
Hunter: HE-Friendly Structured Pruning for E�icient
Privacy-Preserving Deep Learning

Yifei Cai, Qiao Zhang, Rui Ning, Chunsheng Xin, Hongyi Wu
ycai001@odu.edu,qzhan002@odu.edu,rning@odu.edu,cxin@odu.edu,h1wu@odu.edu

Old Dominion University
Norfolk, VA, USA

ABSTRACT
In order to protect user privacy in Machine Learning as a Service
(MLaaS), a series of ingeniously designed privacy-preserving frame-
works have been proposed. The state-of-the-art approaches adopt
Homomorphic Encryption (HE) for linear function and Garbled
Circuits (GC)/Oblivious Transfer (OT) for nonlinear operation to
improve computation e�ciency. Despite the encouraging progress,
the computation cost is still too high for practical applications.
This work represents the �rst step to e�ectively prune privacy-
preserving deep learning models to reduce computation complex-
ity. Although model pruning has been discussed extensively in
the machine learning community, directly applying the plaintext
model pruning schemes o�ers little help to reduce the computation
in privacy-preserving models. In this paper we propose Hunter, a
structured pruning method that identi�es three novel HE-friendly
structures, i.e., internal structure, external structure, and weight diag-
onal to guide the pruning process. Hunter outputs a pruned model
that, without any loss in model accuracy, achieves a signi�cant
reduction in HE operations (and thus the overall computation cost)
in the privacy-preserving MLaaS. We apply Hunter in various deep
learningmodels, e.g., AlexNet, VGG and ResNet over classic datasets
including MNIST, CIFAR-10 and ImageNet. The experimental re-
sults demonstrate that, without accuracy loss, Hunter e�ciently
prunes the original networks to reduce the HE Perm, Mult, and
Add operations. For example, in the state-of-the-art VGG-16 on Im-
ageNet with 10 chosen classes, the total number of Perm is reduced
to as low as 2% of the original network, and at the same time, Mult
and Add are reduced to only 14%, enabling a signi�cantly more
computation-e�cient privacy-preserving MLaaS.

CCS CONCEPTS
• Security and privacy ! Privacy-preserving protocols.

KEYWORDS
Model Pruning, Machine Learning as a Service, Privacy-preserving
Computation, Homomorphic Encryption

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.
ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan.
© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9140-5/22/05. . . $15.00
https://doi.org/10.1145/3488932.3517401

ACM Reference Format:
Yifei Cai, Qiao Zhang, Rui Ning, Chunsheng Xin, Hongyi Wu. 2022. Hunter:
HE-Friendly Structured Pruning for E�cient Privacy-PreservingDeep Learn-
ing. In Proceedings of the 2022 ACM Asia Conference on Computer and Com-
munications Security (ASIA CCS ’22), May 30–June 3, 2022, Nagasaki, Japan.
ACM,NewYork, NY, USA, 15 pages. https://doi.org/10.1145/3488932.3517401

1 INTRODUCTION
From Amazon’s Alexa to Tesla’s Model 3 and from Google’s Al-
phaGo to Boston Dynamics’s Atlas, Deep Learning (DL) is playing
a game-changing role in our daily lives and work. The prevalent
and pervasive adoption of DL technology lies in its superior perfor-
mance to mine the hidden pattern from enormous data [38]. At the
same time, the needs to obtain and process such a massive amount
of data pose a challenge tomany resource-limited individual entities
such as a local health provider which intends to build a comprehen-
sive DL model to facilitate diagnoses and healthcare planing, but
has limited medical data, computation resources, and DL talents.
On the other hand, the technology giants such as Google has abun-
dant cloud data, computation power, and top DL engineers, making
them an ideal party to produce well-trained DL models to serve the
aforementioned resourced-limited individuals. To bridge this gap,
the Machine Learning as a Service (MLaaS) has been proposed [44],
where the client, e.g., a doctor in a local clinic, sends the private
data, e.g., medical records of her patients, to the server that owns
a well-trained DL model; then the server outputs and sends back
the prediction to the client. MLaaS provides an e�cient solution
for the client to obtain cost-e�ective, high-quality predictions and
for the server to make revenue by o�ering such service.
Challenges in Privacy-Preserving MLaaS: The privacy has be-
come as a critical concern in MLaaS. On the one hand, the client
does not want any party including the server to know its private
input, e.g., the patient’s medical records, and the server does not
want to share its proprietary model parameters since training a
well-performed DL model involves a signi�cant e�ort including
hardware investment and algorithm design. On the other hand,
there is already legislation to protect the data from disclosing to the
public such as the Health Insurance Portability and Accountability
Act (HIPAA) in the US, the General Data Protection Regulation
(GDPR) in EU, and the Personal Data Protection Act (PDPA) in Sin-
gapore. There is an urgent need to ensure that the client’s data is
blind to the server while the server’s model parameters are hidden
from the client during the interaction in MLaaS.

