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ABSTRACT In order to realize an intelligent transportation system (ITS) which will provide smooth urban
traffic, autonomous driving, accurate route navigation, etc., enormous computations need to be migrated from
cloud centers to edge nodes, especially for the services requiring stringent latency. In addition to base stations
and road side units (RSUs), vehicles can be alteratively considered as a kind of computation resources.
In this article, a hierarchical vehicular-based architecture which consists of cloud centers and vehicles is
investigated. Computation offloading performance in the hierarchical architecture is also studied. In specific,
the main components in vehicular networks and their characteristics on communication and computations
are presented firstly. Several communication techniques that are essential in enabling computation offloading
among these components are then discussed. Secondly, a hierarchical vehicular-based architecture, which
integrates the main components, is constructed. Thirdly, a case study on computation offloading in the
proposed architecture is conducted. In the concerned scenario, the computation offloading problem is
modelled as a multi-dimensional multiple knapsack problem (MMKP). Two algorithms are investigated,
among which, the first algorithm is a greedy heuristic method providing a sub-optimal solution with a low
computational complexity. The second algorithm is a modified branch and bound (B&B) method, which
can obtain the best solution with a high computational complexity. Numerical results are also presented to
verify the performance of the two algorithms. It can be demonstrated that the proposed architecture can
migrate more computations from cloud centers to vehicular nodes, when the computations require more
communication resources.

INDEX TERMS Hierarchical vehicular architecture, intelligent transportation system, computation offload-
ing, multi-dimensional multiple knapsack problem, branch and bound algorithm.

I. INTRODUCTION

As vehicles playing an increasingly important role in people’s
daily life, an intelligent transportation system (ITS), which
aims to provide smooth urban traffic, autonomous driving,
accurate route navigation, etc., has received considerable
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attention from both academia and industry [1]-[8]. In order to
realize the vision of ITS, various types and massive amounts
of data are required to be processed reliably within a very
limited time. At present, the processing of massive data
mainly depends on the cloud centers, which can provide
powerful computations remotely [9]-[15]. However, cloud
centers which are located far away from end users, will induce
high transmission delay. In this way, the ITS cannot deal with
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emergency or provide real-time interactions among vehicular
terminals, simply relying on cloud centers. By utilizing the
fog computing technology which introduces a computation
layer between cloud centers and end users, a large portion of
computations can be offloaded to the nearby fog nodes from
cloud centers, and thereby the data processing delay can be
reduced dramatically [16]-[24].

Recently, the vehicular network is evolving from conven-
tional vehicle ad-hoc networks to the internet of vehicles
(IoV) [25], [26]. IoV mainly includes two research directions:
vehicles’ networking and vehicles’ intelligentialize. Comput-
ing, which is essential in realizing IoV, is the basis of these
two researches. In [27], the authors propose a computation
offloading method employing vehicle-to-everything (V2X)
technology. They first determine the routing of the computing
tasks, and then balanced offloading strategies are generated.
Finally, the optimal offloading strategy is determined. In [28],
the authors propose a fog-cloud computational offloading
algorithm in IoV to minimize the overall power consumption
of vehicles and computation facilities. In [29], the authors
investigate the optimal deployment and dimensioning of fog
computing-based IoV architecture for autonomous driving.
In [30], the authors propose an intelligent edge computing
task offloading and migration IoV model under the software
defined vehicular networks (SDVN) architecture. In [31],
the authors overviews edge caching, edge computing, and
edge artificial intelligent (AI), which can be further integrated
to enable oV applications.

