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Abstract

Despite the machine learning (ML) methods have been largely used recently, the predicted materials
properties usually cannot exceed the range of original training data. We deployed a boundless objective-
free exploration approach to combine traditional ML and density functional theory (DFT) in searching
extreme material properties. This combination not only improves the efficiency for screening large-scale
materials with minimal DFT inquiry, but also yields properties beyond original training range. We use
Stein novelty to recommend outliers and then verify using DFT. Validated data are then added into the
training dataset for next-round iteration. We test the loop of training-recommendation-validation in
mechanical property space. By screening 85,707 crystal structures, we identify 21 ultrahigh hardness
structures and 11 negative Poisson’s ratio structures. The algorithm is very promising for future materials
discovery that can push materials properties to the limit with minimal DFT calculations on only ~1% of

the structures in the screening pool.
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Introduction

The term extreme is defined as something farthest or of highest degree, which in terms of mechanical
properties of materials imply unusual properties such as ultrahigh hardness' and extremely negative
Poisson’s ratio®. In the past decade, material scientists have been favorably using high throughput
screening for structure property prediction with high accuracy in searching for promising materials®.
However, high throughput screening prediction at the quantum level (first principles) is, although highly
accurate, less efficient, and hence time consuming and computationally expensive®*. In contrast,
prediction at the classical level (such as classical molecular dynamics) is highly efficient but less accurate
since they usually scale linearly with the number of atoms>®. Because of the computational cost of density
functional theory (DFT) and the less accuracy of classical potential, an intuitive idea is to bridge the gap
between DFT-level accuracy and classical-level efficiency. ML methods offer the possibility of bridging

this gap’, and the application of ML has already help in speeding the process for material discovery®.

ML methods have been extensively used for materials properties prediction over the past decade, because
ML models can be trained to have high efficiency and accuracy close to DFT*!°. Generally speaking, the
accuracy of a ML model depends on the effective input representation of the crystal structures, since the
atomic positions are not suitable for direct input representation because they are not rotationally and
translationally invariant!!. Such input representation is known as descriptors or features. The idea behind
the use of ML methods for structure properties prediction is to analyze and map the relationship between
the properties of materials and their characteristics by extracting information from existing data without
knowing any explicit knowledge on how to draw conclusion from those data'?. With given data, ML
algorithms learn the rules and relationship that underlie a dataset by assessing the data and build a model
to make prediction'3. For example, ML models have been used for the prediction of mechanical properties

18-20

of metal alloy'*!5, band gap of crystals'®!”, the formation energies of crystals'®2°, melting temperature of

binary inorganic compounds?'.
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Though ML is highly efficient, it has some limitation which reduces its accuracy in predicting properties.
Such limitations include, but are not limited to, measurement error’?, lack of generality and precision,
reliance on high-quality data®, inability to determine high level concept®, prone to artifact®, good in
interpolation but poor in extrapolation®!?%. Another critical drawback for ML methods is the lack of laws,
understanding, and knowledge from their use because ML methods are treated as black box®. More
importantly, the predicted materials properties of almost all existing ML models usually cannot exceed
the range of the original training data. This means that, the trained ML models are usually good at
predicting material properties within the original training data pool, the so-called interpolation prediction,
while they can seldom predict material properties outside of training dataset, i.e., the extrapolation ability
is poor. However, many previous studies have proved that most of extraordinary structures reside in the
sparse area of the huge material space. To ensure building extrapolative machine learning materials
property prediction model in the sparse area, it is critical to develop some advanced ML models to

identify the promising candidates whose properties may exceed the range of the training data.

In this study, we implemented boundless objective-free exploration (BLOX) algorithm?’ for extreme
mechanical property search. We use 3 different pairs of mechanical properties as the property space for
the search, namely, bulk modulus vs. shear modulus, shear modulus vs. hardness, and Pugh’s ratio vs.
Poisson’s ratio. The mechanical properties of a material are those properties that involve a reaction or
behavior to an external or applied loading, and it is the characteristic that indicates the variation taking
place in the material. The mechanical properties of a material characterize the reaction of the material to
external loadings. Mechanical properties can be used to determine how a material would behave in each
application and they are helpful in material selection process. They can also be used to estimate the
lifetime of a material. In BLOX implementation, a ML model, namely Random Forest (RF) algorithm, is
built to predict the properties of materials for which current data on calculated properties is available. In
searching the property space, the BLOX algorithm searches outside the boundary to capture properties of

