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1. Introduction

Spatial statistics offers benefits to science and society by furnishing methods for analysis
and inference in the presence of correlated georeferenced data (Griffith, 2020), as, for example,
sound statistical imputation via kriging and decision support via spatial autoregressive and Moran
eigenvector spatial filtering (MESF; Griffith, 2003a,b) model specifications. Conversely, science and
society increasingly recognize the existence and importance of spatial statistics, as demonstrated
by a special issue of the US Centers for Disease Control’s (2019) journal Preventing Chronic Disease,
and by the emergence of such endeavors as the spatially integrated social sciences.! Its interface
with spatial operations research, which at present is virtually nonexistent, is another emerging
interdisciplinary endeavor at the frontiers of spatial statistics that should prove beneficial to both
science and society. The overarching objective of this paper is to address this particular theme and
crystalizing interface.

An important practical problem in spatial optimization is the location-allocation (L-A) problem,
whose statistical context is nearly identical to that of geographically constrained cluster analysis.
A brief overview of this L-A problem appears in Section 3.1 because it is the important exemplar
used throughout this paper for illustrative purposes. Three features of this and many other spatial
optimization problems potentially can benefit from spatial statistics. First is the problem of missing
values. An advantageous strategy analysts confronted with incomplete data can pursue is to impute
substitute values in order to decrease the uncertainty of a L-A problem’s calculated optimal solution
deviating from its complete data optimum. Georeferenced data imputation is a problem solved by
spatial statistics. The other two spatial statistics issues discussed in this paper benefit searching
for an optimal solution. The local indicators of spatial association (LISA) analysis, which appears to
flag the region of a geographic landscape in which an optimal solution resides, and spatial sampling
designs with their prevailing spatial autocorrelation (SA) acknowledgments, which increase optimal
solution search efficiency. Educating practicing spatial statistician about these interface topics offers
gains to these scholars in their repertoire of applications for delivering spatial statistical benefits to
society as well as interdisciplinary scholarship.

2. Spatial optimization: a normative basis for decision making

Part of spatial statistics concerns inferential spatial decision support, often within the context
of geographic map patterns characterizable by SA (e.g., Csillag and Boots, 2005). The results of
such problems tend to be more descriptive/inferential than normative in nature. In contrast, spatial
optimization may be defined as spatial decision support involving mathematically/computationally
maximizing/minimizing a formulated objective function related to a geographic problem. It tends
to be more normative than descriptive or inferential in nature. This differentiation between the
two disciplinary missions, expressed in the context of map pattern, means that the primary use of
SA in spatial statistics is improved descriptive (re statistical inference transfers a sample statistics
description to its parent population parameters), whereas its primary potential use in spatial
optimization is improved optimal solution search success (i.e., normative).

Spatial optimization embraces a wide variety of themes, from network route selection/shortest
paths, through designing efficient/effective spatial sampling networks, land-use resources alloca-
tion, and regionalization like political districting, to a web of multiple demand points p-median L-A
assignments (e.g., Delmelle, 2010; Tong and Murray, 2012; Ligmann-Zielinska, 2017). It shares topics
with spatial statistics in each of these broad thematic areas. Common network subjects include min-
imum spanning trees and Delaunay triangulations and their dual Gabriel graphs vis-a-vis geographic
neighbors identification (e.g., Dray et al,, 2021, p. 21). Common sampling design subjects include
the number and spacing across two-dimensions of monitoring locations (e.g., Miiller, 2007; Mateu
and Miiller, 2012), such as that underlying tessellation stratified random sampling (e.g., Overton
and Stehman, 1993). Common land-use resource allocation subjects include remotely sensed image
classification in the presence of SA (e.g., Zhang et al, 2021). Common regionalization subjects

1 https://escholarship.org/uc/spatial_ucsb_csiss.
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include SA informed cluster analysis (e.g., Ballari et al., 2018). Finally, and the illustrative spatial
optimization focus of this paper, SA latent in the geographic distribution of demand determining
facility (e.g., retail outlet) locations via the L-A problem (e.g., Griffith, 2021).

The L-A problem (i.e., computing one or more supply locations in a way that most efficiently
satisfies a geographically distributed set of demand points) has may variants (Church and Murray,
2018). Some versions consider facility capacities, whereas others do not. Some conceive a time
sequencing for the incremental provision of multiple facilities, whereas others do not. Some
minimize weighted distance to facilities - which relates to the bivariate median of spatial statistics
(Small, 1990; Vardi and Zhang, 2000) - whereas others minimize distance to the furthest demand
point, and yet others determine the smallest number of facilities together with their locations so
that each demand point is serviced by at least one facility (i.e., the p-center problem). In other
words, formulation of a spatial optimization objective function of this type may be dependent upon
the goal of the optimization modeling in terms of: minimizing impedance or number of facilities,
or maximizing (capacity) coverage or market share, among other criteria. The ensuing discussion
focuses on this first objective for a single facility, a classical spatial optimization problem known as
the p-median or L-A problem for locating p facilities.

