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Abstract 

Despite the machine learning (ML) methods have been largely used recently, the predicted materials 

properties usually cannot exceed the range of original training data. We deployed a boundless objective-

free exploration approach to combine traditional ML and density functional theory (DFT) in searching 

extreme material properties. This combination not only improves the efficiency for screening large-scale 

materials with minimal DFT inquiry, but also yields properties beyond original training range. We use 

Stein novelty to recommend outliers and then verify using DFT. Validated data are then added into the 

training dataset for next-round iteration. We test the loop of training-recommendation-validation in 

mechanical property space. By screening 85,707 crystal structures, we identify 21 ultrahigh hardness 

structures and 11 negative Poisson’s ratio structures. The algorithm is very promising for future materials 

discovery that can push materials properties to the limit with minimal DFT calculations on only ~1% of 

the structures in the screening pool. 
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Introduction 

The term extreme is defined as something farthest or of highest degree, which in terms of mechanical 

properties of materials imply unusual properties such as ultrahigh hardness1 and extremely negative 

Poisson’s ratio2. In the past decade, material scientists have been favorably using high throughput 

screening for structure property prediction with high accuracy in searching for promising materials3. 

However, high throughput screening prediction at the quantum level (first principles) is, although highly 

accurate, less efficient, and hence time consuming and computationally expensive3,4. In contrast, 

prediction at the classical level (such as classical molecular dynamics) is highly efficient but less accurate 

since they usually scale linearly with the number of atoms5,6. Because of the computational cost of density 

functional theory (DFT) and the less accuracy of classical potential, an intuitive idea is to bridge the gap 

between DFT-level accuracy and classical-level efficiency. ML methods offer the possibility of bridging 

this gap7, and the application of ML has already help in speeding the process for material discovery8. 

ML methods have been extensively used for materials properties prediction over the past decade, because 

ML models can be trained to have high efficiency and accuracy close to DFT9,10. Generally speaking, the 

accuracy of a ML model depends on the effective input representation of the crystal structures, since the 

atomic positions are not suitable for direct input representation because they are not rotationally and 

translationally invariant11. Such input representation is known as descriptors or features. The idea behind 

the use of ML methods for structure properties prediction is to analyze and map the relationship between 

the properties of materials and their characteristics by extracting information from existing data without 

knowing any explicit knowledge on how to draw conclusion from those data12. With given data, ML 

algorithms learn the rules and relationship that underlie a dataset by assessing the data and build a model 

to make prediction13. For example, ML models have been used for the prediction of mechanical properties 

of metal alloy14,15, band gap of crystals16,17, the formation energies of crystals18–20, melting temperature of 

binary inorganic compounds21. 
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Though ML is highly efficient, it has some limitation which reduces its accuracy in predicting properties. 

Such limitations include, but are not limited to, measurement error22, lack of generality and precision, 

reliance on high-quality data23, inability to determine high level concept24, prone to artifact25, good in 

interpolation but poor in extrapolation21,26. Another critical drawback for ML methods is the lack of laws, 

understanding, and knowledge from their use because ML methods are treated as black box6. More 

importantly, the predicted materials properties of almost all existing ML models usually cannot exceed 

the range of the original training data. This means that, the trained ML models are usually good at 

predicting material properties within the original training data pool, the so-called interpolation prediction, 

while they can seldom predict material properties outside of training dataset, i.e., the extrapolation ability 

is poor. However, many previous studies have proved that most of extraordinary structures reside in the 

sparse area of the huge material space. To ensure building extrapolative machine learning materials 

property prediction model in the sparse area, it is critical to develop some advanced ML models to 

identify the promising candidates whose properties may exceed the range of the training data. 

In this study, we implemented boundless objective-free exploration (BLOX) algorithm27 for extreme 

mechanical property search. We use 3 different pairs of mechanical properties as the property space for 

the search, namely, bulk modulus vs. shear modulus, shear modulus vs. hardness, and Pugh’s ratio vs. 

Poisson’s ratio. The mechanical properties of a material are those properties that involve a reaction or 

behavior to an external or applied loading, and it is the characteristic that indicates the variation taking 

place in the material. The mechanical properties of a material characterize the reaction of the material to 

external loadings. Mechanical properties can be used to determine how a material would behave in each 

application and they are helpful in material selection process. They can also be used to estimate the 

lifetime of a material. In BLOX implementation, a ML model, namely Random Forest (RF) algorithm, is 

built to predict the properties of materials for which current data on calculated properties is available. In 

searching the property space, the BLOX algorithm searches outside the boundary to capture properties of 

materials that lie at the edge of the boundary. This can be made possible by using the Stein novelty (SN) 
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scores to recommend potential materials with tendency of being outside the boundary, i.e., different from 

original training data. The SN scores measures a deviation between the observed properties and the 

predicted properties by using Stein discrepancy28. After thoroughly screening of the 85,707 crystal 

structures from Materials Project29 database, we found 30 structures with ultrahigh bulk and shear moduli, 

21 structures with ultrahigh shear modulus and hardness, and 11 structures with negative Poisson’s ratio. 