A. VEHICLES AS COMPUTATION SOURCES

Most existing works which study computation offloading
in vehicular networks, consider vehicles as computation
sources. These studies mainly focus on how to opti-
mally offload computations to the edge nodes, i.e., base
stations/small-cell base stations (BSs/SBSs) or road side
units (RSUs) [32]-[37]. In [32], for vehicular networks,
the authors extend the original cloud radio access net-
work (C-RAN) to integrate the device-to-device (D2D)
and heterogeneous networks, forming an enhanced C-RAN
(EC-RAN). The proposed EC-RAN not only improves com-
munications quality, but also enhances vehicle comput-
ing capabilities by offloading mobile services to the cloud
through BSs. In [33], the authors propose a cloud-based
mobile edge computing (MEC) offloading framework in
vehicular networks. With the aid of connected RSUs, an effi-
cient predictive combination-mode relegation scheme is pre-
sented by adaptively offloading tasks to the MEC servers
through direct uploading or predictive relay transmissions.
In [34], the authors present a collaborative computation
offloading approach based on MEC and cloud servers in
vehicular networks. Computation tasks can be offloaded to
the MEC and cloud servers through RSUs. In [35], the authors
propose to use fog computing technology in vehicular net-
works to support delay-sensitive vehicular applications. The
vehicular networks are divided into network layer, fog layer,
and control layer by software-defined-networking (SDN)
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technology. Vehicular data in the network layer are offloaded
to the fog layer through BSs. In [36], in order to meet the
requirement of real-time vehicular applications, the authors
propose an efficient resource and context aware approach for
deploying containerized micro-services on on-demand fogs
with the aid of RSUs. In [37], the authors study the computa-
tion offloading problem for an in-vehicle user equipment. The
energy-hungry workloads are offloaded to from the vehicle
to the edge nodes with the aid of RSUs. The authors provide
an energy-efficient distributed solution based on consensus
alternating direction method of multipliers (ADMM). Over-
all, no matter the on-board applications or the in-vehicle user
equipment, computation offloading is vital in the vehicles as
computation sources scenarios.

However, it is still challenging in realizing computation
offloading to BSs/SBSs or RSUs. On the one hand, the expen-
ditures of deploying RSUs are very high, especially when
the deployment needs to be dense enough so as to provide
safety-critical services, such as crash avoidance or accident
warnings. On the other hand, it is not very practical to con-
sider SBSs as computation resources for vehicular networks,
since lots of computation and communication resources in
SBSs have been occupied by the primary cellular network.
The remaining resources which can be utilized by vehicular
networks are very limited. Besides, cellular networks and
vehicular networks are inherently independent on each other.
It is difficult to achieve efficient cooperation between two
independent systems, which in turn makes it challenging to
meet the stringent real-time service requirements. Therefore,
it is necessary to design a sustainable architecture which
can provide massive and timely computations for vehicular
networks.

B. VEHICLES AS COMPUTATION RESOURCES

In addition to considering vehicles as computation sources,
they can be alteratively considered as computation resources.
Vehicles, especially the electric vehicles, are usually
equipped with high-capacity batteries and substantial com-
putational resources. Thus they are sufficient to perform
computations and communications by themselves. The con-
cept of vehicular fog computing (VFC) has been proposed
in [38]-[41]. Generally, the vehicular fog network is an
integrated network consisting a group of vehicles and mul-
tiple edge servers. In [38], the authors propose to offload
computations from the BS to the vehicular fog nodes by lever-
aging the under-utilized computation resources of nearby
vehicles. In order to stimulate the nearby vehicles, an efficient
incentive mechanism based on contract and matching theory
is presented. Here, vehicles are used to offload computa-
tions from an external system, i.e., the cellular networks.
In [39], the authors study the effective server recruitment
and reliable task offloading under information asymmetry
and information uncertainty. They first propose a server
recruitment mechanism based on contract theory under infor-
mation asymmetry. Then, a pricing-based matching algo-
rithm and a matching-learning-based algorithm are presented
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for computation offloading under complete information and
information uncertainty. Here, vehicles are used to offload
computations from the nearby vehicles, which can be consid-
ered to serve an internal system. In [40], the authors propose
anovel contract-based incentive mechanism to make vehicles
join vehicular fog computing. Distributed deep reinforcement
learning is used to offload computations to the participating
vehicles, and task offloading method based on the queue-
ing model is also proposed to avoid decision collisions in
multi-vehicles task offloading. Here, vehicles are considered
as internal computation resources. In [41], the authors pro-
pose an optimal task offloading scheme to maximize the
long-term reward of the system. Computations are offloaded
to the nearby vehicles which form a dynamic VFC system to
process the tasks. In this scenario, the computation offloading
depends on the internal vehicular system. Thus, in many
existing works, the vehicle fog networks are considered capa-
ble in supporting computation offloading from both external
or internal systems.