Meanwhile, the relevant spatial optimization challenge to which spatial statistics contributes
pertains to calculating an unknown optimal solution that often is very difficult (if not impossible)
to determine for highly combinatorially complex location problems. The optimal solution often
requires mathematical programming algorithms such as branch-and-bound (Morrison et al., 2016).
This particular algorithm consists of a combinatorial tree enumeration of all possible solutions, with
upper and lower optimal solution bounds applied to the branches of this tree in order to eliminate
without evaluation large numbers of non-optimal solutions; if no bounds are available, it reduces to
an exhaustive search. With regard to this example, this paper aspires to recommend ways to utilize
local SA that effectively would improve these upper and lower estimated bounds. As such, this
paper more generally aims to ascertain whether or not exploiting SA can facilitate improved spatial
optimization solution efficiency by ultimately furnishing tools that increase solution speed and/or
shrink the extent of a solution space, making previously intractable spatial optimization problems
tractable.

3. Spatial statistics and spatial optimization: a potential for synergies

One objective for establishing an informative interface between spatial statistics and spatial
optimization, especially with regard to the p-median L-A problem, is to improve the solution quality
and speed in solving a class of problems sometimes encompassing a grid of facility locations—such
as locating new fire stations to reduce fire loss in residentially-expanding communities, or closing
existing schools in population-declining communities. Spatial scientists label these challenges L-A
problems; they are very difficult to solve optimally (i.e., the selection of best locations), but still
commonly formulated and somehow solved in many cases requiring planning networks of facility
locations (e.g., parks, playgrounds). Church and Murray (2018) published a timely overview of this
academic field. This paper examines the very common tendency for (dis)similar attribute values
(i.e., weights; e.g., residential housing concentrations) related to facility service usage to cluster
geographically (i.e., SA), an indispensable concept of spatial statistics. This paper demonstrates how
using this available but overlooked SA information can assist in more efficiently and effectively
solving these L-A problems, a topic nearly absent from the spatial sciences literature. This new
tactic permits better and faster computational solutions to large L-A problems, for the location of
either public or private facilities (a contribution to society).

Few published papers articulate relationships between SA latent in the geographic distribution
of demand and corresponding L-A problem solutions. In other words, the literature describing
relationships between SA and locational solutions to L-A problems is scant, with Griffith (2021)
one of the very few exceptions. This paper also helps fill this gap, going well beyond the almost
exclusively one-dimensional cases treated by Griffith (2021). For example, this paper documents
a previously speculated relationship between (local) SA in service demand variables and solutions
to L-A problems. It further documents the existence of this relationship. This investigation of the
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novel interface between spatial statistics (via SA) and spatial optimization (e.g., L-A) provides new
knowledge and convincing evidence that should spur further spatial statistical oriented scientific
research in related and neighboring disciplines, including not only operations research, but also
spatial econometrics, regional science, and geography.

3.1. The L-A problem: a brief overview

The principal goal of p-median L-A problems is to find the locations of p > 0 central facilities
in geographic space serving n > 1 demand points such that the cost of flows/travel between each
demand point and its closest central facility is a minimum (Cooper, 1963; Hakimi, 1964); this setting
is identical to determining p regional spatial medians. Publications by Scott (1970), Farahani and
Hekmatfar (2009), and Eiselt and Marianov (2011) furnish a timely review of this L-A problem. As
such, L-A problems involve determining locations in space, either a single location in its simplest
form, or multiple locations in its more complicated form. The spatial statistical conceptualization
counterparts are the bivariate median for a 1-median L-A problem (Small, 1990; Vardi and Zhang,
2000), and p regional medians for coterminous cluster analysis (Johnson and Wichern, 2008, §12.3-
§12.5) determined subsets of points for a p-median L-A problem. In one of its simplest forms, a
L-A problem aims to find a set of locations that minimizes the sum of distance-related weighted
costs, which is its objective function. The p-median problem, one of the standard L-A problems,
is widely applied in theory and in practice, and relates directly to the bivariate geometric median
studied in spatial statistics (Eftelioglu, 2017). Solving the L-A problem is classified as NP-hard (Kariv
and Hakimi, 1979), as well as solving it in continuous space is very numerically intensive and
difficult even for small p > 1 (e.g., ReVelle and Eiselt, 2005); computationally calculating an optimal
solution is arduous, even when feasible solutions exist. This situation parallels that for multivariate
agglomerative cluster analysis techniques, many of which render a locally rather than a globally
optimal solution (e.g., randomizing the order of input often produces different groupings). The k-
means, k-medians, and k-medoids procedures are the most similar to a L-A problem (e.g., Koehn
et al., 2010). Addressing this challenge continues to be a priority in the cluster analysis literature
(e.g., Pacifico and Ludermir, 2021), with one of its difficulties being a simultaneous determination
of the number of clusters (Ezugwu et al., 2021). This also continues to be a priority challenge in
the L-A literature, building upon various heuristic algorithms? to seek global or near-global optima,
with one of its difficulties being clusters comprised of coterminous points (Assung et al., 2006; Guo,
2008). These algorithms are executed to quickly find optimal or near-optimal solutions (Mladenovi¢
et al., 2007). Meta-heuristics strategically provide a general framework to design heuristics to
achieve an improved (i.e., much closer to a global optimum) solution and computational efficiency.

