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Abstract—High-rate directional communication in millimeter-
wave (mmW) systems requires a fast and accurate channel
estimation. Novel array architectures and signal processing
techniques are needed to avoid prohibitive estimation overhead
associated with large antenna arrays. Recent advancements
in hardware design helped the re-emergence of true-time-
delay (TTD) arrays whose frequency-dependent beams can be
leveraged for low-overhead channel probing and estimation. In
this work, we consider an analog TTD array and develop a
low-overhead compressive sensing based algorithm for channel
estimation in frequency-domain. The algorithm is compared
with related state-of-the-art approaches designed for analog
phased antenna arrays. Our results reveal the advantages of the
proposed TTD-based algorithm in terms of the required number
of training symbols, estimation accuracy, and computational
complexity.

I. INTRODUCTION

Millimeter-wave (mmW) frequency bands offer abundant
spectrum which has the key role in providing high data
rates in modern wireless communication systems [1]. As
shown in both theory and experiments, the base station (BS)
and user equipment (UE) need to use large antenna arrays
to combat severe path loss. Establishing a directional link
between the BS and UE requires at least the knowledge of
the dominant propagation direction obtained through beam
training [2]. However, having the full channel knowledge
provides additional benefits, including the ability to design
optimal precoders and combiners, perform spatial multiplex-
ing, allocate power optimally, determine the backup links
to be used in the case of a link failure, and others. For
this reason, mmW channel estimation techniques have been
actively researched over the last several years.

Initial estimation algorithms were designed for frequency-
flat mmW channels [3], [4]. However, practical mmW band-
withs are often wide, which motivated the development of
estimation algorithms for frequency-selective channels [5]-
[10]. The vast majority of the previous work considered
arrays based on phase shifters at both the BS and UE. In
particular, hybrid arrays with an analog front-end and a
network of phase shifters is considered to be a promising
architecture candidate for mmW systems due to its power
efficiency. Most of previously designed digital signal pro-
cessing (DSP) algorithms exploited the sparsity of mmW
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channels and formulated channel estimation as a compressive
sensing (CS) problem in the time or frequency domain [5]-
[8]. Different variations of matching pursuit algorithms were
developed to recover the sparse vector in the CS problem,
but many of them required a significant training overhead
and computational resources for accurate estimation.

Here we consider an analog true-time-delay (TTD) array,
which was previously shown to have low power consumption
and good performance in mmW beam training [11], [12].
With its frequency-dependent beams, the analog TTD array
can probe all angular directions simultaneously using differ-
ent signal frequencies. In this work, we leverage the TTD
frequency-dependent probing and design a CS-based DSP
algorithm to estimate the channel. The algorithm is designed
in the frequency domain and it is based on sub-band pro-
cessing to reduce its complexity. We compare it with related
state-of-the-art approaches in terms of the required number
of training frames, estimation accuracy, and computational
burden. To the best of our knowledge, this is the first paper
to propose a wideband mmW channel estimation technique
that leverages the properties of a TTD array.

The rest of the paper is organized as follows. In Sec. II, we
present the system model and explain the CS-based problem
formulation. In Sec. III, we explain the design of a TTD
codebook and DSP algorithm. The comparison with the state-
of-the-art approaches is presented in Sec. IV. Finally, Sec. V
concludes the paper.

Scalars, vectors, and matrices are denoted by non-bold,
bold lower-case, and bold upper-case letters, respectively.
The (4, j)-th element and j-th column of A are denoted by
[A];; and [A]. ;, respectively. Conjugate, transpose, Hermi-
tian transpose are denoted by (.)*, (.)T, and (.)H, respectively.
The Kronecker product of A and B is defined as A ® B.

