(A)−1(1 − θ(A))(1−θ0(A))ν0(A)−1

B(θ0(A)ν0(A), (1 − θ0(A))ν0(A))
dθ(A)dFA(τ),

(19)

LA
0

(
Y I

c | ψ̃(A)
) :=

∫∫
LA(

Y I
c | ψ∗

c(A), γ (A) = 0,

ψ̃(A)
)
d


(
ψ∗

c(A) | γ (A) = 0, ψ̃(A)
)

= ∏
{i∈I :ci=c}

(
yi(A)

yi(Al)

)

× B(θ̃(A)τ̃ (A) + yi(Al), (1 − θ̃ (A))τ̃ (A) + yi(Ar))

B(θ̃(A)τ̃ (A), (1 − θ̃ (A))τ̃ (A))
.

(20)



1486 J. MAO AND L. MA

Integrals in (19) are two-dimensional integrals that are easy to evaluate numerically. In
comparison, to perform a fully Bayesian inference for DMM, the high-dimensional cluster
centroids αk’s in (2) have to either be integrated out directly or be sampled in the MCMC
procedure. With these marginal likelihoods we can construct our Gibbs sampler for posterior
inference. Details on deriving and implementing the Gibbs sampler are given in Section 1.1
and 1.2 of the Supplementary Material (Mao and Ma (2022)).

After running the chain for T iterations, we discard the first B samples as burn-in and
obtain (T − B) posterior samples, denoted as [{c(B+1),γ (B+1), β(B+1), λ(B+1)}, . . . , {c(T ),γ (T ),
β(T ), λ(T )}]. Based on these posterior samples, we can compute the posterior samples for
g and s, based on (17). We denote these posterior samples as [{g(B+1), s(B+1)}, . . . ,
{g(T ), s(T )}].

For each sample g(t), let �(t) be the corresponding n× n association matrix whose (i1, i2)

element is 1, if g
(t)
i1

= g
(t)
i2

, and 0 otherwise. Elementwise average of �(B+1), . . . ,�(T ) pro-

vides an estimation 
̂ of the pairwise clustering probability matrix 
 whose (i1, i2) element
is Pr(yi1

and yi2
in the same cluster). To yield a representative clustering, we can report the

least-squares model-based clustering (Dahl (2006)), defined as

(21) CLS = arg min
{g(t):B<t≤T }

∑
1≤i1≤n

∑
1≤i2≤n

(
�

(t)
i1i2

− 
̂i1i2

)2
.

CLS has the advantage that it incorporates information from all posterior samples while out-
put one of the observed clustering in the Markov chain (Dahl (2006)). Other representative
clusterings, such as the MAP clustering or the clustering given by the last iteration, can also
be used.

Given any representative clustering and the corresponding activation indicators, we can
portray the cluster centroids by computing the posterior means of the cluster-specific param-
eters. Details are provided in Section 1.3 of the Supplementary Material. We also note that
the DTMM framework can also be used in the supervised setting to achieve sample classi-
fication, based on a training microbiome dataset. Details of classification under the DTMM
framework can be found in Section 1.4 of the online Supplementary Material.

3. Numerical experiments.

3.1. Simulation studies. We first carry out a series of simulation studies to evaluate the
performance of DTMM and compare it to several other methods for clustering microbiome
count data, namely, the Dirichlet multinomial mixtures (DMM) (Holmes, Harris and Quince
(2012)), the k-means algorithm (K-ms) (Lloyd (1982)), the partitioning around medoids algo-
rithm (PAM) (Kaufman and Rousseeuw (2009)), hierarchical clustering (Hclust) (Kaufman
and Rousseeuw (2009)) and spectral clustering (Spec) (Ng, Jordan and Weiss (2002)).