We compare our result with traditional ML methods such as crystal graph convolution neural network 

(CGCNN)9, RF, Lasso Regression, and Ridge regression30. 

 

Results and Discussion 

The result of this study is described in four major subsections based on the material property space 

searched.  

A. High Bulk Modulus and Shear Modulus 

Superhard materials are defined as materials with hardness exceeding 40 GPa31 and they are of great 

importance because of their industrial applications such as abrasives, polishing, disc brakes, proactive 

coating, and cutting tools32. Diamond and related carbon nanostructures have been known to be at the 

very top of the hardest materials to date, with Vickers hardness in the range of 70 – 150 GPa33. However, 

diamond has several limitations for massive industrial applications such as high cost and oxidizing at 

temperatures above 800 °C34. A superhard material usually possesses a high bulk modulus (𝐾) and shear 

modulus (𝐺) and does not deform plastically. The shear modulus relates to strain response of a body to 

shear or torsional stress, and it involves change of shape without change of volume, while bulk modulus 

is related to the strain response of a body to hydrostatic stress which involves change in volume without 

change in shape35. Inspired by the mechanical properties of diamond36, such as ultrahigh bulk and shear 

moduli, our first goal is to search the structures with high bulk and shear moduli which has tendency to be 

superhard materials. 
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The scatter plot of observed mechanical properties and BLOX prediction selected from top SN scores for 

the first round is shown in Fig. 1a, while Fig. 1b shows the first round of DFT calculation of the 

recommended structures by BLOX algorithm in comparison with traditional ML methods (CGCNN, RF, 

Lasso Regression, and Ridge Regression). The initial set of elastic moduli data for property prediction 

model was obtained from the JARVIS-DFT database37,38, which consists for more than 65,000 materials 

and more than 15,000 elastic modulus data along with several other properties of materials. From Fig. 1a, 

we can clearly see that the BLOX algorithm recommended lots of materials that are out-of-trend from the 

initial observed materials. The materials with high SN score mean they will have higher chance to be out-

of-trend, as shown by the color coding in Fig. 1a. The initial observed materials were randomly chosen 

from original pool of 10,192 structures downloaded from the Materials Project database39 and their 

mechanical properties were calculated by DFT. With recommendation by BLOX, we continue to verify 

the material properties of these materials with DFT calculations and then found some materials that have 

extremely high and low bulk modulus and shear modulus. It is worth noting that, since our target is to 

find materials with extremely high mechanical strength, we then cleaned our data by removing any 

materials that have bulk modulus below 130 GPa. This step is necessary because BLOX algorithm 

searches for out-of-trend materials in all directions in the bulk modulus vs. shear modulus space and this 

will lead to some materials with low bulk and shear moduli being recommended as well. In other words, 

we guide the BLOX algorithm to search in the direction we are interested. It is worth pointing out that, 

the threshold value of 130 GPa was chosen based on the empirical experience, which is about half of the 

maximum value of bulk modulus in the original training data. From Fig. 1b, we compare the mechanical 

properties of recommended materials between ML models and DFT calculations. We built CGCNN, RF, 

Lasso regression, and Ridge regression models using the initial observed data and then used these ML 

models to predict the mechanical properties of recommended structures. By comparing prediction by ML 

models to the DFT results of BLOX recommended structures, Fig. 1b provides direct evidence that the 

traditional ML models could not push the material properties to the limit, even if the exact same 

recommended materials were tested, which is one of the main drawbacks for many existing ML models as 
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we pointed out earlier. This is understandable considering that traditional ML models are trained to be 

capable of predicting materials properties within the original range of training data, while they can hardly 

predict properties outside. 

