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Abstract: Both historically and in terms of practiced academic organization, the anticipation should
be that a flourishing synergistic interface exists between statistics and operations research in general,
and between spatial statistics/econometrics and spatial optimization in particular. Unfortunately,
for the most part, this expectation is false. The purpose of this paper is to address this existential
missing link by focusing on the beneficial contributions of spatial statistics to spatial optimization,
via spatial autocorrelation (i.e., dis/similar attribute values tend to cluster together on a map), in
order to encourage considerably more future collaboration and interaction between contributors to
their two parent bodies of knowledge. The key basic statistical concept in this pursuit is the median
in its bivariate form, with special reference to the global and to sets of regional spatial medians.
One-dimensional examples illustrate situations that the narrative then extends to two-dimensional
illustrations, which, in turn, connects these treatments to the spatial statistics centrography theme.
Because of computational time constraints (reported results include some for timing experiments), the
summarized analysis restricts attention to problems involving one global and two or three regional
spatial medians. The fundamental and foundational spatial, statistical, conceptual tool employed here
is spatial autocorrelation: geographically informed sampling designs—which acknowledge a non-
random mixture of geographic demand weight values that manifests itself as local, homogeneous,
spatial clusters of these values—can help spatial optimization techniques determine the spatial
optima, at least for location-allocation problems. A valuable discovery by this study is that existing
but ignored spatial autocorrelation latent in georeferenced demand point weights undermines spatial
optimization algorithms. All in all, this paper should help initiate a dissipation of the existing isolation
between statistics and operations research, hopefully inspiring substantially more collaborative work
by their professionals in the future.
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1. Introduction

The history of statistics dates back to the fourth century B.C. [1] and earlier, with
permutations and combinations being concepts discussed in the writings of those times.
Even though modern statistics did not begin to develop until the mid-1600s, its evolution
into mathematical statistics occurred several centuries later, in the early 1800s [2]. Mean-
while, pre-modern optimization developed with the apparently independent discovery of
calculus by Newton and Gauss in the late 17th century, followed by Fermat and Lagrange
(circa 1800) establishing function minimization/maximization, and, decades later, Riemann
formulating the steepest descent method [3]. Kantorovich (linear programming), Dantzig
(the simplex method), and von Neumann (duality theory) molded optimization’s evolution
into its modern-day, mathematical, computer-supported form. Although both disciplines
have roots in permutations and combinations, their evolutionary trajectories essentially
unfolded in parallel. The absence of an interface between the two also characterizes their
respective sub-disciplines of spatial statistics and spatial optimization.
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In contrast to this interface absence, inspecting today’s academic degree and other
programs of study at institutions of higher learning throughout the world reveals that
one natural interdisciplinary educational coupling is statistics and operations research,
raising questions about the continued absence of a more comprehensive subject mat-
ter interface between them. This academic home marriage occurs in schools across
the various North American teaching/training institution tiers, ranging from Bowling
Green State and Virginia Commonwealth University, through the University of North
Carolina/Chapel Hill, to Harvard and MIT. This pairing is not exclusive to the United
States and occurs in schools housed in other countries, such as Tel Aviv and Wuhan
University, and in internationally renowned European universities such as Cambridge,
Oxford, Edinburgh, and Vienna. All in all, the Quacquarelli Symonds (QS) 2021 World
University Rankings by subject includes in its incomplete listing 221 enterprises with this
pairing(See https://www.topuniversities.com/university-rankings/university-subject-
rankings/2021/statistics-operational-research (accessed on 10 October 2021). Surprisingly,
although optimization sometimes utilizes probability to, for example, incorporate un-
certainty into objective function formulations, state-of-the-art commercial software such
as the IBM CPLEX Optimizer (this advanced computer package provides flexible, high-
performance mathematical programming solving procedures for linear, mixed integer,
quadratic, and quadratically constrained problems) lacks serious interfaces with theo-
retical and applied statistics. For the most part, the statistics and operations research
sub-disciplines developed alongside and independent of each other, merely inadvertently
sharing domains such as core quantitative foci. This lack of a synergistic interface, except
perhaps in the realm of game theory, is especially acute in geography and the spatial
sciences, with the development of spatial statistics/econometrics (i.e., addressing spatial
autocorrelation in georeferenced data, namely the presence of, most often, similar attribute
values clustering in geographic space; see Cliff and Ord [4], Paelinck and Klaassen [5],
Cressie [6], and Griffith [7]) and spatial optimization (e.g., location covering, network
routing [8,9]) having occurred side by side and nearly in isolation.

This paper seeks to facilitate the altering of this missing interface situation by helping
to initiate transformative work as well as contribute to the sparse substantive literature at
the interface of spatial statistics/econometrics and location science spatial optimization,
which would hopefully encourage considerably more future collaboration and interaction
between these two bodies of knowledge. Therefore, the primary objective of this paper is
to begin to dissolve this isolation. Its methods are mathematical analysis and simulation
experiments. The beneficial contributions of spatial statistics, via spatial autocorrelation,
to spatial optimization outlined here aim to exemplify how their parent disciplines can
cross-fertilize to profit both.

