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ABSTRACT
Graph neural networks (GNNs) have enabled the automation of
many web applications that entail node classi�cation on graphs,
such as scam detection in social media [7, 42] and event prediction
in service networks [28]. Nevertheless, recent studies [12, 55, 62, 63]
revealed that the GNNs are vulnerable to adversarial attacks, where
feeding GNNs with poisoned data at training time can lead them to
yield catastrophically devastative test accuracy. This �nding heats
up the frontier of attacks and defenses against GNNs. However,
the prior studies mainly posit that the adversaries can enjoy free
access to manipulate the original graph, while obtaining such ac-
cess could be too costly in practice. To �ll this gap, we propose
a novel attacking paradigm, named Generative Adversarial Fake
Node Camou�aging (GAFNC), with its crux lying in crafting a set
of fake nodes in a generative-adversarial regime. These nodes carry
camou�aged malicious features and can poison the victim GNN by
passing their malicious messages to the original graph via learned
topological structures, such that they 1) maximize the devastation
of classi�cation accuracy (i.e., global attack) or 2) enforce the victim
GNN to misclassify a targeted node set into prescribed classes (i.e.,
target attack). We benchmark our experiments on four real-world
graph datasets, and the results substantiate the viability, e�ective-
ness, and stealthiness of our proposed poisoning attack approach.
Code is released in github.com/chao92/GAFNC.
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1 INTRODUCTION
Graph neural networks (GNNs) have empowered many web ap-
plications and multimedia systems to envision a higher level of
automation in data analytic, e.g., malicious user detection in so-
cial media [7, 42], interest group discovery in recommender sys-
tems [14, 43, 45, 46], event prediction in service networks [28], to
just name a few. Data in such applications are represented by graphs,
in which the information is encoded in two channels – 1) the con-
tents of the nodes and 2) the topological structure that encodes their
correlations. The key to the success of GNN lies in its harmonized
representation learning of the two information channels through
message-passing. At each GNN layer, the node representations are
enriched by collecting information from their immediate neighbors;
By stacking multiple such layers, the neighborhood information
traverses through the graph, allowing the nodes acquire knowledge
about their wider surroundings.

Despite e�ective, this message-passing mechanism gives rise
to the awareness on the robustness and trustworthiness of GNNs.
Indeed, recent adversaries have reported that the training data of
GNNs can be easily poisoned through making slight perturbation
on the input graph, e.g., manipulating the edge connections [55, 63]
or changing contents of existing nodes [12]. Training the GNNs
with the poisoned graph data shall lead to diminished even devasta-
tive test performance. Spurred by this awareness, several methods
turned their eyes on defending GNNs via detecting and correcting
the distorted graph information, such as adversarial edge correc-
tion [37, 49, 60] and nodal perturbation detection [26, 40].

Although the frontier of GNN attack and defense is heating up,
most existing methods are built upon a strong assumption, namely,
the adversaries have full access to the training graph data and can
make any changes at will. This assumption is restrictive in many
real applications. Take online business networks for example, where
the attackers aiming to poison and fail an anti-scam system must
hack into the customer/merchant accounts to change their contents
(i.e., nodal features) or connection with other users (i.e., edges),
which is indeed onerous, costly, and time-consuming. To lift this
assumption, one may think to perform node injection attack [16, 33,

Session 5B: Robust MM ICMR ’22, June 27–30, 2022, Newark, NJ, USA.

451

github.com/chao92/GAFNC
https://doi.org/10.1145/3512527.3531373
https://doi.org/10.1145/3512527.3531373
https://doi.org/10.1145/3512527.3531373


38, 44, 61], where a set of fake nodes (e.g., user accounts) are created
and added to poison the graph. Alas, this idea does not work well
in practice either, as the fake nodes usually carry vicious contents
being so prominent that their pattern di�ers from the benign nodes
drastically, where simple classi�ers, e.g., an outlier detector [6], can
easily spotlight and hence screen out the added fake nodes.

Motivated by this, we in this paper mainly investigate two ques-
tions: 1) Can we poison GNNs without manipulating the original
training graph? 2) Can the poisoning attack be performed in a
stealthy fashion, such that current outlier detectors are fooled?

Our a�rmative answers are provided with a novel attacking
paradigm on GNNs, termed Generative Adversarial Fake Node Cam-
ou�aging (GAFNC). The key idea of GAFNC is to leverage the power
of Generative Adversarial Networks (GAN) [56, 59] to synthesize
an inconspicuously small set of adversarial nodes, each of which
carries seemingly authentic yet distorted features. By connecting
these new nodes to the original graph with di�erent strategies, the
malicious information hidden behind them are aggregated through
message-passing, poison the victim GNN for two purposes. First,
our GAFNC can perform global attack, where the new nodes scatter
across the graph and strive to lower the classi�cation accuracy
of the victim GNN over all original nodes uniformly. Second, we
control the poisoning attack in a �ner level of granularity by per-
forming target attack, where the new nodes neighbor a set of target
nodes, forming a deliberate topology that encourages the victim
GNN to misclassify the target nodes into prescribed classes.
Speci�c contributions of this paper are as follows:

1) This is the �rst work to investigate the poisoning attacks
against GNNs in a generative-adversarial regime. Our ex-
plored problem is novel in the sense that 1) we do not require
access nor manipulation of the original nodes or edges and
2) our attack is at the training time, while the prior studies
mainly focus on test time, evasion attacks; The challenges
and goals thus di�er and shall be discussed in Section 2.