II. SYSTEM MODEL

We consider downlink estimation of mmW channel be-
tween a BS and a UE, which operate at the carrier frequency
fc using the bandwidth BW. The system uses a cyclic
prefix (CP) based orthogonal frequency-division multiplex-
ing (OFDM) waveform with M subcarriers that are loaded
with binary phase shift keying (BPSK) symbols. The BS is
equipped with a uniform linear fully connected hybrid array
with Ngp radio frequency (RF) chains and Nt antennas. All
Nrr degrees of freedom are exploited such that the BS sends
a vector of symbols x[m] € CV** at the m-th subcarrier. The
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Fig. 1. Considered system model, where the BS is equipped with a fully connected hybrid analog-digital array and the UE with an analog TTD array.

vector x[m)] is precoded using the matrix V[m] € CNr*Ner,
V[m] = VrpVgp[m], where Vgg € CNT*Nre g a frequency-
flat RF precoding matrix and Vgg[m] € CNewexNre jg g
frequency-dependent baseband (BB) precoding matrix. The
UE is assumed to have a uniform linear analog TTD array
with Vg antennas, from which the signal is combined using
the frequency-dependent RF combiner w[m] € C™®. Thus,
the complex baseband signal at the m-th subcarrier is

y[m] = wi[m)H[m]|VreVes[m|x[m] + wi[m]n[m], (1)

where H[m] € CM>*MNr s the channel matrix and n ~
CN (0,081y,) is the vector of complex white additive
Gaussian noise at the m-th subcarrier. The considered system
model is summarized and illustrated in Fig. 1.

A. Frequency-Selective Channel Model

We consider a geometric frequency selective channel
model with L multipath components and Ny, delay taps.
In the frequency domain, the channel for the m-th subcarrier
can be expressed as follows

L
Hlm] = > Gimag(9;0)al (0"), 2)
l

where G;[m] = Zfivf'l gip(dTy —T))e =75 ™4 is the complex
gain in the frequency domain. The function p(I") models
pulse shaping and other analog filtering, 7y is the sam-
pling time, g € C and I} € R are the complex gain
and delay of the [-th path, respectively. The n-th element
of the frequency-flat array response ag(f) is defined as
[ar(0)]n = exp(—j(n — 1)7sin(f)). The response ar () is
defined in a similar way. The angles Gl(R) € [-n/2,7/2) and
GI(T) € [-m/2,m/2) are the angle of arrival (AoA) and angle
of departure (AoD) of the [-th path. The channel in (2) can
be written in a compact form as follows

H[m] = AgA[m]A¥, )

where A[m] is a matrix with L non-zero values on the
main diagonal that correspond to the gains G;[m], VI, and
At € CNV™<L and Ag € CMr*L are matrices of the spatial
responses aT(t‘)l(T)), Vi, at the BS and aR(Gl(R)), Vi, at the
UE, respectively. The expression in (3) can be approximated
by using the matrices At = [ar(¢1),...,ar(£g,)] and Ag =
[ar(&1), ..., ar(€qg )] of oversampled spatial responses in the
following way

“)
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where A[m] € CO**@r contains L channel gains Gy[m], VI,
as its non-zero elements. Commonly, Q1 > L and Qr > L,
and the approximation error in (4) can be neglected.

B. Problem Formulation

Previously designed algorithms for compressive estima-
tion of wideband mmW channels commonly considered
the case where both the BS and UE utilize frequency-flat
pseudo-random beamforming vectors [S5], [6]. Such design
of precoders and combiners was shown to reduce the DSP
complexity as compressive measurements at all subcarriers
can be modeled using one measurement matrix. In this
work, we propose an asymmetric design where the BS uses
frequency-flat pseudo-random precoders, while the UE relies
on frequency-dependent TTD combiners. Specifically, we
assume that the BS simultaneously transmits Nrp symbols
x[m] € CV* defined as x(V[m] = qs®)[m], where
q*) € CMx is a frequency-flat mapping vector [6] and s [m]
is a known BPSK symbol at the m-th subcarrier, in the ¢-
th training frame. The vector x(¥)[m] is precoded using a
frequency-flat precoding matrix V(®) € CNtxNer | with each
element defined as e?®, where « is drawn randomly from
the uniform distribution ¢/ (0, 27). At the UE side, the signal
is combined using a frequency-dependent TTD combiner
w(®[m]. Thus, the received signal at the m-th subcarrier in
the ¢-th training frame can be expressed as

yO[m] = wOHmH[m] VO qWOs®m) + 2O [m].  (5)