Once we got the DFT results for recommended structures, we added these data into original observed data 

and then use the expanded observe dataset to train a ML model, and then BLOX will recommend next 

round promising structures based on SN scores (see details in “Methods” section). We continued this loop 

in searching for ultrahigh bulk and shear moduli, by running BLOX for four rounds, and in each round, 

we added the previous materials with high mechanical properties verified by DFT calculations to the next 

round. In Fig. 2a, we observed that more and more materials in each round were identified to push the 

material property to the limit with DFT validation. From Fig. 2b, we can see that there are no significant 

changes in bulk modulus in our search, but in Fig. 2c, we observed that after the first iteration, there is an 

increase of about 60% in our maximum shear modulus as compared to our initial training data, since 

adding the verified DFT data to the initial training data improves BLOX recommendation, hence a need 

for further iteration. We observed there was no significant changes between third and fourth iteration, 

hence we stop the iteration. The stopping criteria depend largely on the specific material properties we are 

investigating. After four rounds we found 30 structures in total with ultrahigh bulk and shear moduli. It is 

interesting to notice that some identified structures even have almost doubled shear modulus as compared 

to the original observed data. To quantify the difference in the material properties between the BLOX 

recommended and DFT validated values and ML model predictions, we calculated the distance between 

the outlier of CGCNN and the real values by DFT calculations that are higher than the CGCNN 

predictions for each round as shown in Fig. 3a, by using the formula for distance between two points 

given below 

√(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2                                                                                                            (1) 
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where 𝑥2, 𝑦2 are the bulk modulus and shear modulus, respectively, of materials higher than CGCNN 

prediction and 𝑥1, 𝑦1 is the bulk modulus and shear modulus of the highest outlier of CGCNN prediction. 

Fig. 3a shows the maximum and average distance between CGCNN prediction and DFT calculations for 

the recommended materials. We observed that as the number of BLOX rounds increases, the distance 

between the CGCNN prediction and DFT calculation decreases. This is understandable considering that 

more and more material properties that are outside of original training data were added into the next 

training process, i.e., the property range that CGCNN model can predict will also expand. To better 

illustrate our ideal, we added CGCNN prediction and DFT calculations for the 1st, 2nd, 3rd, and 4th round as 

observed in Fig. 3b – e for bulk modulus vs. shear modulus. The blue symbol denotes the outlier for 

CGCNN prediction that was used for calculating the distances compared to real DFT values. The 

traditional ML models do not continuously improve as we add a few hundred recommended observed 

data to the initial 2,000 observed data. This can be seen from Fig. 4 where we plot the mean absolute error 

(MAE) for CGCNN, Lasso regression, and Ridge regression for bulk and shear moduli prediction for 

different BLOX rounds. For most ML models the MAE for model prediction does not change noticeably. 

For Ridge regression model, we even found that the MAE increases with more data added into the 

training. There are several reasons responsible for this observation: (1) the total number of added data is 

still not significant as compared to the size of original observed data (2,000), roughly estimated as 5 – 

10%; (2) a considerably large portion of added data is still in the range of original observed data, which 

has already been well trained in previous rounds, and thus those data actually do not provide any 

information or contribute too much in the next training process; (3) the ML models can predict very well 

on the subset of training data, and with larger dataset there is increase in variability and the model might 

come across data not well considered in our training. 

B. Ultrahigh Hardness 

Our recent high-throughput study on ultrahard carbon allotropes illustrates that the hardness has a strong 

positive correlation with the shear modulus31,40. Using the shear modulus and hardness property space, we 
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were able to find some materials with ultrahigh hardness. Here we are comparing the correlation between 

hardness vs. shear modulus and hardness vs. bulk modulus. Previous study has shown that, all materials 

with high shear modulus would normally have high hardness, but not all materials with high bulk 

modulus would have high hardness1. Therefore, shear modulus provides a better correlation with hardness 

than bulk modulus41. That is the reason we chose to search for materials in the hardness vs. shear modulus 

space. 

In Fig. 5, we observed that more materials in each round were pushed to the limit with DFT validation. 

After four rounds we found 21 structures in total with ultrahigh hardness and shear modulus. Some 

identified structures were found to have Vickers hardness greater than 70 GPa, which is close to that of 

diamond or carbon allotropes. We also quantify the difference in the material properties between DFT 

validated values and CGCNN prediction, by calculating the distance between the outlier of CGCNN and 

the DFT calculated values higher than the CGCNN prediction for each rounds using Eqs (1). The results 

are shown in Fig. 6a. Here, we are calculating the distance of all DFT values that are greater than the 

highest value predicted by CGCNN model. As shown in Fig. 6b – e, for each round, an outlier predicted 

by CGCNN model was chosen (the blue symbol in the figure). Then, we calculated the distance of all 

DFT values that are higher than this outlier using Eqs. (1). We observed that as the number of BLOX 

rounds increases, the distance between the CGCNN prediction and DFT calculations decreases, which is 

the same phenomenon as found before for bulk and shear moduli space (see Fig. 3b – e). However, once 

again, we found that the distance for CGCNN prediction, representing the recommended material 

properties relative to the original range, cannot continuously decrease with BLOX rounds increasing. This 

means that CGCNN model cannot easily be trained to predict material properties in the rare or boundary 

region. 