3.1.1. Simulation setup. In the numerical examples, we simulate datasets with n samples
and six OTUs. In each dataset the n samples are denoted as yi = (yi1, . . . , yi6), i = 1, . . . , n,
which are generated from the following model:

(22) yi | Ni,pi

ind∼ Mult(Ni,pi ) and pi

ind∼
K∑

k=1

πk · Hk(pi | βk),

where the mixture kernel Hk(pi | βk) is a distribution on the 5-simplex with parameter βk ,

Ni
iid∼ Neg-Binom(m, s). We take the tree in Figure 1 as the “phylogenetic tree” over the six

OTUs and consider five different simulation scenarios by choosing different mixture ker-
nels Hk(pi | βk) in (22). In each scenario we let n = 90 or 180, K = 3 and (π1, π2, π3) =
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TABLE 2
Mixture kernels for generating the simulated datasets

Signal

Kernel Level Parameter βk

I DT W α = 1 γ = 0.1
M α = 3
S α = 6

II Dir W α0 = 1 α1 = (2,2,5,2,3,1) · α0
M α0 = 3 α2 = (2,4,3,2,1,3) · α0
S α0 = 6 α3 = (2,6,1,2,2,2) · α0

III LN W α = 3 qk = DTT6
(νk;α;0.5) μk = Eqk

[
log

(
x−6
x6

)]
M α = 6 ν1 = (10α,2α) 
k = Vqk

[
log

(
x−6
x6

)]
S α = 9 ν2 = (6α,6α)

ν3 = (2α,10α)

IV LN W a = 5, b = 3 μ1 = (3,1, a, b,0)

�1,2,3 =

⎛
⎜⎜⎝

0.05
0.05

1
1

1

⎞
⎟⎟⎠M a = 2, b = 2 μ2 = (2.43,2.43, a, b,0),

S a = 1, b = 1 μ3 = (1,3, a, b,0)

V LN W c = 6, d = 6 μ1 = (c, d,3.5,3,2.5)

�1,2,3 =

⎛
⎜⎜⎝

1
1

0.05
0.05

0.05

⎞
⎟⎟⎠M c = 3, d = 3 μ2 = (c, d,2.5,3.5,3),

S c = 1, d = 1 μ3 = (c, d,3,2.5,3.5)

(4
9 , 3

9 , 2
9). Parameters for the negative-binomial distribution are chosen as m = 15,000, s = 20

such that the generated total counts has mean 15,000 and standard deviation 3346, with 95%
of them fall into the range (9158,22258). In the five simulation scenarios the mixture kernels
are chosen as shown in Table 2. Details for the simulation setups can be found in Section 2.1
of the Supplementary Material.

In each scenario a “null” case is also considered by setting K = 1 in the case with the
medium signal level. For each (kernel, signal level) combination we conduct 100 rounds of
simulations. For each simulated dataset with K = 3, we calculate the following R2 as a
measure of the strength of the signal (Anderson (2001)):

R2 = SSW

SST
=

∑3
k=1

∑N−1
i=1

∑N
j=i+1 dBC(yi ,yj )

2εk
ij /nk∑N−1

i=1
∑N

j=i+1 dBC(yi ,yj )
2/n

,

where dBC(·, ·) is the Bray–Curtis dissimilarity, nk the number of samples in cluster k, εk
ij = 1

if the samples i and j are both in cluster k and 0 otherwise. For example, the average R2s of
the 100 simulated datasets in each experiment are reported in Table 3 for n = 90.

In each simulation round we run the Gibbs sampler for DTMM for 2000 iterations and
discard the first half of the chain as burn-in. The priors and hyperparameters for DTMM are
set to the recommended choice in Section 2.3. The initial values for the clustering labels in the
Markov chain are set to the labels of running the k-means algorithm with k = 5. For DTMM
we output CLS as a representative clustering. For PAM and Hclust we use the Bray–Curtis
dissimilarity on the relative abundance as the underlying distance measure between samples.
For all competitors other than DMM, the number of clusters is required as a tuning parameter,
we set this parameter to the true value 3 when running these methods.
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TABLE 3
RMSE of the Jaccard index (small sample size). Cells with the lowest RMSE in each row are highlighted

n = 90

Signal Method

Expt Level R2 DTMM DMM K-ms PAM Hclust Spec

I DT – – 0.43 0.51 – – – –
W 0.30 0.56 0.64 0.67 0.71 0.65 0.71
M 0.35 0.33 0.65 0.69 0.69 0.64 0.71
S 0.37 0.17 0.65 0.69 0.71 0.65 0.70

II Dir – – 0.35 0.00 – – – –
W 0.35 0.53 0.53 0.55 0.59 0.58 0.57
M 0.52 0.18 0.30 0.37 0.33 0.37 0.33
S 0.60 0.04 0.09 0.32 0.19 0.38 0.22