2. Background

The particular operations research problem addressed in this paper generalizes from
one whose simplest version Fermat [10] and Weber [11] first studied: to determine the
optimal locations {(Uj, Vj), j = 1, 2, . . . , p} for p central facilities with unlimited capacity
in order to serve a geographically distributed set of n demand points (finding a p-tuple
of points on a continuous surface that jointly minimize the sum of weighted Euclidean
distances to them from a designated set of discrete demand points), which may be stated
in an objective function form, as follows:

MIN : ∑n
i=1 ∑p

j=1 λijwi

√(
ui −Uj

)2
+
(
vi −Vj

)2s.t. : ∑p
j=1 λij = 1, i = 1, 2, . . . , n, (1)

where λij denotes a set of p dichotomous 0–1 indicator variables for each location i, with
λij = 1 if its allocation is to central facility j = 1, 2, . . . , p, and 0 otherwise, (ui, vi) are the
analyzed set of n demand point Cartesian coordinates, and wi > 0 is the weight quanti-
fying demand at point i; λij ≡ 1 if p = 1 (the problem examined by Fermat and Weber).
The point (Uj, Vj), j = 1, 2, . . . , p, is also the bivariate global (p = 1) or regional (p > 1)
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spatial median e.g., [12–14] for the demand points that constitute an allocation to central
facility j (i.e., λij = 1); this equivalence establishes an intrinsic link between spatial statistics
and spatial optimization, specifically within the context of centrographic techniques [15].
Kuhn-Kuenne [16] devised a calculus-based algorithm for solving differential equations
( given a set of n demand points {(u1, v1), (u2, v2), . . . , (un, vn)} ∈ Rn × Rn, then (U, V)
∈ Rn × Rn, the spatial median is the expression (1) solution for this dataset if and only
if ∑n

i=1
wi(ui−U)√

(ui−U)2+(vi−V)2 = 0 and ∑n
i=1

wi(vi−V)√
(ui−U)2+(vi−V)2 = 0; solving this pair of nonlinear

equations requires recursion) in order to compute (U1, V1) for p = 1, which quantitative
spatial scientists later adapted to extend to each of the p > 1 regional subsets of points in
the more general p-median problem—initiating this computation with each region’s spatial
mean (i.e., the centrographic bivariate weighted arithmetic average

(
∑n

i=1 wiui
∑n

i=1 wi
, ∑n

i=1 wivi
∑n

i=1 wi

)
)

to avoid difficulties with algorithm nonlinearity convergence when computing for its
spatial median; algorithm iterations involving reallocations and spatial median recalcu-
lations continue recursively until the p median centroid trajectories satisfy the invoked
convergence criteria.

A paucity of articles deal with interfaces between spatial statistics/econometrics and
spatial optimization, expressly in terms of this tremendously popular bivariate spatial
median problem. Exceptions include: (1) the use of spatial statistics imputation (e.g.,
kriging, see [17,18]) to estimate missing weights, wi, in expression (1)—wi = 0 removes its
affiliated demand point from the solving of its spatial optimization problem, motivating
the imputation of missing values; (2) the employment of local indices of spatial autocor-
relation [19,20] to identify potential spatial median solutions based upon hotspot/spatial
outlier maps [21,22] shows considerable promise for guiding heuristic algorithms to better
achieve globally optimal solutions; and (3) the use of spatial autocorrelation informed
spatial sampling designs to help solve large spatial optimization problems, with specific
reference to the location-allocation problem defined by expression (1), the overarching
theme of this paper. Thus, to date, the interface between spatial statistics/econometrics
and spatial optimization, similar to the existing treatment of synergies between its parent
research fields of statistics and operations, generally tends to be overlooked by scholarly
researchers and practitioners.

Consequently, the primary objective of this paper is to demonstrate selected notewor-
thy intellectual contributions that spatial statistics can make to spatial optimization through
its spatial autocorrelation knowledge base and specialized sampling designs. In doing so,
statistics is promoted as the truly interdisciplinary discipline that it is, which would aid in
fostering statistics as a major supporter of and player in the science of big data.

3. Methods and Results

The condensed analysis here considers the first three possible cases, namely p = 1, 2,
and 3, much like in the tradition of mathematical induction.

3.1. The p = 1 Spatial Median Problem

The bivariate spatial median has many names, including the following synonyms [14]:
Euclidean median; the generalized Fermat point, reflecting its concept formation and
beginnings; median center; minimum aggregate travel point; and the Weber problem,
again reflecting its invention (a rediscovery) and origin. In addition, the spatial median
is an extension of the univariate median [12]. One-dimensional (1-D) analyses in this
and subsequent sections are for the unit interval [0, 1], whereas two-dimensional (2-D)
analyses are for the unit square. These former explorations are purely hypothetical, chiefly
furnishing useful insights and proofs of concept, whereas these latter ones are for prag-
matic endeavors.
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3.1.1. The p = 1 Univariate Spatial Median Problem

For simplicity as well as illustrative purposes, the discussion here begins with a
1-D geographic landscape. GIScientists characterize this precise setting as the socially
optimal Hotelling [23] problem, which recently received a relevant updating by Meager,
Teo, and Xie [24] to exemplify the impacts of a wide range of non-uniform distributions of
demand weights, wi. For the basically straightforward p = 1 situation, any 1-D symmetric
distribution of demand results in its spatial median being at the central position 1

2 in the
unit interval (Figure 1a–c). The respective skewed demand distribution of spatial medians
(Figure 1d,e), while deviating from 1