materials that lie at the edge of the boundary. This can be made possible by using the Stein novelty (SN)
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scores to recommend potential materials with tendency of being outside the boundary, i.e., different from
original training data. The SN scores measures a deviation between the observed properties and the
predicted properties by using Stein discrepancy?®. After thoroughly screening of the 85,707 crystal
structures from Materials Project®® database, we found 30 structures with ultrahigh bulk and shear moduli,
21 structures with ultrahigh shear modulus and hardness, and 11 structures with negative Poisson’s ratio.
We compare our result with traditional ML methods such as crystal graph convolution neural network

(CGCNNY’, RF, Lasso Regression, and Ridge regression.

Results and Discussion

The result of this study is described in four major subsections based on the material property space

searched.
A. High Bulk Modulus and Shear Modulus

Superhard materials are defined as materials with hardness exceeding 40 GPa®! and they are of great
importance because of their industrial applications such as abrasives, polishing, disc brakes, proactive
coating, and cutting tools*2. Diamond and related carbon nanostructures have been known to be at the
very top of the hardest materials to date, with Vickers hardness in the range of 70 — 150 GPa*’. However,
diamond has several limitations for massive industrial applications such as high cost and oxidizing at
temperatures above 800 °C>*. A superhard material usually possesses a high bulk modulus (K) and shear
modulus (G) and does not deform plastically. The shear modulus relates to strain response of a body to
shear or torsional stress, and it involves change of shape without change of volume, while bulk modulus
is related to the strain response of a body to hydrostatic stress which involves change in volume without
change in shape®. Inspired by the mechanical properties of diamond*®, such as ultrahigh bulk and shear
moduli, our first goal is to search the structures with high bulk and shear moduli which has tendency to be

superhard materials.
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The scatter plot of observed mechanical properties and BLOX prediction selected from top SN scores for
the first round is shown in Fig. 1a, while Fig. 1b shows the first round of DFT calculation of the
recommended structures by BLOX algorithm in comparison with traditional ML methods (CGCNN, RF,
Lasso Regression, and Ridge Regression). The initial set of elastic moduli data for property prediction
model was obtained from the JARVIS-DFT database’”*%, which consists for more than 65,000 materials
and more than 15,000 elastic modulus data along with several other properties of materials. From Fig. 1a,
we can clearly see that the BLOX algorithm recommended lots of materials that are out-of-trend from the
initial observed materials. The materials with high SN score mean they will have higher chance to be out-
of-trend, as shown by the color coding in Fig. 1a. The initial observed materials were randomly chosen
from original pool of 10,192 structures downloaded from the Materials Project database®” and their
mechanical properties were calculated by DFT. With recommendation by BLOX, we continue to verify
the material properties of these materials with DFT calculations and then found some materials that have
extremely high and low bulk modulus and shear modulus. It is worth noting that, since our target is to
find materials with extremely high mechanical strength, we then cleaned our data by removing any
materials that have bulk modulus below 130 GPa. This step is necessary because BLOX algorithm
searches for out-of-trend materials in all directions in the bulk modulus vs. shear modulus space and this
will lead to some materials with low bulk and shear moduli being recommended as well. In other words,
we guide the BLOX algorithm to search in the direction we are interested. It is worth pointing out that,
the threshold value of 130 GPa was chosen based on the empirical experience, which is about half of the
maximum value of bulk modulus in the original training data. From Fig. 1b, we compare the mechanical
properties of recommended materials between ML models and DFT calculations. We built CGCNN, RF,
Lasso regression, and Ridge regression models using the initial observed data and then used these ML
models to predict the mechanical properties of recommended structures. By comparing prediction by ML
models to the DFT results of BLOX recommended structures, Fig. 1b provides direct evidence that the
traditional ML models could not push the material properties to the limit, even if the exact same
recommended materials were tested, which is one of the main drawbacks for many existing ML models as
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we pointed out earlier. This is understandable considering that traditional ML models are trained to be
capable of predicting materials properties within the original range of training data, while they can hardly

predict properties outside.