III LN-A – – 0.46 0.06 – – – –
W 0.37 0.49 0.64 0.53 0.53 0.54 0.54
M 0.38 0.23 0.64 0.50 0.46 0.55 0.47
S 0.39 0.10 0.64 0.48 0.44 0.53 0.46

IV LN-S – – 0.60 0.54 – – – –
W 0.10 0.35 0.72 0.77 0.78 0.73 0.74
M 0.41 0.21 0.54 0.59 0.54 0.60 0.53
S 0.60 0.17 0.37 0.36 0.24 0.41 0.27

V LN-M – – 0.41 0.61 – – – –
W 0.04 0.20 0.78 0.78 0.79 0.78 0.76
M 0.23 0.14 0.65 0.76 0.70 0.74 0.68
S 0.53 0.17 0.49 0.22 0.20 0.39 0.22

3.1.2. Analyses. To compare the performance of different methods, we compute the Jac-
card index (Jaccard (1912)) between the clusters obtained by each method and the true clus-
tering. For a specific clustering c and the true clustering c0, the Jaccard index between c and
c0 is defined as J (c, c0) =Nc∩c0/Nc∪c0 , where Nc∩c0 is the number of pairs of samples that
are in the same cluster under both c and c0, Nc∪c0 the number of pairs of samples that are
in the same cluster under at least one of c and c0. When c gives the same clustering as c0,
J (c, c0) = 1. In each simulation scenario we compare the root mean squared error of each

method m: RMSE(m) =
√∑100

r=1[J (c
(m)
r , c0) − 1]2/100, where c

(m)
r is the clustering obtained

by method m in simulation round r . As some references, let c0 = (1 · 1�
40,2 · 1�

30,3 · 1�
20),

c1 = (1 · 1�
90), c2 = (1 · 1�

30,2 · 130,3 · 130) and c3 = (1 · 1�
40,2 · 150), where 1n is the

n-dimensional vector with all element equal to 1. We have
√[J (c1, c0) − 1]2 = 0.65,√[J (c2, c0) − 1]2 = 0.50 and

√[J (c3, c0) − 1]2 = 0.30. The RMSE of DTMM and the com-
petitors under all simulation scenarios when n = 90 is shown in Table 3. The RMSE table
for n = 180 as well as boxplots of the Jaccard index reported by each method in different
simulation scenarios can be found in Table S1, Figure S3 and Figure S4 in Section 2.3 of the
Supplementary Material.

When K = 3, DTMM is always one of the top two methods under comparison. When it
is not the best method, its performance is close to the best. Without utilizing the information
provided by the phylogenetic tree, all competitors of DTMM suffer when the signal is weak
or medium. Moreover, these competitors rely on global distance measures between samples
and treat the six OTUs equivalently. As a result, in scenarios like I and IV where the signal is
local to a single internal node of the phylogenetic tree, these methods have poor performance.
Even in scenario V, where half of the OTUs are relevant for clustering, these methods still
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suffer unless the signal is very strong. In scenario II, where the signal is global, all methods
perform reasonably well. In this scenario, DTMM can outperform DMM when n = 90 even
though the latter is the true model. This is because DMM relies on a Laplace approximation
to a six dimensional integral when computing the marginal likelihoods to choose the number
of clusters. When the sample size is small, DMM tends to choose less than three clusters due
to the poor approximation. When n = 180, DMM is more likely to choose the right number of
clusters, even with the inaccurate approximation. Thus, the performance of DMM improves
significantly with more samples. Our experience suggests that DMM tends to underestimate
the number of clusters in most cases. For example, in scenarios I and III, DMM usually puts
all samples in a same cluster when n = 90.

In our simulation settings there are two factors that determine the effect of the increase of
sample size on the performance of the two model-based clustering methods. On the one hand,
since more samples are available per cluster, the models have a better chance to capture the
cluster centroids well once they identify the correct number of clusters. On the other hand,
more samples make it harder to get the number of clusters right. These two fighting forces
together determine the overall performance shift of the two model-based methods, yet which
force prevails is unclear. For DTMM, when the model is misspecified (as in scenarios III, IV
and V), the model tends to identify too many small clusters. For the distance-based clustering
methods, the second factor plays no role since we assume that the number of clusters is
known. In general, our observations suggest that these methods benefit a little from more
samples when the signal is strong. Among the distance-based methods, PAM and Spec have
a better overall performance. We thus recommend using these two methods to help choose
the initial values of DTMM.

