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Abstract—High-rate directional communication in millimeter-
wave (mmW) systems requires a fast and accurate channel
estimation. Novel array architectures and signal processing
techniques are needed to avoid prohibitive estimation overhead
associated with large antenna arrays. Recent advancements
in hardware design helped the re-emergence of true-time-
delay (TTD) arrays whose frequency-dependent beams can be
leveraged for low-overhead channel probing and estimation. In
this work, we consider an analog TTD array and develop a
low-overhead compressive sensing based algorithm for channel
estimation in frequency-domain. The algorithm is compared
with related state-of-the-art approaches designed for analog
phased antenna arrays. Our results reveal the advantages of the
proposed TTD-based algorithm in terms of the required number
of training symbols, estimation accuracy, and computational
complexity.

I. INTRODUCTION

Millimeter-wave (mmW) frequency bands offer abundant

spectrum which has the key role in providing high data

rates in modern wireless communication systems [1]. As

shown in both theory and experiments, the base station (BS)

and user equipment (UE) need to use large antenna arrays

to combat severe path loss. Establishing a directional link

between the BS and UE requires at least the knowledge of

the dominant propagation direction obtained through beam

training [2]. However, having the full channel knowledge

provides additional benefits, including the ability to design

optimal precoders and combiners, perform spatial multiplex-

ing, allocate power optimally, determine the backup links

to be used in the case of a link failure, and others. For

this reason, mmW channel estimation techniques have been

actively researched over the last several years.

Initial estimation algorithms were designed for frequency-

flat mmW channels [3], [4]. However, practical mmW band-

withs are often wide, which motivated the development of

estimation algorithms for frequency-selective channels [5]–

[10]. The vast majority of the previous work considered

arrays based on phase shifters at both the BS and UE. In

particular, hybrid arrays with an analog front-end and a

network of phase shifters is considered to be a promising

architecture candidate for mmW systems due to its power

efficiency. Most of previously designed digital signal pro-

cessing (DSP) algorithms exploited the sparsity of mmW
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channels and formulated channel estimation as a compressive

sensing (CS) problem in the time or frequency domain [5]–

[8]. Different variations of matching pursuit algorithms were

developed to recover the sparse vector in the CS problem,

but many of them required a significant training overhead

and computational resources for accurate estimation.

Here we consider an analog true-time-delay (TTD) array,

which was previously shown to have low power consumption

and good performance in mmW beam training [11], [12].

With its frequency-dependent beams, the analog TTD array

can probe all angular directions simultaneously using differ-

ent signal frequencies. In this work, we leverage the TTD

frequency-dependent probing and design a CS-based DSP

algorithm to estimate the channel. The algorithm is designed

in the frequency domain and it is based on sub-band pro-

cessing to reduce its complexity. We compare it with related

state-of-the-art approaches in terms of the required number

of training frames, estimation accuracy, and computational

burden. To the best of our knowledge, this is the first paper

to propose a wideband mmW channel estimation technique

that leverages the properties of a TTD array.

The rest of the paper is organized as follows. In Sec. II, we

present the system model and explain the CS-based problem

formulation. In Sec. III, we explain the design of a TTD

codebook and DSP algorithm. The comparison with the state-

of-the-art approaches is presented in Sec. IV. Finally, Sec. V

concludes the paper.

Scalars, vectors, and matrices are denoted by non-bold,

bold lower-case, and bold upper-case letters, respectively.

The (i, j)-th element and j-th column of A are denoted by

[A]i,j and [A]:,j , respectively. Conjugate, transpose, Hermi-

tian transpose are denoted by (.)∗, (.)T, and (.)H, respectively.

The Kronecker product of A and B is defined as A⊗B.