2 , are closer to it than their individual modes are.
Meanwhile, a multi-modal demand distribution (e.g., Figure 1f, an additive mixture of
truncated exponential (weighted 0.5) and bell-shaped (weighted 0.2) probability density
functions (pdfs) combined with a skewed beta (weighted 0.3) pdf) has a spatial median
that is conditional upon the utilized types of mixed geographic demand distributions as
well as their employed relative weights (which are non-negative and sum to one). These
outcomes are equivalent to those of comparable univariate pdfs, with their spatial median
proofs obtainable by completing the customary exercise of integrating an appropriate pdf
to x, and then solving for x = 0.5 (see Table 1).
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Figure 1. A representative range of possible distributions of demand across a unit interval. Gray curves denote the relative
magnitude of demand at a location; red vertical lines denote the locations of p = 1 spatial medians. Top left (a): sinusoidal
demand distribution. Top middle (b): uniform demand distribution. Top right (c): bell-shaped demand distribution. Bottom
left (d): negative-skewed demand distribution. Bottom middle (e): positive-skewed demand distribution. Bottom right
(f): multimodal demand distribution.

A simple random sample (with replacement for the infinite population) corroborates
these Table 1 tabulations. Moreover, the central limit theorem for univariate medians of
most random variables produces this quality of simulated results; the mixture outcome is a
poorer replication because it contains considerably more variability (although its n is more
than twice as large). Because these are order statistics, the sample size is 2n + 1; because
the statistic of interest is the median, the sample size is deliberately an odd integer. As
is well known, the mean of the simulated data approximately equals the sample median
(theoretically, these are identical); meanwhile, a consensus of expert opinion proposes
that n = 100 is a sufficiently large sample size for the central limit theorem to be effective,
regardless of the underlying random variable (the Cauchy is an exception to this rule, at
least for the arithmetic mean). The examined mixture distribution in Table 1 goes beyond
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the spectrum of the geographic distribution of demand categories investigated by Meager,
Teo, and Xie [24] (p. 434).

Table 1. Single spatial median solutions for various distributions of demand across the unit interval.

Distribution of
Demand

Relevant Integration
Answers Spatial Medial

Random Sample
(n = 201;

10,000 Replications)

sinusoidal 0.63662 × SIN−1(√x ) = 0.5 0.50000 0.49959 (0.05443)

uniform x = 0.5 0.50000 0.50003 (0.03525)

bell-shaped
70x9 − 315x8 + 540x7 −
420x6 + 126x5 = 0.5; only

one real root
0.50000 0.50020 (0.01431)

left/negative skewed

3060x19 − 12,920x18 +
20,520x17 − 14,535x16 +

3876x15 = 0.5; only one real
root

0.75846 0.75831 (0.00848)

right/positive
skewed

3060x19 − 45,220x18 +
311,220x17 − 1,322,685x16 +
3,879,876x15 − 8,314,020x14

+ 13,430,340x13 −
16,628,040x12 +
15,872,220x11 −

11,639,628x10 + 6,466,460x9

− 2,645,370x8 + 755,820x7

− 135,660x6 + 11,628x5 =
0.5; only one real root

0.24154 0.24168 (0.00855)

tri-density function
additive mixture

Solved with Mathematica
12.1 assuming x ∈ R+ 0.44045 0.46118 (0.03576)

Note: Standard errors are in parentheses; for the simple, non-mixture, univariate random variables, they roughly
equal their theoretical counterparts given by 1/[pdf(median)

√
800].

3.1.2. The p = 1 Bivariate Spatial Median Problem

One important univariate p = 1 spatial median feature that directly transfers to the
single global bivariate spatial median arises from symmetry in the distribution of demand
across a 2-D geographic landscape, paralleling a 1-D geographic landscape symmetry
consequence. The 2-D symmetric sinusoidal (i.e., resembling a bowl shape), uniform, and
bell-shaped (resembling a mountain in the center of a unit square) geographic distribution
of demand renders a spatial median of ( 1

2 , 1
2 ); Chen and Welsh [25] (p. 211) furnish a proof

of this proposition—similar to the preceding 1-D geographic landscape, construction of
this proof relies upon integration for its continuous case, and the sigma calculus for its
discrete case.

The product of two independent beta random variable probabilities furnishes the
following joint density pdf:

p(u, v) =
Γ(αu + βu)

Γ(αu)Γ(βu)

Γ(αv + βv)

Γ(αv)Γ(βv)
uαu−1(1− u)βu−1vαv−1(1− v)βv−1 , (2)

where Γ denotes the gamma function, 0 < u, v < 1, and αu, αv, βu, βv > 0. This joint pair
of univariate beta distribution functions differs from its potentially correlated bivariate
counterpart with marginal univariate beta distribution functions presented by Olkin and
Trikalinos [26], for example, which pertains to two conditionally dependent beta random
variables. This paper employs Equation (2) because the simulation experiment sampling ex-
ercises require independent observations, and the manipulation of the four pdf parameters
(i.e., αu, αv, βu, βv) is capable of generating an extensive variety of different geographic de-
mand point distributions across a full unit square. Equation (2) implies that the benchmark
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population spatial median for random weights has the pair of (U, V) Cartesian coordinates
respectively approximated by (3αu − 1)/(3αu + 3βu − 2) and (3αv − 1)/(3αv + 3βv − 2).