C. Negative Poisson’s Ratio 

Poisson’s ratio is defined as the ratio of lateral strain in solid over the longitudinal strain measured in a 

simple tension experiment42. Most solid materials have positive Poisson’s ratio, but a small portion of 
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solid materials have negative Poisson’s ratio, which are known as auxetic materials43,44. The materials 

with negative Poisson’s ratio have exceptional properties such as high energy absorption, high fracture 

resistance, difficult to deform under shear loading, enhanced toughness, and resistance to indentation. We 

use the Pugh’s ratio (defined as the ratio between the shear modulus and the bulk modulus to distinguish 

the ductile/brittle behavior of material45,46) vs. Poisson’s ratio for this search. We applied BLOX 

algorithm to explore in the negative direction to find structures with negative Poisson’s ratio. In Fig. 7, 

we present the Poisson’s ratio vs. Pugh’s ratio for different BLOX rounds. In total we found 11 structures 

with negative Poisson’s ratio from 85,707 crystal structures taking from Materials Project database. In 

contrast, there are only 2 materials in the original ~2,000 observed dataset that have negative Poisson’s 

ratio. Our results indicate that the original Materials Project database does not include many materials 

with negative Poisson’s ratio. 

D. Data Driven Insight into Mechanical Properties 

Once we obtain lots of high accuracy DFT data recommended by BLOX, we are now in the position to do 

further study to deeply understand the mechanisms of these outliers. The Pearson correlation matrix, as 

shown in Fig. 8, gives an insight on how much each property correlates with each other47. In principle, the 

mechanical behavior of a material depends on their interatomic bonding, which can then be further traced 

back to the electronic cloud such as charge density and spatial distribution. That is the reason we show the 

correlation between elastic properties and local potential (LOCPOT) and electron localization function 

(ELF) values. A Pearson correlation matrix relates two parameters to each other, and the values is 

between -1 and 1. A negative value of -1 shows a perfectly inverse correlation between the two 

parameters, while a positive value of 1 shows a perfectly positive correlation. A value of 0 shows no 

correlation. A value close to 0 indicate a weak direct correlation while a value close to -1 or 1 indicate a 

strong inverse or a strong direct correlation, respectively. Fig. 8 shows that there is a strong inverse 

correlation between Poisson’s ratio and Pugh’s ratio, and a strong positive correlation between bulk and 

shear modulus, between bulk and Young’s modulus, and between shear and Young’s modulus. There is 
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pretty strong negative and positive correlation between the mechanical properties and the mean values of 

LOCPOT and ELF, respectively. 

To analyze the mechanism for ultrahigh hardness materials, we established the correlation between 

electron work function (EWF), interatomic bonding, and hardness. Generally, the mechanical behavior of 

materials depend on their interatomic bonding strength, which is a basic feature of most known superhard 

materials like diamond having strong covalent bonding, governed by the behavior of the electrons48. EWF 

is the minimum energy required to move electron inside a material at the Fermi level to its surface 

without kinetic energy49. It is determined by its composition and charge redistribution on its surface 

caused by dipole layer50, and it reflects the electronic behavior of metals and atomic interaction51. 

Previous studies have demonstrated that, for hard materials, their hardness is mainly governed by the 

interatomic bonding strength through correlation with the EWF48, i.e., the higher the EWF, the higher the 

hardness of the material. We also study the ELF which is the measure of electron localization in atomic 

and molecular system. The ELF in Fig. 9, reflects the probability of finding an electron in the system and 

the LOCPOT for the top two superhard structures recommended by BLOX and two materials, namely 

Be4C8N4 (mp-1189451) and C12N8 (mp-1188347), that have never been published in literature to the best 

of our knowledge. From Fig. 9a, c, we can see that the ELF plot strongly illustrates the presence of 

electrons and strong covalent bonding existing between the elements of the materials. The Fig. 9b, d show 

the presence of more electrons and hence an increase in EWF. Fig. 9e – h also shows the presence of 

strong covalent bonds between the atoms of the structures. Thus, all plots agree with the ultrahigh 

hardness exhibited by the four materials as confirmed by DFT calculations. 

Our results have demonstrated that BLOX algorithm can be effectively used to accelerate material 

discovery. Despite that some materials recommended by BLOX have been previously reported, it still 

shows that our screening results are accurate. One of such materials is BC7
52,53

 with symmetry 𝑃4̅𝑚2 

(space group number: 115) and hardness of 75.2 GPa. In our DFT calculations we found that BC7 has 

hardness of 71.7 GPa, which is very close to previous study. Finally, we found six superhard structures 
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which have never been reported in literature to the best of our knowledges. All these six structures have 

negative average local potential, indicating a strong average atomic attractive interaction in the unit cell. 