2) A novel GAFNC paradigm is proposed to realize both global
and target attacks, where seemly-authentic nodes that form
legitimate connectivities with the original graph are gener-
ated. Technical details are scrutinized in Sections 3, 4, and 5.

3) Extensive experiments are carried out over four widely used
real-world graph datasets, with the results demonstrating
the viability, e�ectiveness, and stealthiness of our proposed
attacking approach. Section 6 extrapolates the �ndings.

2 RELATEDWORK
Our work relates to the advancements of graph neural network
(GNN) designs, as well as the attacks and defenses on GNNs. This
section reviews the prior art in the two threads and discusses the
relationship and di�erence between their methods and ours.

2.1 Graph Neural Networks (GNNs)
GNNs were originated from the idea of extending neural networks
from Euclidean spaces to discrete graphs [18], with the key idea
lying in the learning of enriched node embeddings that recursively
aggregate information from their neighborhood though message-
passing. Depending on the various realization of aggregation func-
tions, suggested by [3, 52], existing GNN works could be roughly

categorized into spectral-based methods and spatial-based meth-
ods. Motivated by the successes of convolutional neural networks,
the spectral-based methods generalize the concept and design of
convolution �lters from continuous image pixels to the domain
of graph spectrum [8, 19, 21, 23, 23, 36]. However, these spectral-
based GNNs usually require the whole graph as the input, thereby
being bottlenecked for graphs at a real-world scale due to the high
memory and computational cost.

To improve their e�ciency and scalability, subsequent spatial-
based methods [2, 15] were proposed, de�ning the message ag-
gregation operations directly on the graph topological structures
with subgraph windows or node sequences. Representative works
include the Graph Attention Networks [32, 39], which assigns di�er-
ent weights for neighboring regions in the message-passing process.
In such a way, the GNN models are allowed to operate on graphs
with stochastic inputs, instead of the entire topology, thereby lead-
ing to much improved memory e�ciency. Despite their di�erence,
the main idea behind the two threads of GNNs remains the same,
where an embedding space harmonizing both graph topological
structure and nodal features is desired. To respect this main idea
and without loss of generality, we in this paper model a generic
GNN as the victimmodel, which shall be discussed in Section ??. We
note that our GAFNC paradigm is general and can be exploited to
attack GNNs with various architectures, with the only leverage be-
ing the gradient information of the victim GNN. In implementation,
attacking on the graph convolutional network (GCN) is exempli�ed
to substantiate the viability of the GAFNC paradigm.

2.2 Adversarial Attack and Defense on Graphs
The robustness and vulnerability of deep neural networks have
been extensively studied in the continuous Euclidean domains, in-
cluding images [9, 25], acoustics [53], and natural languages [57].
This domain was highly motivated by Goodfellow et al.’s seminar
work, which reports that human-imperceptibly small perturba-
tions on the input data can be escalated through the layer-by-layer
representation of a deep network, thereby leading to the shift of
correct classi�cation boundaries and thus devastative accuracy re-
sults. Starting from [63], the security issues of GNNs has been
brought into wide attention. Mainstream attacking techniques on
GNNs can be categorized into evasion attack and poisoning attack.
Defending techniques to counter against both attacks have been
proposed [22, 31, 41, 58]. To compare, in the evasion attack, the
adversaries are tasked to mislead the models to make incorrect
predictions on the manipulated data in the test time, however the
models can still keep their accuracies when given normal, undis-
torted data samples [12, 34].

Poisoning attack, on the contrary, strives to devastate the per-
formance of GNN models in the training time, such that the poi-
soned models can not give reliable prediction on any test sam-
ples [35, 55, 62]. So by this de�nition, our GAFNC approach falls
into the category of poisoning attack. However, prior arts mainly
posit that the adversaries are given privilege to manipulate the train-
ing data arbitrarily, such as adding or deleting graph edges [55, 62]
or changing nodal features [35]. Alas, this assumption could be
too costly to be realized in real-world applications, e.g., hacking
into a social network infrastructure such as Twitter or Facebook,
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limiting the practicality of the existing proposals. To �ll the gap,
our GAFNC paradigm aims to craft a set of adversarial nodes and
propagate their camou�aged malicious features via strategically
learned connections to the original graph, which needs no access to
the training data and thus is more practical.