An important technical complication for the 2-D p = 1 case is solving it when n is
large-to-massively large; the required allocation of all points is to a single unknown spatial
median, which constitutes the calculation goal. A latent positive spatial autocorrelation
map pattern tends to move this optimal solution away from the central ( 1

2 , 1
2 ) position in the

unit square. A sampling design can ignore this autocorrelation and focus on independence
in the sample selection mechanism (hence, the Equation (2) specification); nevertheless, a
spatial scientist must recognize and acknowledge the spatial autocorrelation’s tendency
to influence a spatial median location. Traditional mathematical statistical theory dictates
the result for purely random map patterns of weights (i.e., they are identically distributed)
through the calculus of expectations, namely the foregoing stated bivariate spatial median
for a uniform geographic distribution of demand (i.e., each location’s expected value is the
same constant).

The simulation experimental design devised by Overton and Stehman [27] guided
the research undertakings outlined here: spatial sampling of a linear gradient (inducing
strong positive spatial autocorrelation), a quadratic gradient (inducing moderate positive
spatial autocorrelation), and a periodic map pattern (inducing weak positive spatial au-
tocorrelation) of the geographic distribution of attribute values (e.g., demand weights).
Supplementing their point sampling from a uniform distribution is the second case of a
skewed point distribution (utilizing a pair of beta random variables a la Equation (2)). The
number of points is set to 50,000, and the minimum resample size is set to 100 (in keeping
with the classical central limit theorem). Table 2 tabulations reveal two salient findings:
(1) 1000 replications seem sufficient to realize the law of large numbers (also see Figure
2) for a spatial median analysis; and (2) the well-known variance suppression impact of
spatial autocorrelation is detectable in the reported sampling standard errors (e.g., they are
smaller than those for purely random samples) for the population of unconcentrated points.

Table 2. P = 1 simulation experiment output summaries; a single parent sample of n = 50,000, and
1000 resamples (without replacement) from it, with a size n = 100.

Demand Points
Distribution

Spatial Median
Coordinate

Map Pattern of Weights

Random Linear
Gradient

Quadratic
Gradient

Periodic (i.e.,
SINE

Function)

uniform—Beta(1, 1)

theoretical U, V 0.5, 0.5

complete data U 0.50352 0.59413 0.65100 0.55542

complete data V 0.50119 0.59295 0.65240 0.61038

sampled data U 0.50517
(0.06348)

0.59524
(0.05589)

0.65026
(0.05813)

0.55680
(0.05808)

sampled data V 0.49924
(0.05947)

0.5929
(0.05795)

0.65114
(0.05694)

0.60905
(0.05421)

skewed—Beta(9, 5)

theoretical U, V 0.35, 0.35

complete data U 0.35139 0.37292 0.38368 0.36325

complete data V 0.35265 0.37169 0.38448 0.37711

sampled data U 0.35228
(0.02154)

0.37254
(0.02218)

0.38397
(0.02151)

0.36470
(0.02146)

sampled data V 0.35359
(0.02395)

0.37155
(0.02086)

0.38406
(0.02247)

0.37783
(0.02105)

Note: Standard errors (the input for standard distances) are in parentheses. Map pattern generators (all demand
weight specifications include adding 1 to eliminate the prospect of wi = 0; all map-wide averages are between 5
and 11): (1) random—Poisson(µ = 4) + 1 (µ = 5, σ = 2); linear gradient—9(u + v) + 1 + 0.01 × Normal(0,1) (µ = 10,
σ ≈ 11/3); quadratic gradient—5(u + v)2 + 1 + 0.01 × Normal(0,1) (µ ≈ 6.83, σ ≈ 4.20); and periodic—5[SIN(u π)
+ 2SIN(v π)] + 1 + 0.01 × Normal(0,1) (µ ≈ 10.55, σ ≈ 3.44).

The simulation experiment outcomes yield several important implications. Foremost
of these is, as in a proof of concept demonstration, that solving the p = 1 median problem for
randomly selected and substantially smaller subsets of demand points, and then averaging
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these computations, offers a reliable alternative to solving the original excessively large
spatial optimization problem; sampling theory productively applies to spatial optimization
contexts, and, when possible, should be exploited to reduce demanding computational
burdens affiliated with combinatorial geometry. This finding furnishes a useful tool for
p > 1 median problems. In other words, although analysts may never find the substituting
of sampling for solving the p = 1 median problem to be a real time saver, the very close
correspondence reported here between a sample average and its complete data parent
calculated spatial median confirms their substitutability, suggesting a hypothesis stating
that this same substitution is possible for p > 1 median problems. Furthermore, the
centrographic tools of standard distance [28] and standard deviational ellipse [29] may
well allow insightful additional analyses of a set of sample spatial medians, which is
an appealing issue for future research. Second, skewed point distributions in the plane
as well as latent spatial autocorrelation in the geographic distribution of weights may
counterbalance to some degree, and are potentially exploitable georeferenced data features
when engaging in spatial optimization.

The resampling procedure utilized is as follows: initially, a sample size of 50,000 was
drawn randomly from a unit square; each replication selected a random starting name in
the interval [1] from a single random permutation of the originally sampled 50,000 point
names, each choosing a 100-point sequence from the global permutation, beginning with
that starting name.