Once we got the DFT results for recommended structures, we added these data into original observed data
and then use the expanded observe dataset to train a ML model, and then BLOX will recommend next
round promising structures based on SN scores (see details in “Methods” section). We continued this loop
in searching for ultrahigh bulk and shear moduli, by running BLOX for four rounds, and in each round,
we added the previous materials with high mechanical properties verified by DFT calculations to the next
round. In Fig. 2a, we observed that more and more materials in each round were identified to push the
material property to the limit with DFT validation. From Fig. 2b, we can see that there are no significant
changes in bulk modulus in our search, but in Fig. 2c, we observed that after the first iteration, there is an
increase of about 60% in our maximum shear modulus as compared to our initial training data, since
adding the verified DFT data to the initial training data improves BLOX recommendation, hence a need
for further iteration. We observed there was no significant changes between third and fourth iteration,
hence we stop the iteration. The stopping criteria depend largely on the specific material properties we are
investigating. After four rounds we found 30 structures in total with ultrahigh bulk and shear moduli. It is
interesting to notice that some identified structures even have almost doubled shear modulus as compared
to the original observed data. To quantify the difference in the material properties between the BLOX
recommended and DFT validated values and ML model predictions, we calculated the distance between
the outlier of CGCNN and the real values by DFT calculations that are higher than the CGCNN
predictions for each round as shown in Fig. 3a, by using the formula for distance between two points

given below

\/(xz —x1)% + (y2 — y1)? (D
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where Xx,, y, are the bulk modulus and shear modulus, respectively, of materials higher than CGCNN
prediction and x4, y4 is the bulk modulus and shear modulus of the highest outlier of CGCNN prediction.
Fig. 3a shows the maximum and average distance between CGCNN prediction and DFT calculations for
the recommended materials. We observed that as the number of BLOX rounds increases, the distance
between the CGCNN prediction and DFT calculation decreases. This is understandable considering that
more and more material properties that are outside of original training data were added into the next
training process, i.e., the property range that CGCNN model can predict will also expand. To better
illustrate our ideal, we added CGCNN prediction and DFT calculations for the 152, 3 and 4" round as
observed in Fig. 3b — e for bulk modulus vs. shear modulus. The blue symbol denotes the outlier for
CGCNN prediction that was used for calculating the distances compared to real DFT values. The
traditional ML models do not continuously improve as we add a few hundred recommended observed
data to the initial 2,000 observed data. This can be seen from Fig. 4 where we plot the mean absolute error
(MAE) for CGCNN, Lasso regression, and Ridge regression for bulk and shear moduli prediction for
different BLOX rounds. For most ML models the MAE for model prediction does not change noticeably.
For Ridge regression model, we even found that the MAE increases with more data added into the
training. There are several reasons responsible for this observation: (1) the total number of added data is
still not significant as compared to the size of original observed data (2,000), roughly estimated as 5 —
10%; (2) a considerably large portion of added data is still in the range of original observed data, which
has already been well trained in previous rounds, and thus those data actually do not provide any
information or contribute too much in the next training process; (3) the ML models can predict very well
on the subset of training data, and with larger dataset there is increase in variability and the model might

come across data not well considered in our training.
B. Ultrahigh Hardness

Our recent high-throughput study on ultrahard carbon allotropes illustrates that the hardness has a strong

positive correlation with the shear modulus®'*. Using the shear modulus and hardness property space, we
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were able to find some materials with ultrahigh hardness. Here we are comparing the correlation between
hardness vs. shear modulus and hardness vs. bulk modulus. Previous study has shown that, all materials
with high shear modulus would normally have high hardness, but not all materials with high bulk
modulus would have high hardness'. Therefore, shear modulus provides a better correlation with hardness
than bulk modulus*'. That is the reason we chose to search for materials in the hardness vs. shear modulus

space.

In Fig. 5, we observed that more materials in each round were pushed to the limit with DFT validation.
After four rounds we found 21 structures in total with ultrahigh hardness and shear modulus. Some
identified structures were found to have Vickers hardness greater than 70 GPa, which is close to that of
diamond or carbon allotropes. We also quantify the difference in the material properties between DFT
validated values and CGCNN prediction, by calculating the distance between the outlier of CGCNN and
the DFT calculated values higher than the CGCNN prediction for each rounds using Eqgs (1). The results
are shown in Fig. 6a. Here, we are calculating the distance of all DFT values that are greater than the
highest value predicted by CGCNN model. As shown in Fig. 6b — e, for each round, an outlier predicted
by CGCNN model was chosen (the blue symbol in the figure). Then, we calculated the distance of all
DFT values that are higher than this outlier using Eqgs. (1). We observed that as the number of BLOX
rounds increases, the distance between the CGCNN prediction and DFT calculations decreases, which is
the same phenomenon as found before for bulk and shear moduli space (see Fig. 3b — ). However, once
again, we found that the distance for CGCNN prediction, representing the recommended material
properties relative to the original range, cannot continuously decrease with BLOX rounds increasing. This
means that CGCNN model cannot easily be trained to predict material properties in the rare or boundary

region.