In order to address the critical privacy issue discussed above,
the privacy-preserving MLaaS strategically introduces and embeds
crypto primitives into the computation process of the DL model.
To this end, a series of ingeniously designed privacy-preserving

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

931

https://doi.org/10.1145/3488932.3517401
https://doi.org/10.1145/3488932.3517401

frameworks have made inspiring e�orts to bring MLaaS into prac-
tice [3, 8, 11, 17, 18, 21, 23, 26–29, 31–36, 41–43, 46, 47] where the
most commonly adopted crypto primitives are Homomorphic En-
cryption (HE) [9], Garbled Circuits (GC) [2], Oblivious Transfer
(OT) [6], and Secret Sharing (SS) [39]. Among these crypto primi-
tives, the HE is more e�cient for linear computation as it intrinsi-
cally supports linear functions [4, 9] (see details in Sec. 2.4), while
the GC and OT are more computationally-e�cient for nonlinear
functions [8]. Since the combination of linear and nonlinear func-
tions repeats in the DL model (see details in Sec. 2.1), the privacy-
preserving DL frameworks usually adopt HE for linear and GC/OT
for nonlinear operations to streamline the privacy-preserving com-
putation [8, 18, 26, 33]. For example, the HE-GC-based frameworks,
GAZELLE [18] and DELPHI [26], and the HE-OT-based framework,
CrypTFlow2 [33], have achieved a computation speedup of several
orders of magnitude over the classic CryptoNets system [11].

Despite the encouraging progress to boost the computation e�-
ciency of privacy-preserving MLaaS, the overhead is still too high
for practical applications. For instance, inferring one single CIFAR-
10 image [19] over ResNet [15] by the state-of-the-art privacy-
preserving frameworks (such as GAZELLE, DELPHI and CrypT-
Flow2) costs about 100 seconds [25, 47], while many real-time ap-
plications require a response within a few seconds [1]. For deeper
models with larger inputs, the performance gap would be grow even
wider. Meanwhile, the HE-based linear computation takes over 90%
of the total time in the above three leading frameworks [47], moti-
vating a deep optimization of the HE-based linear computation to
reduce the overall running time in the privacy-preserving MLaaS.
Preliminary Observations: Our quest begins with three insights
into the current privacy-preservingMLaaS frameworks. First, nearly
all frameworks including GAZELLE, DELPHI and CrypTFlow2 tar-
get at the computation optimization over the given DL models
such as VGG and ResNet. However, the underlying model redun-
dancy may become the bottleneck to minimize the computation
overhead. When a classical model is applied to a given application,
many model parameters can be removed for better computation
e�ciency without any loss in model accuracy [14, 24]. Therefore,
our �rst insight is to prune the DL model to reduce the computation
cost in the privacy-preserving MLaaS.

Second, the computation overhead of HE-based calculations
stems from high computation complexity of three basic HE op-
erations, i.e., Add, Mult and Perm (see details in Section 2.4). For
example, in GAZELLE, the VGG-16 with CIFAR-10 dataset involves
about 423K Perm, 7M Mult and 7M Add operations (see detailed
performance in Section 4). Therefore, reducing the computation
overhead for the HE-based linear calculation is intrinsically to re-
duce the corresponding number of HE operations. Meanwhile, the
Perm operation is the most computation-expensive one among the
three HE operations. Experiments show that one Perm is 34 times
slower than one Mult and 56 times slower than one Add1. As such
our second insight is to minimize the number of Perm (as well as
Mult and Add) operations while performing model pruning.

Third, the model pruning has been discussed extensively in the
machine learning community [14, 24, 45]. The basic idea of model
pruning is to �rst set selected model parameters, e.g., parameters

