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Abstract—Sparse linear regression is a fundamental problem
in high-dimensional statistics, but strikingly little is known
about how to efficiently solve it without restrictive conditions
on the design matrix. We consider the (correlated) random
design setting, where the covariates are independently drawn
from a multivariate Gaussian N (0, X), for some n x n positive
semi-definite matrix >, and seek estimators @ minimizing
(0 —w*)T S (1 — w*), where w* is the k-sparse ground truth.
Information theoretically, one can achieve strong error bounds
with only O(k logn) samples for arbitrary > and w*; however,
no efficient algorithms are known to match these guarantees
even with o(n) samples, without further assumptions on X or
w”*.

Yet there is little evidence for this gap in the random design
setting: computational lower bounds are only known for worst-
case design matrices. To date, random-design instances (i.e.
specific covariance matrices ) have only been proven hard
against the Lasso program and variants. More precisely, these
“hard” instances can often be solved by Lasso after a simple
change-of-basis (i.e. preconditioning).

In this work, we give both upper and lower bounds clarifying
the power of preconditioning as a tool for solving sparse
linear regression problems. On the one hand, we show that the
preconditioned Lasso can solve a large class of sparse linear
regression problems nearly optimally: it succeeds whenever
the dependency structure of the covariates, in the sense of the
Markov property, has low treewidth — even if X is highly
ill-conditioned. This upper bound builds on ideas from the
wavelet and signal processing literature. As a special case of
this result, we give an algorithm for sparse linear regression
with covariates from an autoregressive time series model, where
we also show that the (usual) Lasso provably fails.

On the other hand, we construct (for the first time) random-
design instances which are provably hard even for an optimally
preconditioned Lasso. In fact, we complete our treewidth classi-
fication by proving that for any treewidth-¢ graph, there exists
a Gaussian Markov Random Field on this graph such that
the preconditioned Lasso, with any choice of preconditioner,
requires Q(t'/%°) samples to recover O(logn)-sparse signals
when covariates are drawn from this model.

Keywords-sparse linear regression; preconditioning; high-
dimensional statistics

I. INTRODUCTION

In this paper, we study the fundamental statistical problem
of sparse linear regression with (correlated) random design.
In the simplest form of this problem, the learning algorithm
is given access to m independent and identically distributed
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samples (X1,Y1),..., (X, Y) of the form
Y= (w", Xi) + & (D

where each covariate X; ~ N(0,%) is a Gaussian random
vector in R™, the noise & ~ N(0,0?) is independent, and
the true coefficient vector w* is k-sparse, i.e. w* has at most
k nonzero entries. The goal of the learning algorithm is to
output a vector w such that the out-of-sample prediction
error

E[(Yo — (w, X0))?] = (w — w*)TS(w —w*) + 02 (2)

is as small as possible (i.e. close to o2, the error achieved
by w*), where (Xo,Y) is a fresh sample from the model.

There is a rich and vast body of work on sparse linear
regression with ¢;-regularized approaches (see for example
[59], [10], [5], [63]) ubiquitous in many domains and applied
sciences (see e.g. [43], [55], [68], [24]). The problem is
also extensively studied in the signal processing, compressed
sensing and sketching communities (e.g. [22], [7], [2], [34],
[12], [21], [11], [53]) where the measurements X are not
necessarily Gaussian but may come from other structured
distributions.

In the Gaussian random design setting, it is well known
that information theoretically, it is possible to achieve error
(1 + €)o? with m = O(klog(n)/e) samples; note that the
dependence on the ambient dimension n is logarithmic and
that there is no dependence on the covariance matrix .
Unfortunately, despite a tremendous amount of work on
sparse linear regression, we still do not know an efficient
algorithm that for general (X, w™*) can get a small error (say
O(0?)) even with up to o(n) many samples. This limitation
holds even when there is no noise (i.e., o = 0).

The classical algorithmic results for this problem assume
that the covariates satisfy some kind of well-conditioning
property such as incoherence [22], or a variant such as
the Restricted Isometry Property (RIP) [12], the Restricted
Eigenvalue Condition [5], or the Compatibility Condition
[63], and achieve up to constants the optimal statistical
guarantee described above. See [63] for an extensive dis-

2575-8454/21/$31.00 ©2021 IEEE 550
DOI 10.1109/FOCS52979.2021.00061

Authorized licensed use limited to: MIT Libraries. Downloaded on July 24,2022 at 20:55:30 UTC from |IEEE Xplore. Restrictions apply.



cussion of these assumptions'. In particular, these conditions
guarantee the success of /;-regularized methods for sparse
linear regression such as the Lasso [59]: the Lasso estimator
with tuning parameter A is defined by the optimization
problem

argmin Y — Xw]|2 + A ],
weR™

3

where X : m x n is the design matrix with rows X;. The
simplest to state version of these conditions, the RIP prop-
erty, requires that all small submatrices of the covariance
matrix are spectrally close to the identity matrix. When ¥
is the identity matrix or has a bounded condition number?,
the restricted eigenvalue condition holds, and we can solve
sparse linear regression with O(klogn) samples [51]. How-
ever, the above methods leave wide open what happens for
general >.. Since the population covariance ¥ is given to
us by nature in most statistical applications (for example, if
the covariates X; correspond to answers to survey questions,
or observations from a complex scientific experiment), what
happens for general ¥ is a question of significant practical
interest. This was one of the main motivations for studying
weaker versions of the RIP property such as the Restricted
Eigenvalue condition (see e.g. discussion in [5], [S1], [36])
and compatibility condition [63], [62], and understanding
how well the Lasso performs (well or not) with correlated
design matrices remains an active area of research (see e.g.
[16], [62], [39], [701, [3D).