We next zoom in to an example to further study the properties of DTMM. In this example
we consider a specific simulation round in scenario IV with the medium noise level (n = 90).
Figure 6 shows the two-dimensional NMDS plot of the samples colored by the clustering
obtained by each method. In this example the clustering is roughly determined only by the
first NMDS axis. With the node selection module, DTMM is capable of picking the relevant
dimensions and clustering efficiently. As for a representative clustering, DTMM finds four
clusters, with one falsely identified cluster containing only two samples. This is consistent

FIG. 6. 2D NMDS plot of samples in a simulation round in scenario IV (n = 90, medium noise level). In each
subplot, the true clustering is indicated by the shape of the points while the clustering obtained is indicated by the
color.
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FIG. 7. Illustrations for an example from simulation scenario IV. (a): Probability of two samples being clus-
tered together by DTMM, based on 1000 post-burnin MCMC samples. The samples are ordered by their cluster
labels from DTMM. The clusters identified by DTMM are highlighted by squares colored as in Figure 6. (b): An
illustration of the node selection property of DTMM. The nodes are colored by their estimated posterior node
activation probabilities. The heatmap plots the relative abundance of the samples grouped by their cluster labels
from DTMM.

with the well-known fact that inference based on Dirichlet process mixture models can iden-
tify small clusters that do not reflect the true data-generating process (Miller and Harrison
(2013)). One feature that differs DTMM from its competitors is that it not only outputs a
representative clustering but also a whole MCMC trajectory that allows natural uncertainty
quantifications. Figure 7(a) shows the probability of two samples being clustered together by
DTMM. Clearly, three stable clusters are identified. Although a point estimate from DTMM
falsely puts the first two samples in a separate cluster, the uncertainty is large. Figure 7(b)
shows the relative abundance of the samples as well as the estimated posterior node activation
probabilities. In this example, DTMM is able to uncover the internal nodes that are relevant
for clustering. We also consider an example from simulation scenario V. Illustrations similar
to Figure 6 and Figure 7 can be found in Figure S5 and S6 in Section 2.3 of the Supplementary
Material.

3.2. Validation. Validating the results of unsupervised learning is often challenging. In
microbiome clustering analyses, the best practice is to check the resulting clusters with scien-
tists to gain biological insights on a case-by-case basis. Instead of trying to provide a general
solution of how to justify the clusters found by DTMM, we provide an example to show that
DTMM can identify biologically meaningful clusters in real microbiome applications.

Specifically, we reanalyze the data in Dethlefsen and Relman (2011) which studies the
responses of stable gut microbiota to antibiotic disturbance. In this study the distal gut mi-
crobiome of three patients (patients D, E and F) were monitored over 10 months, including
two five-day antibiotic treatment courses separated by a five-month interim period. Fifty-two
to fifty-six samples were collected for each patient in the experiment. Samples of patients D
and F are shown in Figure 8 and Figure 9 which also illustrate the design of the study. In our
analysis we aggregate the OTU counts to the genus level which gives 59 OTUs in total.

As in Dethlefsen and Relman (2011), we analyze the samples from the three patients sep-
arately. For each patient we ignore the time information of when the samples were taken and
run DTMM on these samples for 2500 iterations. The first half of the chain was discarded as
burn-in. The clustering results for patient D are shown in Figure 8 (the x-axis labels in these
plots are colored by the cluster labels in CLS of the samples they represent). For this patient,
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FIG. 8. The heatmap of the microbiome samples of patient D (after the square-root transform). Each column
represents a specific sample. The columns are ordered by the times the samples were collected. The colors of
the x-axis labels represent the clustering labels of the samples returned by DTMM. The blue vertical lines mark
the two antibiotic treatment courses. “CP” denotes the antibiotic treatment (ciprofloxacin); “WPC” is the week
posttreatment; “Pre” and “Post” denote the pretreatment and posttreatment periods.