These structures with relevant structural information and hardness are reported in Table 1. To further 

confirm the thermodynamic stability of these structures, Fig. 10 shows the phonon dispersions of selected 

structures along high symmetry points in the Brillouin zone. No negative frequencies were found for the 

structures, indicating these structures are thermodynamically stable. 

Before closing, we would like to discuss some important points about the ML+BLOX algorithms: 

(1) The stopping criterion: Indeed, it is hard to recognize or quantify a stopping criterion by a mathematic 

formula. In practice, we stop iteration when there is no significant addition of structures coming out from 

validated DFT calculation from the previous round. This is an empirical and intuitive method. We would 

like to point out that, when and where we should stop BLOX loops would certainly depend on the specific 

material properties we are investigating. It also depends on the current region that the existing materials 

have already reached. Although it is almost impossible to theoretically or mathematically prove the upper 

or lower limit of material properties now, our study of coupling BLOX algorithms and DFT calculations 

paves the way to accelerating material discovery by identifying the out-of-trend materials using the 

boundless objective-free exploration approach. Our results demonstrate that the boundless objective-free 

exploration algorithm is very promising for future materials discovery that can push the materials 

properties to the limit with acceptable and achievable/realizable DFT calculations. 

(2) The BLOX algorithm could be coupled with any traditional ML regressors. The reason for using 

RF+BLOX in our study is, in previous study conducted by Terayama et al27 they compared different 

ML+BLOX of which RF+BLOX gave the best result. We simply follow that recipe in our current work. 

Systematic cross-checking and comparison of the performance among different combinations of 

ML+BLOX will be the focus of our future work. 
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(3) Certainly, it is hard to give out a mathematic formula for the maximum theoretical limit for material 

properties, including mechanical properties studied here. In many times people want to find the materials 

with enhanced properties. As we have presented, the ML+BLOX algorithm has great potential to 

accelerate such discovery, i.e., it allows to identify materials with the mechanical property close to or 

even going beyond the current boundary of the mechanical properties. Using this approach, we have 

identified 30 structures with ultrahigh bulk and shear moduli, 21 superhard structures with ultrahigh 

hardness, and 11 structures with negative Poisson’s ratio from 85,707 crystal structures taking from the 

well-known Materials Project database. It is also worth noting that, the final findings also depend on the 

material pool to be screened. Here, we used the Materials Project database with 85,707 crystal structures. 

We believe that, if the same method is applied to even larger database, such as OQMD database that 

currently has around 1 million structures, more structures with extreme mechanical properties will be 

identified quickly. 

(4) The transferability of the method to other material property: We believe that the same procedure can 

be straightforwardly carried out to find other material properties like lattice thermal conductivity, 

Grüneisen parameter, heat capacity, superconductivity, etc. In particular, the BLOX method is believed to 

be very suitable for finding extreme material properties that are hard to calculate by direct DFT. We 

would like to emphasize here again that, the overall performance of the BLOX algorithm depends on two 

major factors: (i) A well-defined to-be-pushed material property vs. dependent variable(s): according to 

our experience, the stronger correlation or relationship for such definition there is, the easier the BLOX 

algorithm can identify the trend and then recommend the outliers. (ii) More accurate descriptor(s) for the 

ML regressor model: more accurate descriptor(s) will result in more accurate prediction of target 

properties of to-be-screened materials (unchecked data), which will facilitate the BLOX algorithm to 

pinpoint the outliers more efficiently and accurately, so that in each iteration structures that are outside of 

the previous boundary of material property will be identified. In this way, the material property will be 

gradually pushed to the limit as search iteration goes on. 
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(5) Last but not least, the ML+BLOX algorithms used herein have helped us identify some structures in 

existing database, but their properties have not been previously explored yet. Such algorithms can be also 

coupled with the state-of-the-art crystal structure prediction methods or packages, such as Universal 

Structure Predictor (USPEX)54–56, Crystal structure Analysis by Particle Swarm Optimization 

(CALYPSO)57–59, to discover completely structures that are not included in existing materials databases 

with desired or extreme material properties. 