II. SYSTEM MODEL

We consider downlink estimation of mmW channel be-

tween a BS and a UE, which operate at the carrier frequency

fc using the bandwidth BW. The system uses a cyclic

prefix (CP) based orthogonal frequency-division multiplex-

ing (OFDM) waveform with M subcarriers that are loaded

with binary phase shift keying (BPSK) symbols. The BS is

equipped with a uniform linear fully connected hybrid array

with NRF radio frequency (RF) chains and NT antennas. All

NRF degrees of freedom are exploited such that the BS sends

a vector of symbols x[m] ∈ C
NRF at the m-th subcarrier. The
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Fig. 1. Considered system model, where the BS is equipped with a fully connected hybrid analog-digital array and the UE with an analog TTD array.

vector x[m] is precoded using the matrix V[m] ∈ C
NT×NRF ,

V[m] = VRFVBB[m], where VRF ∈ C
NT×NRF is a frequency-

flat RF precoding matrix and VBB[m] ∈ C
NRF×NRF is a

frequency-dependent baseband (BB) precoding matrix. The

UE is assumed to have a uniform linear analog TTD array

with NR antennas, from which the signal is combined using

the frequency-dependent RF combiner w[m] ∈ C
NR . Thus,

the complex baseband signal at the m-th subcarrier is

y[m] = wH[m]H[m]VRFVBB[m]x[m] +wH[m]n[m], (1)

where H[m] ∈ C
NR×NT is the channel matrix and n ∼

CN (
0, σ2

NINR

)
is the vector of complex white additive

Gaussian noise at the m-th subcarrier. The considered system

model is summarized and illustrated in Fig. 1.

A. Frequency-Selective Channel Model

We consider a geometric frequency selective channel

model with L multipath components and Ntap delay taps.

In the frequency domain, the channel for the m-th subcarrier

can be expressed as follows

H[m] =

L∑
l

Gl[m]aR(θ
(R)
l )aH

T (θ
(T)
l ), (2)

where Gl[m] =
∑Ntap

d=1 glp(dTs −Γl)e
−j 2π

M md is the complex

gain in the frequency domain. The function p(Γ) models

pulse shaping and other analog filtering, Ts is the sam-

pling time, gl ∈ C and Γl ∈ R are the complex gain

and delay of the l-th path, respectively. The n-th element

of the frequency-flat array response aR(θ) is defined as

[aR(θ)]n = exp(−j(n − 1)π sin(θ)). The response aT(θ) is

defined in a similar way. The angles θ
(R)
l ∈ [−π/2, π/2) and

θ
(T)
l ∈ [−π/2, π/2) are the angle of arrival (AoA) and angle

of departure (AoD) of the l-th path. The channel in (2) can

be written in a compact form as follows

H[m] = ARΛ[m]AH
T , (3)

where Λ[m] is a matrix with L non-zero values on the

main diagonal that correspond to the gains Gl[m], ∀l, and

AT ∈ C
NT×L and AR ∈ C

NR×L are matrices of the spatial

responses aT(θ
(T)
l ), ∀l, at the BS and aR(θ

(R)
l ), ∀l, at the

UE, respectively. The expression in (3) can be approximated

by using the matrices ĀT = [aT(ξ1), ...,aT(ξQT
)] and ĀR =

[aR(ξ1), ...,aR(ξQR
)] of oversampled spatial responses in the

following way

H[m] ≈ ĀRΛ̄[m]ĀH
T , (4)

where Λ̄[m] ∈ C
QR×QT contains L channel gains Gl[m], ∀l,

as its non-zero elements. Commonly, QT � L and QR � L,

and the approximation error in (4) can be neglected.

B. Problem Formulation
Previously designed algorithms for compressive estima-

tion of wideband mmW channels commonly considered

the case where both the BS and UE utilize frequency-flat

pseudo-random beamforming vectors [5], [6]. Such design

of precoders and combiners was shown to reduce the DSP

complexity as compressive measurements at all subcarriers

can be modeled using one measurement matrix. In this

work, we propose an asymmetric design where the BS uses

frequency-flat pseudo-random precoders, while the UE relies

on frequency-dependent TTD combiners. Specifically, we

assume that the BS simultaneously transmits NRF symbols

x(t)[m] ∈ C
NRF defined as x(t)[m] = q(t)s(t)[m], where

q(t) ∈ C
NR is a frequency-flat mapping vector [6] and s(t)[m]

is a known BPSK symbol at the m-th subcarrier, in the t-
th training frame. The vector x(t)[m] is precoded using a

frequency-flat precoding matrix V(t) ∈ C
NT×NRF , with each

element defined as ejα, where α is drawn randomly from

the uniform distribution U(0, 2π). At the UE side, the signal

is combined using a frequency-dependent TTD combiner

w(t)[m]. Thus, the received signal at the m-th subcarrier in

the t-th training frame can be expressed as

y(t)[m] = w(t)H[m]H[m]V(t)q(t)s(t)[m] + n̄(t)[m]. (5)