1https://github.com/chiraag/gazelle_mpc

below a threshold [14], to zero, and then retrain or �netune the
prunedmodel to recover accuracy. The above two steps are repeated
until the model is maximally pruned with no or negligible accuracy
loss. Unfortunately, directly applying the plaintext model pruning
o�ers little to no help to reduce the corresponding HE-based com-
putation over the pruned model (see Table 1). This is because the
three basic HE operations (over the ciphertext) work in a packed
manner for the linear computation between the input data and the
model parameters (see details in Section 2.4). For example, for the
element-wise multiplication between one ciphertext encrypted by
the client and one plaintext with vectorized weight values from the
server, the subsequent Perm operation over the multiplied cipher-
text is eliminated if and only if all the elements in that plaintext
are pruned. However, the plaintext model pruning schemes do not
consider such packed structures and rarely guarantee the above
desired pruning property, thus leading to marginal or no reduc-
tion in the corresponding HE-based computation even though the
model is signi�cantly pruned. For example, experiments show that
even 65% of parameters in a convolution layer from AlexNet are
pruned via the well-known pruning algorithm [14], it only results
in about 3.6% of reduction in the Perm operations in the correspond-
ing HE-based computation. Worse yet, pruning 90.8% weights in
a fully-connected layer would not even reduce a single Perm out
of the total 4096 Perm operations. It is fundamentally a new and
nontrivial problem to redesign the model pruning strategies for
privacy-preserving MLaaS.
Our Contributions: In this paper, we take the �rst step to e�ec-
tively prune privacy-preserving DL models, aiming to signi�cantly
reduce the computation cost for the privacy-preserving MLaaS. The
proposed framework, Hunter, features an HE-friendly, structured
pruning method that �rst identi�es the packed structures associ-
ated with the Perm operations in the HE-based linear computation
and then de�nes three novel HE-friendly structures, i.e., internal
structure, external structure, and weight diagonal that are embed-
ded into a customized pruning process. Hunter outputs a pruned
model that, without any loss in model accuracy, achieves to a sig-
ni�cant reduction in HE operations (and thus the overall computa-
tion cost) in the privacy-preserving MLaaS. For example, we apply
Hunter in various DL models including AlexNet [20], VGG [40]
and ResNet [15] over classic datasets such as MNIST, CIFAR-10 and
ImageNet [19, 22, 37]. The experimental results demonstrate that
Hunter e�ectively reduces the Perm as well as Mult and Add oper-
ations in the HE-based linear computation, which contributes to a
more computation-e�cient privacy-preserving MLaaS. Speci�cally,
Hunter reduces 86% Perm, 84% Mult, and 84% Add operations in
average compared to the state-of-the-art frameworks (see detailed
performance in Section 4).

Note that there is another research thrust called privacy-preserving
Neural Architecture Search (NAS)which, similar toHunter’s privacy-
preserving model pruning, aims to �nd a network structure that is
more e�cient for privacy-preserving MLaaS using NAS technol-
ogy [10, 16, 25]. The current methods aim to either replace some
nonlinear functions with more computation-e�cient ones [10, 16]
or search for the optimal crypto parameters, e.g., number of slots
and ciphertext/plaintext modulus of packed HE [25]. It is worth
pointing out that these approaches are orthogonal to Hunter’s

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

932

https://github.com/chiraag/gazelle_mpc

For a lucid description, we elaborate thereafter the state-of-the-
art MIMO computation [18] as well as Hunter’s pruning insights
according to the example in Figure 6. Nevertheless, Hunter is read-
ily applicable to other general cases. Speci�cally, the C-encrypted
ciphertext [u] C is �rstly convolved with the main-diagonal kernels
{Q11,Q22} in the SISO manner, which produces a convolved cipher-
text containing two convolution as Q11 ⇤ u1 and Q22 ⇤ u2. This is
achieved thanks to the cyclic e�ect of the Perm operation on all
elements in [u] C and when the u1 in u is convolved with one kernel
(like SISO), the u2 in u is similarly and simultaneously convolved
with another kernel. To this end, Perm operations are �rstly applied
on [u] C to get a group of rotated ciphertext (like SISO), which are
then multiplied (by Mult) with the transformed-kernel-packs and
all the multiplied ciphertext are �nally added up (by Add) to get a
convolved ciphertext containing two convolution as Q11 ⇤ u1 and
Q22 ⇤ u2 (see the upper part of MIMO computation in Figure 6).
Clearly, the group of rotated ciphertext for [u] C (e.g., see [u (+3)] C
to [u (�3)] C) can be used to convolve with any other kernels since
we can arbitrarily replace values in Q11 and Q22 with other ones.
Therefore, another convolved ciphertext containing two convolu-
tion as Q21 ⇤ u1 and Q12 ⇤ u2 is obtained for the other diagonal
kernels {Q21,Q12} (see the lower part of MIMO computation in
Figure 6).
Observation 3: First, based on our observation in SISO, each ro-
tated channel in one rotated ciphertext is multiplied with only
one value from one kernel6. For example, in the rotated cipher-
text [u (�3)] C in the upper part of MIMO computation, the rotated
channel u1 is multiplied with :1 from kernel Q11 while the ro-
tated channel u2 is multiplied with :28 from kernel Q22. Second,
the cyclic e�ect of Perm operation makes all the kernel values in
each transformed-kernel-pack come from the same location of their
corresponding diagonal kernels. For example, the aforementioned
values {:1,:28} in the transformed-kernel-pack k (�3) come from
the �rst location of diagonal kernels {Q11,Q22}, respectively. Note
that while this observation is made using Figure 6 as an example,
it holds for the general case with all input sizes and other kernel
sizes in real-world DL models.