While there are a few exceptions, such as settings where
submodularity holds (e.g. [17], [18], [23]), we do not have
good algorithms for dealing with ill-conditioned . On the
other hand, the state-of-the-art computational lower bounds
for sparse linear regression [47], [69], [26], [33] apply only
to the fixed-design setting with worst-case vectors X;. It’s
unclear that extending these results to the random design
setting is even possible, given various barriers to proving
hardness of average case problems (see, for example, [1]
3). Indeed, in the random design setting, the state-of-the-
art lower bounds are simply against the Lasso [64], [27] or
related classes of algorithms, such as linear regression with a
coordinate-separable regularizer [70] or local search proce-
dures* [29]. Such lower bounds by no means imply that the
instances are computationally hard: even if the covariance
matrix is ill-conditioned and Lasso fails, the sparse linear

'In the fixed design setting, these conditions are placed on the empirical
covariance matrix (or equivalently, the design matrix). The results of [51],
[71] shows the analogous conditions on the population covariance are
inherited by the empirical covariance matrix in the random design setting.

2The ratio of the largest eigenvalue to the smallest eigenvalue.

3This paper discusses obstacles to improper learning; however, in
random-design sparse linear regression where 3 is known, an improper
learning algorithm can be converted into a proper learning algorithm (by
using the former to generate artificial samples, and then running (ordinary)
linear regression).

4We note that this last work is focused on understanding a constant
factor gap in the isotropic setting, a related but fairly different goal vs.
understanding the landscape for general 3.
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regression problem may still be tractable. Indeed, there are
numerous examples [27], [16], [70], [38] of hard instances
for Lasso which become solvable after a simple change-
of-basis, and (to our knowledge) no examples of random
designs which provably cannot be solved by Lasso after such
a change-of-basis.

A. Preconditioned Lasso

Preconditioning is a powerful and extremely well-studied
technique for solving linear systems. In that literature, there
are two types of preconditioning: from the left, or from the
right [54].

In the vast literature on ¢; methods for sparse linear re-
gression, we are aware of no works that systematically study
the power of “right” preconditioning, i.e. an initial change-
of-basis in parameter space (see Section III for further dis-
cussion, including the substantial differences between “left”
and “right” preconditioning in sparse linear regression). Are
there natural classes of sparse linear regression problems
which can be solved by a preconditioned ¢; method but not
by classical methods? Are there examples of designs which
provably cannot be helped by appropriate preconditioning?
In this paper, we systematically study these questions. To
formalize the notion of an initial change-of-basis, we define
the following large and natural class of convex programs,
which we call the preconditioned Lasso.

Definition I.1 (Preconditioned Lasso). Let S € R™*® be a
matrix. The S-preconditioned Lasso on samples (X;,Y;)™,
with tuning parameter A is the program

argmin ||Y — Xw||§ +A HSTwH1
U)€R7L

“4)

where X : m x n is the design matrix with rows X;. Taking
A — 0, as is done for noiseless samples, yields the S-
preconditioned Basis Pursuit (BP):

(&)

argmin ||STw||1 .

weER™: Xw=Y
Programs 4 and 5 are convex, so can be solved in time
poly(n, s, m). If S is the identity matrix, then they are just
the well-studied Lasso (see (3)) and Basis Pursuit programs.

Program 4 has been previously studied in the literature,
under various names including the generalized Lasso [60].
However, in most applications of the generalized Lasso the
motivation is different: the matrix S is introduced into the
program because the signal is not sparse in the original basis,
but in a different one (e.g. for piecewise constant signals, S
is chosen to give the total variation norm which penalizes
the discrete derivative [60], [48]). In contrast, we are only
interested in recovering signals sparse in the original basis,
and we seek to choose S based on the design matrix to
improve the performance of the Lasso. To avoid confusion,
we therefore refer to this program as the “preconditioned
Lasso” in this paper. This should not be confused with a
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different and largely unrelated terminology introduced in
prior work [67], [37]; we expand on this distinction in
Section III

As the name suggests, the above class of programs
essentially corresponds to solving the Lasso after first per-
forming an appropriate change of basis. Indeed, if S is an
n X n invertible matrix, then the S-preconditioned Lasso is
equivalent to Lasso with a (right) preconditioned design:

argmin ||V — X (ST) 7 |3 + AJul|;.
u€R™
This is a natural class since, as previously remarked, the
ability to change basis is powerful enough to fix the Lasso
in several examples where it is otherwise known to fail (for
instance, see examples in [27], [16], [70], [38]).

As we will explain further, in this paper we present both
upper and lower bounds for this class of programs. Our
results are closely tied to a standard notion of graphical
structure for the covariate distribution. Before explaining the
conditions in general, we start with a motivating example:
estimating a sparse linear functional of a simple random
walk, studied in [39].

B. A motivating example: Random walk/Brownian motion

Suppose we have a sequence of random variables
Ry,..., R, where each R, is generated from R; ; and
some independent noise. That is, Z1, ..., Z, ~ N(0,1) are
independent Gaussian random variables, with Ry = Z; and

Ri=Ri 1+ Z;

for ¢ > 1. This describes a simple random walk, one of the
simplest forms of time-series data. If each covariate vector
X; is an i.id. copy of (Ry,...,R,), then the covariance
matrix ¥ is just ¥;; = min(4, ). More importantly, ¥ is
quite ill-conditioned and existing guarantees (e.g., restricted
eigenvalue etc.) do not seem useful in this scenario [39].
In the work [39], the authors gave upper bounds on the
performance of the Lasso for this version of sparse linear
regression, which did not match the performance of the
information-theoretically optimal algorithm.