Moreover, due to the large amount of vehicles,
widespread locations, and independence of external sys-
tems, vehicles have unique advantages in performing
computations [42]—-[45]. The massive moving and static vehi-
cles with considerable computation resources can provide
computation services not only for vehicular networks, but
also for the external systems. Although each vehicle has a
limited computation capacity, a group of static vehicles, such
as vehicles in a parking lot, or multiple moving vehicles
with a relatively stable neighborhood can be regarded as a
vehicular cloudlet. In [43], the authors propose to exploit the
full potentials of parked vehicle assistance. A vehicular fog
computing-aware parking reservation auction is proposed to
guide the moving vehicles to the available parking places,
and moreover, the fog capability of parked vehicles can
be incentivized to process the delay-sensitive computing
services by monetary rewards. In [44], the authors also
propose to use the computation resources in the parked
vehicles. The problem is modeled as allocating the limited
fog resources to the delay-sensitive vehicular applications in
order to minimize the service latency. A heuristic algorithm is
proposed to solve the modeled problem. Then, reinforcement
learning is introduce to the proposed heuristic algorithm to
make efficient resource allocation decisions, leveraging the
vehicles’ movement and parking status. In [45], the authors
construct a VFC model to enable distributed traffic manage-
ment in order to minimize the response time of city-level
events collected and reported by vehicles. The moving and
parked vehicles are leveraged as fog nodes in modelling
the optimization problem. Nevertheless, the locations of the
static cloudlets are sometimes far away from end users, such
that it may induce relatively larger communication delay
compared to the moving cloudlet. It is of great importance
to study the computation offloading problem in such a vehic-
ular network by taking account of the distinct properties of
computation and communications among moving and static
cloudlets.
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The main contributions of this article are summarized as
follows,

1) The main components of a general vehicular network
are presented and the corresponding characteristics of
each vehicular component on computation and commu-
nication are analyzed. Based on the characteristics of
each component, a hierarchical vehicular-based multi-
layer architecture is therefore constructed, integrating
cloud centers, static vehicles, moving vehicles and
RSUs.

2) Since the computation tasks require distinct amount of
resources on each layer, computation offloading prob-
lem is modeled as a multi-dimensional multiple knap-
sack problem in the proposed hierarchical architecture.
A greedy heuristic method and a modified branch-and-
bound (B&B) method are investigated.

3) Simulation results are provided to demonstrate the
feasibility of computation offloading in the proposed
hierarchical vehicular-based architecture, and also
show the different performances, such as network prof-
its and running time of the two methods. The conclu-
sion is that when the ratio between the communication
requirement and the computation requirement of a task
increases, more computation tasks will be migrated
from cloud centers to the vehicular fog, and vise
versa.

The rest of this article is organized as follows. In section II,
we analyze the main components in vehicular networks,
focusing on their characteristics on computation and com-
munications. In section III, a hierarchical vehicular-based
architecture is therefore constructed. Then, we formulate
a computation offloading problem, and two algorithms are
investigated. In section IV, numerical results are provided
to compare the performance of these two algorithms, and
demonstrate the effectiveness of the proposed hierarchical
vehicular-based architecture. Finally, we conclude this article
in section V.

II. A HIERARCHICAL VEHICULAR-BASED ARCHITECTURE

There are various open reference vehicular system archi-
tectures especially designed for certain application scenar-
ios. For example, architecture reference for cooperative and
intelligent transportation (ARC-IT) [46] publicly opens ref-
erence system architectures for more than 100 scenarios for
Vehicle-to-Vehicle (V2V) and Vehicle-to-Infrastructure
(V2I) communications. Generally, the common parts of
these architectures include cloud centers, RSUs and vehicles.
In this section, we first present the main characteristics of
each component, focusing on their communication and com-
putation properties. Then, by considering these properties,
we propose a hierarchical vehicular-based architecture.