Based on the above observation, for all the transformed-kernel-
packs that are multiplied with one rotated ciphertext, all the kernel
values come from the same location of the associated diagonal ker-
nels. Meanwhile, as one rotated ciphertext includes 2= channels
(2= = 2 for our example in Figure 6), there must be 2= kernel val-
ues (from the same location of the 2= diagonal kernels) in every
transformed-kernel-pack (to be multiplied with above rotated ci-
phertext). For example, two transformed-kernel-packs k (�3) and
k (�3) are multiplied with the rotated ciphertext [u (�3)] C . Since
[u (�3)] C includes two rotated channels, both of k (�3) and k (�3)
have two kernel values from the same location of two diagonal ker-
nels, i.e., the �rst location of two diagonal kernels in {Q11,Q22} and
{Q21,Q12}, respectively. Therefore, one Perm operation over [u] C
for getting one rotated ciphertext is eliminated if the kernel values
from the same location of all the diagonal kernels (to be convolved
with the encrypted input [u] C) are zeros. For example, there is

6There are no u (+4) and u (�4) in our example since DFD⌘ = (:F:⌘ � 1)/2 and thus
we see the reuse of rotated ciphertext u (+1) and u (�1) . No rotated ciphertext is reused
in other general cases.

no need to get the rotated ciphertext [u (�3)] C if the kernel values
from the �rst location of all the diagonal kernels (i.e., {Q11,Q22}
and {Q12,Q21}) are zeros (i.e., kernel values {:1,:10,:19,:28} are
zeros).
Hunter’s internal pruning structure: As such, we are motivated
to prune those same-location kernel values to reduce the number
of Perm operations over the encrypted input [u] C and we thus
de�ne the internal structure as the kernel values from the same
location of all the diagonal kernels that are convolved with [u] C ,
and pruning an internal structure correspondingly eliminates one
Perm operation over [u] C . For example, the aforementioned kernel
values {:1,:10,:19,:28} actually form one internal structure that, if
pruned, contributes to eliminate one Perm operation over [u] C .

Recall that we have obtained two (intermediate) convolved ci-
phertext. The �rst one contains two convolution as Q11 ⇤ u1 and
Q22 ⇤ u2 while the second one has two convolution as Q21 ⇤ u1 and
Q12 ⇤ u2. However we are supposed to get a ciphertext including
the two output channels v1 and v2. Directly adding the two con-
volved ciphertext results in a ciphertext having two convolution as
(Q11⇤u1+Q21⇤u1) and (Q22⇤u2+Q12⇤u2), which is not the one as
v1 or v2 in Eq. (1). The reason lies in the sequence mismatch of asso-
ciated �lters among the two convolved ciphertext. For example, the
�rst of the two convolved ciphertext has two convolution related to
�lters L1 and L2, while the second one has two convolution related
to the �lters L2 and L1. Therefore, all of those convolved ciphertext
(excluding the one obtained by convolution between [u] C and the
main-diagonal kernels {Q11,Q22}) need to be rotated (by Perm)
to have the same sequence of associated �lters, and then we can
sum up those rotated ciphertext (by Add) to get a ciphertext with
the output channels. For example, the second convolved ciphertext
(with two convolution as Q21 ⇤ u1 and Q12 ⇤ u2) is rotated by one
Perm operation to have two convolution as Q12 ⇤ u2 and Q21 ⇤ u1
(see the Perm operation at the lower part of MIMO computation
in Figure 6), and such rotated ciphertext is added (by Add) with
the �rst convolved ciphertext (with two convolution as Q11 ⇤ u1
and Q22 ⇤ u2) to �nally get the correct ciphertext with two output
channels v1 = (Q11 ⇤ u1 + Q12 ⇤ u2) and v2 = (Q22 ⇤ u2 + Q21 ⇤ u1).
Observation 4: If the diagonal kernels (excluding themain-diagonal
kernels), which involve in the convolution with encrypted input
[u] C) to get a convolved ciphertext, are zeros, there is no need to
further rotate that convolved ciphertext to unify its sequence of
associated �lters. For example, the Perm operation over the sec-
ond convolved ciphertext (with two convolution as Q21 ⇤ u1 and
Q12 ⇤ u2) is eliminated if the involved diagonal kernels {Q21,Q12}
(to get above convolved ciphertext) are all zeros (see the lower part
of MIMO computation in Figure 6).
Hunter’s external pruning structure: Therefore, we are moti-
vated to prune such diagonal kernels (excluding the main-diagonal
kernels) to eliminate the subsequent Perm operation over the con-
volved ciphertext, and we thus de�ne the external structure as these
diagonal kernels involved in the convolution with the encrypted
input [u] C for getting a convolved ciphertext, which should be
rotated to unify its sequence of associated �lters as we have de-
scribed. Obviously, pruning an external structure correspondingly
eliminates one Perm over one convolved ciphertext. For instance,

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

938

Table 1: Comparison between Hunter and plaintext pruning. Both schemes result in no accuracy loss. Each data entry shows
the percent of remaining parameters and Perm operations after pruning. The plaintext pruning o�ers little help to reduce the
HE-based Perm computation (as shown by high percentage of remaining Perm) even with deep pruning (i.e., low percentage of
remaining parameters). Hunter e�ectively reduces the HE computation (with low percentage of remaining Perm).