The post-combining noise is defined as 72()[m)]
w®OH[m|n®)[m]. The effect of the BPSK symbol in (5)
can be canceled by multiplying the received samples with
(s [m])~1. Using the result in (4), (5) can be vectorized as

ym] = FO[m]AX[m] + 7 [m], (6)

where F([m] € C'*NtMk is a sensing matrix defined as
F(t) [m] — q(t)TV(t)T ® W(t)H[m}, Ac CNTNRXQTQR is the
dictionary defined as A = A% ® Ag, and A[m] € C@r@
is a sparse vector of channel gains obtained by stacking
the columns of A[m], i.e., A[m] = vec(A[m]). Note that
the vector A[m] has the same support for any m, since the
channel AoD-AoA pairs (HZ(T),GI(R) ), VI, are common for
all subcarriers. Assuming that the channel remains constant
during the estimation process, after 7' training frames, the
received samples can be vectorized in the following way

y[m] = F[m]AX[m]| + n[m], @
where y[m] € CT, y[m] = [y [m], ...,y [m]]", F[m] €
CT>*NtNk  Flm] = [FDT[m], ..., FMT[m])T, and a[m] €
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Fig. 2. An illustration of sub-bands. In each sub-band, My, subcarriers
sound the entire angular range [—m /2, w/2).

C7, a[m] = M [m],...,n™) [m]]T. Based on (7), a sparse
recovery problem for the m-th subcarrier can be defined as

min [Afmlll, st [lylm] - FimlAAm][ < ®)

where € is the maximum error power.

In this work, our goal is to design a low-complexity
algorithm that solves (8). Specifically, we aim to design
frequency-dependent TTD combiners w(*)[m], V¢, m, and a
DSP algorithm that enable accurate channel estimation with
a low computational burden and reduced training overhead
compared to the state-of-the-art.

III. PROPOSED CHANNEL ESTIMATION ALGORITHM

In this section, we first describe the proposed design of
TTD combiners w(*)[m], V¢, m, for channel estimation. Then
we introduce a DSP algorithm that has a low computational
complexity despite the fact that the UE uses frequency-
dependent combiners.

A. Design of UE TTD Codebook

Frequency-dependent TTD codebooks were previously
studied in [11], [12], for mmW beam training at the UE. The
key idea was to sound the entire angular range [—7/2, 7/2)
at once using different frequency components of the signal.
This can be achieved by simultaneously mapping a subset of
R uniformly selected subcarriers to each sounded direction
[12]. In this work, we design a similar TTD codebook of
pencil discrete Fourier transform (DFT) beams for channel
estimation. It is worth noting that unlike beam training in
[12], channel estimation requires the measurements at all
M OFDM subcarriers to be processed at the UE.

Based on the UE’s array architecture in Fig. 1, the n-th
element of the frequency-dependent TTD combiner w(*)[m)]
is defined as follows [12]

[w(t) [m]] = (—j (2n( For— f)Tn + ¢£§>)) )

where f, = fo—BW/2+ (m —1)BW /(Mo —1). The n-th
delay tap 7, is defined as 7, = (n—1)Ar, with A7 being the
delay difference between the neighboring antenna elements.
The n-th phase tap ¢£f ) is defined in a similar way as d)%t ) =
(n — 1)A¢®, where Ap*) represents the phase difference
between the neighboring antennas in the ¢-th training frame.
The entire UE codebook of directional DFT beams can be
set up with a proper design of A7 and A¢®), Vt.