DTMM identifies three clusters which can be interpreted as the stable, sterile and recover
stages of the microbiota. Based on the clustering results, the gut microbiota of patient D was
stable before the treatment. It was able to recover to some stable states from antibiotic treat-
ment within a week after the treatment was finished. However, although the microbiota was
able to fully recover to the pretreatment state after the first antibiotic treatment course, it never
made a full recovery to the original state after the second (repeated) antibiotic treatment.

FIG. 9. The heatmap of the microbiome samples of patient F (after the square-root transform). Each column
represents a specific sample. The columns are ordered by the times the samples were collected. The colors of the
x-axis labels represent the clustering labels of the samples returned by DTMM. The legends are defined the same
way as in Figure 8.
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Similarly, the results for patient F are provided in Figure 8. For patient F, DTMM identifies
four clusters corresponding to the sterile, recover and two different stable stages, respectively.
Like patient D, the gut microbiota of patient F was stable before the treatment and was able
to recover from the treatments. Unlike patient D, it did not recover to the pretreatment state,
even after the first treatment course. Moreover, it took longer for patient F to recover than
patient D. We note that these findings are all consistent to the findings in Dethlefsen and
Relman (2011), where the time and design information was used to get these results.

As a comparison, the clustering results for these two patients under DMM are shown in
Figure S7 and Figure S8 of the Supplementary Material 2.3. For both patients, DMM returns
two clusters that roughly represent the stable and unstable stages of the microbiota. In this
example, DTMM is able to discover more interesting latent structures among samples than
DMM. It is worth noting that in each analysis, microbiome samples were collected from the
same patient. Thus, the level of cross-sample variations in this study is much smaller than
microbiome studies with multiple subjects. In those cases, we expect DTMM to benefit more
from its improved flexibility over DMM and discover even more interpretable structures than
the latter.

4. Case studies. The American Gut Project (McDonald, Birmingham and Knight
(2015), McDonald et al. (2018)) aims at building an open-source and open-access refer-
ence microbiome dataset for general scientific use, based on 16S rRNA sequencing and the
QIIME pipeline (Caporaso et al. (2010)). It collects mouth, skin and feces samples over a
large variety of U.S. participants on a voluntary basis. The participants send their micro-
biome samples to UC San Diego for sequencing and complete a questionnaire that covers
their dietary habits, lifestyle and health history.

We apply DTMM to the July 2016 version of the fecal data from the AGP to construct
enterotypes for two groups of samples: first, we consider participants who have been diag-
nosed with inflammatory bowel disease (IBD); second, we consider participants who have
been diagnosed with diabetes. The diagnoses are made by a medical professional (a doctor
or a physician assistant). The specific version of the AGP dataset contains an OTU table of
27,774 OTUs. We focus on the top 75 OTUs, based on total counts, to reduce noises in the
dataset and control for the sequencing errors. The top 75 OTUs, on average, retain two-thirds
of the total counts in a sample. We filter the samples by only considering participants with at
least 500 counts on the top 75 OTUs. This filtering ends up with 189 samples diagnosed with
IBD and 106 samples diagnosed with diabetes.

In the following sections we fit DTMM to each or the two datasets with the priors and
hyperparameters set to the recommended choices in Section 2.3. In each analysis we run the
Gibbs sampler in Section 2.4 for 5000 iterations and discard the first half of the chain as
burn-in. The cluster labels are initiated by running the PAM algorithm with K = 5.

Key findings from our analyses of these datasets are summarized as follows: (i) enterotypes
of the two disease-diagnosed groups are determined by a large number of OTUs jointly in a
sophisticated manner instead of by a few dominant OTUs; (ii) OTUs from genera Bacteroides,
Prevotella and Ruminococcus are typically important in identifying those enterotypes which
is consistent to the findings in previous works (Arumugam et al. (2011)); (iii) the number of
enterotypes and the OTUs that characterize each enterotype can differ across datasets; and
(iv) DMM tends to find larger clusters that are unions of clusters found by DTMM.