Dataset MNIST CIFAR-10 ImageNet (10 classes)
Models LeNet ResNet-32 AlexNet VGG-11 VGG-13 VGG-16 AlexNet VGG-16

Pruning Schemes: Hunter (H) vs Plaintext (P) Pruning H P H P H P H P H P H P H P H P
Remaining Parameters (%) 39 9 52 46 10 10 9 9 11 10 10 9 32 10 3 5

Remaining Perm (%) 45 99 51 95 6 67 19 90 21 89 14 84 36 93 2 91

Table 2: The Hunter’s computation performance compared with GAZELLE on six modern networks with three datasets. The
pruned models maintain similar accuracy compared with the baseline models. Each data entry for computation performance
shows the fraction or percentage to which the number of operations is reduced to, in comparison with the baseline model. For
example, 2397/4312 (56%) means that the pruned model reduces the number of Perm from the original 4312 to 2397 (i.e., 56% of
the original computation cost). Perm(in), Perm(ex), Perm(diag) are Perm involved in internal, external, diagonal structures.

Dataset MNIST CIFAR-10 ImageNet (10 classes)
Models LeNet ResNet-32 AlexNet VGG-11 VGG-13 VGG-16 AlexNet VGG-16

Parameters 44K 484K 21.6M 28.1M 28.3M 33.6M 58M 134M
Model Accuracy

Baseline Accuracy (%) 99.34 92.25 77.48 92.4 94.18 93.91 78.8 93.8
Hunter Pruned Accuracy (%) 99.37 92.2 78.88 92.66 94.09 94.06 79 94

Computation Cost in Convolution and Dot Product

Co
nv

ol
ut
io
n

#
Perm(in)

67/96
(70%)

2397/4312
(56%)

1498/5608
(27%)

2431/8984
(27%)

2789/9752
(29%)

3059/14872
(21%)

2952/5608
(53%)

2868/14872
(19%)

#
Perm(ex)

14/24
(58%)

6393/12800
(50%)

4125/92K
(4%)

49K/256K
(19%)

55K/261K
(21%)

58K/409K
(14%)

33K/92K
(36%)

5003/409K
(1%)

#
Mult

788/1350
(58%)

119.6K/231K
(52%)

355K/1.9M
(19%)

902K/4.6M
(20%)

974K/4.7M
(21%)

1.2M/7.4M
(16%)

789K/1.9M
(42%)

1M/7.4M
(14%)

#
Add

774/1336
(58%)

119K/230K
(52%)

355K/1.9M
(19%)

901K/4.6M
(20%)

972K/4.7M
(21%)

1.2M/7.4M
(16%)

788K/1.9M
(42%)

1M/7.4M
(14%)

D
ot

Pr
od

uc
t

#
Perm(diag)

94/273
(34%)

23/23
(100%)

388/4373
(9%)

234/4629
(5%)

279/4629
(6%)

253/4629
(5%)

5143/16403
(31%)

433/33K
(1%)

#
Mult

93/272
(34%)

16/16
(100%)

952/8280
(12%)

593/8208
(7%)

638/8208
(8%)

430/8208
(5%)

5140/16K
(31%)

434/33K
(1%)

#
Add

94/273
(34%)

23/23
(100%)

942/8198
(11%)

591/8206
(7%)

636/8206
(8%)

428/8206
(5%)

5143/16403
(31%)

433/33K
(1%)

Overall Model Computation Cost
Perm 45% 51% 6% 19% 21% 14% 36% 2%
Mult 54% 52% 19% 20% 21% 16% 42% 14%
Add 54% 52% 19% 20% 21% 16% 42% 14%

Model Pruning Time
Pruning Time (hours) 1.2 6.8 1.4 5.2 6.4 5.7 6.6 17

the elements arranged sparsely on diagonal lines (see Figure 9 (b)),
and this pattern is consistent with Figure 4.
Layer-Wise Performance Breakdown.We further analyze the
computation performance by breaking down a whole model (VGG-
16 on CIFAR-10) into a stack of layers. The layer-wise performance
breakdown for other deep models is given in Appendix A. In each
layer, the computation complexity with respect to HE operations
for linear functions, i.e., convolution and dot product, is compared
between Hunter and GAZELLE. The detailed statistics are shown in
Table 3 and Figure 10. The layer with a smaller number of kernels,
e.g., Conv1, limits Hunter’s pruning space, while the ones with
greater number of kernels, e.g., Conv9 to Conv13, contain more
redundancy for pruning. This trend is further visualized in Figure 10.