One of the technical innovations in the present paper is a
general and relatively easy-to-use method for proving lower
bounds on the performance of the Lasso in random design
problems. As a simple application of our general result, we
clarify the behavior of the Lasso in this model by proving
a strong negative result:

Theorem L.2. For any k > 2, there is a k-sparse signal
w* € R™ such that the Lasso and Basis Pursuit require
at least m Q(y/n) samples to exactly recovery w*
from noiseless observations (X;,Y;)™ , when the covariates
X; are independently drawn from the Gaussian random
walk N(0,%) and Y; = (w*, X;). The same holds if the
coordinates of the covariates are normalized to all have
variance 1.
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Figure 1: Basis Pursuit (BP) vs Preconditioned BP vs
Standardized BP in the case of the simple random walk
with n = 32768 (2'%) variables. The x-axis is the number
of samples m (incremented in steps of 5) and the y-axis is
the error in recovering w* in Euclidean norm in a single
independent run of the algorithms. Consistent with our
theory (Theorem 1.2 and Theorem I.5), preconditioned BP
succeeds at exact recovery with significantly fewer samples
than normal BP or standardized BP (BP with the coordinates
of X, standardized to variance 1, which is a common
preprocessing step). The ground truth covariates X; are i.i.d.
copies of a simple random walk with Gaussian steps, and
the ground truth labels are Y; = 3[(X;)s276s — (Xi)32767]>
ie. w* =(0,...,0,-3,3).

The above theorem shows that the most popular algo-
rithmic approach for sparse linear regression problems, ¢;-
regularized least squares, performs poorly in this problem;
in fact, its sample complexity is exponentially sub-optimal
in the ambient dimension n (this was also observed ex-
perimentally in [38]). This brings up an obvious question,
which to the best of our knowledge, was unanswered even
in this particular case — can any polynomial time algorithm
achieve nearly optimal performance (or even o(y/n) sample
complexity) in this example?

We show the answer is yes — sparse linear regression
on a random walk can be solved efficiently. While Lasso
run in the usual way fails, it turns out that if we first make
an appropriate change-of-basis, i.e. precondition, Lasso will
succeed. More formally, there is a sparse “preconditioner”
matrix S € R™ "™, such that the S-preconditioned Lasso
recovers any k-sparse rule w* € R™ from m = O(klog® n)
samples Y; (w*, X;) + &, where & is independent
Gaussian noise. In the present case we actually choose S
to be an invertible matrix, so this can be interpreted simply
as a change of basis.
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Theorem L.3 (Special case of Theorem L.5). Suppose that

X1,..., X, are independent copies of (Ry,...,R,) and
Y; = (w*, X;) + & with & ~ N(0,0?) independent and
0?2 > 0. There is a polynomial-time algorithm (precon-

ditioned Lasso/BP) which outputs 1w such that with high
probability,
> (6)

provided m = Q(klog®(n)). (When o = 0, the rhs is zero.)

o2k log?(n)

(& — w) TS — w*) = O < =

The preconditioner S” which works is quite simple, and
builds upon inspiration from other settings in the compressed
sensing and signal processing literature (see [45], [48], [35]).
The inverse (ST)~! is the composition of the differencing
operator D(x]; = x; — x;_1 with the discrete Haar wavelet
transform [32], [45]. The first transformation (differencing)
transforms the sequence Ri,..., R, back into the steps
Z1,...,Zy, which completely fixes the ill-conditioning of
the basis. However, the first step destroys sparsity: (w*, R) is
not a sparse linear functional of Z, but instead a dense linear
functional with piecewise constant coefficients. The second
step, the Haar transform, is orthogonal — hence preserves
well-conditioning — and it restores sparsity, because a
piecewise constant signal is sparse in the Haar basis [45].
Given this, Theorem 1.3 follows from classical results on
sparse linear regression with isotropic covariates from the
compressed sensing literature (e.g. [10], [5]).

It is remarkable that the random walk model admits a
preconditioning matrix .S which combines so well with the
Lasso. This suggests the question:

Question 1.4. For which ¥ can we construct a precon-
ditioner such that the preconditioned Lasso solves sparse
linear regression for covariates drawn from N (0,%)?

C. Preconditioning and Dependency Graphs

The answer, as it turns out, depends on the conditional
independence structure of X ~ N(0,X), or equivalently the
dependency graph of the distribution. We first introduce this
notion.

Fix a distribution D on R", and a graph G on n vertices.
We say D satisfies the Markov property with respect to
G if the following holds for X ~ D: whenever ¢,; are
not adjacent in G, X;, X; are independent conditioned on
(Xk : k a neighbor of ¢ in G). That is, G is a dependency
graph for the distribution D. The study of dependency
graphs of distributions has a rich history and vast literature
within statistics and machine learning, under the general area
of graphical models — see e.g. [41], [19], [6], [66], [49].

For a multivariate Gaussian distribution N(0,%) with
invertible 3, there is a clean characterization of the de-
pendency graph. Let © = X! be its precision matrix.
The dependency graph of N(0,X) is precisely the graph
whose adjacency matrix is the support of © [41], [19].

553

Reconsidering the example of random walks, a key prop-
erty of the distribution of (Ry,...,R,) as defined above
is the following Markov property: conditional on R;, the
past variables R;,...,R;_; are independent of the future
variables R;;1,...,R,. Equivalently (see e.g., [41]), the
precision matrix © = X1 of Ry,..., R, is supported on
the adjacency matrix of the path graph.