We note that the recent studies of node injection attack focus-
ing on creating new nodes can use either evasion [16, 38, 61] or
poison [33, 44] settings. However, they only consider to devastate
the model performance in test or training time, respectively, but
fail to consider the stealthiness of the injected nodes. That said,
their crafted nodes usually carry vicious contents that prominently
di�ers from the original nodes. Our GAFNC approach excels these
node injection attackers by leveraging generative adversarial net-
work (GAN) [56, 59] to generate camou�aged adversarial nodes,
which possess two properties: 1) The generated nodes are enforced
to look alike and follow a similar feature distribution as the original
nodes; 2) The connectivity between the new and the old nodes
shares the same graph properties e.g., sparsity, average degree,
as the original graph. As such, the fake nodes generated by our
GAFNC approach can fool outlier detectors [6] and hence performs
poisoning attack in a more stealthy fashion.

3 PROBLEM STATEMENT
Node Classi�cation with GNNs. This paper uses the following
conventions. Let G = (V,A,X) denote an attributed graph, where
V = {�1, . . . ,�N } is the set of N nodes, A 2 {0, 1}N⇥N is the
adjacency matrix encoding the graph topology, where Ai, j = 1 if
an edge exists between two nodes�i and�j and Ai, j = 0 otherwise.
Denoted by X = {x1, . . . , xN } 2 RN⇥D is the nodal feature matrix,
where each node is associated with a D-dimensional feature vector.

The problem of node classi�cation on graphs is usually framed
in a transductive learning setting. Our work follows this convention.
Given a small subset of nodes being labeled, denoted by VL =
{(�1,�1), . . . , (�L ,�L)}, where �i 2 {C1,C2, · · · ,Ck } is the true
label of �i and there are k possible classes in total. The goal is
to learn a function that can accurately predict the labels of the
remaining unlabeled nodes VU := V \ VL , where |VU | > |VL |.

GNNs have manifested their remarkable classi�cation perfor-
mance in the literature [3, 52]. Despite their many variants, the
core function of GNNs is message-passing, where each node is rep-
resented in an enriched latent space by aggregating information
from its neighbors. A generic formulation of this representation
learning mechanism takes a recursive form as follows.

hli = �
l
⇣
hl�1i ,Agg

⇣
{� l (hl�1j ) | j 2 Ni }

⌘⌘
, (1)

8l = 1, 2, . . . ,M, h0i = xi ,

where, for node �i at the l-th layer, hli denotes its latent repre-
sentation, Ni encloses its �rst-order neighbors, Agg( ·) aggregates
information/messages from its immediate context, and �l and� l

implement arbitrary learnable transformations. In this work, we
implement �l and �

l with a non-linear activation and a linear
mapping, for the sake of simplicity and without loss of generality,
reducing Eq. (1) to the following format.

Hl = � (ÂHl�1Wl ), 8l = 1, 2, . . . ,M, H0 = X (2)

Adversarial Nodes: Misclassified Nodes:

Feature 
Distortion

Add 

Delete

Traditional Poisoning Attack Our GAFNC Paradigm

Original Nodes: 

Figure 1: An illustrative comparison of traditional poison-
ing attacks on graph (left) and our GAFNC paradigm (right).

where Hl 2 RN⇥Z l
stacks the node representations at the l-th

layer, and Wl 2 RZ l�1⇥Z l
is the corresponding learnable weight

matrix that linearly maps the input to a di�erent latent space. Â =eD� 1
2 eAeD� 1

2 is the symmetric normalized adjacency matrix of the
(undirected) input graph G after adding the self-loop eA = A + IN
and eD is the degree matrix with eDii =

Õ
j eAi j . Denoted by � (·)

is the non-linear activation function (e.g., ReLU). As such, a GNN
having in total M layers allows the messages to travel across the
graph by means of anM-hop neighboring context, yielding node
representations that harmonize nodal features and graph topology,
thereby uplifting the classi�cation performance.

To learn the weights in Eq. (2), a straightforward and popular
idea is to minimize the cross-entropy loss function that leverages
the limited labeled nodes, de�ned as follows.

min
W1, ...,WM

’
�i 2VL

P(�i , �̂i ) := �
’

�i 2VL
�i log �̂i , (3)

where �̂i = so�max(hMi ) is the predicted label of the i-th node, and
hMi is the i-th column ofHM being the output of the last GNN layer.
The optimization process of Eq. (3) starts from theM-th layer with
parameters WM , and the gradient information back-propagates
with chain rule layer-by-layer until W1 is updated. Such process
repeats multiple times until its convergence.