As in [12], we design the delay taps 7,,, Vn, such that R
subcarriers are mapped to each sounded direction in the ¢-th
training frame. We first divide the bandwidth into R sub-
bands of My, = My /R subcarriers, as illustrated in Fig. 2.
In each sub-band, Mg, subcarriers should be associated with
My, distinct DFT beams that sound the entire angular range.
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Fig. 3. An example of the designed UE codebook with Ng = 16, BW =
2GHz, Mx = 1024, R = 16, and T' = 8. (a) Complete codebook with
Ad)(t) =0 and O = 4. (b) Rotations for first subcarriers in all sub-bands.

In [12], we showed that such DFT beams can be created by
using A7 = R/BW, i.e., designing the delay taps as

Tn=(n—1)R/BW, n=1,.. Ng. (10)

The taps in (10) ensure that all first subcarriers in R sub-
bands sound the same direction, all second subcarriers sound
the same, etc. An example of the resulting codebook with
A¢® = 0 in the ¢-th training frame is provided in Fig. 3(a).
Note that if Mg, > Ng, the UE codebook consists of spatial
DFT beams oversampled by the factor of O = Mg, /Ng.

To provide additional diversity and enable all M, subcar-
riers to sound multiple directions, it is necessary to rotate
the TTD codebook in consecutive training frames using the
phase shifters. We propose a uniform rotation of 27 /T rad
in each training frame. Thus, A¢(*) = (t — 1)27/T and the
corresponding phase taps are designed as

o = (n—=1)(t—1)2n/T, n=1,....,Ng, t = 1,...,T. (11)

The phase taps in (11) are frequency-flat, i.e., they are applied
to all subcarriers equally. The codebook rotation is illustrated
in Fig. 3(b) for the first subcarriers in all R sub-bands.

In the next subsection, we describe a DSP algorithm that
leverages the designed frequency-dependent TTD codebook
to solve the sparse recovery problem in (8).

B. OMP-based DSP Algorithm

Previous work on wideband mmW channel estimation
considered various iterative greedy algorithms to solve (8),
including the Orthogonal Matching Pursuit (OMP) [5], [6].
However, the majority of previous OMP variations relies on
iterative estimation of channel angles and gains through per-
subcarrier DSP, which significantly increases the computa-
tional complexity. Here we propose an OMP-based algorithm
with sequential estimation of channel angles and gains. The
algorithm first identifies the AoDs and AoAs using per-sub-
band processing, and then it estimates the channel gains in a
single iteration, which reduces the computational burden.

Assuming that Mg, subcarriers within each sub-band r
have the same channel gains, the problem in (8) can be de-
fined for all R sub-bands. Let A, € C?Tr be a sparse vector
of channel gains in the r-th sub-band. The vectors A, Vr,
have the same support as A[m], Vm. Let F(!) ¢ CMwxNrNk
be the sensing matrix for each of the R sub-bands in the ¢-th
training frame, defined as F(*) = [FT[1], ... FOT[M]]".
Note that all sub-bands can have a common sensing matrix
F® because of the codebook design in Section III-A, which
ensured that the subcarriers m = 1, ..., My,, from the first
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Algorithm 1 Proposed channel estimation algorithm

Inputs: y[m],Vm, y,,Vr, ®, ~, of

1:
2: Initialize: 1z, =y, ,Vr, Q= {0}
3: Calculate: E = SE e
4: Calculate: E; = 73— S lyell - of
5. Calculate: ¢ = yE; + 03
6: while £ > ¢ do
7. Estimate: j* = argmax; > ‘ [@Hz,.]j‘
8: Update: Q= QU j*
o Estimate: A, = ([@[lg[@] ) @)y, W
10: Update: z, =y, — [<I>]:7Q A, Vr
1. Update: E= 15" |z,
12: end while .
5 H H
1 st Afm] = (@15 o [@ly0)  [®]30y[m], vm
14: where ¥ = {m’ | m' = mod(m, Mg)+ (t — 1) Mg, t =
1., T}
15: Outputs: A[m],Vm, Q

sub-band (r = 1) sound the same directions as their counter-
parts from other sub-bands (r > 1). Let ﬁg) € CM+ be the
noise vector at the subcarriers in the r-th sub-band. Then,
after 7' training frames and vectorization, the received signal
y» € CTMs in the r-th sub-band can be expressed as

yr = FAX, +1n,, (12)
where F € CTMoxNihe js | = [FIT  FOT)T 5 ¢
CTMs is @, = [ﬁS.I)T, ...,ﬁ,f-T)T]T. For conciseness, we in-

troduce the effective measurement matrix ® € CTMaoxQrx
defined as @ = FA. Similar as in (8), a sparse recovery
problem for sub-band r can be formulated as follows

min ||\, st [y, — ®X]F <e (13)