Our main contribution is an essentially complete answer to
Question I.4 in terms of the corresponding dependency graph
of 3. At a high level, we show that whenever the dependency
graph of X has small treewidth, then there is a preconditioner
such that Lasso succeeds. Conversely, we show that for any
graph G with high treewidth, there is a Gaussian distribution
with G as the dependency graph on which no precondition-
ing can make Lasso succeed. This shows that treewidth, long
used as a natural complexity measure in graphical models,
e.g. in the context of the celebrated junction tree algorithm
[42], also determines the difficulty of solving a sparse linear
regression with preconditioned Lasso. We formally state our
results next.

D. Main Results

Preconditioning for small treewidth: We show that
whenever the dependency graph of the covariate distribution
has low treewidth, say ¢, there exists a choice of precondi-
tioner which makes the Lasso succeed with > ktlog®n
samples. Furthermore, such a preconditioner can be con-
structed efficiently without exact knowledge of 3: just know-
ing the dependency graph allows us to efficiently construct
the preconditioner based off of the samples. Formally, we
show the following:

Theorem L5. Let G be a graph on [n], and let © € R"*"
be a positive-definite matrix supported on G. Suppose that
G has treewidth at most t. Let o > 0. Then there is a
polynomial-time algorithm which outputs w such that with

high probability,

(60— w*) TS —w*) = O <o2k’t logl/;(t) logQ(n)> )

from (1) knowledge of the graph G, and (2) m
Q(ktlog®n) independent samples (X;,Y;), where Y; =
(w*, X;) + & with w* a k-sparse vector, and independently
Xi ~ J\](O7 @_1) and é-z ~ N(O,O’Q).

Remark 1. The extra log'/?(t) factor arises from the ap-
proximation algorithm of [25] and can be eliminated if the
optimal tree decomposition is given as input. Also, in the
full version of the paper we show how to shave the extra
log(n) factor from (7) by combining our preconditioner
with model-based Iterative Hard Thresholding instead of
the Lasso (cf. [2]). Finally, we note the results generalize
straightforwardly to subgaussian data and noise, in which
case the sparsity pattern of © may differ from the graphical
structure according to the Markov property.
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Besides giving a characterization of dependency structures
which enable the success of preconditioned Lasso, the above
also covers several important cases that arise in practice. The
simplest case is the random walk discussed above, where the
dependency graph is a path and therefore has treewidth 1.
Especially if we are regressing on time series data, the path
graph may sometimes be a reasonable assumption on the
dependency structure of the covariates. However, even in the
specific context of time series, one often has multiple inter-
acting time series and/or longer range interactions (consider
e.g. an AR(2) model [9]) which fundamentally change the
graph structure. In these situations, the treewidth is bounded
by the length of the interactions, and thus may naturally be
small. More generally, sparse graphical structure is often a
natural assumption in practice and plays, for example, a very
important role in causal inference and reasoning [49], [50].

Failure of preconditioning for high treewidth: We
complement our upper bound with a sample complexity
lower bound for high-treewidth graphs: for any graph G with
treewidth ¢, there is a multivariate Gaussian distribution with
dependency graph G such that for any preconditioner S, the
S-preconditioned Lasso fails (with high probability) unless
the number of samples is €2(t°) for an absolute constant
¢ > 0. The preconditioner is allowed to depend on the
distribution, and the lower bound result holds in the (easiest)
noiseless setting, where the corresponding notion of success
requires exact recovery of the ground truth.

Theorem 1.6. Pick n,t,s € N, and suppose that G is a
graph on [n] with treewidth at least t. Then there exists
k = O(logn) and some positive-definite precision matrix ©,
supported on G, with condition number poly(n), such that
the following holds: for every preconditioner S € R™*%,
the S-preconditioned basis pursuit requires m = Q(t'/20)
samples (X;,Y;) to exactly recover a k-sparse coefficient
vector w* from covariates X1, ..., X,, drawn iid. from
N(0,07Y) and noiseless responses Y; (w*, X;), with
probability better than 1/t/400,

To the best of our knowledge, this result provides the
first class of examples of random design problems where
a change of basis provably cannot fix the performance of
the Lasso. To prove this result, we develop an easy-to-use
machinery for proving lower bounds on the performance of
the Lasso in random design settings, which is of independent
interest.

II. OVERVIEW OF TECHNIQUES
A. Algorithms for Low-treewidth

Known X setting:  First, we describe the simplified ver-
sion of the low-treewidth algorithm, which assumes knowl-
edge of the population covariance matrix . The algorithm
generalizes the one for the path described earlier. We show
that there exists a sparse matrix S such that ¥ = SS7
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(i.e., a sparse Cholesky factorization) and such that both S™
and (ST)~! are sparsity preserving (within poly(t,log(n))
factors, where t is the treewidth). This enables us to pre-
condition the Lasso exactly, transforming from the original
problem to a new problem where the covariates have identity
covariance, and the unknown signal is transformed but still
sparse — the ideal setting to apply classical results on sparse
linear regression from compressed sensing literature.

The construction of the preconditioner S is via a ver-
sion of the nested dissection method, originally designed
for quickly solving systems of linear equations over low-
treewidth graphs [30], [44], although the actual analysis we
need to perform is fairly different from those works. This
kind of recursive decomposition is morally related to the
Haar wavelet transform and its generalization to trees (see
e.g. [56]) and variants which apply to low-treewidth graphs,
e.g. [20] though the details and motivation differ.