3.2. The p = 2 Spatial Median Problem

Once p > 1, the spatial optimization problem then loosely resembles multivariate
statistics cluster analysis problems, with regional subsets of demand points in spatial
statistics mimicking group/cluster subsets of observations in conventional statistics. Simi-
larly, interest shifts from global to p regional medians. One infamous complication here
is that the objective function (1) minimum is not necessarily unique (e.g., for uniform
distributions of weights and demand points, identical objective function optimal solutions
can exhibit a north–south or an east–west orientation); this feature is more rampant for
uniform distribution contexts (points, weights, or both), with the presence of non-zero
spatial autocorrelation often partially alleviating its severity. Solving this p = 2 median
problem is essentially reduced to the methodically iterative allocation of each of the n de-
mand points to one of two non-overlapping coterminous geographic regions, after which
the Kuhn–Kuenne [16] algorithm is separately applied to each subset of demand points to
compute regional spatial medians. This iterative estimation process sequentially computes
a pair of regional spatial medians and then allocates each of the n demand points to its
closest spatial median, alternating between these two steps until no change occurs (i.e.,
convergence). This conceptualization is the basis of the ALTERN heuristic algorithm [30].

3.2.1. The p = 2 Univariate Spatial Median Problem

Once more, for illustrative purposes, the discussion here begins with a 1-D geographic
landscape that involves scrutinizing an extension of the preceding Hotelling problem.
Only for a uniform distribution of demand (Figure 3b) are the regional spatial medians
evenly spaced at the first and third quartiles of the unit interval; unlike in the p = 1 case,
as the symmetric geographic distribution of demand goes from sinusoidal to uniform to
bell-shaped in this p = 2 case, the absolute location of the pair of regional spatial medians
changes, repositioning from near the interval extremes to near the global spatial median
location. Besides this tendency for a variable spacing of regional spatial medians that
is a function of the form of the geographic distribution of demand (which reflects upon
latent spatial autocorrelation), another important and noteworthy outcome highlights the
persistent spacing gap between them. In all cases, the allocated demand’s split percentage
is 50–50. This scenario is the first hint of a link between spatial median problems and
quantile and order statistics.
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Figure 2. Sample spatial median geographic distributions (gray, red, and black filled circles respectively denote sample
(n = 1000), complete data, and averaged sample spatial medians); red crosshair reference lines denote theoretical marginal
and bivariate spatial medians—in all cases, complete data and average spatial medians essentially collocate. Top left (a):
random independent weights. Top middle (b): linear gradient of weights. Top right (c): quadratic gradient of weights.
Middle left (d): periodic geographic distribution of weights. Middle (e): random independent weights. Middle right
(f): linear gradient of weights. Bottom left (g): quadratic gradient of weights. Bottom middle (h): periodic geographic
distribution of weights. (a–d): uniform points distribution; (e–h): skewed points distribution.
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Figure 3. A representative range of possible distributions of demand across a unit interval. Gray curves denote the
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Top left (a): sinusoidal demand distribution. Top middle (b): uniform demand distribution. Top right (c): bell-shaped
demand distribution. Bottom left (d): negative-skewed demand distribution. Bottom middle (e): positive-skewed demand
distribution. Bottom right (f): multimodal demand distribution.

3.2.2. The p = 2 Bivariate Spatial Median Problem

One important univariate p = 2 spatial median feature that directly transfers to p = 2
bivariate spatial median regional pairs arises from the separation tendency in a distribution
of demand across a 2-D geographic landscape, paralleling a 1-D geographic landscape
spacing consequence (Figure 3); in other words, the pair of spatial medians fail to form
a geographic cluster. This dispersion propensity, often positioning two regional spatial
medians on opposite sides of a geographical landscape’s global p = 1 spatial median,
can exploit latent spatial autocorrelation, which is a georeferenced data property that
frequently curtails the potential and/or magnitude of multiple optimal solutions. Another
Overton and Stehman [27] spatial sampling protocol reconnaissance retrieves appropriate
geographic tessellation stratified design guidelines effective within spatial autocorrelation
situations that help ensure a variety of random sampling can sustain spatial median spacing.
Because positive spatial autocorrelation signifies redundant attribute data information in
nearby locations, geographic tessellation-based stratified sampling has values within its
areal unit polygons that are relatively similar, producing repeated samples that are far more
alike than their unconstrained random sample equivalents. Exploiting this similarity facet
is not automatically a helpful strategy for p = 1 because a set of repeated samples performs
better when solely concentrating on its single global spatial median; simulation experiments
supplementing those of the preceding p = 1 expose a larger gap between average geographic
tessellation stratified vis-à-vis unconstrained simple random sample spatial medians and
their respective complete data counterparts, as visualized in Figure 2. Regardless, given
the p = 1 solution success with n = 100, this section employs a 10-by-10 regular square
tessellation superimposed upon the unit square, with the sampling design requiring a
single drawing from each of the 0.1-by-0.1 grid squares; for a uniform distribution of
points, the risk of zero-demand point quadrats is rather minimal when n is sizeable (e.g.,
50,000). Overton and Stehman [27] argue for hexagonal rather than square geographic
strata polygons; implementing their scheme provides better geographic coverage of a
unit square, but is far more complicated, particularly with regard to edge effects, and if
implemented, should merely enhance simulation experiment findings summarized in this
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section. Furthermore, whereas n = 50,000 is effectively not an extremely large problem for
p = 1, it is for p = 2: the solution time for an extremely efficient algorithm (TWAIN [31])
coupled with contemporary desktop computer resources is extrapolated to be at least
78 days (Figure 4a; exponentially increasing time), and as many as 226 (Figure 4b; n3-order
increasing time), with a prediction error of 1–2 days.