The post-combining noise is defined as n̄(t)[m] =
w(t)H[m]n(t)[m]. The effect of the BPSK symbol in (5)

can be canceled by multiplying the received samples with

(s(t)[m])−1. Using the result in (4), (5) can be vectorized as

y(t)[m] = F(t)[m]Aλ[m] + n̄(t)[m], (6)

where F(t)[m] ∈ C
1×NTNR is a sensing matrix defined as

F(t)[m] = q(t)TV(t)T ⊗w(t)H[m], A ∈ C
NTNR×QTQR is the

dictionary defined as A = Ā∗
T ⊗ ĀR, and λ[m] ∈ C

QTQR

is a sparse vector of channel gains obtained by stacking

the columns of Λ̄[m], i.e., λ[m] = vec(Λ̄[m]). Note that

the vector λ[m] has the same support for any m, since the

channel AoD-AoA pairs (θ
(T)
l , θ

(R)
l ), ∀l, are common for

all subcarriers. Assuming that the channel remains constant

during the estimation process, after T training frames, the

received samples can be vectorized in the following way

y[m] = F[m]Aλ[m] + n̄[m], (7)

where y[m] ∈ C
T , y[m] = [y(1)[m], ..., y(T )[m]]T, F[m] ∈

C
T×NTNR , F[m] = [F(1)T[m], ...,F(T )T[m]]T, and n̄[m] ∈
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Fig. 2. An illustration of sub-bands. In each sub-band, Msb subcarriers
sound the entire angular range [−π/2, π/2).

C
T , n̄[m] = [n̄(1)[m], ..., n̄(T )[m]]T. Based on (7), a sparse

recovery problem for the m-th subcarrier can be defined as

min ‖λ[m]‖1 s.t. ‖y[m]− F[m]Aλ[m]‖22 < ε (8)

where ε is the maximum error power.

In this work, our goal is to design a low-complexity

algorithm that solves (8). Specifically, we aim to design

frequency-dependent TTD combiners w(t)[m], ∀t,m, and a

DSP algorithm that enable accurate channel estimation with

a low computational burden and reduced training overhead

compared to the state-of-the-art.

III. PROPOSED CHANNEL ESTIMATION ALGORITHM

In this section, we first describe the proposed design of

TTD combiners w(t)[m], ∀t,m, for channel estimation. Then

we introduce a DSP algorithm that has a low computational

complexity despite the fact that the UE uses frequency-

dependent combiners.

A. Design of UE TTD Codebook

Frequency-dependent TTD codebooks were previously

studied in [11], [12], for mmW beam training at the UE. The

key idea was to sound the entire angular range [−π/2, π/2)
at once using different frequency components of the signal.

This can be achieved by simultaneously mapping a subset of

R uniformly selected subcarriers to each sounded direction

[12]. In this work, we design a similar TTD codebook of

pencil discrete Fourier transform (DFT) beams for channel

estimation. It is worth noting that unlike beam training in

[12], channel estimation requires the measurements at all
Mtot OFDM subcarriers to be processed at the UE.

Based on the UE’s array architecture in Fig. 1, the n-th

element of the frequency-dependent TTD combiner w(t)[m]
is defined as follows [12][

w(t)[m]
]
n
= exp

(
−j

(
2π(fm − fc)τn + φ(t)

n

))
, (9)

where fm = fc −BW/2+(m−1)BW/(Mtot −1). The n-th

delay tap τn is defined as τn = (n−1)Δτ , with Δτ being the

delay difference between the neighboring antenna elements.

The n-th phase tap φ
(t)
n is defined in a similar way as φ

(t)
n =

(n − 1)Δφ(t), where Δφ(t) represents the phase difference

between the neighboring antennas in the t-th training frame.

The entire UE codebook of directional DFT beams can be

set up with a proper design of Δτ and Δφ(t), ∀t.
As in [12], we design the delay taps τn, ∀n, such that R

subcarriers are mapped to each sounded direction in the t-th
training frame. We first divide the bandwidth into R sub-

bands of Msb = Mtot/R subcarriers, as illustrated in Fig. 2.