C. Negative Poisson’s Ratio

Poisson’s ratio is defined as the ratio of lateral strain in solid over the longitudinal strain measured in a

t42

simple tension experiment**. Most solid materials have positive Poisson’s ratio, but a small portion of
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solid materials have negative Poisson’s ratio, which are known as auxetic materials***. The materials
with negative Poisson’s ratio have exceptional properties such as high energy absorption, high fracture
resistance, difficult to deform under shear loading, enhanced toughness, and resistance to indentation. We
use the Pugh’s ratio (defined as the ratio between the shear modulus and the bulk modulus to distinguish
the ductile/brittle behavior of material*>*) vs. Poisson’s ratio for this search. We applied BLOX
algorithm to explore in the negative direction to find structures with negative Poisson’s ratio. In Fig. 7,
we present the Poisson’s ratio vs. Pugh’s ratio for different BLOX rounds. In total we found 11 structures
with negative Poisson’s ratio from 85,707 crystal structures taking from Materials Project database. In
contrast, there are only 2 materials in the original ~2,000 observed dataset that have negative Poisson’s
ratio. Our results indicate that the original Materials Project database does not include many materials

with negative Poisson’s ratio.

D. Data Driven Insight into Mechanical Properties

Once we obtain lots of high accuracy DFT data recommended by BLOX, we are now in the position to do
further study to deeply understand the mechanisms of these outliers. The Pearson correlation matrix, as
shown in Fig. 8, gives an insight on how much each property correlates with each other*’. In principle, the
mechanical behavior of a material depends on their interatomic bonding, which can then be further traced
back to the electronic cloud such as charge density and spatial distribution. That is the reason we show the
correlation between elastic properties and local potential (LOCPOT) and electron localization function
(ELF) values. A Pearson correlation matrix relates two parameters to each other, and the values is
between -1 and 1. A negative value of -1 shows a perfectly inverse correlation between the two
parameters, while a positive value of 1 shows a perfectly positive correlation. A value of 0 shows no
correlation. A value close to 0 indicate a weak direct correlation while a value close to -1 or 1 indicate a
strong inverse or a strong direct correlation, respectively. Fig. 8 shows that there is a strong inverse
correlation between Poisson’s ratio and Pugh’s ratio, and a strong positive correlation between bulk and

shear modulus, between bulk and Young’s modulus, and between shear and Young’s modulus. There is

Page 9 of 39



pretty strong negative and positive correlation between the mechanical properties and the mean values of

LOCPOT and ELF, respectively.

To analyze the mechanism for ultrahigh hardness materials, we established the correlation between
electron work function (EWF), interatomic bonding, and hardness. Generally, the mechanical behavior of
materials depend on their interatomic bonding strength, which is a basic feature of most known superhard
materials like diamond having strong covalent bonding, governed by the behavior of the electrons*®. EWF
is the minimum energy required to move electron inside a material at the Fermi level to its surface
without kinetic energy®. It is determined by its composition and charge redistribution on its surface
caused by dipole layer™, and it reflects the electronic behavior of metals and atomic interaction®'.
Previous studies have demonstrated that, for hard materials, their hardness is mainly governed by the
interatomic bonding strength through correlation with the EWF*, i.e., the higher the EWF, the higher the
hardness of the material. We also study the ELF which is the measure of electron localization in atomic
and molecular system. The ELF in Fig. 9, reflects the probability of finding an electron in the system and
the LOCPOT for the top two superhard structures recommended by BLOX and two materials, namely
BesCsNy (mp-1189451) and C12Ns (mp-1188347), that have never been published in literature to the best
of our knowledge. From Fig. 9a, c, we can see that the ELF plot strongly illustrates the presence of
electrons and strong covalent bonding existing between the elements of the materials. The Fig. 9b, d show
the presence of more electrons and hence an increase in EWF. Fig. 9e — h also shows the presence of
strong covalent bonds between the atoms of the structures. Thus, all plots agree with the ultrahigh

hardness exhibited by the four materials as confirmed by DFT calculations.