Inevitably, L-A problems are defined in space; for example, distances can be used as cost, and
weights can be constructed as a surface (e.g., a map). Recent research discusses a relationship
between spatial configurations in L-A problems and SA. Kim et al. (2019) argue that clusters of
similar weight values can be utilized in solving a p-median problem. They find that demands
closely located in space with similar weights tend to be assigned to the same facility, whereas
facilities with very similar locations are not to be chosen together to serve an individual demand
point. Furthermore, Griffith and Chun (2015) explore a relationship between local SA indices of
weights and locations of p-median solutions, and show that the locations of p-median solutions
move close to spatial clusters of high weights. In other words, the map pattern (i.e., SA) of weights
can be informative when determining spatially optimal solutions. As such, spatial statistics offers a
contribution to handling the globally optimal solution challenge of many p-median L-A problems.

2 The application of an orderly sequence of simple, intuitive, quick, and efficacious computer calculation
rules/operations based upon selected principles that allow each problem-solving set to quickly find a good/feasible but
not necessarily globally optimal, solution.
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3.2. The role of SA in spatial optimization

One issue is that the map pattern of weights quantifying discrete demand points distributed
across a geographic landscape is not random; rather, it almost certainly exhibits positive SA,
a fundamental theme in spatial statistics. When solving spatial optimization problems, SA can
come into play in three distinct ways: (1) by helping to reduce potential solution spaces, and,
hence, making the solving of large-size L-A problems, for example, tractable and more efficient
to inventory the full range of feasible and optimal solutions; (2) by helping delineate an initial
solution space that can lead to an optimal or a near optimal solution so that L-A models, for
example, can efficiently render these exact or near optimal solutions based upon heuristics; and,
(3) by enhancing the quality of solutions through the use of missing data values (e.g., weights in
L-A problems) imputations to bolster optimization modeling results. Griffith and Paelinck (2018)
illustrate these notions for p-median problems utilizing simulation experiments (essentially a proof
of concept demonstration). They test the utility of SA using data for Poland where the geographic
resolution is a powiat (formerly NUTS-4 areal units equivalent to US counties) and the number of
units (n = 380) is much greater than any standard dataset pedagogically used to benchmark the
performance of models or heuristics for p-median problems (e.g., the Beasley OR library dataset has
n = 40). The literature stresses that the quality of generated solutions using heuristics such as Tietz-
and-Bart (TB; 1968), well-known algorithmic approaches due to their wide use and extendibility
to other L-A problems, deteriorates with increasing p (Rosing et al., 1979; Brimberg and Hodgson,
2011; Daskin, 2013), and finding an exact solution also is limited to rather small n and/or p because
of inherent computational complexities (Scott, 1970; Jamshidi, 2009; Daskin and Maass, 2015).

The hypothesis of this paper posits that exploiting SA can dramatically improve this compu-
tational situation. The following three avenues advance this possibility: imputation, local SA hot
spot and spatial outlier analysis, and SA-informed spatial sampling. The first and third of these
possibilities conceptualize demand weights as realizations of an auto-random variable field having
a spatial dependence that can be modeled as SA. This particular correlation represents redundant
information exploitable for spatial forecasting (e.g., kriging) and replicate sampling (e.g., tessellation
stratified random sampling) purposes. Meanwhile, the second possibility conceptualizes demand as
constituting a heterogeneous population in which the individual calculation terms in a SA statistic
(i.e., a local SA measure) pertain to spatial outliers and/or hot/cold spots: unlike a stationary spatial
random variable, some of the largest weights are nearby small weights, or the largest/smallest
local SA statistics are too extreme. In the tradition of permutation-based non-parametric statistics
(popularized for SA by Cliff and Ord, 1973), the L-A spatial optimization goal pertains to the specific
map realization at hand, rather than inference about the existence of geographic clusters in a
population, and hence local SA hot spot and spatial outlier analyses become instances of relative
extreme clustering within a given geographic landscape. This context provides an opportunity for
theory building using statistical outliers (e.g., Gibbert et al,, 2020), not data description model
identification and estimation.

A brief mathematically detailed L-A overview needs to preface any addressing of these three
subjects. As a version of it, the standard p-median problem may be formulated as follows, using
integer-linear programming for discrete space with n points, for which the solution is the set {(U;,
Viyi=12,...,pk

n p
Min = 33 dguy/tu — U2 + (o — V2 (1)

i=1 j=1

p
st Z Yi=p (2)
p =1
Y ay=1Vi (3)
j=1

3 http://people.brunel.ac.uk/~mastjjb/jeb/info.html.
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A —Y; < 0Vi,j (4)
Y; {0, 1} (5)
A €{0,1} (6)

where (u;, v;) is the Cartesian coordinates of demand point i, w; is a weight (quantifying the in situ
magnitude of demand) at demand point i, dj = \/(Uj — Uj)? + (v; — V;)? is the Euclidean distance
separating demand point i and facility j, A; is 1 if demand point i is assigned to facility j, and 0
otherwise, and Y; is 1 if facility j is selected, and 0 otherwise. Once p is given, this specification
ensures that each demand point is allocated to one and only one of the p median facilities, and
that at least one demand point is allocated to each facility. If p = 1, then the solution (Uj, V;) is
the global spatial median for the geographic distribution of weights. If p > 1, then the solution (U;,
V;) is the jth of p regional medians (as noted previously, this outcome relates to the conventional
multivariate statistics technique of cluster analysis).