We propose to solve the problem in (13) using an iterative
algorithm. In each iteration, it identifies the index of one non-
zero value in A, Vr, i.e., AoD-AoA pair of one propagation
path, and then it refines all approximate channel gains jointly.
In the first iteration, an AoD-AoA pair index is estimated
by jointly considering all R sub-bands and calculating the
correlation between ® and residuals z, = y,., Vr, as follows

R
J* = argmax Z ‘ [@Hz,.}j ‘2
J

(14)
r=1

Let the set 2 = {j*} be the current estimate of the channel
support. The approximated channel gains A,, Vr, are then
estimated using least squares in the following way

A= (1@ @)

[‘I’]HQ Yr.
The channel support 2 and gains XT, Vr, are used to
subtract the contribution of the estimated propagation path
from the measurements y,, Vr, and obtain the corresponding
measurement residuals for the next iteration. Mathematically,
the residuals z,, Vr, are calculated as

5)

z, =y, — [®]. o A

)

(16)
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The algorithm iterates until a stopping criterion is satisfied.
Using a predetermined number of iteration is impractical
because the number of propagation paths in the channel is
usually unknown. Thus, we propose the use of a stopping
criterion based on the average subcarrier power E in the
residuals z,., Vr, calculated as follows [5], [6]

1 R
E=— "zl

When power in (17) falls below the threshold ¢, the algorithm
stops. It was shown in [6] that the optimal threshold for
algorithms based on per-subcarrier processing is ¢ = o2,
assuming that the noise variance o3 is known at the receiver.
Unlike in [6], our proposed algorithm yields approximate
channel gains A,, Vr, and consequently different residuals
z.., Vr, than algorithms with per-subcarrier processing, which
creates the need for a different e. At the subcarrier level, the
current estimate of y[m] in (7) can be expressed as

Jml = [®]y o Ar + [Bly o Aelml,
N e’

Approx. error

where ¥ = {m’ | m’ = mod(m, My) + (t — 1) My, t =
1,..,T}, A, is the estimate of channel gains in the corre-
sponding sub-band, and A.[m] is the channel gain error vec-
tor at the m-th subcarrier. For mathematical tractability, we
treat A.[m] as a zero-mean random vector that is independent
and identically distributed across different subcarriers. Let 02
be the variance of each element in the approximation error
[@]y o Ae[m]. Then it is straightforward to show that the
stopping threshold should be set as € = o2 +0#. However, the
distribution of channels gains is unknown in general, which
makes the estimation of o3 challenging. Thus, we estimate
0% numerically in Section IV as a fraction «y of the initial
useful signal power F in a multipath channel, i.e., 02 = vF,
where FE is defined as

a7)

18)

R

1 s
Ey= >yl - ok
* T TMyy = Iyl = ox

19

After stopping, the iterative algorithm outputs the channel
support estimate {2 and dismisses the approximate channel
gain estimates A,., Vr. Using 2 and (7), the channel gains are
estimated for each subcarrier in a single iteration as follows

3 H -1 H
Aim] = (12150 [®la) (@150,

where the set ¥ is defined as earlier. The proposed channel
estimation algorithm is summarized in Algorithm 1.