Concretely, the tree we start with is given by computing
a tree decomposition of our low-treewidth graph, using for
example the approximation algorithm of [25]. This tree
provides a natural hierarchical decomposition of the graph,
because we can always break a tree into roughly equal size
pieces by removing its centroid [31]. We can then exploit the
Markov property to reduce the problem of preconditioning
the entire model to preconditioning each of the smaller
pieces. Recursing, we get a sparse block Cholesky factor-
ization of X that we use as the preconditioner.

Because our preconditioner has a natural tree structure,
we also show that we can use algorithmic tools from the
area of model-based compressed sensing (see, e.g., [2]) to
shave an extra log factor from the rate that arises when using
the preconditioned Lasso. This algorithm, based on a version
of Iterative Hard Thresholding [7], allows us to recover the
information-theoretically optimal O(c%klog(n)/m) rate in
the bounded treewidth setting.

Data-Dependent Sparse Preconditioner:  It’s often the
case that the true population covariance matrix Y is unknown
to the algorithm. Furthermore, since we assume access to
only a small number of samples X; from the covariate
distribution, the empirical covariance matrix cannot stand in
as a suitable replacement for the true matrix X (for example,
the empirical covariance matrix may not be invertible even
if the true X is).

We show how to overcome these difficulties under the
more realistic assumption that the graphical structure of
the distribution, i.e., the support of the precision matrix
© = %71, is known. This kind of modeling assumption
is prevalent in the causal inference and graphical models
literature (see, e.g., [49]) and is generally more plausible
than knowing the exact matrix X. Also, even if initially
unknown, the graph structure may be recoverable from a
small number of samples using GGM learning algorithms
(e.g., [46], [28], [38]).
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Algorithmically, we build our preconditioner by perform-
ing an approximate block Cholesky factorization of the
empirical covariance matrix s, following the tree structure
described above. By using the Markov property, we can
handle the poor approximation quality of the empirical
covariance matrix 3 to ¥ by zeroing out all of the entries of
various Schur complements which arise during the Cholesky
factorization and which must be zero due to the Markov
property. If A is the centroid from the tree decomposition
and P, ) are the resulting subforests given by removing A,
the approximate block factorization is given by

1/2

R 0 0
S=|SpaSyy® Sp 0
Soas, 2 0 Sg.

where . is the empirical covariance matrix, and the bottom
right is a (recursively defined) approximate block Cholesky
factorization of the Schur complement % /A with zerod out
bottom-left and top-right sub-blocks. This factorization is
not a spectral approximation of the empirical covariance
matrix 3 (which may be rank degenerate); instead, we show
that changing basis by S results in a new Lasso problem
which satisfies the Restricted Isometry Property [12]. The
proof of this fact is quite involved, as we need to precisely
track the accumulation of errors in the factorization from the
perspective of a sparse test vector.

Aside: sparse linear regression with sparse covariance:

The assumption that © is sparse is very common and
natural from a modeling perspective. That being said, we
also consider what happens when 3, instead of O, is sparse.
In the full version of the paper, we give an algorithm for k-
sparse linear regression with runtime roughly d* - poly(n),
where the rows of X are d-sparse. It’s again based on pre-
conditioning the Lasso but uses a randomized preconditioner
based on a site percolation process on the graph (see, e.g.,
[40]), where each vertex of the graph is kept with probability
p.

B. Impossibility of preconditioning in high-treewidth models

In this section, we outline the proof of Theorem 1.6, the
sample complexity lower bound for high-treewidth graphs.
There are three main elements to the proof:

1) Identifying conditions on a precision matrix © =
¥~! and preconditioner S, under which the S-
preconditioned Lasso will fail (for some sparse signal,
with covariates drawn from N (0, X))

Constructing a precision matrix on (a slight variant of)
the grid graph which satisfies these conditions for any
preconditioner

Extending the lower bound for the grid graph variant,
in a black-box manner, to a lower bound for any high-
treewidth graph

2)

3)
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Conditions under which (preconditioned) Lasso fails:
There are two distinct reasons why classical Lasso might
fail to recover some signal: either the covariates are ill-
conditioned, or the ground truth is not sparse. For pre-
conditioned Lasso, the situation is roughly analogous, and
we have two cases: if the preconditioned covariates are ill-
conditioned, then recovery should intuitively fail; and if the
preconditioner has dense rows, meaning that the ground
truth may be dense in the preconditioned basis, then recov-
ery should intuitively fail. While making these statements
precise requires additional assumptions, this intuition is
accurate in spirit.

We first formalize the first case above. For a fixed design
matrix X, the standard KKT conditions can determine
whether Lasso/Basis Pursuit succeed at exact recovery (see,
e.g., Theorem 7.8 of [65]). However, to show the Lasso
fails in random design, we need a condition on ¥ that
guarantees failure with a high probability over X. Despite a
vast literature on conditions for success and failure of Lasso,
we are not aware of a broad, sufficient condition on the
covariance matrix in the random design setting under which
there must exist some sparse signal that causes Lasso to
fail (even in the more straightforward non-preconditioned
setting). We rectify this gap by introducing the Weak (.S-
Preconditioned) Compatibility Condition. This condition is
defined analogously to stronger compatibility conditions
(cf. [51], [63]), which are sufficient for Lasso’s success.
That is, it roughly states that SST (identity in the case of
unpreconditioned Lasso) approximates Y. However, unlike
classical compatibility conditions, the condition we intro-
duce is necessary’ as opposed to sufficient: if it is not
satisfied, then the S-preconditioned Lasso will fail with high
probability on some sparse signal.