Table 3 tabulations reveal four salient findings: (1) As before, roughly 1000 replications
seem sufficient to realize the law of large numbers (also see Figure 5) for a spatial median
analysis; (2) The tessellation stratification reduces spatial autocorrelation in individual
samples (they are spread out by design), which is detectable in the lack of standard error
suppression (e.g., compare the appropriate matching entries in Tables 2 and 3). Uncon-
strained simple random sampling (utilizing the p = 1 resampling protocol), ignoring and
failing to acknowledge latent spatial autocorrelation, produces standard errors that are at
least twice as large as those for geographically tessellated stratified random sampling with
purely random weights; (3) The regional spatial median gap appears to be roughly on the
order of one-third of the largest distance in the geographic landscape (i.e.,

(√
2
)

/3 ≈ 0.5);
and (4) The pull by the solution’s non-uniqueness seems somewhat conspicuous.
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Figure 4. Central processing unit (CPU) timing (in seconds) experiments (n = 208 after four infeasible/excessive anomaly
removals) for p = 2 solutions (random samples from a uniform distribution of points and wi ≡1) with randomly selected
n ∈ (25, 500); predicted–observed correlations are at least 0.995. Left (a): an exponential trend line. Right (b): an n3 trend line.

A visual comparison of Figures 2 and 5 divulges a tendency for the 2-D sampling
distributions of points for p = 1 to be more circular (i.e., symmetric), and for p = 2 to be
more elliptical (i.e., skewed), in its geographic dispersion. Figure 6 magnifies this skewness
feature for Figure 5b. This distortion appears to arise from the non-uniqueness property
of p = 2 solutions, which tends to create a more circular pattern of potential optimal
solutions in a square/circle shaped geographic landscape. Removing samples struggling
to constitute alternative clusters reduced each simulation replication size respectively from
1500 to 1115; 1150; 934; and 1500. An examination of Figure 5d, which deliberately had no
centrifugal stragglers removed, underscores a penchant for p = 2 regional spatial median
formation bifurcations (e.g., north–south versus east–west, or northeast–southwest versus
northwest–southeast). Nonetheless, when selecting the majority from the concentration
samples, the average sample medians—the statistics of interest here—are very accurate
(Figure 5). As an aside, an alternative approach could be to identify both solution pairs,
when the true pair of regional spatial medians is unknown, and choose between them
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by allocating each demand point to its closest median (the Voronoi/Dirichlet/Thiessen
principle) in order to calculate the pair of regional objective functions (expression (1)), and
then select the pair of spatial medians with the smallest total objective function value.

Table 3. Uniform distribution of demand points p = 2 simulation experiment output summaries; a
single parent sample of n = 500, and 1000 resamples (without replacement) from it of size n = 100.

Demand
Points Dis-
tribution

Spatial Median Coordinate

Map Pattern of Weights

Random Linear
Gradient

Quadratic
Gradient

Periodic
(i.e., SINE
Function)

region #1

theoretical U
triangle 0.29289

rectangle 0.25000

theoretical V
triangle 0.29289

rectangle 0.50000

complete data U 0.74921 0.50940 0.58642 0.29617

complete data V 0.48371 0.78234 0.81068 0.68327

sampled data U 0.74979
(0.02094)

0.51026
(0.02161)

0.58840
(0.04718)

0.29731
(0.01607)

sampled data V 0.48451
(0.05633)

0.78300
(0.01095)

0.81223
(0.01116)

0.69387
(0.02193)

region #2

theoretical U
triangle 0.70711

rectangle 0.75000

theoretical V
triangle 0.70711

rectangle 0.50000

complete data U 0.24599 0.70223 0.75412 0.77668

complete data V 0.50031 0.32890 0.37663 0.55974

sampled data U 0.24982
(0.02075)

0.70190
(0.02322)

0.74355
(0.03638)

0.77080
(0.01317)

sampled data V 0.50255
(0.06146)

0.32999
(0.01625)

0.37797
(0.03768)

0.54873
(0.02427)

Note: Standard errors (the input for standard distances) are in parentheses. See Table 2 for the specifications of
the map pattern generator, and the definitions of demand point distribution. Resampling procedure: initially, a
10-by-10 square grid tessellation superimposed on a unit square created geographic strata, and a sample of size
five was drawn randomly from each strata; each replication randomly selected one sample from each strata.