Our results have demonstrated that BLOX algorithm can be effectively used to accelerate material
discovery. Despite that some materials recommended by BLOX have been previously reported, it still
shows that our screening results are accurate. One of such materials is BC,°>°* with symmetry P4m2
(space group number: 115) and hardness of 75.2 GPa. In our DFT calculations we found that BC7 has

hardness of 71.7 GPa, which is very close to previous study. Finally, we found six superhard structures
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which have never been reported in literature to the best of our knowledges. All these six structures have
negative average local potential, indicating a strong average atomic attractive interaction in the unit cell.
These structures with relevant structural information and hardness are reported in Table 1. To further
confirm the thermodynamic stability of these structures, Fig. 10 shows the phonon dispersions of selected
structures along high symmetry points in the Brillouin zone. No negative frequencies were found for the

structures, indicating these structures are thermodynamically stable.

Before closing, we would like to discuss some important points about the ML+BLOX algorithms:

(1) The stopping criterion: Indeed, it is hard to recognize or quantify a stopping criterion by a mathematic
formula. In practice, we stop iteration when there is no significant addition of structures coming out from
validated DFT calculation from the previous round. This is an empirical and intuitive method. We would
like to point out that, when and where we should stop BLOX loops would certainly depend on the specific
material properties we are investigating. It also depends on the current region that the existing materials
have already reached. Although it is almost impossible to theoretically or mathematically prove the upper
or lower limit of material properties now, our study of coupling BLOX algorithms and DFT calculations
paves the way to accelerating material discovery by identifying the out-of-trend materials using the
boundless objective-free exploration approach. Our results demonstrate that the boundless objective-free
exploration algorithm is very promising for future materials discovery that can push the materials

properties to the limit with acceptable and achievable/realizable DFT calculations.

(2) The BLOX algorithm could be coupled with any traditional ML regressors. The reason for using
RF+BLOX in our study is, in previous study conducted by Terayama et al*’ they compared different
ML+BLOX of which RF+BLOX gave the best result. We simply follow that recipe in our current work.
Systematic cross-checking and comparison of the performance among different combinations of

ML+BLOX will be the focus of our future work.
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(3) Certainly, it is hard to give out a mathematic formula for the maximum theoretical limit for material
properties, including mechanical properties studied here. In many times people want to find the materials
with enhanced properties. As we have presented, the ML+BLOX algorithm has great potential to
accelerate such discovery, i.e., it allows to identify materials with the mechanical property close to or
even going beyond the current boundary of the mechanical properties. Using this approach, we have
identified 30 structures with ultrahigh bulk and shear moduli, 21 superhard structures with ultrahigh
hardness, and 11 structures with negative Poisson’s ratio from 85,707 crystal structures taking from the
well-known Materials Project database. It is also worth noting that, the final findings also depend on the
material pool to be screened. Here, we used the Materials Project database with 85,707 crystal structures.
We believe that, if the same method is applied to even larger database, such as OQMD database that
currently has around 1 million structures, more structures with extreme mechanical properties will be

identified quickly.

(4) The transferability of the method to other material property: We believe that the same procedure can
be straightforwardly carried out to find other material properties like lattice thermal conductivity,
Griineisen parameter, heat capacity, superconductivity, etc. In particular, the BLOX method is believed to
be very suitable for finding extreme material properties that are hard to calculate by direct DFT. We
would like to emphasize here again that, the overall performance of the BLOX algorithm depends on two
major factors: (i) A well-defined to-be-pushed material property vs. dependent variable(s): according to
our experience, the stronger correlation or relationship for such definition there is, the easier the BLOX
algorithm can identify the trend and then recommend the outliers. (ii) More accurate descriptor(s) for the
ML regressor model: more accurate descriptor(s) will result in more accurate prediction of target
properties of to-be-screened materials (unchecked data), which will facilitate the BLOX algorithm to
pinpoint the outliers more efficiently and accurately, so that in each iteration structures that are outside of
the previous boundary of material property will be identified. In this way, the material property will be

gradually pushed to the limit as search iteration goes on.
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(5) Last but not least, the ML+BLOX algorithms used herein have helped us identify some structures in
existing database, but their properties have not been previously explored yet. Such algorithms can be also
coupled with the state-of-the-art crystal structure prediction methods or packages, such as Universal
Structure Predictor (USPEX)>*¢, Crystal structure Analysis by Particle Swarm Optimization
(CALYPSO)*", to discover completely structures that are not included in existing materials databases

with desired or extreme material properties.