4 THREAT MODEL
In this work, we restrict our interest in attacking GNN models
with linear aggregation function, modeled by Eqs. (1) and (2), for
two reasons. First, our GAFNC attacking approach operates in
an end-to-end fashion with no assumption made on the model
architecture – the only leverage is the gradient information of the
victim model. Therefore, a linear realization delivers simplicity,
helping to facilitate the understanding of how our poisoning attack
is succeeded. Second, GNN with linear aggregation is also known
as graph convolutional network (GCN), which has manifested its
e�ectiveness in a variety of real-world applications [15, 23, 48],
necessitating an analysis on its robustness and reliability towards
adversaries who may or may not have access to the training data.

Opportunities. For adversaries who have access to the training
data and can freely manipulate the nodes and edges of the original
graph, the attacking opportunities appear naturally. In particular,
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two key components of Eq. (2), i.e., the graph connectivity repre-
sented by Â and the nodal feature denoted by X, can be deliberately
distorted to perform poisoning attack on graphs, where the GNN
models trained on the distorted graph cannot reach the same level
of accuracy as on the clean data. More speci�cally, two types of
poisoning attacks are considered, which take the forms as follows.

Global Attack: argmax
A0,X0

’
�i 2V

P
⇣
�i , �̂i | W1, . . . ,WM

⌘
, (4)

Target Attack: argmax
A0,X0

’
�i 2V�

P
⇣
�� = �̂i | W1, . . . ,WM

⌘
, (5)

s .t . kA0 � AkF  �A, kX0 � XkF  �X , (6)

where Eq. (4) de�nes the global attack in which the task is to maxi-
mize the probability that the victim model gives incorrect predic-
tions over all nodes uniformly, Eq. (5) de�nes the target attack in
which the victim model is encouraged to predict a set of target
nodes V� into prescribed classes ��. The constraints in Eq. (6) en-
sure that the distorted graph topology A0 and nodal feature matrix
X0 do not di�er from those of the original graph signi�cantly and
the distortions are within the Frobenius distances of �A and �X ,
respectively. Intuitively, changing the graph connectivity to A0, e.g.,
adding new edges or deleting existing edges, is more e�ective than
perturbing nodal features toX0, as Â is involved in the computation
of every layer while X is at the �rst layer only. A recent study fur-
ther substantiate this intuition [49]. Most existing poisoning attack
methods can be framed in the modeling of Eqs. (4), (5), and (6).

The Challenge and Limitation. The aforementioned threat
model su�er from a prominent drawback – they require access to
the original graph data. Obtaining such an access in real-world ap-
plications, however, can be very di�cult. For example, to devastate
a scam detection system in an online social network such as Face-
book or Twitter or a business network such as Amazon or ebay, the
attackers have to hack into the central server or the user accounts,
so as to perform data poisoning by manipulating the nodal features
(e.g., the contents that the users posted) or graph connectivity (e.g.,
the follower-followee relationship), which is time-consuming and
labour-costly and thus close to impossible in practice.

Our Idea. To lift the limitation of requiring data access, we
propose to add arti�cial nodes in graph, letting their malicious
messages propagate to their immediate contexts, and gradually to
theirM-hop neighbors by taking advantage of the message-passing
of GNNs, such that the entire graph can be eventually poisoned.
We term such an attacking paradigm as Generative Adversarial Fake
Node Camou�aging (GAFNC). Figure 1 illustrates a comparison
between the traditional poisoning attack methods and our GAFNC
proposal, where the main di�erence is that GAFNC does not request
the permission of making any change on the original graph and
hence is more practical. For example, an adversary can register
many fake accounts in social/business networks, which is much
cheaper and feasible than hacking into the server or real accounts.

The problem then is howwould these arti�cial nodes look like. To
make the attack practical, the added nodes should not carry strong
patterns, e.g., a new account that keeps posting spam contents
and/or sending out friend requests in high frequency – such nodes
can be so easily detected by naïve network defending system such as

an anomaly detector [1]. To this end, we in this study impose three
requirements on the added nodes, so that our attack is stealthy.
(1) The features of the arti�cial nodes follow a similar yet non-
identical distribution as those of the original nodes, such that their
malicious information is camou�aged. (2) The edges between the
added nodes and the original graph are capable of e�ectively passing
the poisonous messages of the new nodes yet should not be too
dense; The sparsity of such new edges should be similar to that
of the original graph. (3) The total number of added nodes should
be small – otherwise, neatly crafting a large group of seemingly-
authentic nodes would again be overly expensive. In this work,
we strictly restrict the number of new nodes to be less than 1% of
the graph scale. To meet the three requirements, our key idea is
to frame the node generation process in a generative adversarial
network (GAN) regime, where the contents of the arti�cial nodes
and their connectivity with the original graph are learned jointly
by solving a bi-objective two-player minimax game. The details are
given in the next section.

5 THE GAFNC PARADIGM
In this section, we elaborate the building blocks of our GAFNC
paradigm, with the pipeline delineated in Figure 2. In a nutshell,
two questions are solved in order to perform poisoning attacks on
graphs without manipulating the original data. First, what features
should the added nodes carry, such that they look authentic, can
camou�age their poisonous contents, and would not be detected
and rejected by simple classi�ers running on graphs. To answer this
question, the generative adversarial network (GAN) is employed
to ensure that the features of the generated nodes follow a similar
distribution of those of the original nodes, as shown in the top
panel in Figure 2. We shall scrutinize this block in Section 5.1.