 

Methods 

A. Training Data and DFT Calculations 

We used the classical force-field inspired descriptors (CFID)38,60 to transform our crystal structure to ML 

input. We used boundless objective-free exploration (BLOX)27, coupled with RF ML algorithm to screen 

85,707 crystal structures downloaded from Materials Project39 database. We split our 85,707 crystal 

structures into 10 different jobs and run them in parallel. For each job BLOX recommended 25 promising 

structures ranked by the SN score, making a total of 250 recommended candidates in each round. We then 

performed DFT calculations using the plane-wave basis projector augmented wave (PAW) method61, 

within the Perdew-Burke-Ernzerhof exchange-correlation functional62, as implemented in the VASP 

package63–65. The cutoff energy is set to be 500 eV for the recommended crystal structures to calculate 

mechanical properties. The energy and force criteria for the DFT calculation of elastic constants were 10-6 

eV and 10-4 eV/Å, respectively. DFT calculation was conducted for validating the recommended 

structures by BLOX because the ML model prediction was not accurate enough due to transferability 

issue and limited number of training data. We performed crystal graph convolutional neural networks 

(CGCNN), Lasso regression, and Ridge regression for the recommended structures and compare with 

DFT. The phonon dispersions of selected structures were calculated by the finite displacement method 

using PHONOPY package66 with harmonic second-order force constants calculated by VASP. 
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B. ML Workflow 

Traditional ML model was trained and used for structure property prediction to see if we can rely on the 

ML model to find extreme mechanical properties, and this will in turn reduce the cost of DFT 

computation. The traditional ML models (RF, Ridge, and Lasso regression) were used in this study as 

implemented in the scikit-learn67. RF is a ML technique, proposed by Breiman in 200168 for classification 

and regression problems, through the ensembles of different decision trees. The RF regressor produces an 

estimation by averaging the prediction of many individual trees fitted on randomly resampled sets of 

training data. Three-fold cross validation was used for model fitting and hyperparameter optimization. We 

set the maximum number of trees to 100, 80% of observed data was used for training and 20% for testing. 

Ridge regression was originally proposed by Hoerl and Kennard in 197030,69 and used for analyzing data 

which are affected by multicollinearity, whereas Lasso regression was put forward by Tibshirani in 199670 

for parameter estimation and variable selection simultaneously in regression analysis. Lasso and Ridge 

regression are both regularized methods that significantly reduces the intricacy of the models such as the 

number or absolute size of the sum of all coefficients in the model71. Lasso regression minimizes the 

absolute sum of the coefficients (L1 regularization), and Ridge regression minimizes the squared sum of 

the coefficients (L2 regularization). They aim to regularize complex models by introducing penalty 

factors and they are great at reducing overfitting. Three-fold cross validation was also used for model 

fitting and hyperparameter optimization, 80% of observed data was used for training and 20% for testing, 

the maximum alpha (𝛼) value was set to 10. 

The CGCNN model combines the descriptors and learning model into one inseparable step, i.e., the 

model learns material properties directly from the connection of atoms in the crystal9. The CGCNN 

framework has been demonstrated to represent periodic crystal that provides material property prediction 

with DFT accuracy4,9. Here, the crystal structures are represented by a crystal graph that encodes both 

atomic information and bonding interaction between atoms, and then build a convolutional neural 

network on top of the graph to automatically extract representations that are optimum for predicting 
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targets properties. The atomic properties are represented by nodes and encoded in the feature vector (𝑣𝑖). 

For each atom, neighbors are first search within a 6 Å radius, and are considered as connected when the 

share a Voronoi face72 with the center atom and have interatomic distance lower than the sum of the 

Cordero covalent bond length73 of 0.25 Å. Crystal graphs do not form optimum representation by 

themselves; however, they are improved by using convolutional layers. After each convolutional layer, 

the features vectors gradually contain more information on the surrounding environment due to the 

concatenation between atom and bond features vectors6. The convolution function by Xie et al9 consists 

of 

𝑣𝑖
(𝑡+1)

= 𝑣𝑖
(𝑡)

+  ∑ 𝜎𝑗,𝑘 (𝑧(𝑖,𝑗)𝑘

(𝑡)
𝑊𝑓

(𝑡)
+ 𝑏𝑓

(𝑡)
)  ʘ𝑔 (𝑧(𝑖,𝑗)𝑘

(𝑡)
𝑊𝑠

(𝑡)
+ 𝑏𝑠

(𝑡)
)                                                     (2) 

where 𝑊𝑓
(𝑡)

, 𝑊𝑠
(𝑡)

, and 𝑏𝑖
(𝑡)

 are the convolution weight matrix, self-weight matrix and bias of the 𝑡𝑡ℎ layer 

respectively, 𝑔 is the activation function for introducing nonlinear coupling between layers, 𝜎 denotes the 

sigmoid function, ʘ denotes element-wise multiplication, and 𝑧(𝑖,𝑗)𝑘

(𝑡)
is the concatenation of the neighbor 

vectors. After R convolutions, a pooling layer reduces the spatial dimensions of convolutional neural 

network, the pooling layer operates on all feature vectors. For simplicity, a normalization summation is 

used as the pooling function. For optimization, backpropagation, and stochastic gradient descent (SGD) 

were used to update the weights with DFT calculated data. Here, we train the CGCNN model using the 

observed data, with 60% for training, 20% for testing, and 20% for validation. We then use our model to 

predict the properties for the unchecked 85,707 data. We add the DFT validated values to the observed 

data for the next round. We also compared the distance between the outlier of the CGCNN prediction 

with DFT calculations (see Fig. 3, 6). 