We also observe that the increase of kernel dimension, i.e., the
number of input and output channels, gives Hunter more pruning
space, which results in an increased pruning ratio.

5 CONCLUSION
In this paper, we have proposed Hunter, which features an HE-
friendly structured pruning scheme that, for the �rst time, e�ciently
prunes privacy-preserving deep models. Based on three novel HE-
friendly structures, i.e., internal structure, external structure, and
weight diagonal, Hunter outputs a pruned model that, without any
loss in model accuracy, achieves a signi�cant reduction in HE op-
erations. We have implemented Hunter in various deep learning

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

940

https://developer.amazon.com/en-US/docs/alexa/device-apis/alexa-interface.html
https://developer.amazon.com/en-US/docs/alexa/device-apis/alexa-interface.html

[42] Sameer Wagh, Divya Gupta, and Nishanth Chandran. 2019. SecureNN: 3-Party
Secure Computation for Neural Network Training. Proc. Priv. Enhancing Technol.
2019, 3 (2019), 26–49.

[43] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mit-
tal, and Tal Rabin. 2020. Falcon: Honest-majority maliciously secure framework
for private deep learning. arXiv preprint arXiv:2004.02229 (2020).

[44] Wei Wang, Sheng Wang, Jinyang Gao, Meihui Zhang, Gang Chen, Teck Khim
Ng, and Beng Chin Ooi. 2018. Ra�ki: Machine learning as an analytics service
system. arXiv preprint arXiv:1804.06087 (2018).

[45] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning
structured sparsity in deep neural networks. Proceedings of the NeurIPS 29 (2016),
2074–2082.

[46] Qiao Zhang, Cong Wang, Hongyi Wu, Chunsheng Xin, and Tran V Phuong. 2018.
GELU-Net: A Globally Encrypted, Locally Unencrypted Deep Neural Network
for Privacy-Preserved Learning.. In Proceedings of the IJCAI. 3933–3939.

[47] Qiao Zhang, Chunsheng Xin, and Hongyi Wu. 2021. GALA: Greedy ComputA-
tion for Linear Algebra in Privacy-Preserved Neural Networks. arXiv preprint
arXiv:2105.01827 (2021).

A LAYER-WISE BREAKDOWN OF
COMPUTATION PERFORMANCE.

First give the complexity of DL Models on GAELLE framework in
table 4. For the Conv layer, the input has 28 channels and 2= of them
are pack encrypted in one ciphertext. The Conv layer has 2> �lters
and each �lter contains 28 kernels. And the kernel size is :F:⌘ . For
FC layer, the size of input is =8 and = of them are pack encrypted

in one ciphertext. The size of output is => . Thus the size of wights
matrix of FC layer is =0 ⇥ =8 .

Table 4: Complexity of DL Models on GAELLE framework.

#Perm(in) #Perm(ex) #Mult #Add
Conv 28 (:F:⌘�1)

2=
282> (2=�1)

22=

282>:F:⌘
2=

2> (28:F:⌘�1)
2=

Perm(diag) #Mult #Add
FC =8=>

= � 1 + log2
=
=>

=8=>
=

=8=>
= � 1 + log2

=
=>

The layer-wise breakdown of computation performance is shown
below. Each data entry, e.g 17/24(71%), means prune operations from
number of 24 to only 17, in other word, reserving 71% operations.

Table 5: Layer-Wise Performance Breakdown between Hunter and GAZELLE.

LeNet with MNIST
Layer Index # Weights # Perm # Mult # Add

Conv1 150 17/24(71%) 108/150(72%) 102/144(71%)
Conv2 2.4K 64/96(67%) 680/1200(57%) 672/1192(56%)
Fc1 31K 57/128(45%) 57/128(45%) 57/128(45%)
Fc2 10K 19/127(15%) 20/128(16%) 19/127(15%)
Fc3 840 18/18(100%) 16/16 18/18
Total 44K 175/393(45%) 881/1622(54%) 868/1609(54%)

AlexNet with CIFAR-10
Conv1 35K 360/360(100%) 34848/34848(100%) 34752/34752(100%)
Conv2 614K 4364/7296(60%) 193404/307200(63%) 193276/307072(63%)
Conv3 885K 344/25600(1%) 51277/442368(12%) 51085/442176(12%)
Conv4 1.3M 283/38400(1%) 42769/663552(6%) 42577/663360(6%)
Conv5 885K 272/26112(1%) 33151/442368(7%) 33023/442240(7%)
Fc1 1M 38/255(15%) 608/4096(15%) 592/4080(15%)
Fc2 17M 327/4095(8%) 328/4096(8%) 327/4095(8%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total 21.6M 6011/102141(6%) 356401/1898544(19%) 355655/1897798(19%)