Second, how should the added nodes connect to the original graph,
such that two types of poisoning attacks can be e�ectively imple-
mented in which, for global attack, the goal is to maximize the
accuracy degradation of the victim GNN classi�er and, for target
attack, the goal is to encourage the targeted node to be misclassi�ed
into a prescribed class. To this end, we draw insights from the soft
mask learning, which was devised for capturing important image
regions in computer vision [10, 11], to devise the edge mask learn-
ing block, as shown in the bottom panel in Figure 2. The objective
of this block is to identify a sparse topological structure, through
which the malicious contents hidden in the newly added nodes can
be propagated so as to poison the entire graph in high e�cacy. The
details of the edge mask learning are presented in Section 5.2.

5.1 Adversarial Node Generation
The learning objective of our GAFNC paradigm can be framed in a
generic minimax game as follows.

min
D,�

max
G

LGNN(G,�,G,G0) + LGAN(G,D,G0), (7)

where G, D, and � represent the generator, the discriminator, and
the victimGNNmodel, respectively. Denoted byG0 = (V0,A0,X0) is
the augmented graph, where V0 = {�1, . . . ,�N ,�N+1, . . . ,�N+m }
includes both the N original nodes and the addedm arti�cial nodes,

A0 =

A B>
B C

�
2 R(N+m)⇥(N+m) in which B and C encode the
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Figure 2: Pipeline of our proposedGAFNC. Blue colored are the original nodes and the corresponding adjacencymatrix. Purple
colored are the feature matrix of origin graph. Red colored are the new arti�cial node and its feature contents. Orange colored
are the edges between the new node and the original graph and how the adjacency is augmented.

edges between the old and new nodes and that among the new
nodes, respectively, and X0 = [X,Xnew ]> 2 R(N+m)⇥D in which
Xnew stacks the feature vectors of the arti�cial nodes. The goal of
G is to generate B, C, and Xnew that together deliver a stationary
point of solving Eq. (7). The �rst term is the GNN loss term, which
varies in accordance with the di�erent attack settings and thus shall
be detailed later on. The second term in Eq. (7) is the GAN loss term,
which is de�ned as follows.

LGAN(G,D,G0) = E�i 2V [1 � logD(A, xi )]
+E�j 2{�N+1, ...,�N+m }

⇥
log

�
D(A0,G(zj ))

� ⇤
, (8)

where A0 and zj are the generated connections and nodal features
fromG . The intuition behind Eq. (8) is that, withD �xed, the second
term of Eq. (8) w.r.t. G is maximized such that the features of the
nodes�N+1, . . . ,�N+m that are generated by drawing from a latent
code zj follows a similar distribution of those of the original nodesV,
striving to fool the classi�er at the current round. In an alternative
fashion, with G �xed, minimizing Eq. (8) equals to maximizing the
�rst term in which D is guided to identify the original nodes and
meanwhile minimizing the second term in which D aims to screen
out the generated nodes. Graph Convolutional Network (GCN) is
selected to implement the discriminator D due to its capability of
tracing changes in both graph topology and nodal features.

To implement the generatorG , a fully-connected decoder would
su�ce in most tasks. However, we note that the nodes in several
tasks may carry binary features, such as scholarly graphs, where
each node represents a research article and 1 or 0 in a speci�c entry
of the feature vector indicates the existence or not of the corre-
sponding keyword [30, 51] and bioinformatics graphs, where each
node is a chemical medicine with the binary features indicating
whether or not a particular molecule is a part of this medicine. For
such tasks, the decoder architecture would su�er from the discrete-
ness and hence yield inferior performance in generating seemingly
authentic nodes. To solve the issue, we adapt the idea of binary
neurons suggested in the BinaryGAN [13], where the output layer
of a generator was binarized through sigmoid-adjusted, straight-
through estimators for generating data in continues domain. Two
types of binary neurons, named deterministic binary neuron (DBN)

and stochastic binary neuron (SBN), are both implemented in this
work for the sake of e�cacy. The formulation are as follows.

DBN (x) = µ(� (x) � 0.5), (9)
SBN (x) = µ(� (x) ��), � ⇠ U [0, 1], (10)

where µ( ·) and � ( ·) denote the unit step function and the sigmoid,
respectively. � (x) is the preactivated outputs, andU [0, 1] denotes a
uniform distribution.

5.2 Graph Poisoning with Edge Mask Learning
Thus far we have elaborated what features are in the newly added
nodes, the question now is how to connect them to the original
graph. Conceptually, for di�erent attacking purposes, the resultant
connectivities would also di�er. As such, we in the next present
details of how the two types of poisoning attacks are realized by
learning the topological structure of the augmented graph via ex-
trapolating the GNN loss term in Eq. (7).