To be concrete, we describe the Weak Compatibility
Condition and why it is necessary for the success of Lasso.
When S = I and given m samples, the Weak Compatibility
Condition is said to fail when there is a sparse vector w*
and an Q(m)-dimensional subspace U such that for all
u € U\ {0}, the quantity (u”Su)/ ||qu is much larger
than ((w*)TZw*)/ ||w*||f Informally, this means that it is
much cheaper in ¢; norm to use features from the subspace
U than from the direction w*. We show that if the Weak
Compatibility Condition fails to hold and w* is the ground-
truth signal, the Lasso will fail with high probability to
recover w*. This is because we can overfit the signal by
finding a uw € U such that Xu = Xw?*, and we can show that
there will exist at least one such w with smaller ¢; norm than
the ground truth w*. The S-Preconditioned version of the

5An interesting result with related motivation is Theorem 3.1 of [3],
which shows that if the Lasso succeeds for arbitrary sparse signals while
(a variant of) the ¢1-eigenvalue/compatibility constant of the design matrix
is large, then the regularization parameter A\ must be small. However, it
leaves open the possibility that Lasso may succeed with an appropriately
small choice of .
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condition replaces the ¢; norm by the general u + ||STul|;
norm, and formalizes the necessary condition for SST to
approximate X well.

Of course, it’s easy to construct a preconditioner .S such
that SST does approximate (or even equals) X; it just
might not be sparsity-preserving (i.e., STw* need not be
sparse even for sparse w*). We formalize the intuition
that a preconditioner with dense rows should also cause
preconditioned Lasso to fail (i.e., the second mode of failure
we alluded to above). This is surprisingly challenging.
The main obstacle is that this is false without additional
restrictions: for example, replacing the preconditioner S with
the column-wise concatenation [S;S] doubles the size of
the support of STw* but doesn’t affect the output of the S-
preconditioned basis pursuit, so sample complexity cannot
be directly tied to |supp(STw*)|.

More technically, even if STw* is dense, we cannot
simply change the basis and use the fact that classical Lasso
fails on dense signals®. The issue is that ST may map to
a higher-dimensional space, so changing basis introduces a
new subspace constraint into the program, which could make
KKT optimality conditions easier to satisfy. Instead, to find
violations of the KKT optimality conditions, we must use
additional structural properties of © and S (e.g., that every
column of S is either dense or has a very small norm).
In the next paragraph, we discuss a specific framework for
constructing O; it is under this framework that we can show
that a dense preconditioner causes recovery to fail.

Framework for constructing ©:  How do we construct
a positive-definite matrix © such that any preconditioner
S is either dense or poorly approximates © (i.e. SST is
spectrally far from ¥ = ©~1)? Obviously, © must be ill-
conditioned. Taking this intuition to the extreme, we can
consider a nearly-degenerate matrix © = O €I, where © is
PSD with an r-dimensional kernel, and ¢ is arbitrarily small.
If the preconditioner S satisfies SS7 ~ ¥ in an appropriate
sense, then it can be seen that every column of S lies
arbitrarily near ker &} (as € — 0) and that the columns must,
in the limit, span ker ©. So for S to necessarily be dense,
it’s enough that ker O is high-dimensional and contains no
sparse vectors. This is the key insight in understanding what
properties a hard instance should have:

To construct a precision matrix © = O + eI which is hard
to precondition, it suffices to show that ker © is
high-dimensional and dense, i.e., contains no sparse
vectors.”

6Recall that S-preconditioned Lasso can be intuitively viewed as standard
Lasso where the actual signal is ST w*.

7In a way, this property of © resembles the Restricted Isometry Property,
which is a property of the covariance matrix X that enables the success
of Lasso. However, in our case, the condition is placed on the inverse
covariance matrix ©, which means it obstructs preconditioning the large
eigendirections of X.
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Of course, this “story” has several issues. First, the
assumption that SS7T spectrally approximates X is too
strong because the converse does not imply that S-
Preconditioned Lasso fails. Instead, we only assume that
the S-Preconditioned Weak Compatibility Condition holds,
which introduces new difficulties in proving that S is dense.
Notably, a vital step of the proof requires that © is very
sparse. This further motivates our investigation of sparse
linear regression when covariates are drawn from Gaussian
Graphical Models: the sparse dependency structure is cru-
cial.

Second, we do not want © to be arbitrarily close to
degenerate; we want it to have poly(n) condition number.
This introduces a new wrinkle, but the same insight still
mostly holds: we want to find a PSD matrix S (supported
on some graph), such that the kernel is high-dimensional
and is “robustly” dense, i.e., not too close to any sparse
vector. This matrix should also have a polynomial condition
number on span(C:)). The following theorem formalizes the
above framework, i.e., conditions on © under which S-
preconditioned Lasso cannot succeed:

Theorem IL1. Let © € R" " be a PSD matrix. Let
k,m,s > 0. Let 7 > 0 and V C [n] and let 1 be the
infimum of ||xv — yl|, / |z||, over all nonzero x € ker(©)
and T-sparse y € RY. Also, let \ be the smallest non-zero
eigenvalue of o. Suppose that the following hold:

e The rows (and columns) of O are k-sparse

o 7 :=dimker(©) > 2m

e k> 3(|V|/T)log(n)

Pick any positive € < 1\ /(16200n°||0||%.). Define © =
O + ¢l. For any preconditioner S € R"*5, there is some k-
sparse signal such that S-preconditioned Lasso fails at exact
recovery with probability at least 1 — 32 — exp(—£2(m)),
from independent covariates X1, ..., X,, ~ N(0,07!) and
noiseless responses Y; = (w*, X;).