3.3. The p = 3 Spatial Median Problem

Prevailing computer technology also enables investigations of modest-size p = 3
problems for which the calculation of exact solutions is possible for a rather small-size
n (e.g., as large as 100, but requiring considerable computer execution time, far more
than for the preceding p = 1 or 2 cases; see Figure 7). The combinatorial nature of the
general p-median problem is such that for p = 2, TWAIN evaluates n(n – 1)/2 possible
combinations (e.g., 4950 for n = 100); p = 3 for n between 9 and 10 achieves a similar order of
magnitude—for n = 500 and p = 2 (124,750 evaluations), the p = 3 value of n is between 12
and 13; these computations refer to n(n – 1)(n – 2)/6. In other words, extending the method
indorsed in this paper to p > 3 presents a challenge of devising more ingenious sampling
strategies that dramatically reduce severe solution time requirements. Continuing the
quest for a proof of concept by coalescing the solving of spatial optimization problems
with a proposal from a consensus of expert opinions on the central limit theorem, which
states that a minimum sample size should be at least 30, and the stratified random sample
size experiments for this p = 3 section that used n = 36 for a 6-by-6 strata grid—a square
grid—preserves sampling balance; thus, the p = 3 timing experiments (Figure 7) endorse
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this sample size as having an affiliated efficient CPU execution time. Furthermore, the
experiments utilized n = 72 (because its solution CPU execution time estimate is 2–3 min)
and 1000 resamplings (because their cumulative solution CPU execution time estimate
is 1–2 h). The preceding average resample solutions of p = 1 and p = 2 suggest that this
number is sufficient, at least for exploratory work.
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Figure 7. Central processing unit (CPU) timing (in seconds) experiments (197 after removing three infeasible/excessive
anomalies) for p = 3 solutions (random samples from a uniform distribution of points and wi ≡ 1) with randomly selected n
ranging from 25 to 75; predicted–observed correlations are at least 0.95. Left (a): an exponential trend line function. Right
(b): an n3.7 trend line function.

3.3.1. The p = 3 Univariate Spatial Median Problem

Yet again, and primarily for illustrative purposes, the discussion here begins with a 1-
D geographic landscape that involves scrutinizing an extension of the preceding Hotelling
problem. For this p = 3 case, only for a uniform distribution of demand (Figure 8b) are
the three regional spatial medians evenly spaced at the first, third, and fifth sextiles of the
unit interval; similar to the p = 2 case, as the symmetric geographic distribution of demand
goes from sinusoidal to uniform to bell-shaped, the absolute location of the extreme pair
of spatial medians changes, repositioning from nearer the interval extremes to nearer the
global spatial median location, which is also a regional spatial median for p = 3. In addition
to this tendency for a variable spacing of regional medians that is a function of the form of
the geographic distribution of demand (which reflects upon latent spatial autocorrelation),
another important and noteworthy outcome highlights the persistent spacing gap between
them, mirroring what also occurs with p = 2 solutions. A new manifestation is that the final
total demand assigned to each spatial median is not necessarily the same (this allocation
outcome characterizes only Figure 8b). This aspect complicates the notion of regional
medians by introducing the need to estimate allocated demand as well as locations (see
Table 4)—the second set of the preceding location-allocation problem. These unequal
total demand share allocations (which do not include drastic deviations from uniformity)
preserve the partitioning property of the Voronoi/Dirichlet/Thiessen polygon geographic
landscape, stating that the boundary between two geographically juxtaposed regions is
half the distance separating their spatial medians [32,33]; geometrically speaking, this is a
perpendicular bisector location for 2-D settings. Table 5 tabulates the demand allocations
for the three scenarios (Figures 1, 3 and 8) presented in this paper. This scenario also
reinforces the preceding revelation that a link exists between spatial median problems and
quantile and order statistics.
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Table 4. The iterative solution for Figure 7d, initiated by assuming equal total regional demand.

Iteration
Regional Demand Regional Spatial Median Objective

FunctionRegion #1 Region #2 Region #3 Region #1 Region #2 Region #3

0 0.500 0.000 0.500 0.137 0.440 0.759 0.250

1 0.387 0.276 0.337 0.097 0.440 0.766 0.117

2 0.381 0.292 0.327 0.095 0.440 0.767 0.115

3 0.374 0.298 0.328 0.093 0.440 0.767 0.114

4 0.371 0.301 0.328 0.092 0.440 0.767 0.114

5 0.371 0.305 0.324 0.092 0.440 0.767 0.114
Note: The objective function is the sum of the squared differences between the actual and ideal/uniform (i.e., 1/3)
allocations of demand to spatial medians.

Table 5. Percentage of allocations of demand to each spatial median for Figures 1, 3 and 8.

Geographic
Distribution of

Weights
p = 1

p = 2 p = 3

Region #1 Region #2 Region #1 Region #2 Region #3

sinusoidal 100 50 50 36.15 27.70 36.15

uniform 100 50 50 33.33 33.33 33.33

bell-shaped 100 50 50 30.92 38.16 30.92

negatively
skewed 100 50 50 31.95 38.72 29.33

positively
skewed 100 50 50 29.33 38.72 31.95

irregular
multimodal 100 50 50 37.11 30.47 32.42

Note: Bold denotes an equal distribution of shares of the regional demand.
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3.3.2. The p = 3 Bivariate Spatial Median Problem

Two important univariate p = 3 spatial median features that directly transfer to a
p = 3 bivariate spatial median regional triplet are their dispersion tendency across a 2-D
geographic landscape, often in the form of a triangular arrangement, and the proliferation
of unequal total regional demand allocations to regional spatial medians. This dispersal is
reminiscent of the packing of a plane when constructing urban geography central place
structures (e.g., [34,35]), which, for a uniform distribution of demand points, results in
a hexagonal lattice spacing of numerous regional spatial medians. The possible non-
uniqueness of a solution complication also persists in this context, more problematic than
for the p = 2 case, with spatial autocorrelation once again moderating it.