4.1. IBD. We first consider samples from participants that are diagnosed with IBD.
Figure S9 in Section 3 of the Supplementary Material shows the traceplots of some one-
dimensional parameters or summaries of the posterior samples. The Markov chain stabilizes
and mixes reasonably well after about 750 iterations. Figure S9(a) and Figure S9(b) show
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FIG. 10. Left: Estimated posterior means of the activation indicators at each node of the phylogenetic tree.
Right: The estimated centroids of the five clusters in CLS (after the square-root transform).

the traceplots of the Dirichlet process precision parameter β and the prior global activation
probability λ. The posterior means of these parameters are 0.87 and 0.53, respectively. Tra-
ceplot of the sampled number of internal nodes with γ (A) = 1 is shown in Figure S9(c). On
average, 39 out of 74 nodes are marked as relevant to the clustering process, indicating that
the clustering process is determined by various OTUs jointly in a complicated way, instead
of being dominated by a few OTUs that are abundant in counts. Figure S9(d) shows the cu-
mulative proportion of samples in the largest one, two, three, four and five clusters for each
iteration. DTMM tends to assign samples into five clusters.

We find CLS as defined in (21) which corresponds to c(t0) with t0 = 2717. CLS assigns the
samples into five clusters with sizes 6, 41, 73, 42 and 27, respectively. The estimated centroids
of the five clusters are shown in Figure 10 which also shows the estimated posterior means of
the activation indicator s(A) at A ∈ I . Most internal nodes that are irrelevant to clustering are
close to the leaves of the tree. Nodes that are more “global” (have more descendant OTUs)
generally contribute to the clustering. This indicates that the clustering process is determined
by most OTUs jointly in a complicated manner. Figure 11 (left) shows the estimated pairwise
clustering probability matrix 
̂ with the rows and columns ordered by the labels in CLS.
There are noticeable uncertainties in the clustering, especially between clusters 2, 3 and 4.
The similarities of these three clusters can also be seen from Figure 11 (right), where we plot
the heatmap of the samples (after the square-root transform) grouped by their labels in CLS.
Figure 11 (right) also shows that the within-cluster variations among samples are large.

To see which OTUs are more important in determining CLS, we consider the following
heuristic measure of OTU importance: for 1 ≤ j ≤ M , let

(23) ϑj = SSBj

SSWj

=
∑

c∈CLS
nc(ȳcj − ȳj )

2∑
c∈CLS

∑
ci=c(yij − ȳcj )2 ,

where ȳj is the overall mean of yij , ȳcj the mean of yij for samples with ci = c. Table 4
shows the top 10 OTUs in determining CLS in terms of ϑj as well as their compositions in
each cluster centroid. Overall, CLS is jointly determined by multiple OTUs in a complicated
way. Note that OTUs that are important for clustering are not necessarily those with abundant
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FIG. 11. Left: Estimated pairwise coclustering probabilities. Right: Heatmap of the samples (after the square–
root transform) grouped by their labels in CLS. The black boxes illustrate the characteristic OTUs of each cluster.

counts. For example, OTU-4468234 and OTU-4447072 (both are Bacteroides) are the two
OTUs with the most counts in the dataset. However, these two OTUs are prevalent in most
samples and thus have limited roles in the clustering.

We next compare the five resulting clusters in more details. Figure 12 shows the boxplot
of the Shannon diversity of samples in the five clusters, respectively. Samples from clusters
2 and 3 tend to have more evenly distributed counts across OTUs, compared to those from
clusters 1, 4 and 5. Similar to (23) we can define a heuristic measure of OTU importance in
characterizing each of the five clusters. Specifically, for c = 1, . . . ,5, let

(24) ϑc
j = SSBc

j

SSWc
j

= nc(ȳcj − ȳj )
2 + n−c(ȳ−cj − ȳj )

2∑
ci=c(yij − ȳcj )2 + ∑

ci �=c(yij − ȳ−cj )2 ,

where n−c is the number of samples that are not in cluster c, ȳ−cj the mean of yij for samples
with ci �= c. (24) is equivalent to merging the four clusters, other than cluster c in (23). The
boxes in Figure 11 (right) indicate the top OTUs in terms of ϑc

j for each c (only OTUs with
ϑc

j > 0.1 are shown).
Based on these results, we can characterize each cluster by a few OTUs with the top ϑc

j .
For example, samples from cluster 2 tend to have more counts from the Rikenellaceae family

TABLE 4
Estimated cluster-specific compositions of the top 10 OTUs in determining CLS in terms of ϑj . Values of the