(20)

IV. COMPARISON WITH STATE OF THE ART

In this section, we numerically evaluate the proposed
OMP-based algorithm with per-sub-band processing. We also
compare it with related state-of-the-art algorithms designed
for arrays based on phase shifters, including the plain
OMP algorithm in [5] and Simultaneous Weighted OMP
(SW-OMP) algorithm proposed in [6]. The algorithms are
compared in terms of required number of training frames,
channel estimation accuracy, and computational complexity.
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Fig. 5. Comparison with state-of-the-art algorithms in terms of required number of training frames 7" for the same spectral efficiency 7 in different SNR

scenarios: (a) SNR = —10 dB, (b) SNR = 0 dB, and (c) SNR = 10 dB.

We consider a system with the carrier frequency f, = 28
GHz, bandwidth BW = 1 GHz, M., = 1024 subcarriers, and
Nt = 64 antennas and Ngg = 4 RF chains at the BS. The
algorithm considers R = 16 sub-bands, while the number
of spatial responses at the BS and UE is Qp = Qr = 256.
The channel consists of Ny,, = 4 taps and L = 3 paths with
identically distributed gains c; = CN(0,02), Vi. The SNR
is defined as SNR £ Lo?2 /o2.

We first numerically study a proper configuration of the
power fraction parameter -, assuming that Ng = 16 and
T = 35. In simulations, the parameter v is swept in the range
[0.05,0.15]. Our results indicate that the estimation accuracy
increases with higher v and thus it achieves the best perfor-
mance with v = 0.15. It is worth noting that the choice of ~y
is heavily influenced by the path gains «;, Vi. In certain non-
line-of-sight scenarios with comparable path gains, a further
increase of v may severely deteriorate the performance by
causing the algorithm to miss some significant paths. Thus,
in this section, we assume the power fraction of v = 0.15 to
avoid potential performance degradation.

Next, we evaluate how the performance of the proposed
TTD based channel estimation algorithm scales with the
number of UE antennas Nr when the number of training
frames is fixed to 7" = 35. We use two metrics, including the
NMSE defined as

Mlnl )
SOl |[H[m] — H[m]||%
S Mo [ H[m]||%

where I:I[m} is a channel estimate at the m-th subcarrier, and
the average spectral efficiency defined as
) (22)

(1 bl

NMSE =

. 2

Miow Km

e 2 2

m=1k=1

’[7:
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where K,, is the rank of H[m] and wy[m] and v;[m] are
the k-th left and right singular vectors of ﬂ[m], respectively.
In Fig. 4(a), the NMSE is shown to increase with larger
antenna arrays in all SNR regimes. Since 7' and My, are
fixed, the number of measurements taken by ® is independent
of Ng. However, an increase in [Ny reduces the beam width
and oversampling factor O = M,/Nr of TTD combiners,
which affects the channel estimation accuracy. Despite a
higher NMSE, larger antenna arrays result in a higher post-
estimation spectral efficiency due to more spatial degrees of
freedom, as supported by the results in Fig. 4(b).

In Fig. 5, we assume /Ng = 16 and compare the proposed
algorithm with the state-of-the-art in terms of the required
number of training frames 7. The results indicate that the
proposed algorithm requires a lower 7' for the same post-
estimation spectral efficiency. The performance gap is es-
pecially noticeable with low overhead, where the proposed
algorithm requires 5, 10, and 50 training frames less than
the SW-OMP in high, medium, and low SNR regimes,
respectively. The overhead savings are even bigger when the
proposed approach is compared with the OMP algorithm.

Assuming Ny 16 and T 35, we compare the
performance of the three algorithms across different SNR
values in Fig. 6(a). The proposed TTD based algorithm
achieves lower channel estimation NMSEs than the OMP and
SW-OMP algorithms in medium and high SNR regimes by 8
dB and 3 dB, respectively. In a low SNR regime, the heuristic
stopping criterion described in Sec. III-B may lead to an
early termination of the proposed algorithm and thus a lower
number of estimated paths and higher NMSE. However, the
available support estimate is often more accurate than that
of the OMP and SW-OMP algorithms, which results in an
overall higher spectral efficiency, as previously shown for
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TABLE I
COMPLEXITY OF PROPOSED AND STATE-OF-THE-ART OMP-BASED ALGORITHMS

‘ Operation [ Proposed algorithm

OMP from [5] ‘ SW-OMP from [6] |

Projection (j-th iter.) Tprop Miot (QTQr — (J — 1))

Tomthol(QTQR - (] _ 1)) Tsw-omp]wml(QTQR _ (.7 - 1))

Maximum proj. (j-th iter.)