In each sub-band, Msb subcarriers should be associated with

Msb distinct DFT beams that sound the entire angular range.

(a) (b)

Fig. 3. An example of the designed UE codebook with NR = 16, BW =
2GHz, Mtot = 1024, R = 16, and T = 8. (a) Complete codebook with
Δφ(t) = 0 and O = 4. (b) Rotations for first subcarriers in all sub-bands.

In [12], we showed that such DFT beams can be created by

using Δτ = R/BW, i.e., designing the delay taps as

τn = (n− 1)R/BW, n = 1, ..., NR. (10)

The taps in (10) ensure that all first subcarriers in R sub-

bands sound the same direction, all second subcarriers sound

the same, etc. An example of the resulting codebook with

Δφ(t) = 0 in the t-th training frame is provided in Fig. 3(a).

Note that if Msb > NR, the UE codebook consists of spatial

DFT beams oversampled by the factor of O = Msb/NR.

To provide additional diversity and enable all Mtot subcar-

riers to sound multiple directions, it is necessary to rotate

the TTD codebook in consecutive training frames using the

phase shifters. We propose a uniform rotation of 2π/T rad

in each training frame. Thus, Δφ(t) = (t− 1)2π/T and the

corresponding phase taps are designed as

φ(t)
n = (n−1)(t−1)2π/T, n = 1, ..., NR, t = 1, ..., T. (11)

The phase taps in (11) are frequency-flat, i.e., they are applied

to all subcarriers equally. The codebook rotation is illustrated

in Fig. 3(b) for the first subcarriers in all R sub-bands.

In the next subsection, we describe a DSP algorithm that

leverages the designed frequency-dependent TTD codebook

to solve the sparse recovery problem in (8).

B. OMP-based DSP Algorithm

Previous work on wideband mmW channel estimation

considered various iterative greedy algorithms to solve (8),

including the Orthogonal Matching Pursuit (OMP) [5], [6].

However, the majority of previous OMP variations relies on

iterative estimation of channel angles and gains through per-

subcarrier DSP, which significantly increases the computa-

tional complexity. Here we propose an OMP-based algorithm

with sequential estimation of channel angles and gains. The

algorithm first identifies the AoDs and AoAs using per-sub-

band processing, and then it estimates the channel gains in a

single iteration, which reduces the computational burden.

Assuming that Msb subcarriers within each sub-band r
have the same channel gains, the problem in (8) can be de-

fined for all R sub-bands. Let λr ∈ C
QTQR be a sparse vector

of channel gains in the r-th sub-band. The vectors λr, ∀r,

have the same support as λ[m], ∀m. Let F(t) ∈ C
Msb×NTNR

be the sensing matrix for each of the R sub-bands in the t-th
training frame, defined as F(t) = [F(t)T[1], ...,F(t)T[Msb]]

T.

Note that all sub-bands can have a common sensing matrix

F(t) because of the codebook design in Section III-A, which

ensured that the subcarriers m = 1, ...,Msb, from the first
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Algorithm 1 Proposed channel estimation algorithm

1: Inputs: y[m], ∀m, yr, ∀r, Φ, γ, σ2
N

2: Initialize: zr = yr, ∀r, Ω = {∅}
3: Calculate: E = 1

TMtot

∑R
r=1 ‖zr‖22

4: Calculate: Es =
1

TMtot

∑R
r=1 ‖yr‖22 − σ2

N

5: Calculate: ε = γEs + σ2
N

6: while E > ε do
7: Estimate: j∗ = argmaxj

∑R
r=1

∣∣∣[ΦHzr
]
j

∣∣∣2
8: Update: Ω = Ω ∪ j∗

9: Estimate: λ̂r =
(
[Φ]

H
:,Ω [Φ]:,Ω

)−1

[Φ]
H
:,Ω yr, ∀r

10: Update: zr = yr − [Φ]:,Ω λ̂r, ∀r
11: Update: E = 1

TMtot

∑R
r=1 ‖zr‖22

12: end while
13: Est.: λ̂[m] =

(
[Φ]