4. Spatial statistics, data imputation, and spatial optimization

A practical problem frequently encountered by many empirical researchers is the presence of
missing values in their datasets; for geospatial datasets, thematic maps contain gaps or holes.
Effectively handling this data analysis complication in general has a long history (e.g., Schafer,
2000; Little and Rubin, 2002), with one popular procedure being to replace missing values by sub-
stituting comparable known/calculated values in their dataset places. Methodologically speaking,
the expectation-maximization (E-M) algorithm supplies a sound statistical foundation for tackling
this problem (e.g., McLachlan and Krishnan, 2008). One spatial statistical counterpart to this routine
is geostatistical kriging; another more akin to standard E-M algorithm implementations relies on
spatial autoregression and MESF (Griffith and Liau, 2021).

Pursuing spatial auto-normal model specifications, suppose Y, denotes the n,-by-1 (n, = n—ny,)
vector of observed response attribute values, and Y,, denotes the n,,-by-1 vector of missing response
values. Let X, denote the vector of predictor values for the set of observed response values, and
X denote the vector of predictor values for the set of missing response values. Let 0, denote an
no-by-n,, matrix of zeros, and 0,, denote an np,-by-1 vector of zeros. Partition vector 1 into 1,,
denoting the vector of ones for the set of observed response values, and 1,,, denoting the vector
of ones for the set of missing response values. Let I, denote an n,-by-n,, identity matrix. Finally,
let W denote the row-standardized spatial weights matrix, with W,, containing the spatial weights
for the pairs of known attribute value locations, W,,, and Wy, containing the spatial weights for
the pairs of known with unknown value locations, and W, containing the spatial weights for the
pairs of unknown value locations. The spatial statistical autoregressive response (AR; i.e., a spatial
econometrics spatial lag*) model specification may be written, using partitioned matrix notation,
for imputation purposes as

Yo _ 10 Xo
(o )= n)=(x)r
Woo Wom Yo 00
Y, s 7
+”<me wmm><vm>+<—lm>(’")“ %
where Sy is the intercept term, § is the p-by-1 vector of regression coefficients for p covariates, p is

the SA parameter, and ¢ is an p-by-1 vector of independent and identically (i.e., iid) normal random
errors. In this specification, Yy, is treated as a vector of parameters during estimation (after all, it is

4 Estimating Eq. (7) involves a Jacobian term that is more complex than the standard spatial statistical Jacobian term.
It is given by —ﬁ [>h LN (1= pAi) — 3§ LN (1 — pay)], where LN denotes the natural logarithm, the first set of
n eigenvalues (1;) is from matrix W, and the second set of m eigenvalues (wy) is from matrix Wy,n.
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a vector of conditional expectations), which requires nonlinear regression techniques for estimation
purposes. As such, &;; = 0,,,. These imputations are those discussed by Griffith et al. (1989), and are
equivalent to those obtained with kriging (Griffith and Layne, 1997).

Pursuing MESF (Griffith, 2003a) specifications circumvents the preceding complications, which
are more severe for non-normal random variables (e.g., Poisson, negative binomial, Bernoulli, and
binomial). It replaces the spatial weights matrix components in Eq. (7) with an eigenvector spatial
filter (ESF). This ESF — which is a linear combination of selected spatial weights matrix eigenvectors —
specification permits the calculation of standard imputations for a linear model using the following
estimation equation:

K
(3 ) =so( ) (X )aee (% Yo (B Jpare @
k=1

where By denotes the p-by-1 vector of regression coefficients for p covariates, K is the number
of eigenvectors selected from the candidate vector set for constructing an ESF, E, and Eg
respectively denote the parts of eigenvector k associated with the observed and missing values,
and B, denotes the regression coefficient for eigenvector E, used to construct the ESF in question.
Imputations here are based upon the generalized linear model (GLM) counterpart to Eq. (8), outlined
in Griffith and Haining (2010), for binomial random variables, and in Griffith (2013), for Poisson
random variables.

Although few published papers articulate relationships between SA latent in the geographic
distribution of demand and corresponding L-A problem solutions, Griffith (1997, 2003b) constitutes
one of the few exceptions. He exploits SA in the geographic distribution of demand having missing
values to compute imputations for them for p = 1 and 2 spatial median continuous space exact
solution problems. Without these approximate values, demand becomes zero, causing its point
location to disappear from the L-A problem. Although these two papers do not focus on the rela-
tionship between the latent level of SA and L-A spatial optimization, they show that a map pattern
affects optimal L-A solutions. With regard to societal concerns, this type of solution is important
when a L-A problem formulation is in terms of attributes governed by confidentiality/privacy
restrictions. Government agencies rarely release income figures, disease counts, genetic marker
recordings, and the such, for sufficiently small geographic areas when these quantities become
sensitive data (e.g., too few households/firms inhabit an areal unit polygon to ensure anonymity
through aggregation).

For illustrative purposes, Fig. 1 portrays the geographic distribution of industrial employment
location quotients (LQs) as weights, w; (i = 1, 2, ..., 380), by powiaty (roughly equivalent to US
counties) across Poland. SA is visibly observable in the two maps. Furthermore, Fig. 2 presents and
pinpoints some of the p = 1, 2, ..., 10 median solutions for this Poland dataset; their calculations
were the L-A solutions obtained with IBM CPLEX Optimizer 12.8.°> Among them, solutions for p = 1,
2, 3, and 4 appear on the Fig. 2a map. Because both n and p are relatively small, all instances were
solved to optimality within several minutes.