VGG-11 with CIFAR-10
Conv1 1.7K 24/24(100%) 1728/1728(100%) 1664/1664(100%)
Conv2 74K 2151/2304(93%) 35487/36864(96%) 35423/36800(96%)
Conv3 295K 3186/8704(37%) 67472/147456(46%) 67344/147328(46%)
Conv4 590K 4839/17408(28%) 112415/294912(38%) 112287/294784(38%)
Conv5 1M 6098/33792(18%) 130289/589824(22%) 130033/589568(22%)
Conv6 2M 11587/67584(17%) 210382/1179648(18%) 210126/1179392(18%)
Conv7 2M 16072/67584(24%) 207704/1179648(18%) 207448/1179392(18%)
Conv8 2M 7735/67584(11%) 136809/1179648(12%) 136553/1179392(12%)
Fc1 2M 51/511(10%) 416/4096(10%) 408/4088(10%)
Fc2 17M 160/4095(4%) 161/4096(4%) 160/4095(5%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total 28.1M 51926/269613(19%) 902879/4617936(20%) 901469/4616526(20%)

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

943

Table 6: Layer-Wise Performance Breakdown between Hunter and GAZELLE.

VGG-13 with CIFAR-10
Layer Index # Weights # Perm # Mult # Add

Conv1 1.7K 24/24(100%) 1728/1728(100%) 1664/1664(100%)
Conv2 37K 2151/2304(93%) 17181/18432(93%) 17149/18400(93%)
Conv3 74K 256/256(100%) 33021/36864(90%) 32957/36800(90%)
Conv4 147K 307/512(60%) 39983/73728(54%) 39919/73664(54%)
Conv5 295K 307/512(60%) 75900/147456(51%) 75772/147328(51%)
Conv6 590K 512/1024(50%) 124748/294912(42%) 124620/294784(42%)
Conv7 1M 307/1024(30%) 143726/589824(24%) 143470/589568(24%)
Conv8 2M 410/2048(20%) 242296/1179648(21%) 242040/1179392(21%)
Conv9 2M 205/2048(10%) 141599/1179648(12%) 141343/1179392(12%)
Conv10 2M 205/2048(10%) 153732/1179648(13%) 153476/1179392(13%)
Fc1 2M 51/511(10%) 416/4096(10%) 408/4088(10%)
Fc2 17M 205/4095(5%) 206/4096(5%) 205/4095(5%)
Fc3 41K 15/15(100%) 16/16(100%) 23/23(100%)
Total 28.3M 3060/14373(21%) 974552/4710096(21%) 973046/4708590(21%)

ResNet-32 with CIFAR-10
Conv1 432 24/24(100%) 432/432(100%) 416/416(100%)
Conv2 2.3K 63/128(49%) 553/1152(48%) 545/1144(48%)
Conv3 2.3K 46/128(36%) 360/1152(31%) 352/1144(31%)
Conv4 2.3K 55/128(43%) 454/1152(39%) 446/1144(39%)
Conv5 2.3K 63/128(49%) 508/1152(44%) 500/1144(44%)
Conv6 2.3K 82/128(64%) 661/1152(57%) 653/1144(57%)
Conv7 2.3K 64/128(50%) 476/1152(41%) 468/1144(41%)
Conv8 2.3K 23/128(18%) 155/1152(13%) 147/1144(13%)
Conv9 2.3K 29/128(23%) 257/1152(22%) 249/1144(22%)
Conv10 2.3K 52/128(41%) 427/1152(37%) 419/1144(37%)
Conv11 2.3K 38/128(30%) 360/1152(31%) 352/1144(31%)
Conv12 4.6K 168/192(88%) 1967/2304(85%) 1951/2288(85%)
Conv13 9.2K 291/384(76%) 3186/4608(69%) 3170/4592(69%)
Conv14 9.2K 195/384(51%) 2069/4608(45%) 2053/4592(45%)
Conv15 9.2K 197/384(51%) 1964/4608(43%) 1948/4592(42%)
Conv16 9.2K 272/384(71%) 3017/4608(65%) 3001/4592(65%)
Conv17 9.2K 261/384(68%) 2879/4608(62%) 2863/4592(62%)
Conv18 9.2K 207/384(54%) 2511/4608(54%) 2495/4592(54%)
Conv19 9.2K 103/384(27%) 1134/4608(25%) 1118/4592(24%)
Conv20 9.2K 307/384(80%) 3668/4608(80%) 3652/4592(80%)
Conv21 9.2K 225/384(59%) 2238/4608(49%) 2222/4592(48%)
Conv22 18.4K 582/640(91%) 8028/9216(87%) 7996/9184(87%)
Conv23 36.9K 709/1280(55%) 11188/18432(61%) 11156/18400(61%)
Conv24 36.9K 331/1280(26%) 5056/18432(27%) 5024/18400(27%)
Conv25 36.9K 368/1280(29%) 5434/18432(29%) 5402/18400(29%)
Conv26 36.9K 574/1280(45%) 8608/18432(47%) 8576/18400(47%)
Conv27 36.9K 601/1280(47%) 8517/18432(46%) 8485/18400(46%)
Conv28 36.9K 703/1280(55%) 10549/18432(57%) 10517/18400(57%)
Conv29 36.9K 747/1280(58%) 11810/18432(64%) 11778/18400(64%)
Conv30 36.9K 600/1280(47%) 9699/18432(53%) 9667/18400(53%)
Conv31 36.9K 810/1280(63%) 11416/18432(62%) 11384/18400(62%)
Fc1 23K 23/23(100%) 16/16(100%) 23/23(100%)
Total 484.3K 8813/17135(51%) 119597/230848(52%) 119028/230279(52%)