 

C. Structural Descriptors 
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Machine learning techniques have shown great prospect for screening and discovery of crystals structures 

because of their high efficiency in predicting material properties as compared to high demanding DFT 

calculations. However, in ML based approach, controlling the performance to enhance its accuracy is 

based on how compound/crystalline structures are represented in dataset74. Transforming the input data 

into a suitable representation of atoms for ML is a necessary step as it will reduce the amount of required 

training data and help increase the accuracy11.The transformation of input data is called 

descriptors/features extraction or engineering. Selecting a good descriptor is a very important step for ML 

model training, because a good descriptor can explain a target property well and this leads to a robust 

prediction model of a target property74. Combining descriptors with ML methods leads to model capable 

of accurately predicting structure properties. Chemical descriptors based on elemental properties have 

been successfully applied for various computational discovery75, nonetheless, this is not suitable for 

modelling crystal structures with the same composition since they ignore structural information76. In this 

study, we use CFID38,76 as descriptors, because the descriptors cover a wide range of crystal structures, 

and they are able to consider a combined form of elemental and structural representation74,77. The 

combined descriptors have been applied not only to crystalline systems but also to molecular systems74. 

Elemental representations we used in this study include atomic number, atomic mass, period, and group in 

the period table, first ionization energy, second ionization energy, electron affinity, Pauling 

electronegativity, Allen electronegativity, van der Walls radius, covalent radius, atomic radius, melting 

and boiling point, density, molar volume, heat of fusion, heat of vaporization, thermal conductivity, and 

specific heat. These elemental descriptors help capture essential information about compounds. Structural 

representations include simple coordination number, Voronoi polyhedron of central atom, angular 

distribution function, radial distribution function, bond-orientational order parameter78, and angular 

Fourier series79. The CFID consists of 1,557 descriptors in total for each crystal structure: 438 average 

chemical, 4 simulation box size, 378 radial charge distribution, 100 radial distribution, 179 angle 

distribution up to the first neighbor, 179 angle distribution up to the second neighbor, 179 dihedral angle 

up to the first neighbor, and 100 nearest neighbor descriptors. 
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D. Computational Workflow and BLOX Algorithm 

The schematic of our computational workflow performed in this study is illustrated in Fig. 11. The initial 

preparation is to randomly select 2,000 materials from database and calculate their mechanical properties 

by DFT. These 2,000 DFT data was served as observed data to initiate the whole process. We transformed 

these structures into ML input using CFID as descriptors. We also trained a RF model and used the model 

to predict structures from Materials Project database (unchecked data). After that, the search was 

performed by repeating the following steps. Step 1: construct a property prediction model; Step 2: 

recommend promising candidates ranked by the SN score based on kernel-based Stein discrepancy; Step 

3: evaluate recommended candidates by DFT27 and add DFT data into training dataset for next round ML 

training. In step 1, RF model is built as a property prediction model on the already evaluated materials 

and their property data. Structures with high SN score were recommended for evaluation as potential 

candidates. SN score for each unchecked materials intuitively measures a deviation between the observed 

property and the predicted property28 as given in the equation below 

𝑆𝑁(𝑉 ∪ {𝑝}) = 𝑆𝐷(𝑉) − 𝑆𝐷(𝑉 ∪ {𝑝})                                                                                       (3)                               

where 𝑆𝐷(𝑉) is the Stein discrepancy for the evaluated data (observed data), 𝑝 is predicted point by ML, 

and ∪ is union operator in set theory. We select the candidates with top SN scores. The SN score is based 

on Stein discrepancy, which can boundlessly evaluate a distance between any two distributions in any 

dimensional space. 
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Table 1. Structures identified by BLOX recommendation with corresponding ultrahigh hardness. 