Table 1 summarizes output from a simulation experiment utilizing the same Polish data, but
to explore impacts of randomly missing data on the p = 1 L-A solution. Eq. (8) furnishes the
imputation instrument, and suppression was for a range of occurrences between 0% and 90%, in
10% increments. LQs are rescaled (i.e., divided by the matching coarser level reference percentage)
georeferenced binomial random variables, population density commonly is an effective social
science covariate, and imputation exploits SA in its role as redundant attribute information. For
this specimen empirical example, log-population density (as the weighted sum of its linear and
quadratic versions) accounts for roughly 14% of the geographic variation across Poland powiaty in
the 2013 industrial LQs specified as a binomial regression response variable, with 29 MESF adjusted

5 This advanced computer optimization package provides flexible, high-performance mathematical programming solving
procedures for linear, mixed integer, quadratic, and quadratically constrained problems. Its efficiency rests upon limiting
an optimal solution to a predefined set of potential solution points on a plane.
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Fig. 1. The 2013 Polish industrial employment LQs geographic distribution. (a) by powiat; LQ magnitudes are directly
proportional to grayscale darkness. (b) converted to weights attached to powiat centroids; LQs are directly proportional
to their filled circle size.
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Fig. 2. Selected p-median solutions determined by CPLEX; the set of potential solution points is the 380 areal unit
centroids.

spatial weights matrix eigenvectors - 22 depicting positive and nine depicting negative SA, selected
from respective candidate sets containing 85 and 119 vectors - accounting for another roughly 45%
of this geographic variance. These LQs exhibit moderate positive SA (i.e., Moran Coefficient = 0.45,
Geary Ratio = 0.57), whereas the binomial regression residuals exhibit only trace SA (with their
individual index null hypothesis probabilities exceeding 0.2). The accompanying excess binomial
variation decreases from 1916.7 to 1454.7 by including the population density covariates, and then
to 680.6 by including the MESF eigenvectors; although this overdispersion still is excessive, its
reduction corroborates the prominent role SA plays in these geospatial data.

One important reinforced finding from Table 1 is that even though the p = 1 solution is unbiased
with or without acknowledging latent SA for random data value suppression, involving this source of
duplicate information in the solving of spatial optimization problems reduces uncertainty associated
with the final solution. This contribution can be a windfall when confronting societal issues.

5. Spatial statistics, hot spot analysis, and spatial optimization

The widely known L-A majority theorem supplies a critical ingredient for a convincing demon-
stration of an important role LISA (e.g., Anselin, 1995) statistics can play in solving L-A problems.
To begin,

MAJORITY THEOREM (MT): For an n destinations p = 1 source location-allocation (i.e., p-median)
problem in continuous space, with n > 1 and Euclidean distance as the metric, if a single weight

n .
wy > @ then the demand point (i, vi) is the optimal location (i.e., spatial median) solution.

8
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Table 1
Missing and imputed weight results for the 2013 Poland industrial LQs after converting the country’s coordinates into
those on a unit square; random sampling without replacement weights suppression; 1000 simulation replications.

% suppressed  Missing weights set to 0 Missing weights imputed
n Uy Vi n Uy Vi

0 380  0.44548 0.44324 380  0.44548 0.44324

10 342 0.44528 (0.00554)  0.44358 (0.00684) 380  0.44620 (0.00128) 0.44332 (0.00144)
20 304  0.44564 (0.00877)  0.44326 (0.01069) 380  0.44689 (0.00168) 0.44331 (0.00190)
30 266  0.44485 (0.01093)  0.44402 (0.01359) 380  0.44739 (0.00193) 0.44354 (0.00226)
40 228  0.44553 (0.01409)  0.44416 (0.01685) 380  0.44814 (0.00212) 0.44343 (0.00237)
50 190 0.44504 (0.01677) 0.44383 (0.02060) 380 0.44875 (0.00221) 0.44364 (0.00242)
60 152 0.44509 (0.02043)  0.44494 (0.02500) 380  0.44936 (0.00207) 0.44356 (0.00239)
70 114 0.44441 (0.02477)  0.44307 (0.03222) 380  0.45006 (0.00193) 0.44348 (0.00225)
80 76 0.44389 (0.03273)  0.44487 (0.04213) 380  0.45071 (0.001172)  0.44375 (0.00203)
90 38 0.44303 (0.04940)  0.44492 (0.05965) 380  0.45133 (0.00128) 0.44374 (0.00145)

NOTE: standard errors are in parentheses.

PROOQF: see Witzgall (1964).

In other words, for the global spatial median case, if the weight at any location is more
than half of the total sum of all n weights (each of which must be positive), then the spatial
median collocates with that demand point. In this context, weights function in a fashion similar
to frequencies of observations (i.e., repeated/tied attribute values that may occur many times)
in classical statistics. This result relates to the breakdown point (i.e., a measure of resistance to
misbehavior of observations in a dataset) of a median, which is 50%.