The expander graph: Ultimately, we will need to
construct a positive semi-definite matrix °) supported on
a variant of the grid graph, whose kernel has the above
properties. However, we first discuss a simple construction
on an expander graph, which shares several ideas with the
more intricate grid graph construction. Our approach is to
define © = M” M for an appropriate matrix M € R"~"*™,
Then © is necessarily PSD, and its kernel must have
dimension at least 7. As ker(©) = ker(M), we can view
each row of M as an equation that constrains the kernel.
Specifically, we let each row of M be a sparse Bernoulli
random vector. With high probability, M is the adjacency
matrix of a bipartite expander graph, and classical results
show that ker(M) is robustly dense.

This construction is noteworthy in several ways. First,
unlike the lower bounds achieved in Theorem 1.6, this con-
struction yields a linear sample complexity lower bound (in
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Figure 2: 4 x 4 simplicized grid graph

the number of variables n, or equivalently in the treewidth)
for recovering polylog(n)-sparse vectors, for the expander
graph. Second, the proof utilizes well-known results from
compressed sensing and random matrix theory, providing an
interesting example of how techniques originally developed
to prove the success of sparse recovery methods can be
applied to establish failure. Third, this construction may be
a good candidate for stronger lower bounds (e.g., computa-
tional or statistical query).

The grid graph:  We now turn to constructing a positive-
semidefinite matrix © supported on the grid graph, such that
the kernel has the above properties. As with the expander
graph, we define © = MT M for an appropriate matrix M €
RH—TX’I’L.

The requirement that © be supported on the grid graph
means that the equations must be in some sense “local”. An
entry (:)ij is nonzero if there is some equation containing
both variables ¢ and j. This is problematic if we want O to
truly be supported on the grid graph (since it is triangle-free,
no equation could have more than 2 variables). Instead, we
relax that condition slightly, to require that O be supported
on the simplicized grid graph, depicted in Figure 2 for n =
4.

Now, for every triangle of the simplicized grid graph,
there can be an equation constraining the triangle’s vertices.
We define a subset X' of the top row and a subset ) of
the bottom row. We construct equations so that X is a set
of free variables, and every other vertex has precisely one
constraint, and any solution is robustly dense on either X
or ), which suffices for our needs.

That such a construction exists is a priori unclear; for
example, if the equations have random weights, then it
turns out that in most solutions, the norm on row 7 decays
exponentially as r increases. Hence, if the variables in X
are set to some sparse vector, then ) will be very close to
0 and thus not robustly dense. Similar issues arise if the
equations’ weights are periodic; e.g., if the first row avoids
high-frequency Fourier vectors, then subsequent rows may
decay exponentially.

Instead of these approaches, we take inspiration from a
simple construction that does not observe the “locality” con-
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ditions but instead is essentially a complete bipartite graph
between X and ). Specifically, if there are no conditions
on the locality of the equations, then we may introduce
constraints so that each variable in ) is a Gaussian random
linear combination of the variables in X, ie., vy = Avy
where A is a Gaussian random matrix, and v is any solution.
Standard matrix concentration results imply that if v is
nonzero, then either vy or vy must be robustly dense (this
can be thought of as an uncertainty principle, as in [22]).
Obviously, the complete bipartite graph cannot be directly
embedded in the simplicized grid graph. However, if the
grid is sufficiently large (specifically, having side length
Q(|X|?)), then the complete bipartite circuit defining ) in
terms of X" can in fact be simulated on the simplicized grid
graph. Paths between all pairs of X and ) are constructed to
avoid overlap. Vertex crossings are inevitable, but they can
be replaced by constant-size “swap gadgets” which simulate
crossing paths via the XOR/addition swapping trick:

=z +Yy; Yi=x—y; =Y.

See Figure 3 for a schematic of the implementation on the
grid graph (not showing swap gadgets).

Unminoring:  With the above techniques, we can prove
that there is a precision matrix © supported on the sim-
plicized grid graph, such that for any preconditioner, the
preconditioned Lasso needs a polynomial number of samples
to succeed when covariates are drawn from N (0,071). To
extend this result, we make the following simple observa-
tion: if a covariance matrix Y can be S-preconditioned so
that Lasso succeeds at sparse recovery with covariates from
N(0,X), then certainly the same holds for any submatrix
Yyv; the preconditioner is just Sy. In the language of
precision matrices, this means that a precision matrix © is a
hard instance (against all preconditioners) if it has a Schur
complement © /Oy which is a hard instance.

Our goal is therefore to prove that for any high-treewidth
graph G, there is a precision matrix © supported on G and
a vertex subset V' such that the Schur complement © /Oy
approximates the hard simplicized grid instance. We appeal
to the celebrated Grid Minor Theorem, which states that
any graph with treewidth ¢ contains a grid minor of size
20 5 ¢22(1) [13], [15]. Finally, we prove that if G, H are
graphs and H is a minor of G, then any positive-definite
matrix supported on H can be approximated to arbitrary
accuracy as a Schur complement of some positive-definite
matrix supported on G. This last step is technically involved,
but the construction is fairly simple: since H is a minor of
G, each vertex of H corresponds to a connected component
of G, and any edge in H corresponds to an edge between
the respective components in G. Given a matrix I" supported
on H, we construct a nearly block-diagonal matrix © on G,
where each block is a large multiple of the Laplacian of the
induced subgraph of a component of G. This means each
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Figure 3: Schematic of equations defining the kernel of a
positive-semidefinite matrix e supported on the simplicized
grid graph. The kernel has dimension |X'|, and every vector
in the kernel (i.e. solution to the equations) is robustly dense
on either X or ). Note that there is a path from every
vertex of X to every vertex of ). This allows us to enforce
the constraint that for any solution, each variable of ) is
equal to a random linear combination of the variables of
X. Every blue directed path denotes that all vertices on the
path are constrained to be equal. A vertex with multiple
incoming arrows indicates that the vertex is constrained to be
the sum of its predecessors. The orange arrows are assigned
Gaussian random weights. Every crossing between two paths
is replaced by a “swap gadget” ensuring that the paths do
not interfere. Vertices not on any path are constrained to be
0.

block is approximately a Gaussian free field [58], which
induces a strong positive correlation between the variables
inside the block. The entries of I' are then assigned to
appropriate edges of G and added into ©.