H
Ψ,Ω [Φ]Ψ,Ω

)−1

[Φ]
H
Ψ,Ω y[m], ∀m

14: where Ψ = {m′ | m′ = mod(m,Msb)+(t−1)Msb, t =
1, ..., T}

15: Outputs: λ̂[m], ∀m, Ω

sub-band (r = 1) sound the same directions as their counter-

parts from other sub-bands (r > 1). Let n̄
(t)
r ∈ C

Msb be the

noise vector at the subcarriers in the r-th sub-band. Then,

after T training frames and vectorization, the received signal

yr ∈ C
TMsb in the r-th sub-band can be expressed as

yr = FAλr + n̄r, (12)

where F ∈ C
TMsb×NTNR is F = [F(1)T, ...,F(T )T]T, n̄r ∈

C
TMsb is n̄r = [n̄

(1)T
r , ..., n̄

(T )T
r ]T. For conciseness, we in-

troduce the effective measurement matrix Φ ∈ C
TMsb×QTQR ,

defined as Φ = FA. Similar as in (8), a sparse recovery

problem for sub-band r can be formulated as follows

min ‖λr‖1 s.t. ‖yr −Φλr‖22 < ε. (13)

We propose to solve the problem in (13) using an iterative

algorithm. In each iteration, it identifies the index of one non-

zero value in λr, ∀r, i.e., AoD-AoA pair of one propagation

path, and then it refines all approximate channel gains jointly.

In the first iteration, an AoD-AoA pair index is estimated

by jointly considering all R sub-bands and calculating the

correlation between Φ and residuals zr = yr, ∀r, as follows

j∗ = argmax
j

R∑
r=1

∣∣∣[ΦHzr
]
j

∣∣∣2 . (14)

Let the set Ω = {j∗} be the current estimate of the channel

support. The approximated channel gains λr, ∀r, are then

estimated using least squares in the following way

λ̂r =
(
[Φ]

H
:,Ω [Φ]:,Ω

)−1

[Φ]
H
:,Ω yr. (15)

The channel support Ω and gains λ̂r, ∀r, are used to

subtract the contribution of the estimated propagation path

from the measurements yr, ∀r, and obtain the corresponding

measurement residuals for the next iteration. Mathematically,

the residuals zr, ∀r, are calculated as

zr = yr − [Φ]:,Ω λ̂r. (16)

The algorithm iterates until a stopping criterion is satisfied.

Using a predetermined number of iteration is impractical

because the number of propagation paths in the channel is

usually unknown. Thus, we propose the use of a stopping

criterion based on the average subcarrier power E in the

residuals zr, ∀r, calculated as follows [5], [6]

E =
1

TMtot

R∑
r=1

‖zr‖22 . (17)

When power in (17) falls below the threshold ε, the algorithm

stops. It was shown in [6] that the optimal threshold for

algorithms based on per-subcarrier processing is ε = σ2
N,

assuming that the noise variance σ2
N is known at the receiver.

Unlike in [6], our proposed algorithm yields approximate

channel gains λr, ∀r, and consequently different residuals

zr, ∀r, than algorithms with per-subcarrier processing, which

creates the need for a different ε. At the subcarrier level, the

current estimate of y[m] in (7) can be expressed as

ŷ[m] = [Φ]Ψ,Ω λ̂r + [Φ]Ψ,Ω λe[m]︸ ︷︷ ︸
Approx. error

, (18)

where Ψ = {m′ | m′ = mod(m,Msb) + (t − 1)Msb, t =
1, ..., T}, λ̂r is the estimate of channel gains in the corre-

sponding sub-band, and λe[m] is the channel gain error vec-

tor at the m-th subcarrier. For mathematical tractability, we

treat λe[m] as a zero-mean random vector that is independent

and identically distributed across different subcarriers. Let σ2
A

be the variance of each element in the approximation error

[Φ]Ψ,Ω λe[m]. Then it is straightforward to show that the

stopping threshold should be set as ε = σ2
A+σ2

N. However, the

distribution of channels gains is unknown in general, which

makes the estimation of σ2
A challenging. Thus, we estimate

σ2
A numerically in Section IV as a fraction γ of the initial

useful signal power Es in a multipath channel, i.e., σ2
A = γEs,

where Es is defined as

Es =
1

TMtot

R∑
r=1

‖yr‖22 − σ2
N. (19)

After stopping, the iterative algorithm outputs the channel

support estimate Ω and dismisses the approximate channel

gain estimates λr, ∀r. Using Ω and (7), the channel gains are

estimated for each subcarrier in a single iteration as follows

λ̂[m] =
(
[Φ]

H
Ψ,Ω [Φ]Ψ,Ω

)−1

[Φ]
H
Ψ,Ω y[m], (20)

where the set Ψ is defined as earlier. The proposed channel

estimation algorithm is summarized in Algorithm 1.