A. CLOUD CENTERS

Cloud centers, which are usually located far away from
end users, with abundant computation capacities, can han-
dle all kinds of computations, such as data exploitation or
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TABLE 1. Features of the main components in vehicular networks.

Features Cloud Centers | RSUs .Vehlcles <
Moving | Static
Communication Capacity Low Medium High Medium
Computation Capacity High Medium Low Medium
Distance to End Users Remote Near Near Medium

data mining. Cloud centers play an important role in the
vehicular cloud computation (VCC) scenario [47]. In VCC,
a large amount of data is transmitted to the cloud centers for
city-level monitoring, management and controlling, which
not only consume a lot of communication resources, but
also induce a high communication delay. The communication
delay between vehicles and cloud centers is non-negligible
for applications that require stringent latency. Thus, it is
suitable to process non-real-time computation tasks in cloud
centers.

B. RSU

RSU, which is one of the critical element in vehicular
networks, is typically equipped with communication and
computation units that can perform wireless communication
and local computations [48]. The basic role of a RSU is to
collect data from adjacent vehicles, and then make local anal-
ysis. For example, RSUs deployed at a road intersection can
collect vehicle locations, and provide vehicles with hazardous
road warnings.

C. VEHICLES

Vehicles are usually equipped with high-capacity batteries,
which are essential to support communication and computa-
tions. As the number of vehicles increases, it is promising to
consider vehicles as potential computation resources. In the
following, we will discuss the communication and computa-
tion characteristics of vehicles in two statuses: moving and
static, respectively.

1) MOVING VEHICLES

Moving vehicles usually exhibit two routing patterns: random
and scheduled, e.g., the moving patterns revealed by private
cars and public transportation buses. Compared with cloud
centers, moving vehicles do not have comparable computa-
tion capacities, but they are much closer to end users. In other
words, moving vehicles have large communication capabil-
ities, but low computation capabilities. Therefore, they are
suitable to process delay sensitive computations with small
sizes.

2) STATIC VEHICLES

Static vehicles, such as vehicles in a parking lot or along the
roadside, can form a static computation cloudlet. Compared
with cloud centers, their locations are not far away from
end users, but not as close as RSUs. While comparing with

184276

the moving vehicles, static vehicles can provide a relatively
larger computation capacity. For clarity, the communication
and computation properties of each component are listed
in Table 1.

D. COMMUNICATIONS AMONG THESE COMPONENTS

In order to facilitate computation offloading in vehicular net-
works, we will introduce several communication techniques
among these components in the following.

1) VEHICLE TO VEHICLE COMMUNICATIONS

V2V communications are the direct connections between
vehicles. There are two candidate techniques for V2V com-
munications, i.e., long term evolution device to device
(LTE D2D) and dedicated short-range communications
(DSRC) [49].

o LTE D2D: LTE D2D refers to a D2D communication
link underlying a cellular network. Generally, utilizing
the LTE D2D method is challenged by interference
problem. The discovery time before two vehicles getting
connected is much larger than the effective communica-
tion time, which can be challenging for services requir-
ing stringent latency. But, D2D communications take
the advantage of adjacent physical locations between
connected vehicles, and therefore provide a very high
transmission rate.

« DSRC: V2V Communications also can be realized by a
vehicular ad hoc network (VANET). As early as 2004,
the standard of V2V communications has been built
based on IEEE 802.11p, known as DSRC [50]. The
communication frequency of VANET is assigned with
5.85GHz to 5.925 GHz, which is an unlicensed fre-
quency band shared with WiFi. Therefore, DSRC faces
some challenges, such as collisions occurring at media
access control (MAC) layer. Still, V2V can provide short
to medium range communication techniques for vehi-
cles, with low deployment costs and low transmission
delay.

2) VEHICLE TO RSUs COMMUNICATIONS
Vehicle to RSUs communications refer to connections
between vehicles and infrastructures on roadside. Due to the
widely deployment of cellular networks, it is natural to con-
sider cellular networks as a V2I communication candidate.
Another option is DSRC [49].
o Cellular Networks: Two transmission modes are
supported by cellular networks: unicast and broadcast.
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TABLE 2. Communication techniques among the main vehicular components.