Global A�ack. We �rst introduce the global attack, where the
only objective is to lower the classi�cation accuracy in general of
a GNN model over all nodes uniformly. In practice, such attack
has broad e�ect. For example, by making up a small set of seemly
legitimate merchants, an online business infrastructure such as
Amazon or ebay would weaken its capability of detecting scam
sellers, incurring huge economic loss [54]. For another example, by
spreading fake users across an online social network such as Face-
book or Twitter, the platforms would lose their agility in screening
bots and malicious users, so that rumors and fake news cannot be
ceased in their early spreading stage, leaving space for attackers to
corrupt democracy in the worst case [4, 24].

To realize the global attack, we de�ne the GNN loss term in
Eq. (7) that is to be maximized as follows,

LGNN(G,�,G,G0) =
’
�j 2V0

��i log �̂i + �1�(S) + �2H (S), (11)

where �̂i = P�(S � K(1),X0) denotes the prediction of the node i
in the augmented graph. S 2 R(N+m)⇥(N+m) is the edge mask and
K(1) 2 R(N+m)⇥(N+m) stands for a full 1’ matrix. With their scales
controlled by tuned parameters �1 and �2 are the regularization
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terms, with � =
Õ |(� (S)| representing the sum of `1 norm of the

edge mask, andH (S) = ��⇤ log(�+�)�(1��)⇤ log(1��+�)with
� = 1e � 15 is the entropy of �. Note, to ensure that the topology
of the original graph can be kept unchanged during optimization,
we split our edge mask into two parts in implementation, namely,
the part corresponding to the edges of the origin graph that is �xed
as-is, and the part that is trainable representing the edges encoded
by B 2 {0, 1}N⇥m and C 2 {0, 1}m⇥m in A0.

The intuition behind Eq. (11) is to maximizing the cross entropy
of � and �̂. One more attention is that we exclude the output for
the new node in the second term of equation Eq. (11) for two rea-
sons. First, we cannot decide the groundtruth labels of newly added
nodes at the initial iterations, as which label assignment would
lead to the highest attacking e�cacy remains unclear. Enforcing
a priori assignment would introduce noises and thus slows down
the training e�ciency. Second, in this way we could align the num-
bers of the nodes that are unlabeled and need to be predicted in
the original and augmented graph, launching a fair performance
comparison of the GNN models, being either healthy or poisoned,
in a transductive learning regime.

Target A�ack. Yet, the global attack leaves the question, which
nodes are misclassi�ed into which classes in a black-box, thereby
preventing a further analysis on the GNN robustness. Thus, we
second give details of the target attack, where the GNN is enforced
to misclassify speci�ed nodes into pre-designated classes. Given
a target node �i with label �i = Ct , the goal is to encourage a
misclassi�cation of this node such that �̂i = Ck , Ct , with Ck
being a desired class. The attack is straightforward and can be
realized by de�ning the the GNN loss term in Eq. (7) as follows.

LGNN(G,�,G,G0) =
’

�j 2V0,
�i 2Ct

�Ck log �̂i + �1�(S) + �2H (S), (12)

where the predictive function of �̂i and the two regularizers �(S)
and H (S) share the same de�nitions as in Eq. (11). The intuition
behind Eq. (12) is to minimize the probability that the predicted
label �̂i is not the pre-designated class Ck , so that all nodes in the
victim class Ct are likely to be misclassi�ed by the poisoned GNN.

6 EXPERIMENTS
In this section, we perform empirical study and present the re-
sults to verify the e�ectiveness of our GAFNC attacking approach.
Section 6.1 elaborate the benchmark datasets and the evaluation
protocol. Section 6.2 presents the experimental results.

6.1 Evaluation Protocol

Datasets. We benchmark our experiments on four real-world
datasets, which are all widely-used in the literature. As a convention,
we adapt the largest connected components search from [63] to �lter
out the very small sets of nodes in which the nodes are mutually
connected and do not connect to the entire graph. The statistics of
the datasets are summarized in the table as follows.

Datasets # Nodes # Edges # Features # Classes

Cora 2,485 5,069 1,433 7
CiteSeer 3,327 4,732 3,703 6
PubMed 19,717 44,338 500 3
Amazon 7487 119043 745 8

Testbed. The computational environment is Ubuntu 18.04.5 LTS
with CPUs of Intel Xeon Gold 6248R and GPUs of NVIDIA Tesla
V100S (on a 4096-bit memory bus), 376GB of RAM and 50TB of
HDD. The victim model is implemented as a 2-layer GCN with
ReLU as activation in a hidden dimension of 16 and IdenticalPool
as the readout in the last layer. To ensure the comparison fairness,
we �xed the number of maximum training epochs at 300 with a
.005 learning rate. All experiments were conducted by splitting
the datasets with a training/validation/test ratio of 7:1.5:1.5. To
satisfy a semi-supervised setting in node classi�cation, 20% nodes
in the training set are associated with labels and 80% training nodes
remain unlabeled. To o�set randomness, 10-fold cross-validation is
executed by shu�ing the split and averaged results were reported.
For all experiments, a maximum ratio of 0.44% adversarial nodes
were added to perform the attack.