Methods

A. Training Data and DFT Calculations

We used the classical force-field inspired descriptors (CFID)** to transform our crystal structure to ML
input. We used boundless objective-free exploration (BLOX)?’, coupled with RF ML algorithm to screen
85,707 crystal structures downloaded from Materials Project®® database. We split our 85,707 crystal
structures into 10 different jobs and run them in parallel. For each job BLOX recommended 25 promising
structures ranked by the SN score, making a total of 250 recommended candidates in each round. We then
performed DFT calculations using the plane-wave basis projector augmented wave (PAW) method®!,
within the Perdew-Burke-Ermzerhof exchange-correlation functional®?, as implemented in the VASP
package® 9. The cutoff energy is set to be 500 eV for the recommended crystal structures to calculate
mechanical properties. The energy and force criteria for the DFT calculation of elastic constants were 10
eV and 10 eV/A, respectively. DFT calculation was conducted for validating the recommended
structures by BLOX because the ML model prediction was not accurate enough due to transferability
issue and limited number of training data. We performed crystal graph convolutional neural networks
(CGCNN), Lasso regression, and Ridge regression for the recommended structures and compare with
DFT. The phonon dispersions of selected structures were calculated by the finite displacement method

using PHONOPY package® with harmonic second-order force constants calculated by VASP.
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B. ML Workflow

Traditional ML model was trained and used for structure property prediction to see if we can rely on the
ML model to find extreme mechanical properties, and this will in turn reduce the cost of DFT
computation. The traditional ML models (RF, Ridge, and Lasso regression) were used in this study as
implemented in the scikit-learn®’. RF is a ML technique, proposed by Breiman in 2001%® for classification
and regression problems, through the ensembles of different decision trees. The RF regressor produces an
estimation by averaging the prediction of many individual trees fitted on randomly resampled sets of
training data. Three-fold cross validation was used for model fitting and hyperparameter optimization. We
set the maximum number of trees to 100, 80% of observed data was used for training and 20% for testing.
Ridge regression was originally proposed by Hoerl and Kennard in 1970°%%° and used for analyzing data
which are affected by multicollinearity, whereas Lasso regression was put forward by Tibshirani in 19967
for parameter estimation and variable selection simultaneously in regression analysis. Lasso and Ridge
regression are both regularized methods that significantly reduces the intricacy of the models such as the
number or absolute size of the sum of all coefficients in the model”'. Lasso regression minimizes the
absolute sum of the coefficients (L1 regularization), and Ridge regression minimizes the squared sum of
the coefficients (L2 regularization). They aim to regularize complex models by introducing penalty
factors and they are great at reducing overfitting. Three-fold cross validation was also used for model
fitting and hyperparameter optimization, 80% of observed data was used for training and 20% for testing,

the maximum alpha () value was set to 10.

The CGCNN model combines the descriptors and learning model into one inseparable step, i.e., the
model learns material properties directly from the connection of atoms in the crystal®. The CGCNN
framework has been demonstrated to represent periodic crystal that provides material property prediction
with DFT accuracy®’. Here, the crystal structures are represented by a crystal graph that encodes both
atomic information and bonding interaction between atoms, and then build a convolutional neural

network on top of the graph to automatically extract representations that are optimum for predicting
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targets properties. The atomic properties are represented by nodes and encoded in the feature vector (v;).
For each atom, neighbors are first search within a 6 A radius, and are considered as connected when the
share a Voronoi face’” with the center atom and have interatomic distance lower than the sum of the
Cordero covalent bond length” of 0.25 A. Crystal graphs do not form optimum representation by
themselves; however, they are improved by using convolutional layers. After each convolutional layer,
the features vectors gradually contain more information on the surrounding environment due to the
concatenation between atom and bond features vectors®. The convolution function by Xie et al® consists