] Components | Communications Techniques |

Introduction ‘

Vehicle to Vehicle LTE D2D

D2D communications take the advantage of adjacent physical
locations between connected vehicles, and therefore provide a
very high transmission rate.

DSRC

DSRC is built based on IEEE 802.11p. The communication
frequency of VANET is assigned with 5.85GHz to 5.925GHz.
It can provide short to medium range communication techniques
for vehicles, with low deployment costs and low
transmission delay.

Vehicle to RSUs Cellular Networks

Two transmission modes are supported by cellular networks:
unicast and broadcast. Cellular networks have the advantage of
providing seamless coverage for vehicle, but it can only
support a relatively low transmission rate.

DSRC

The advantage is that DSRC can provide a relatively high
transmission rate with low deployment costs.

Cloud Centers to RSUs Cellular Networks

Cloud centers to RSUs communications also refer to cloud-to
-infrastructure (C2I) communications. The communication delay
of C2I is significant, due to the long distance from RSUs to
cloud centers as well as the limited communication resources.

Unicast can be used to connect a vehicle with a base
station in both uplink and downlink communications.
Broadcast is typically used in downlink area information
distribution, such as safety pre-warning or congestion
information. Besides, cellular networks can be consid-
ered as relays to support long distance communica-
tion. Cellular networks have the advantage of providing
seamless coverage for vehicle, but it can only support a
relatively low transmission rate.

o DSRC: Besides the basic property of DSRC aforemen-
tioned in V2V communications, several challenges need
to be addressed when introduce DSRC to V2I commu-
nications. The traditional sparse pilot design is not prac-
tical in performing channel estimation in V2I scenario,
due to the highly time-frequency selective channels.
The multiple access mechanism also needs to be re-
considered. Since there are a large number of vehicles
in the infrastructure covered area, and traditional car-
rier sense multiple access (CSMA) mechanism cannot
guarantee stringent quality of service requirement for
vehicular services. The advantage is that DSRC can
provide a relatively high transmission rate with low
deployment costs.

3) CLOUD CENTERS TO RSUs COMMUNICATIONS

Cloud centers to RSUs communications also refer to cloud-
to-infrastructure (C2I) communications. Generally, all the
RSUs are assumed to be connected to a backbone network
with wired links which are connected to the cloud centers.
Some isolated RSUs need to send data to the central RSUs
which are connected to the backbone network, with the aid of
moving vehicles or cellular networks. Communication delay
among the neighbouring RSUs is trivial, because of the short
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physical distance and high transmission rate provided by the
backbone networks. While the communication delay of C2I
is significant, due to the long distance from RSUs to cloud
centers as well as the limited communication resources.

For clarity, the communication techniques among the main
vehicular components are lised in Table 2. After addressing
the enabling communication techniques among these com-
ponents, it is feasible to perform communications with each
other. Hereafter, we propose a hierarchical vehicular-based
architecture using the above-mentioned components.

E. PROPOSED HIERARCHICAL VEHICULAR-BASED
ARCHITECTURE

The key challenge in designing a vehicular-based architecture
is to find an efficient and flexible way to integrate vari-
ous communication and computation resources. To this end,
as shown in Fig. 1, a hierarchical vehicular-based architec-
ture is proposed based on the aforementioned components.
Particularly, we separate vehicles into two distinct layers by
considering their different statuses. In each layer, specific
communication and computation capacity is assumed. There-
fore, concerning computation allocation, there exists a trade-
off between communication and computation performance in
the proposed hierarchical vehicular-based architecture. It is
critical to leverage the distinct components in maximizing the
vehicular network profits by allocating computations.