OTU compositions are shown in the percentage scale

OTU Family Genus ϑj C1 C2 C3 C4 C5

185420 Bacteroidaceae Bacteroides 0.43 2.01 2.62 0.98 0.66 0.54
4478125 Ruminococcaceae Faecalibacterium 0.43 0.22 1.71 5.72 2.71 0.10
4356080 Barnesiellaceae – 0.33 0.53 0.41 0.37 0.42 0.28
4476780 Rikenellaceae – 0.32 0.14 1.70 0.15 0.33 1.04
4453609 Rikenellaceae – 0.26 2.08 2.43 1.15 0.71 0.85
4480359 Ruminococcaceae – 0.22 0.22 1.02 1.22 0.11 1.48
4465907 Lachnospiraceae Blautia 0.21 3.32 1.82 2.40 3.47 3.04
4481131 Ruminococcaceae Faecalibacterium 0.18 0.11 2.92 5.62 6.11 0.22
4457438 Lachnospiraceae – 0.19 0.36 2.72 6.43 4.67 1.68
4385479 Enterobacteriaceae Proteus 0.17 0.02 0.21 0.04 0.24 2.91
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FIG. 12. Left: Boxplot of the Shannon diversity of samples in each cluster. Right: Relative abundance of eight
genera for each sample. A genus is chosen if its descendant OTUs have large ϑc

j for some c. For the three OTUs
with unavailable genera information, their family is shown instead (indicated by Rikenellaceae*). The samples
are grouped by their cluster labels in CLS.

(represented by OTU-4453609 and OTU-4476780). Cluster 3 is characterized by having more
abundance in the Faecalibacterium (represented by OTU-4478125 and OTU-4481131) and
the Lachnospiraceae family (represented by OTU-4481127 and OTU-4457438). Arumugam
et al. (2011) proposed three enterotypes in human gut microbial communities that are char-
acterized by the variation in the levels of one of the three genera: Bacteroides, Prevotella and
Ruminococcus. Our analysis suggests that enterotypes of the IBD patients are determined by
a sophisticated mechanism involving more genera. That said, although OTUs from the Bac-
teroides, Prevotella and Ruminococcus genera are not always those with the largest ϑc

j , they
are playing important roles in identifying the five clusters. For example, OTUs from the Pre-
votella genus have large ϑ3

j and are thus crucial in determining cluster 3 while OTUs from

the Ruminococcus genus have large ϑ1
j and ϑ2

j and are thus important in identifying cluster
1 and 2. This can also be seen from Figure 12 (right), where relative abundance of 8 genera
picked by ϑc

j are shown for each sample.

4.2. Diabetes. Similar to Section 4.1, we apply DTMM to samples from diabetes pa-
tients. Results for this application are provided in Section 3 of the Supplementary Material.
For example, counterparts of Figure S9 and Figure 11 are shown in Figure S10 and Fig-
ure S11. In this example, DTMM finds three clusters with CLS. Figure S12 shows the esti-
mated centroids of the three clusters as well as the estimated posterior means of the activation
indicators at each node of the phylogenetic tree. Figure S13 (right) shows for each sample the
relative abundance of six genera selected based on the importance of their descendant OTUs
in identifying the three clusters. Compared with the IBD example, enterotypes in this case
can be associated with individual OTUs in a simpler manner. For example, samples in cluster
3 tend to have significantly lower abundance in Faecalibacterium and Bacteroides which are
the dominating genera in most samples. Compared with cluster 2, cluster 1 is identified with
relatively more counts from OTU-173876 and the Prevotella family.

On average, 21 out 75 internal nodes of T are estimated as relevant to clustering. Com-
pared with the IBD example in Section 4.1, fewer nodes are involved, suggesting that clusters
in the diabetes example are determined by fewer OTUs (genera). As shown in Figure S11
(right), a few OTUs play crucial roles in determining multiple clusters. As a comparison, as
shown in Figure 11 (right), each cluster in the IBD example is determined by a unique set of
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FIG. 13. Two-dimensional NMDS plots for the AGP IBD dataset. Points are colored and shaped by the cluster-
ing given by DMM (left) or DTMM (right).

OTUs. Since DTMM marks an internal node as relevant if it is relevant in determining any
cluster, more nodes are selected in the IBD example.