Metrics. To carry out a comprehensive evaluation, we employ
Accuracy, Precision, Recall, and Macro-F1 to evaluate the model
performance and Attack Success Rate (ASR) to gauge the attack-
ing e�cacy. In a nutshell, to respect the multi-class nature of the
studied datasets, Precision, Recall, and Macro-F1 that give an ex-
trapolation of correct classi�cation ratio in �ner-level of granularity
can eliminate the inherent bias of the commonly used Accuracy.
For the global attack, ASR indicates the overall misclassi�cation
rate; for the target attack, ASR summarizes the rate to misclassify
nodes into the target class.

Model Variants. To fully investigate the roles that di�erent
building blocks play in our GAFNC pipeline, ablation study is a
must. To this end, we devise �ve model variants (denoted by V1 –
V5) by controlling di�erent blocks, based on the combination of
imposing attacks on graph topology and nodal features along with
randomness. Details defer to Section A.3 due to space limitation.

6.2 Results
Table 1 and Figures 3, 4, and 5 present the experimental results,
from which we answer the four research questions as follows.
Q1. How vulnerable is GNN to our GAFNC attack?

The answer is immediated from the comparison between our
GAFNC approach and the baseline in Table 1, where our approach
leads to an increased ASR of 72.77%, with a 71.06% global ASR
and a 74.49% target ASR on average. We note that such an attack
e�cacy is achieved by adding 20 adversarial nodes only, revealing
the vulnerability of GNNmodels by means that they can be attacked
at very low cost in our generative-adversarial poisoning regime.

To further extrapolate this question, we make the following ob-
servations from Table 1 and Figure 3. First, as the node classi�cation
task is semi-supervised, given a larger number of training nodes
can intuitively leads to a better model performance. The increas-
ing trends of classi�cation accuracy with a larger proportion of
training nodes in Figure 3 validate this intuition. However, our
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Table 1: Comparative results of the victim GNN and our GAFNC approach and its �ve variants on four real-world graph
datasets in terms of Attack Success Rate (ASR). “Baseline” is the error rate of the GNN trained on clear, unpoisoned data.

Datasets Baseline V1 V2 V3 V4 V5 GAFNC-Global GAFNC-Target

Cora 0.150 0.215 0.430 0.230 0.229 0.333 0.488 0.714
CiteSeer 0.310 0.320 0.430 0.445 0.353 0.401 0.697 0.717
PubMed 0.122 0.418 0.484 0.485 0.438 0.476 0.516 0.537
Amazon 0.061 0.136 0.278 0.216 0.118 0.186 0.369 0.405

Figure 4: A boxplot comparison between GAFNC and V2
with a 25th – 75th interquartile range.

GAFNC lead to the most �at increasing trends, meaning that our
GAFNC attack keeps its e�cacy even if more groundtruth labels
are given in the training phase. Second, the attacking e�cacy of
V4 and V5 is a�ected by the training data ratios largely. In Cora
and CiteSeer, V4 and V5 even improved the classi�cation accuracy
of the victim GNN. This phenomena is also termed as the positive
e�ect of adversarial training [41], where a jointly learning of be-
nign and malicious nodes can increase the robustness of GNNs. Our
GAFNC does not su�er this issue and can always perform e�ective
poisoning however the imbalanced ratio between the benign nodes
(e.g., 1988 in Cora and 15,773 in PubMed) for training and the added
adversarial nodes (i.e., 20 in our study). This suggests that adding
more healthy nodes cannot uplift the classi�cation performance of
the GNN models once being poisoned by our GAFNC attack.
Q2. How poisonous are the adversarial nodes?

The answer are provided in two aspects, namely, the attacking
e�cacy and the attacking robustness. The e�cacy is extracted by

comparing our GAFNC to V5 and comparing V3 to V1, where the
impact of graph topology is controlled. First, with both learned
topology, we observe from Table 1 that GAFNC enjoys a 16.31%
higher ASR than V5 on average, which suggests that, with strate-
gical connections solely, our GAN-generated nodes carry more
poisonous contents. Second, with both random connection, V3
outperforms V1 in terms of ASR by 13.1%, which indicates that,
even being connected to the original graph randomly, the GAN-
generated nodes may also achieve malicious purposes because of
their poisonous features. In addition, comparing GAFNC to V2
as shown in Figure 4, we observe that with a �xed topological
structure, the features learned by GAFNC makes the attacking e�-
cacy more robust, where the performance variances of the resultant
model are signi�cantly smaller across all metrics.