Ill. CASE STUDY ON COMPUTATION OFFLOADING IN
THE PROPOSED HIERARCHICAL VEHICULAR-BASED
ARCHITECTURE

In the following, we investigate the computation offloading
problem in the proposed hierarchical architecture. As seen
in Fig. 2, we have five layers, i.e., an end users layer,
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FIGURE 2. System model.

an access points layer and 3 computation resources layers
which are vehicular fog, vehicular cloudlet and cloud centers.
As discussed in the previous section, these three computation
resources layers are distinct from each other, concerning the
communication and computation characteristics. The cloud
centers in layer 5 have abundant computation capacity, while
they are always far away from end users. The vehicular
cloudlet layer in layer 4 includes parking lots and smart build-
ings. They have a relatively smaller computation capacity
compared to the cloud centers, while they are more closer to
the end users. The vehicular fog layer, i.e., layer 3, includes
moving vehicles. Although they cannot provide stable com-
putation capacity, but they are close to end users. Multiple
RSUs in layer 2, bridging the end users in layer 1 and differ-
ent resource layers, are deployed as access points along the
roadside. Note that we assume RSUs as access points here
rather than computation resources. This assumption will help
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to simplify the functionalities of RSUs, and focus on utilizing
the computation capabilities inside the proposed architecture.

In what follows, we elaborate three computational offload-
ing stages in the proposed architecture. In the first stage,
end users transmit their extra computation tasks, which can-
not be executed locally, to the nearby RSUs. In the second
stage, RSUs allocate computation tasks to different layers
according to a certain criteria, e.g., network profits maxi-
mization. In the third stage, each computation layer trans-
mits the computation results to end users with the aid of
RSUs. The first and the third stages need to handle some
communications-related issues. The second stage is related to
the computation offloading issue. Considering the different
properties of each layer, computation offloading problem
needs to be carefully designed. Thus, we conduct a case study
on the second stage, i.e., the computation offloading problem.

A. SYSTEM MODEL AND PROBLEM DESCRIPTION

As we have mentioned before, the cloud centers in layer
5 have abundant computation capacity, while they are always
far away from end users. The vehicular cloudlet layer in
layer 4 includes parking lots and smart buildings. They have
a relatively smaller computation capacity compared to the
cloud centers, while they are more closer to the end users. The
vehicular fog layer, i.e., layer 3, includes moving vehicles.
Although they cannot provide stable computation capacity,
but they are close to end users. We denote the vehicular fog
layer as L3, the vehicular cloudlet layer as L4, and the cloud
center layer as £s. The communication capacity of the jth
layer is denoted as rj,j = 3,4,5, and the corresponding
computation capacity of the jth layer is mj, j = 3,4, 5. A set
of tasks upon allocation is denoted as a;,i = 1,..., N. The
communication resource required by each task on the jth layer
is denoted as r;, and the computation resource required on the
Jjthlayer is denoted as m]’ The profits arising from completing
each task are represented as p;,i = 1, ..., N. The objective
function is to maximize the network profits by fully making
use of the communication and computation resources of each
layer, i.e.,

HXI?-/X Zzplxlj’ €))

i= 1] 3
s.t. (C1)Zr;’5rj, v, )
i=1
N .
(C€2) Y mi <mj, V] 3)
i=1
5
(€3) > xij <1, Vi )
j=3
(C4) xij€{0,1}, Vij, )

where x; ; represents the allocation indicator. The four con-
straints are explained in the following.
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TABLE 3. A greedy heuristic algorithm.

Input: Task set A, profit set P, required transmission and
computation resource, transmission and computation capaci-
ty of each layer.

Output: Allocation matrix [X]

Steps:

1: Step 1: Initialize Rank the knapsacks in an increasing
order of their distances from end users, and record the
sequence in a vector. Denote a set F' as the tasks that
have not been selected and a set U as the tasks that have
been selected.

2: Step 2: Solving 2d-KP for each knapsack

3: forj =3:5do

: Fill the knapsack £; by selecting tasks from set F
with modified B&B algorithm (which is to solve 2d-KP).
Record the selected items in set U; and update matrix
[X]. Update F'.

5: end for

e Cl: The communication capacity constraint. It means
that the total communication consumptions by the tasks
allocated to the jth layer cannot exceed the layer com-
munication capacity r;;

o C2: The computation capacity constraint. Similar to C1,
the total computation costs by the tasks allocated to the
Jjth layer cannot exceed the layer computation capacity
mij;

« C3: Each task can be allocated to one layer at most;

o C4: Each task should be allocated as a whole.