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

944

Table 7: Layer-Wise Performance Breakdown between Hunter and GAZELLE.

AlexNet with ImageNet (10 classes)
Layer Index # Weights # Perm # Mult # Add

Conv1 35K 360/360(100%) 34848/34848(100%) 34752/34752(100%)
Conv2 614K 3376/7296(46%) 160160/307200(52%) 160032/307072(52%)
Conv3 885K 7573/25600(30%) 157856/442368(36%) 157664/442176(36%)
Conv4 1.3M 13042/38400(34%) 221514/663552(33%) 221322/663360(33%)
Conv5 885K 11981/26112(46%) 214767/442368(49%) 214639/442240(49%)
Fc1 37.7M 3687/12285(30%) 3690/12288(30%) 3687/12285(30%)
Fc2 17M 1433/4095(35%) 1434/4096(35%) 1433/4095(35%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total 58M 41475/114171(36%) 794285/1906736(42%) 793552/1906003(41%)

VGG-16 with ImageNet (10 classes)
Conv1 1.7K 24/24(100%) 1728/1728(100%) 1664/1664(100%)
Conv2 37K 43/1280(3%) 1946/18432(11%) 1914/18400(10%)
Conv3 74K 77/2304(3%) 4251/36864(12%) 4187/36800(11%)
Conv4 147K 301/4608(7%) 14679/73728(20%) 14615/73664(20%)
Conv5 295K 696/8704(8%) 31078/147456(21%) 30950/147328(21%)
Conv6 590K 781/17408(4%) 58130/294912(20%) 58002/294784(20%)
Conv7 590K 733/17408(4%) 57880/294912(20%) 57752/294784(20%)
Conv8 1M 2183/33792(6%) 148367/589824(25%) 148111/589568(25%)
Conv9 2M 957/67584(1%) 172764/1179648(15%) 172508/1179392(15%)
Conv10 2M 877/67584(1%) 172514/1179648(15%) 172258/1179392(15%)
Conv11 2M 390/67584(1%) 123666/1179648(10%) 123410/1179392(10%)
Conv12 2M 351/67584(1%) 118467/1179648(10%) 118211/1179392(10%)
Conv13 2M 458/67584(1%) 118884/1179648(10%) 118628/1179392(10%)
Fc1 103M 287/28665(1%) 294/28672(2%) 287/28665(1%)
Fc2 17M 123/4095(3%) 124/4096(5%) 123/4095(3%)
Fc3 41K 23/23(100%) 16/16(100%) 23/23(100%)
Total 134M 8304/456231(2%) 1024788/7388880(14%) 1022643/7386735(14%)

⇤The selected 10 classes are: n04552348-warplane, n03670208-limousine, n01560419-bulbul,
n02123394-Persiancat, n02415577-bighorn, n02099601-goldenretriever, n01641577-bullfrog,
n02389026-sorrel, n04147183-schooner, n04467665-trailertruck.

Session 8A: Machine Learning #2 ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan

945

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 System Model
	2.2 Model Pruning
	2.3 Thread Model
	2.4 Packed Homomorphic Encryption

	3 System Description
	3.1 HE-Friendly Structured Pruning for Dot Product Computation
	3.2 HE-Friendly Structured Pruning for Convolution Computation
	3.3 Security Analysis

	4 Evaluation
	5 Conclusion
	Acknowledgments
	References
	A Layer-Wise Breakdown of Computation Performance.