The preceding p = 2 sampling solution exploits spatial autocorrelation via a geographic
tessellation stratified random design, and is then improved by applying the ALTERN
heuristic to its result. The p = 3 procedure exemplified in this section builds upon this
approach by applying ALTERN to each individual sample rather than to a sample average.
This application is more effective because of the increased complexity companion accom-
panying increasing p. As mentioned previously, the simulation experiment performed for
this section’s analysis utilized a 6-by-6 sampling grid (to be close to the minimum sample
size of 30), n = 72 (to balance the stratified sampling with two observations per areal unit),
and 1000 replications (to allow the law of large numbers to take effect) because of timing
requirements. In addition, for comparison purposes, the execution of the ALTERN heuristic
from random allocation initiations furnishes benchmark optima. Table 6 tabulates selected
results for this numerical example; Figure 9 portrays the simulated sample of sampling dis-
tributions for the objective function value pairs. Solution frequencies appearing in Table 6
substantiate the contention that exploiting spatial autocorrelation in the geographic distri-
bution of weights is an effective strategy for solving spatial optimization L-A problems.
Although the ALTERN heuristic is extremely fast and could easily be executed 10,000 times
without truly taxing computing resources, repeatedly solving the exact p > 2 problem for a
6-by-6 stratification grid is not an onerous task, at least for p = 3. The tessellation stratified
random sampling design ensures a wide geographic landscape coverage when computing
a solution, a property that random sampling fails to guarantee. Furthermore, safeguarding
the representativeness of each sample (via spatial autocorrelation and geographic strat-
ification), together with the feasibility of each initial solution (e.g., regional groupings
of demand points are coterminous), tends to render globally optimal solutions. Adding
to these implications, Figure 9 unveils a strong tendency for spatial autocorrelation to
concentrate local optima near their corresponding global optima, as measured by objective
function values.
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Table 6. A summary of p = 3 spatial median solution quality frequency of occurrence simulation
experiment output; n = 72; 1000 replications.

Scheme Solution
Type

Sampling + ALTERN Random Initiation of
ALTERN

Frequency Objective
Function Frequency Objective

Function

random
exact 1 80.5101 1 80.5101

best sample 43 80.5101 92 80.5101

2nd ranked
sample 219 82.1280 123 81.1721

linear
gradient

exact 1 147.9170 1 147.9170

best sample 608 147.9170 0 147.9170

2nd ranked
sample 282 148.4167 873 148.4207

quadratic
gradient

exact 1 98.6672 1 98.6672

best sample 725 98.6672 0 98.6672

2nd ranked
sample 252 99.4786 669 98.6812

periodic
geographic
distribution

exact 1 154.0689 1 154.0689

best sample 176 154.0689 47 154.0689

2nd ranked
sample 176 154.8659 141 154.8659

Note: No exact solution sets in these case studies contain multiple, non-unique global optima.

4. Discussion and Conclusions

To summarize, 1-D and 2-D statistical analyses can be illuminating for spatial sta-
tistical problems, transcending the conventional univariate and multivariate statistical
specialties. These usages take interested scholars of the statistics discipline to the realms of
centrography and spatial statistics, addressing ideas such as spatial mean, spatial median,
standard distance, and a range of 2-D probability functions and random variables. This
paper employs 2-D independent variables—and hence joint pdfs that are products of their
pairs of marginal pdfs—to describe geographic distributions of discrete points across a
continuous landscape, as well as to describe attribute values attached to these individual
geocoded locations. The toy 1-D constructions assist in elucidating more real-world, tai-
lored 2-D constructions, with the spatial medians treated here ranging from a single global
to three regional locations.

In conclusion, a primary goal of this paper was to help fill the existing gap in the
scholarly literature at the interface of spatial statistics and spatial optimization, with a sec-
ondary aim of encouraging considerably more future collaboration and interaction within
this nascent domain. The research summarized here builds upon the fundamental and
foundational spatial statistical concept of spatial autocorrelation: geographically informed
sampling designs acknowledging a non-random mixture of geographic demand weight
values that manifests itself as local homogeneous spatial clusters of these values can help
spatial optimization techniques determine spatial optima, at least for L-A problems. One
valuable discovery during this investigation is that existing but ignored spatial autocor-
relation latent in georeferenced demand point weights undermines spatial optimization
algorithms; unnoticed spatial autocorrelation seems to obscure their targets on the one
hand, and on the other hand, they distract their trajectories from tracing a path to global
optima by prodding them to stray to local optima along the way.

The existence of non-unique global optima for a spatial optimization problem is a seri-
ous complication apparently assuaged, at least to some degree, by spatial autocorrelation.
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This obstacle may be a function of relatively small n and/or p, a uniform distribution of
demand, the shape of a geographic landscape, the prevailing of zero spatial autocorrelation
(an unlikely condition), or some combination of these and other factors. The reported
cataloging in Table 6 raises existence questions about this possibility for practical empirical
settings. Nevertheless, this paper documented success in solving very modest-size spa-
tial optimization problems in order to obtain sizeable solutions for spatial optimization
problems (which Figures 4 and 7 timing experiment scatterplots disclose as problems
that quickly become intractable, and eventually infeasible) merely by exploiting spatial
autocorrelation. This offers an innovative passageway—to fruitful future spatial statistical
research endeavors in particular, and to those that are all-purpose statistical in general.

Future research also needs to expand p beyond 3, and establish how to generalize and
upscale the findings encapsulated in this paper. In addition, other spatial optimization
problems warrant comparable analytical attention, as do connections with other statistical
science subfields such as quantile and order statistics.
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