IV. COMPARISON WITH STATE OF THE ART

In this section, we numerically evaluate the proposed

OMP-based algorithm with per-sub-band processing. We also

compare it with related state-of-the-art algorithms designed

for arrays based on phase shifters, including the plain

OMP algorithm in [5] and Simultaneous Weighted OMP

(SW-OMP) algorithm proposed in [6]. The algorithms are

compared in terms of required number of training frames,

channel estimation accuracy, and computational complexity.
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Fig. 5. Comparison with state-of-the-art algorithms in terms of required number of training frames T for the same spectral efficiency η in different SNR
scenarios: (a) SNR = −10 dB, (b) SNR = 0 dB, and (c) SNR = 10 dB.

We consider a system with the carrier frequency fc = 28
GHz, bandwidth BW = 1 GHz, Mtot = 1024 subcarriers, and

NT = 64 antennas and NRF = 4 RF chains at the BS. The

algorithm considers R = 16 sub-bands, while the number

of spatial responses at the BS and UE is QT = QR = 256.

The channel consists of Ntap = 4 taps and L = 3 paths with

identically distributed gains αi = CN (0, σ2
α), ∀i. The SNR

is defined as SNR � Lσ2
α/σ

2
N.

We first numerically study a proper configuration of the

power fraction parameter γ, assuming that NR = 16 and

T = 35. In simulations, the parameter γ is swept in the range

[0.05, 0.15]. Our results indicate that the estimation accuracy

increases with higher γ and thus it achieves the best perfor-

mance with γ = 0.15. It is worth noting that the choice of γ
is heavily influenced by the path gains αi, ∀i. In certain non-

line-of-sight scenarios with comparable path gains, a further

increase of γ may severely deteriorate the performance by

causing the algorithm to miss some significant paths. Thus,

in this section, we assume the power fraction of γ = 0.15 to

avoid potential performance degradation.

Next, we evaluate how the performance of the proposed

TTD based channel estimation algorithm scales with the

number of UE antennas NR when the number of training

frames is fixed to T = 35. We use two metrics, including the

NMSE defined as

NMSE =

∑Mtot

m=1 ||Ĥ[m]−H[m]||2F∑Mtot

m=1 ||H[m]||2F
, (21)

where Ĥ[m] is a channel estimate at the m-th subcarrier, and

the average spectral efficiency defined as

η =
1

Mtot

Mtot∑
m=1

Km∑
k=1

log2

(
1 +

|ŵH
k [m]H[m]v̂k[m]|2

σ2
N

)
(22)

where Km is the rank of Ĥ[m] and ŵk[m] and v̂k[m] are

the k-th left and right singular vectors of Ĥ[m], respectively.

In Fig. 4(a), the NMSE is shown to increase with larger

antenna arrays in all SNR regimes. Since T and Msb are

fixed, the number of measurements taken by Φ is independent

of NR. However, an increase in NR reduces the beam width

and oversampling factor O = Msb/NR of TTD combiners,

which affects the channel estimation accuracy. Despite a

higher NMSE, larger antenna arrays result in a higher post-

estimation spectral efficiency due to more spatial degrees of

freedom, as supported by the results in Fig. 4(b).

In Fig. 5, we assume NR = 16 and compare the proposed

algorithm with the state-of-the-art in terms of the required

number of training frames T . The results indicate that the

proposed algorithm requires a lower T for the same post-

estimation spectral efficiency. The performance gap is es-

pecially noticeable with low overhead, where the proposed

algorithm requires 5, 10, and 50 training frames less than

the SW-OMP in high, medium, and low SNR regimes,

respectively. The overhead savings are even bigger when the

proposed approach is compared with the OMP algorithm.