of

t+1) _ (¢ ST OIG) ®© 4 © , @
v =9 4 Zi,k"(z((i.f)k”? + by )Og (Z(i.j)kWs + bs ) &

where m(t), Ws(t), and bl-(t) are the convolution weight matrix, self-weight matrix and bias of the t‘"* layer
respectively, g is the activation function for introducing nonlinear coupling between layers, ¢ denotes the
sigmoid function, © denotes element-wise multiplication, and Z((Lt ;)kis the concatenation of the neighbor
vectors. After R convolutions, a pooling layer reduces the spatial dimensions of convolutional neural
network, the pooling layer operates on all feature vectors. For simplicity, a normalization summation is
used as the pooling function. For optimization, backpropagation, and stochastic gradient descent (SGD)
were used to update the weights with DFT calculated data. Here, we train the CGCNN model using the
observed data, with 60% for training, 20% for testing, and 20% for validation. We then use our model to
predict the properties for the unchecked 85,707 data. We add the DFT validated values to the observed
data for the next round. We also compared the distance between the outlier of the CGCNN prediction

with DFT calculations (see Fig. 3, 6).

C. Structural Descriptors
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Machine learning techniques have shown great prospect for screening and discovery of crystals structures
because of their high efficiency in predicting material properties as compared to high demanding DFT
calculations. However, in ML based approach, controlling the performance to enhance its accuracy is
based on how compound/crystalline structures are represented in dataset’*. Transforming the input data
into a suitable representation of atoms for ML is a necessary step as it will reduce the amount of required
training data and help increase the accuracy'!. The transformation of input data is called
descriptors/features extraction or engineering. Selecting a good descriptor is a very important step for ML
model training, because a good descriptor can explain a target property well and this leads to a robust
prediction model of a target property’*. Combining descriptors with ML methods leads to model capable
of accurately predicting structure properties. Chemical descriptors based on elemental properties have
been successfully applied for various computational discovery’>, nonetheless, this is not suitable for
modelling crystal structures with the same composition since they ignore structural information’. In this
study, we use CFID**7¢ as descriptors, because the descriptors cover a wide range of crystal structures,
and they are able to consider a combined form of elemental and structural representation’*””. The
combined descriptors have been applied not only to crystalline systems but also to molecular systems’.
Elemental representations we used in this study include atomic number, atomic mass, period, and group in
the period table, first ionization energy, second ionization energy, electron affinity, Pauling
electronegativity, Allen electronegativity, van der Walls radius, covalent radius, atomic radius, melting
and boiling point, density, molar volume, heat of fusion, heat of vaporization, thermal conductivity, and
specific heat. These elemental descriptors help capture essential information about compounds. Structural
representations include simple coordination number, Voronoi polyhedron of central atom, angular
distribution function, radial distribution function, bond-orientational order parameter’®, and angular
Fourier series’. The CFID consists of 1,557 descriptors in total for each crystal structure: 438 average
chemical, 4 simulation box size, 378 radial charge distribution, 100 radial distribution, 179 angle
distribution up to the first neighbor, 179 angle distribution up to the second neighbor, 179 dihedral angle
up to the first neighbor, and 100 nearest neighbor descriptors.
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D. Computational Workflow and BLOX Algorithm

The schematic of our computational workflow performed in this study is illustrated in Fig. 11. The initial
preparation is to randomly select 2,000 materials from database and calculate their mechanical properties
by DFT. These 2,000 DFT data was served as observed data to initiate the whole process. We transformed
these structures into ML input using CFID as descriptors. We also trained a RF model and used the model
to predict structures from Materials Project database (unchecked data). After that, the search was
performed by repeating the following steps. Step 1: construct a property prediction model; Step 2:
recommend promising candidates ranked by the SN score based on kernel-based Stein discrepancy; Step
3: evaluate recommended candidates by DFT?” and add DFT data into training dataset for next round ML
training. In step 1, RF model is built as a property prediction model on the already evaluated materials
and their property data. Structures with high SN score were recommended for evaluation as potential
candidates. SN score for each unchecked materials intuitively measures a deviation between the observed

property and the predicted property?® as given in the equation below

SN(V U {p}) =SD(V)—=SD(V U {p}) )

where SD (V) is the Stein discrepancy for the evaluated data (observed data), p is predicted point by ML,
and U is union operator in set theory. We select the candidates with top SN scores. The SN score is based
on Stein discrepancy, which can boundlessly evaluate a distance between any two distributions in any

dimensional space.
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Table 1. Structures identified by BLOX recommendation with corresponding ultrahigh hardness.