Material ID Formula 
Average 

LOCPOT 

Energy 

above hull 

(eV/atom) 

Space group 

Number of 

atoms in 

primitive 

cell 

Hardness 

(GPa) 

mp-1188347 C12N8 -12.15 0.264 𝑃4̅3𝑚 (215) 20 58.43 

mp-1102681 C8N16 -12.98 0.569 𝐼4̅2𝑑 (122) 12 50.99 

mp-1077595 C4N8 -12.85 0.707 Cmc21 (36) 6 48.78 

mp-1105655 C12N8 -12.12 0.264 𝑃𝑚3̅𝑚 (221) 20 48.61 

mp-1189451 Be4C4N8 -12.34 0 Pna21 (33) 16 47.74 

mp-9410 C12N16 -12.62 0.298 P31c (159) 28 47.32 

 

  



Page 28 of 39 

 

 

Fig. 1. Performance of BLOX algorithm in searching ultrahigh shear and bulk moduli materials. (a) Observed data 

and BLOX prediction for selected structure with highest Stein novelty (SN) score. 2,000 structures were used as 

input to ML in BLOX to train a model which predicts the unchecked data. The SN score is a measure of discrepancy 

between the predicted properties of unchecked data and properties of observed data. Candidates with high SN scores 

are recommended for DFT calculations. (b) Comparison of CGCNN, RF, Ridge regression, Lasso regression, and 

DFT calculation for structures recommended in the 1st round. The ML models could not push the properties to the 

outside of the original dataset (observed data). 
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Fig. 2. Training procedure of BLOX algorithm. (a) Comparison of observed data and all rounds of DFT calculations 

recommended by BLOX. (b) – (c) Bar chart showing average (left y-axis) and maximum (right y-axis) value of bulk 

modulus and shear modulus respectively for each round of DFT calculations. “0” DFT round means the original 

training data. 
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Fig. 3. Evaluation of prediction of CGCNN model for shear vs. bulk modulus. (a) Maximum and average distance 

between outlier of CGCNN prediction and DFT calculation for bulk and shear moduli. For each round we measure 

the distance between the outlier of CGCNN prediction (blue symbols in bottom panels) and all DFT values with 

bulk and shear moduli higher than CGCNN prediction. (b) – (e) Comparison between CGCNN prediction and DFT 

values for the 1st, 2nd, 3rd, and 4th round, respectively. The blue symbol denotes the outlier structure from CGCNN 

prediction that is used for calculating the distances to real DFT values. 
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Fig. 4. Performance of traditional ML models. Mean absolute error (MAE) for Ridge regression, Lasso regression, 

Random Forest, and CGCNN models for bulk and shear moduli prediction at each DFT round. 
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Fig. 5. Performance of BLOX algorithm in searching ultrahigh hardness materials. The hardness vs. shear modulus 

plot with comparison of observed data and all rounds of DFT calculations. After looping through all rounds of DFT, 

we were able to get 21 structures with ultrahigh shear modulus and ultrahigh hardness. The range of hardness and 

shear modulus is increased (expanded) by 40% and 70%, respectively. 
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Fig. 6. Evaluation of prediction of CGCNN model for hardness vs. shear modulus. (a) Maximum and average 

distance between outlier of CGCNN prediction and DFT calculation for shear modulus and hardness. For each round 

we measure the distance between the outlier of CGCNN prediction (blue symbols in bottom panels) and all DFT 

values with shear modulus and hardness higher than CGCNN prediction. (b) – (e) Comparison between CGCNN 

prediction and DFT values for the 1st, 2nd, 3rd, and 4th round, respectively. The blue symbol denotes the outlier 

structure from CGCNN prediction that is used for calculating the distances to real DFT values. 
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Fig. 7. Performance of BLOX algorithm in searching negative Poisson’s ratio materials. Observed data and all 

rounds of DFT calculations recommended by BLOX for Poisson’s ratio vs. Pugh’s ratio. After a few loops, we were 

able to find 11 structures with negative Poisson’s ratio. The dashed line represents zero Poisson’s ratio and is the 

guide for eyes. 
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Fig. 8. Material descriptor analysis. Pearson correlation matrix between maximum local potential, minimum local 

potential, mean local potential, maximum electron localization function, minimum electron localization function, 

mean electron localization function, bulk modulus, shear modulus, elastic modulus Pugh’s ratio, and Poisson’s ratio. 
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Fig. 9. Electronic level insight into ultrahigh hardness. The ELF and LOCPOT plot of the structure B4C8N4 (mp-

1079201) (a, b), BC7 (mp-1078935) (c, d) recommended by BLOX showing the presence of more electrons and 

covalent bonding. (e-h) The ELF and LOCPOT plot of two identified structures Be4C8N4 (mp-1189451) and C12N8 

(mp-1188347) showing the presence of strong covalent bonding.  
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Fig. 10. Thermodynamic stability analysis of ultrahard materials. Phonon dispersions of (a) B4C8N4, (b) BC7, (c) 

Be4C8N4, and (d) C12N8 along high symmetry paths in the Brillouin zone. There is no negative frequency in phonon 

dispersions, indicating these structures are thermodynamically stable. 
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Fig. 11. Schematic of workflow of BLOX algorithm. The loop of DFT/BLOX/recommendations were performed at 

least 4 rounds until there is no significant amount of interested material properties recommended by BLOX 

algorithm. 