Assuming NR = 16 and T = 35, we compare the

performance of the three algorithms across different SNR

values in Fig. 6(a). The proposed TTD based algorithm

achieves lower channel estimation NMSEs than the OMP and

SW-OMP algorithms in medium and high SNR regimes by 8
dB and 3 dB, respectively. In a low SNR regime, the heuristic

stopping criterion described in Sec. III-B may lead to an

early termination of the proposed algorithm and thus a lower

number of estimated paths and higher NMSE. However, the

available support estimate is often more accurate than that

of the OMP and SW-OMP algorithms, which results in an

overall higher spectral efficiency, as previously shown for
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TABLE I
COMPLEXITY OF PROPOSED AND STATE-OF-THE-ART OMP-BASED ALGORITHMS

Operation Proposed algorithm OMP from [5] SW-OMP from [6]

Projection (j-th iter.) TpropMtot(QTQR − (j − 1)) TompMtot(QTQR − (j − 1)) Tsw-ompMtot(QTQR − (j − 1))
Maximum proj. (j-th iter.) R(QTQR − (j − 1)) Mtot(QTQR − (j − 1)) Mtot(QTQR − (j − 1))
Gain calculation (j-th iter.) j3 + 2j2TpropMsb + jTpropMtot j3Mtot + 2j2TompMtot + jTompMtot j3 + 2j2Tsw-omp + jTsw-ompMtot

Residual update (j-th iter.) TpropMtot TompMtot Tsw-ompMtot

Average power (j-th iter.) TpropMtot TompMtot Tsw-ompMtot

Subcarrier gains (no iter.) J3Msb + 2J2TpropMsb + JTpropMtot NA NA
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Fig. 6. (a) Comparison with state-of-the-art algorithms in terms of the
NMSE across different SNR values. (b) Cumulative distribution function of
the correlation among the columns of the sensing matrix Φ.

SNR = −10 dB in Fig. 5(a). The reason for better support

estimates is a lower correlation between the columns of the

sensing matrix Φ in the proposed algorithm than in the

state-of-the-art approaches, as presented in Fig. 6(b). Due

to the sub-band based processing, the columns of Φ in the

proposed algorithm belong to a much larger vector space,

which consequently reduces the correlation among them.

In Table I, we summarized the complexity of the proposed

and state-of-the-art algorithms. In the iterative part of the

algorithm (first five operations in the table), the proposed

approach achieves a lower computational complexity than the

OMP and SW-OMP. The savings primarily come from the

fact that the proposed approach requires a lower number of

training frames, i.e., Tprop < Tsw-omp < Tomp, as discussed

earlier. The AoD-AoA pair estimation in (14) consists of

projections on the corresponding Φ, which is the most com-

putationally expensive step in the algorithm, and search for

the maximum value among projections. In the j-th iteration,

the algorithm requires (QTQR−(j−1)) projections where the

number of complex operations scales with TpropMtot. Finding

the maximum projection on Φ scales with the number of

sub-bands R, instead of Mtot as in the OMP and SW-OMP

algorithms. Similar computational savings as for projec-

tions are achieved for residual updates in (16) and average

subcarrier power in (17), where the number of complex

operations scales with TpropMtot. On the other hand, due to

the larger matrix Φ, the calculation of approximate gains

in (15) requires j3 + 2j2TpropMsb + jTpropMtot operations,

which is better than in the OMP, but worse than in the

SW-OMP algorithm. After the iterative part of the algorithm

and J estimated paths, the calculation of subcarrier gains in

(20) requires additional J3Msb + 2J2TpropMsb + JTpropMtot

operations, which are not present in other two algorithms.

V. CONCLUSIONS

In this work, we designed a frequency-domain CS-based

channel estimation algorithm for analog TTD arrays and

showed that it outperforms related state-of-the algorithms.

Due to a lower required overhead and sub-band based pro-

cessing, the designed algorithm has a lower computational

complexity than the state-of-the-art. It also achieves a lower

channel estimation error across different SNRs because of

improved properties of the corresponding sensing matrix.

Due to their inability to steer oversampled frequency-

dependent beams, conventional phased arrays would require

a large number of training frames to emulate the designed

algorithm with per-sub-band processing and match the per-

formance of analog TTD arrays. On the other hand, hybrid

arrays based on phase shifters would require a reasonable

training overhead to do so, but at the cost of a higher power

consumption than analog TTD arrays with a single RF chain.
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