Number of
. Average Energy atoms in Hardness
Material ID | Formula LOCPOT above hull | Space group primitive (GPa)
(eV/atom) cell
mp-1188347 | CioNg -12.15 0.264 P43m (215) 20 58.43
mp-1102681 CsNis -12.98 0.569 142d (122) 12 50.99
mp-1077595 CaNg -12.85 0.707 Cmc2; (36) 6 48.78
mp-1105655 | CioNg -12.12 0.264 Pm3m (221) 20 48.61
mp-1189451 | BesCaNg -12.34 0 Pna2, (33) 16 47.74
mp-9410 CiNie -12.62 0.298 P31c (159) 28 47.32

Page 27 of 39




300
« Observed Data (2000) 0.00010
( ) ® Blox(RF)
a) — 250 - o, 0 .
© ® s & L)
% ves e S B 0.00005
~— ® ’ ® '® F 4
200 . ® p 38 g e
0 TN AR -t
5 _. .’
= ', - 0.00000 &
150 - a0 e 2
3 - =
S > :
L 100 “""’ L —0.00005
©
Q
e
U 504
—0.00010
0 T T T T
100 150 200 250 300 350 400
Bulk Modulus (GPa)
450
® Observed Data (2000)
b 4004 & 1% Round DFT ¢
( ) e * Lasso Regression ¢ ¢
E 3501 @ Ridge Regression ¢
() ® Random Forest ¢ n
~ 300 - ¢
wn ]
> ™ S ¢
= 20 s .Il‘ "
© o ¢
QO 200 ‘. -
E *
L 150 1 o
© *
E 100
wn
50 A
0 - = T T T T T
100 150 200 250 300 350 400 450

Bulk Modulus (GPa)

Fig. 1. Performance of BLOX algorithm in searching ultrahigh shear and bulk moduli materials. (a) Observed data
and BLOX prediction for selected structure with highest Stein novelty (SN) score. 2,000 structures were used as
input to ML in BLOX to train a model which predicts the unchecked data. The SN score is a measure of discrepancy
between the predicted properties of unchecked data and properties of observed data. Candidates with high SN scores
are recommended for DFT calculations. (b) Comparison of CGCNN, RF, Ridge regression, Lasso regression, and
DFT calculation for structures recommended in the 1% round. The ML models could not push the properties to the

outside of the original dataset (observed data).
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Fig. 3. Evaluation of prediction of CGCNN model for shear vs. bulk modulus. (a) Maximum and average distance

between outlier of CGCNN prediction and DFT calculation for bulk and shear moduli. For each round we measure

the distance between the outlier of CGCNN prediction (blue symbols in bottom panels) and all DFT values with

bulk and shear moduli higher than CGCNN prediction. (b) — (¢) Comparison between CGCNN prediction and DFT

values for the 1%, 2", 34 and 4™ round, respectively. The blue symbol denotes the outlier structure from CGCNN

prediction that is used for calculating the distances to real DFT values.
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potential, mean local potential, maximum electron localization function, minimum electron localization function,

mean electron localization function, bulk modulus, shear modulus, elastic modulus Pugh’s ratio, and Poisson’s ratio.
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Fig. 9. Electronic level insight into ultrahigh hardness. The ELF and LOCPOT plot of the structure B4CsN4 (mp-
1079201) (a, b), BC7 (mp-1078935) (c, d) recommended by BLOX showing the presence of more electrons and
covalent bonding. (e-h) The ELF and LOCPOT plot of two identified structures BesCsN4 (mp-1189451) and C12Ng
(mp-1188347) showing the presence of strong covalent bonding.
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Fig. 10. Thermodynamic stability analysis of ultrahard materials. Phonon dispersions of (a) B4CsN4, (b) BC5, (c)
BesCsNy, and (d) C2Ns along high symmetry paths in the Brillouin zone. There is no negative frequency in phonon

dispersions, indicating these structures are thermodynamically stable.
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Fig. 11. Schematic of workflow of BLOX algorithm. The loop of DFT/BLOX/recommendations were performed at
least 4 rounds until there is no significant amount of interested material properties recommended by BLOX

algorithm.
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