The MT describes a data anomaly, one that is both a univariate and a geographic outlier. Its
local SA Moran value is a function of w, = Z;’: w; + 1 (hence, it is a univariate outlier), whose
designation as the majority weight is without loss of generality because it occupies a random
location, coupled with the minimum majority situation of

(9)

n—2)w, +1 ( an—|—1>
— |\ wj - —— |,

n - n
where 2221 s the mean of the weights, Cnj denotes the cell (n, j) entry in the accompanying spatial
weights matrix, C, which is a substantial negative quantity (i.e., local negative SA), indicating a
spatial outlier. The neighboring values for location n have local Moran values that are a function

of
2w, + 1 2w, + 1
n n

e e B (10

n

The second term in expression (10) is negative and larger than the first term, which is positive.
Therefore, if the remaining (n — 1) weights are identically distributed, then the only local SA cluster
that would emerge by other than chance is for the location affiliated with weight w,; both this
location n and its neighbors would exhibit significant negative local SA. These results characterize
all MT geographic landscapes.

Simulation experiments explored a wide range of point distributions (i.e., uniform, normal,
skewed, and sinusoidal; see Fig. 3b) for a p = 2 continuous space L-A solution, with a challenging
second-largest weight being nearly as large as the largest weight, and in every case, the majority
weight is in the optimal solution set. Fig. 3c portrays an example showing that the majority weight
point is a hot spot; in that particular simulated case, the second largest weight demand point also
constitutes a hot spot (formed by it and one of its very close demand points), but with lower
statistical significance. Consequently, a conjecture can be made that, for p = 2 median continuous

9
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Fig. 3. MT illustrations for p = 1 and p = 2; numbers near points are their respective demand weights. Top left (a): a
30-by-30 grid, p = 1, n = 30, Moran Coefficient = 0.02, wmax = 50.34% of the total weights; red denotes the optimal
location and hot spot; black denotes nonsignificant local SA indices. Top right (b): specimen unit square point pattern
distributions for determining p = 2 solutions; 1000 replications; wme = 50.25% and wang—_jargest = 49.70%. Bottom left (c):
a sample uniform distribution of points for p = 2; red denotes the dominant hot spot, and orange denotes the second
largest hot spot. (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

n

space L-A problems with n > p demand points and Euclidean distance, if a weight w;, > Z wi/2,

i=1

then the demand point (ug, vg) is in the optimal solution set of locations.

For illustrative purposes, a simulation experiment evaluated the p = 1 case for the aforemen-
tioned various random variable types. Table 2 reports employed nearest neighbor threshold values
whose judicious selection ensured that each demand point had at least one neighboring point.
As Fig. 3 entries and the preceding discussion demonstrate, geographic distributions of LISA tend
to constitute two groups, the pair coinciding with the MT optimal locations, and essentially all
others; these were the criteria used to classify the LISA for comparison purposes (see Table 2).
Not surprisingly, the LISA groups neither conform to bell-shaped curves nor display constant
variance (i.e., they are non-normal random variables), compelling the application of non-parametric
statistical techniques. Table 2 tabulates an analysis of variance type of output for Kruskal-Wallis
treatments of these data. The computed chi-square statistics based upon 1000 observations are
roughly a thousand times greater than even the usual extreme null hypothesis « = 0.01 critical
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Table 2
Kruskal-Wallis results for the difference of MT and all other LISA, random weight types, and demand point patterns;
n = 1000 and 1000 replications.

Statistical Underlying geographic distribution of points
dlSFnbUtlon of Uniform Skewed
weights
Threshold distance n; range Chi-square Threshold distance n; range Chi-square
identifying (1df) identifying (1df)
neighbors neighbors
Uniform 0.10 2-64 5398.9 0.03 1-64 4964.5
(p < 0.0001) (p < 0.0001)
Normal 0.10 3-59 5190.1 0.03 1-55 4891.2
(p < 0.0001) (p < 0.0001)
Poisson 0.10 2-63 5754.8 0.03 1-57 5428.3
(p < 0.0001) (p < 0.0001)

NOTE: df denotes degrees of freedom; n; denotes the number of neighboring points for demand point location i.

value of 6.635; in other words, the LISA results are tremendously inconsistent with a null hypothesis
stating that they are the same for the MT optimal and the (n — 1) other demand point locations,
and certainly satisfy a criterion such as being at least four times greater than the designated critical
value (Ryan, 2009). In practical terms, this conclusion basically implies that LISA statistics identify
a negative hot spot that is (nearly) equivalent to the MT optimal solution.

An insightful finding about SA corroborated here is that the MT p = 1 optimal solution coincides
with a dramatically statistically significant LISA outlier value; in other words, these two values
collocate at an exclusive negative SA hot spot on a map. The potential academic contribution
underscored here is for empirical spatial scientists to exploit LISA and Getis-Ord (e.g., Ord and Getis,
1995) G;* statistics (which focus on positive SA hot spots) to better determine spatial optimization
solutions, such as those for L-A problems, when addressing societal issues.