Using this result, we extend our lower bounds against
preconditioned Lasso to all high-treewidth graphs, complet-
ing our tight graphical characterization of the power of
preconditioned Lasso.

III. FURTHER RELATED WORK

Generalizations of the Lasso: There is an immense
literature on generalizations of the Lasso. However, to our
knowledge, our work is the first to study the preconditioned
Lasso as defined above, for the purpose of solving sparse
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linear regression. It is worth contrasting with two related
branches of prior work:

1) The generalized Lasso [57], [60] is defined as

argmin |Y — Xw|2 4+ X || Dw|, ,
weR™

for a penalty matrix D. Definition 1.1 is a certainly
a program of this form. However, the motivation is
quite different: while we consider the preconditioned
Lasso as a class of approaches for linear regression with
sparsity in the original basis, the generalized Lasso
was introduced to encapsulate “problems that use the ¢;
norm to enforce certain structural constraints—instead
of pure sparsity” [60]. That line of work has largely
focused on algorithms for the generalized Lasso and
applications for specific choices of penalty matrix D.
A different notion of preconditioned Lasso introduced
in prior work [67], [37] is the notion of solving
the Lasso on “preconditioned” samples (AX, AY),
for some invertible matrix A, instead of the original
samples (X,Y"). This approach has the same motivation
as ours: modifying the problem so that Lasso will
succeed at signal recovery (or e.g. sign recovery [37])
for sparse linear regression. However, the two kinds
of preconditioning (left vs right) are very different:
theirs occurs in the space of samples, whereas ours
occurs in the space of parameters. This is most clear in
the noiseless setting, where Lasso reduces (if we send
A — 0) to the basis pursuit program

2)

argmin
weR™: Xw=Y

[l -

As defined in [37], preconditioning has no effect on the
basis pursuit program. In contrast, with our definition,
preconditioned basis pursuit can often provably succeed
where basis pursuit fails, as exhibited in Section I-B.
We do note that [67] also suggested a more general def-
inition of preconditioning which includes ours, though
they focused on the effect of left preconditioning as
discussed above.

Lower bound related work: Impossibility results for the
sparse linear regression problem fall into several categories,
depending on whether they address the fixed-design setting
or the random design setting, and on what classes of
algorithms they rule out. In the fixed design setting, there are
computational lower bounds against finding a sparse solution
to a system of linear equations [47], [69], [26], [33]. No
comparable results are known for random designs; there is
a lower bound for robust sparse linear regression under an
assumption related to hardness of planted clique [8], but this
appears to be an unrelated phenomenon, in that it holds even
when X is the identity matrix.

There is a richer literature on lower bounds specifically
against the Lasso, for both fixed and random designs. In
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the random design setting, most focus on well-conditioned
or identity covariances, and seek to pinpoint the constant
factor in sample m = cklogn [64], [14], [52]. In contrast,
we seek asymptotically stronger sample complexity lower
bounds, which of course requires passing to ill-conditioned
covariance matrices. There is also prior work bounding what
rates the Lasso can achieve, in terms of the compatibility
constant of the design matrix and the regularization param-
eter A\ [61], [3], [4]. However, these results in general provide
no lower bounds against Lasso in the noiseless setting, where
the tuning parameter A is sent to 0. Moreover, these works
do not touch upon the issue of preconditioning.

In that vein, our work is most closely related to [70],
which constructs a (fixed-design) lower bound against the
generalization of Lasso to arbitrary coordinate-separable
penalties instead of the ¢; norm. Analogous to our motiva-
tion, they considered this class because there are problems
for which the Lasso fails, but succeeds after an appropriate
diagonal preconditioning. Note that when the penalty is
a weighted linear combination of the magnitudes of the
regression coefficients, this corresponds to a diagonal pre-
conditioner. However, coordinate-separable penalties do not
encompass the full power of preconditioning by an arbitrary
matrix (and vice versa). Indeed, it is a limitation of the prior
work that the constructed lower bound design matrices are
block-diagonal with block size 2, and therefore amenable
to being solved by the preconditioned Lasso. This is a
limitation we address in our work.

IV. CONCLUSION

Our results give an answer to the question of when
preconditioning the Lasso can make sparse linear regression
problems tractable. On the one hand, there is an efficient
preconditioning algorithm when the covariates have low-
treewidth dependency structure. On the other hand, low-
treewidth dependency structures are the only dependency
structures which enable preconditioning: i.e., any high-
treewidth dependency structure admits covariates which can-
not be preconditioned.

For future work, it would be interesting to prove lower
bounds for sparse linear regression against an even larger
class of algorithms, and we expect some of the tools devel-
oped in this work may be useful in this direction. Conversely,
it would be interesting if sparse linear regression is in fact
tractable on the random designs we constructed. There is a
notable lack of algorithms which succeed outside the regime
of preconditioned Lasso, so it seems likely that this would
require developing new algorithmic techniques.
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