The above problem can be treated as a multi-dimensional
multiple knapsack problem (MMKP) [51], where the differ-
ent layers can be considered as independent knapsacks, while
each task can be considered as an item with two dimensional
parameters, i.e., the consumptions of communications and
computations. A traditional knapsack problem is known as
an NP-hard problem. Compared to the traditional knapsack
problem, the computation offloading problem in the proposed
architecture faces the following challenge. The two dimen-
sional parameters of a task vary depending on the selected
knapsack, i.e., the particular layer. For example, in the cloud
center, a task will be assigned with less communication
resource but more computation resources. However, in the
vehicular fog layer, the task will be allocated with more
communication resources but less computation resource.

B. SOLUTIONS
In this section, we present two algorithms to solve the MMKP.
Algorithm 1 is a greedy heuristic method shown in Table 3.
It can get a sub-optimal solution with low computational
complexity. The second one is a modified branch-and-bound
(B&B) method [52], [53] shown in Fig. 3. This algorithm can
be utilized to get the best solution with a high computational
complexity.

Algorithm 1 is a greedy heuristic method shown in Table 3.
At Step 1, the knapsacks will be ordered according to a
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certain criteria. Here, we order the knapsacks in an increasing
order concerning their distances from end users. In this way,
we will first fill the vehicular fog layer, and then the vehicular
cloudlet layer, and at last the cloud center layer. At Step 2,
each knapsack will be filled with tasks by solving a two
dimensional knapsack problem (2d-KP). The modified B&B
method which is applied to solve the 2d-KP will be discussed
later.

In Algorithm 2, task set A, network profit set P, required
transmission resource rl’ , required computation resource m},
transmission and computation resources of each layer are
considered as inputs. The allocation matrix is the output.
As shown in Fig. 3 (A), at Step 1, the algorithm is initialized
with input parameters. Since there are 3 resource layers,
denoting the cloud centers, the vehicular cloudlet, and the
vehicular fog with £3, L4, and Ls, respectively, the optimiza-
tion problem can be decomposed into 3 subproblems, and
each subproblem can be considered as a 2d-KP. At Step 2, for
each knapsack, 2d-KP is solved by utilizing a modified B&B
algorithm independently. The optimal allocation solution is
determined by each layer, respectively. Then, the tasks which
are allocated to multiple layers are selected. If no such task
exists, a feasible solution is obtained, and the algorithm will
be terminated. If there are several multi-allocated tasks, then
go to Step 3 and perform the modified B&B algorithm among
these tasks. Step 3, i.e., the modified B&B, is a critical part
of Algorithm 2 and it is illustrated in Fig. 3 (B). After deter-
mining the multi-allocated tasks to a specific layer, the layer
which is not fully allocated will go back to Step 2. Until each
layer is filled with tasks, then this algorithm is terminated.

Fig. 3 (B) is a simple example of the modified B&B
method, i.e., Step 3 of Algorithm 2. Assuming there are
10 tasks to be allocated, at firstin (1) shown in Fig. 3 (B), 6 out
of 10 tasks are assigned to each layer independently. It can be
seen in (1) that three tasks, i.e., a3 is allocated to both £3 and
L4, a4 and as are allocated to both £4 and L5. Since each task
should be allocated to only one layer. In Step 3, the modified
B&B method illustrated in (2) is employed to determine the
specific allocation layer of tasks a3, a4 and as. The result
as shown in (3) is that a3 is allocated to L3, a4 and as are
allocated to £4. Note that the allocation criteria is maximizing
the network profits. So in £4, one more task can be assigned,
and two more tasks can be assigned to £s. Repeating Step 2,
the result is shown in (4) that task ag is assigned to both L4
and L5. Then go to Step 3, i.e., conducting (5), the result is
shown in (6) that ag is allocated to £4. At last in (7), each
layer is filled with tasks, and no task is multi-allocated. Then
the algorithm is terminated.