6. Spatial statistics, SA-informed sampling, and spatial optimization

The combinatorial nature of L-A problems, like that for most spatial optimization research
questions needing answered, results in a massive number of possible feasible solutions, often too
many to evaluate in a sensible amount of time, let alone almost instantly, for reasonably modest
values of n and p. Discrete L-A problems can circumvent this complication to a large degree by
limiting the infinite number of solution points on a plane to a relatively small finite number of
designated points. A mixed integer optimizer such as CPLEX can solve such discrete L-A problems.
The count of different ways to allocate n demand points to p central facilities such that each facility
serves at least one demand point is given by [,C,] x [p - (n — p)]—location level x allocation level.
Theoretically, an exact solution may not be obtainable in a reasonable timeframe because this
problem is from a NP-hard class. Heuristic algorithms arose in response to this timing challenge.
In the past, the TB heuristic formulated by Teitz and Bart (1968) has been a popular L-A problem
solver, in part because it was the first such heuristic. It is a greedy algorithm (i.e., it makes a locally
optimal decision at each iteration) with substitution. It begins with a random set of facility locations
selected from the n demand points—its solution space is a set of discrete points. Next, it allocates
these n demand points to these selected facilities using the shortest distance between each pair
(i.e., the Euclidean metric), and then computes the objective function value. Finally, for each point
A in a current solution, and for each point B not in a current solution, the objective function is
recalculated after swapping B and A (i.e., substitution). If the new objective function value improves
(i.e., less than the incumbent value, further decreasing toward a lower minimum), then B and A
replace each other in the solution; otherwise, the solution retains these points’ previous allocations.
This heuristic found the optimal solution for every 49-demand-points p-median problem that
Rosing et al. (1979) submitted to it, regardless of the inputted starting solution. Furthermore,
Fotheringham et al. (1995) restarted TB only once for a set of 120 different L-A problems they
tested. Meanwhile, ALTERN (also ALT and ALA), formulated by Cooper (1964), solves continuous
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versions of the L-A problem. It embraces the following two principles: (1) if an allocation of n
demand points to p spatial medians is known, then the p = 1 problem can be solved for each
grouping of demand points (i.e., regional medians); and, (2) if the locations of p spatial medians
are known, then n demand points can be allocated to their respective closest ones. This heuristic
alternates between these two principles until the computed objective function value of weighted
distance no longer decreases. ALTERN optimally solved (except for trivial rounding error) an n = 500
and p = 2 problem, using random initial demand point allocations, 485 out of 1000 times; it also
found nine different local optima, a particular one, whose objective function is 0.1% greater than
the optimal solution objective function, 329 times—this pair of locations perceptively deviates from
the optimal pair, but with positions very close to them. Because both heuristics are sensitive to
their initial solutions, which often are selected at random, TB and ALTERN are not guaranteed to
produce a global optimum; each easily can be trapped at a local optimum location. Consequently,
the practice of executing multiple initiations with random starting solutions is widespread, with
the best output selected as the final solution. This same approach characterizes attempts to secure
globally optimal conventional multivariate cluster analysis results, too (van der Kloot et al., 2005).

This local-global optima dilemma motivated strategy developments to resolve it. Meta-heuristics
in terms of simulated annealing (SiAn) also have been applied to solve L-A problems—for the most
part, discrete space ones. Murray and Church (1996a) argue that SiAn is a competitive stratagem
for solving the p-median problem. Their computational results for 40 heuristic solutions employing
selected OR-Library datasets from Beasley show that their approach to the p-median problem
successfully finds (near) optimal solutions for a set of test datasets, with the gaps between their
solutions and the optimal solutions being very small. Some other popular meta-heuristics include
genetic algorithms (Hosage and Goodchild, 1986; Chaudhry et al.,, 2003; Salhi and Gamal, 2003),
Tabu search (Crainic et al., 1993; Rolland et al., 1996; Salhi, 2002), heuristic concentration (Rosing
and ReVelle, 1997; Rosing and Hodgson, 2002), and ant colony (Levanova and Loresh, 2004; Arnaout,
2013). Mladenovi¢ et al. (2007) present a comprehensive review of meta-heuristic schemes for
solving L-A problems. This section adds a treatment of SA-informed sampling to this perspective
by presenting a summary of an examination of a p = 2 case for illustrative purposes.

Fig. 4 portrays results for a skewed distribution of points, a point pattern concentrating in the
southeastern part of the geographic landscape. The non-uniqueness quality of p = 2 optimal
solutions generates, in this setting, north-south coupled with east-west, or northeast-southwest
coupled with northwest-southeast, types of solution pairings; various of the portrayed complete
data regional spatial median scatterplots align with each of these groupings, with their orthogonal
groups removed for visual clarity (yielding variable replication numbers). SA, exploited by a
geographic tessellation stratified random sampling design (Overton and Stehman, 1993) based upon
a 10-by-10 grid, dampens this non-uniqueness trait, although all Fig. 4 portrayals still exhibit
some degree of circular formation for their collective regional spatial medians. This non-uniqueness
spawned regional spatial median circular point pattern persists, in part, because of the intermingling
of SA and skewed point distribution effects. These findings supplement as well as corroborate those
appearing in Griffith (2021).