4.3. DTMM vs. DMM. We also apply DMM to the two examples in this section and
compare it with DTMM. DMM reports two clusters in both examples (see Figure S14 in
Section 3 of the Supplementary Material). For the IBD dataset, Figure 13 (left) shows the
two-dimensional NMDS plot of the data, colored by the cluster labels reported by DMM. In
comparison, Figure 13 (right) shows the same NMDS plot colored by the cluster labels in
CLS reported by DTMM. Similar NMDS plots for the diabetes example are shown in Figure
S15 in Section 3 of the Supplementary Material.

For the IBD application, the five clusters reported by DTMM can be seen as refinements
of the two clusters reported by DMM. Roughly, cluster B identified by DMM is the union of
clusters 2 and 3 from DTMM, while cluster A found by DMM is the union of clusters 1, 4
and 5 from DTMM. As shown in Figure 11 (right) and Figure 12 (right), those subclusters
from DTMM are not differentiated by OTUs with dominant counts. Thus, it is very unlikely
for DMM to make further splits. Moreover, based on Figure 11 (right), samples within each
cluster from DTMM tend to show different levels of heterogeneities across OTUs, making the
underlying Dirichlet-multinomial model of DMM unrealistic. For example, counts of OTUs
from the Prevotella genus tend to show large within cluster variations among samples in
cluster 3. To capture this level of variation, DMM has to push the cluster-specific dispersion
parameter very large, essentially loose its ability to effectively find those subclusters.

5. Concluding remarks. We have introduced DTMM as a model-based framework for
clustering the amplicon sequencing data in microbiome studies. By directly incorporating the
phylogenetic tree, DTMM differs from the popular DMM in three directions: first, it offers
a more flexible covariance structure among different OTUs; second, it provides a way for
selecting a subset of internal nodes in the phylogenetic tree that is relevant for clustering;
moreover, it allows simple and efficient algorithms for posterior inference. That said, DTMM
does have a higher computational cost than methods such as DMM that only incur simple
closed-form conjugate updates, due to the large number of numerical integrals in the form
of (19) in the Gibbs sampling. For example, on a single 2.5 GHz Intel Core-i7 desktop core,
the validation study takes about six hours to run (on the samples from a patient), and the two
case studies take about 48 hours each to run with our current software implementation which
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utilizes no parallelization and involves only vanilla grid-based evaluation of the integrals.
Such numerical integration can be substantially sped up through approximative strategies,
such as Laplace approximation applied on the inner integral on θ(A) in (19), as proposed
in Ma and Soriano (2018), as well as hardware-based parallelization using GPUs. Moreover,
the evaluation of the integrals over different nodes on the phylogenetic tree is embarrassingly
parallel and thus can be computed simultaneously with multiple cores. We expect future
versions of the software for DTMM to incorporate these functionalities that will substantially
improve the computational time.

Finally, while the covariance structure offered by DT is richer than that of the Dirichlet
distribution, it is still limited compared to the logistic-normal family (LN). In a case with K

OTUs, DT models the covariance among OTU counts with (K − 1) dispersion parameters
in the series of beta distributions while LN uses K(K − 1)/2 parameters in modeling the
covariance matrix. It is interesting to further generalize the covariance structure provided by
DTMM without making the inference too complicated. When selecting a subset of internal
nodes in the phylogenetic tree that are relevant to clustering, DTMM selects a node if it is
relevant in identifying any cluster. Intuitively, DTMM first selects a subspace in the node
space and performs clustering in that space. An alternative direction worth exploring is to
allow the nodes selected to be cluster-dependent such that each cluster can deviate from the
“mean” cluster at different internal nodes.
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SUPPLEMENTARY MATERIAL

Supplement A to “Dirichlet-tree multinomial mixtures for clustering microbiome
compositions” (DOI: 10.1214/21-AOAS1552SUPPA; .pdf). This supplementary file pro-
vides details on the posterior inference and MCMC sampling procedure for DTMM, addi-
tional details and results of the numerical examples, and additional results of the case studies.

Supplement B to “Dirichlet-tree multinomial mixtures for clustering microbiome
compositions” (DOI: 10.1214/21-AOAS1552SUPPB; .zip). We provide an R package
(DTMM: https://github.com/MaStatLab/DTMM) implementing the proposed method in this
paper. We also provide code and a guide to reproduce all simulations and data analyses in
Section 3 and Section 4.
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