In Algorithm 1, the modified B&B method solving 2d-KP
at Step 2 will be conducted by 3 times, while in Algorithm 2,
the modified B&B method solving 2d-KP at Step 2 will be
executed for at least 3 times. Algorithm 2 has a very high
computation complexity but it can achieve a better perfor-
mance. Thus, Algorithm 2 is suitable for allocating compu-
tation tasks which do not have stringent time requirements,
and seek for the maximum network profits. Algorithm 1,
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FIGURE 3. (A): Algorithm 2. (B): A simple example of Step 3, i.e., the modified B&B method.

TABLE 4. Simulation parameters.

Parameters ‘ ‘ Values
Communication rate from RSUs
to vehicular fog 1.5 Gbps
Communication rate from RSUs
to vehicular cloudlet 80 Mbps
Communication rate from RSUs 30 Mbps

to cloud centers
Computation capacity in fog
Computation capacity in cloudlet
Computation capacity
in cloud centers
computation tasks
size of each task

200 * 102 cycles/s
400 * 108 cycles/s

4000 * 108 cycles/s

[5,30]
[1,50]G cycles

which has a relatively low computation complexity and is a
sub-optimal solution, can be used as allocation method for
computation tasks requiring stringent service time.

IV. SIMULATION RESULTS

The numerical results of computation offloading in the pro-
posed architecture is conducted on Matlab. The commu-
nication rates are considered as communication resources.
The simulation parameters are listed in Tab. 4. For simplify,
we assume, the allocated transmission rates to each task are
uniformly generated within [1,200] Mbps, [1,20] Mbps,
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FIGURE 4. Network profits using the modified B&B algorithm and the
greedy heuristic algorithm.

and [1, 10] Mbps for the fog layer, cloudlet layer and cloud
centers, respectively.

In Fig. 4, we vary the number of tasks from 5-30 to verify
the network profits by using the aforementioned two algo-
rithms. It can be seen that as the number of tasks increasing,
the total network profits of each algorithm increase. But the
trend of the network profits is not always increasing. When
the three layers are filled with tasks, and no task can be allo-
cated, then the network profits will keep the same. Also, it can
be seen that the modified B&B algorithm always achieves
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higher profits compared to the heuristic greedy algorithm.
Even though, the greedy heuristic algorithm also solves 2d-
KP for each knapsack. The computation tasks are allocated
to layers in an increasing order of the distances from the
end users, and thereby the optimal network profits cannot be
obtained under this allocation order. While in the modified
B&B algorithm, one computation task is allocated to multiple
layers at the very beginning, and then determine the optimal
layer which can achieve the maximum network profits. So the
proposed modified B&B algorithm can gradually converge to
the optimal network profits.

Fig. 5 compares the running time between the two algo-
rithms. It can be seen that as the computation tasks increase,
the running time of the modified B&B algorithm increases
dramatically, while the running time of the heuristic greedy
algorithm increases more gently as the number of tasks
increases.
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In some scenarios, a computation task requires few
communication resources, but needs to consume more com-
putation resources. We use parameter p to represent the ratio
between the communication requirement and the computa-
tion requirement of a task. We conduct simulations under the
scenario that p equals to %, %, 1,2, and 3. Fig. 6 demon-
strates that as p increases, i.e., the communication require-
ment increases, more computation tasks will be migrated
from cloud centers to the vehicular fog which has abundant
communication resources.

V. CONCLUSION

In this article, we discuss the main vehicular components,
such as vehicles, RSUs and cloud centers in the vehicular
system. The communication and computation characteris-
tics of each component are addressed. These components
exhibit different strengths in communication and compu-
tation aspects. Based on these properties, a hierarchical
vehicular-based architecture is proposed to combine various
communication and computation resources efficiently and
flexibly. Then, the computation offloading problem which
is crucial in realizing ITS is investigated in the proposed
architecture. The computation offloading problem can be
modelled as a MMKP. Two algorithms are investigated. One
of which is a greedy heuristic method with sub-optimal
performance and low computational complexity. The other
one is a modified B&B algorithm with better performance
and a high computational complexity. Numerical results are
provided to demonstrate the effectiveness of the proposed
algorithms in maximizing the network profits and their dif-
ferences in running time. Furthermore, as communication
requirements increase, the proposed architecture can migrate
more computations from cloud centers to vehicular fog.
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