One enlightening finding about SA uncovered here is that it can help simplify the p = 2 L-
A spatial optimization problem. Positive SA characterizes much, if not most, georeferenced data,
and renders collections of attribute values cohabitating a tessellation stratification areal unit more
similar, on average, than attribute values between these areal units. This relative homogeneity of
weight values allows repeated samples from a point pattern population to deliver similar regional
spatial median locations. This methodology enables solutions for excessively large p = 2 problems,
say n = 100, 000, which cannot be solved exactly in a practical amount of real time; even CPLEX
would find such a problem not only intractable, but also nearly unsolvable. One way to strengthen
such a sampling result is to input it as an initial solution for a heuristic algorithm, such as ALTERN
(see Tables 3 and 4). This plan rivals the current routine of randomly initiating a sizeable number
of heuristic executions, and then selecting the solution with the smallest objective function value;
still, this exercise is not immune to suffering from the p = 2 non-uniqueness complication.
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Fig. 4. Specimen skewed point pattern p = 2 spatial median geographic distributions [gray, red, and black filled circles
respectively denote sample (n< 1500), complete data, and averaged sample spatial medians); these latter two essentially
collocate. Top left (a): random independent weights. Top right (b): linear weights gradient. Bottom left (c): quadratic
weights gradient. Bottom right (d): periodic weights geographic distribution. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

7. Conclusions and implications

This paper both presents some new, and reviews and extends some existing, contributions
of spatial statistics to the spatial optimization arena, with special reference to L-A problems,
advocating the need for a research active interface between these two subfields. Synergies emerging
from such an interface offer valuable contributions to society in the form of advancing the frontiers
of feasible spatial optimization solution spaces, a particularly important improvement for the realm
of L-A solutions to public facility provisions. The three specific interfaces surveyed here, all of which
exploit SA latent in geospatial data, are spatial statistical imputation assistance, understanding LISA
and Getis-Ord G;* statistics within the pre-analysis context of potentially isolating optimal solution
locations, and adapting spatial resampling to better initiate and guide heuristic L-A algorithms.
Future research should expand investigations of these three themes well beyond their rudimentary
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Table 3
Skewed distribution of demand points p = 2 simulation experiment output summaries; a single parent sample of n = 500
for each situation, and 1500 resamples (without replacement) from it of size n = 100.

Demand Spatial Map pattern of weights
p'om'.rs . medla'n Random Linear gradient Quadratic Periodic (i.e., SINE
distribution coordinate (n =635) (n = 1500) gradient function; n = 1341)
(n = 749)
Complete data U 0.32793 0.47314 0.47314 0.45584
Complete data V. 0.45947 0.34043 0.34043 0.36090
Region #1 Sampled data U 0.34342 0.46323 0.49156 0.45324
(0.02984) (0.05422) (0.03073) (0.02980)
Sampled data V 0.45773 0.33083 0.34734 0.34928
(0.01411) (0.03364) (0.04257) (0.03265)
ALTERN U 0.33879 0.47309 0.48286 0.45255
ALTERN V 0.45970 0.33929 0.33414 0.35550
Complete data U 0.37115 0.28405 0.28405 0.27519
Complete data V 0.27462 0.38864 0.38864 0.35211
Region #2 Sampled data U 0.34797 0.29990 0.30443 0.27951
(0.03035) (0.02951) (0.01425) (0.01330)
Sampled data V 0.26370 0.40449 0.40760 0.36105
(0.01562) (0.06778) (0.03035) (0.04159)
ALTERN U 0.36234 0.28454 0.29634 027222
ALTERN V 0.26560 0.38971 0.40565 0.35736

NOTE: standard errors (the input for standard distances) are in parentheses.

Map pattern generators (all demand weight specifications include adding 1 to eliminate the prospect of w; = 0; all
map-wide averages are roughly five): (1) random—Poisson (u = 4) + 1; linear gradient—9(u + v) + 1 4 0.01x Normal(0,
1); quadratic gradient—5(u + v)? + 14 0.01x Normal(0, 1); and, periodic—5[SIN(u-7 )+ 2SIN(v-)] +1+0.01x Normal(0,
1).

Resampling procedure: initially, a 10-by-10 square grid tessellation superimposed on a unit square created geographic
strata, and a sample of size five was drawn at random from each stratum; each replication randomly selected one sample
from each stratum.

Table 4
Objective function values for Table 3 specimen analysis.
Spatial median Random Linear gradient Quadratic gradient Periodic (i.e., SINE function)
Exact 297.32380 474.27980 223.22160 808.62540
Heuristic from sample 297.39392 474.28241 223.22569 808.74801
Sample average 297.88550 476.81080 224.44630 809.48510

examinations described here. This interface also should expand to include other undertakings,
such as the translation of latent SA into strong valid inequality conditions and variable reduction,
reducing the number of constraints spatial optimization problems require.

With regard to this newly mentioned interface activity, Kim et al. (2019) already outline the
p-median problem with SA treatments, which focuses on ensuring optimality via a mixed integer
programming formulation, while reducing the computational complexity of the standard p-median
problem. Their novel formulation consists of the following two components that seek to enhance
p-median problem solving capabilities: (1) construction of strong and effective valid inequality
conditions; and, (2) exploration and identification of the best spatial extent for a given problem in
order to reduce the number of assignment variables between its n demand points and p candidate
spatial medians.

In conclusion, spatial statistics offers benefits to science and society by furnishing sound statis-
tical imputation and decision support in the presence of SA, which should only encourage science
and society to continue to, as well as increasingly, recognize the existence and importance of spatial
statistics and its applications.
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