R(QrQr — (j — 1))

Mo (QrQr — (j — 1)) Mo (QrQr — (4 — 1))

Gain calculation (j-th iter.) 3% + 252 Tprop Mg + 7T prop Mot

jSMlot + 2j2Tomthm + jTomthot

j3 + 2j2 Tsw—omp + stw—omp Mtot

Residual update (j-th iter.) Torop Mot Tomp Miot Tsw-omp Mot
Average power (j-th iter.) Torop Mot Tomp Miot Tsw-omp Mot
Subcarrier gains (no iter.) I3 Mg, + 2J*Tyrop Msp + J Tprop Mot NA NA

=y 1
g s —omp
w SW-OMP 0.8
%) —_
S o Proposed =
z Z06
@ 2
o -5 04
© o
c
&-10 0.2 ——& in OMP and SW-OMP
('C_) =& in proposed algorithm
-5 -10 -5 0 5 10 15 20 0 01 02 03 04 05
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Fig. 6. (a) Comparison with state-of-the-art algorithms in terms of the

NMSE across different SNR values. (b) Cumulative distribution function of
the correlation among the columns of the sensing matrix ®.

SNR = —10 dB in Fig. 5(a). The reason for better support
estimates is a lower correlation between the columns of the
sensing matrix ® in the proposed algorithm than in the
state-of-the-art approaches, as presented in Fig. 6(b). Due
to the sub-band based processing, the columns of ® in the
proposed algorithm belong to a much larger vector space,
which consequently reduces the correlation among them.

In Table I, we summarized the complexity of the proposed
and state-of-the-art algorithms. In the iterative part of the
algorithm (first five operations in the table), the proposed
approach achieves a lower computational complexity than the
OMP and SW-OMP. The savings primarily come from the
fact that the proposed approach requires a lower number of
training frames, i.e., Tprop < Tsw-omp < Tomp, as discussed
earlier. The AoD-AoA pair estimation in (14) consists of
projections on the corresponding ®, which is the most com-
putationally expensive step in the algorithm, and search for
the maximum value among projections. In the j-th iteration,
the algorithm requires (QtQr—(j—1)) projections where the
number of complex operations scales with Tprop Mo Finding
the maximum projection on ® scales with the number of
sub-bands R, instead of M, as in the OMP and SW-OMP
algorithms. Similar computational savings as for projec-
tions are achieved for residual updates in (16) and average
subcarrier power in (17), where the number of complex
operations scales with T, M. On the other hand, due to
the larger matrix ®, the calculation of approximate gains
in (15) requires 33+ 2j2TpmpMsb + §TpropMior Operations,
which is better than in the OMP, but worse than in the
SW-OMP algorithm. After the iterative part of the algorithm
and J estimated paths, the calculation of subcarrier gains in
(20) requires additional J? Mg, + 22 Tprop Mgy + J Tprop Mot
operations, which are not present in other two algorithms.

V. CONCLUSIONS

In this work, we designed a frequency-domain CS-based
channel estimation algorithm for analog TTD arrays and

showed that it outperforms related state-of-the algorithms.
Due to a lower required overhead and sub-band based pro-
cessing, the designed algorithm has a lower computational
complexity than the state-of-the-art. It also achieves a lower
channel estimation error across different SNRs because of
improved properties of the corresponding sensing matrix.
Due to their inability to steer oversampled frequency-
dependent beams, conventional phased arrays would require
a large number of training frames to emulate the designed
algorithm with per-sub-band processing and match the per-
formance of analog TTD arrays. On the other hand, hybrid
arrays based on phase shifters would require a reasonable
training overhead to do so, but at the cost of a higher power
consumption than analog TTD arrays with a single RF chain.
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