Q3. How e�ective can edge mask generate poisoning connections?

To answer this question, we control the e�ect of poisonous nodal
features by comparing GAFNC to V3 and V2 to V1.We observe from
Table 1 that GAFNC and V2 excel in ratios of 18.22% and 21.64% to
their competitors, respectively. This �nding reveals that the edge
mask can learn how to connect the added nodes to the original graph
in a way that their malicious contents (being smartly generated
in GAFNC or randomly generated in V2) can be propagated so
as to poison the entire graph most e�ectively. In addition, our
GAFNC ends up with the highest ASR in CiteSeer with a 20.22%
higher ratio than in the other three datasets, where the key attribute
that di�erentiates CiteSeer from the other three is its substantially
lower sparsity. This delivers that the graph density matters, where
a denser graph is more �exible because of the choices of routes
are many, but in a sparse graph the poisonous messages cannot be

Figure 3: Performance of the classi�cation accuracy of the baseline GNN on the clear datasets and the datasets poisoned by
our GAFNCmethods and its V4 and V5 variants, where the ratios of training data to the original datasets vary from 20% to 80%.
A �xed number of 20 adversarial nodes were added to perform the poisoning attack.
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Figure 5: Attacking e�cacy in four datasets w.r.t. di�erent numbers of added nodes.

e�ectively propagated without strategical edges. The edge mask
in GAFNC provides such an apparatus to place the connections
between the new nodes and the original graph strategically, thereby
arriving at the remarkable attacking success rates.
Q4. How stealthy is our GAFNC poisoning attack?

The stealthiness of the adversarial nodes added by our GAFNC
approach comes from three aspects. (1) The total number of added
nodes is very small, where we note that all the empirical studies
were conducted with only 20 adversarial nodes added and con-
nected. As shown in Figure 5, with more nodes added, the per-
formance of the victim GNN can be further degraded, with the
macro-F1 ends up with 23.93%, 15.13%, 40.98%, and 29.87% in Cora,
CiteSeer, PubMed, and Amazon, respectively, if we increase the
number of added nodes to 1% of the original graph. Yet, this ratio
of added nodes is still rather negligible.

(2) The nodes generated by GAFNC are seemingly-authentic,
i.e., the new nodes follow a similar distribution as the original
nodes. To see this, a state-of-the-art outlier detector COPOD [27]
is applied to distinguish our generated nodes from the nodes in the
original datasets. We �rst try COPOD on the nodes with randomly
generated features, where COPOD is capable of detecting those
nodes 100% from the original ones. However, with our GAFNC
nodes, COPOD ends up with a 12% detection ratio, leaving most of
the adversarial nodes undetected. This validates that the malicious
features of our GAFNC generated nodes are camou�aged and can
hence perform poisoning attacks stealthily.

(3) Our GAFNC approach allows a target attack beyond 1-hop.
A qualitative result from Cora dataset is exempli�ed in Figure 6,
where the objective of the target attack is to encourage a misclassi-
�cation of Node #1336 into a prescribed class. After 1973 epochs of
poisoning, we observe that by adding two adversarial nodes as the
second- and third-order neighbors of the victim node, the malicious
messages can be propagated in such a stealthy path that the imme-
diate neighbors of the Node #1336 can still be classi�ed correctly
by the poisoned GNN, but still leads to the misclassi�cation of the
victim #1336. Considering the large size of neighborhood of each
node in more than 1-hop, such a multi-hop target attack make our
poisoning approach even more di�cult to be detected in practice.

7 CONCLUSION
This paper explored the robustness of graph neural network (GNN)
in node classi�cation from an adversary perspective. A novel data

Figure 6:A successful 3-hop target attack in theCora dataset.

poisoning attack paradigm on graphs, named Generative Adversar-
ial Fake Node Camou�aging (GAFNC), was proposed, with its crux
lying in the craft of adversarial nodes that are seemingly authentic
yet carry malicious contents. The key idea of GAFNC is to leverage
the message-passing mechanism of GNN, such that the connec-
tivity between this set of crafted nodes and the original graph is
established in a way that expedites the propagation of the hidden
malicious contents over the entire graph. Two attacking goals were
realized, namely, 1) global attack, where the GNN trained on such
poisoned graph would su�er poor prediction performance in gen-
eral, with the margin to that of a healthy GNN is maximized, and 2)
target attack, where the GNN is encouraged to misclassify a target
node into a prescribed class. The practicality of our proposal lies in
that, compared to the prior arts requiring to either distort the nodal
features or add/delete the existing linkages or both, our GAFNC
paradigm does not entail any manipulation on the original graph
(note that such manipulation could be very expensive in practice
such as hacking into an internet infrastructure e.g., Amazon or
Facebook). Empirical study on four widely used, real-world graph
datasets and extensive ablation studies together substantiated the
viability, e�ectiveness, and stealthiness of our proposed GAFNC
poisoning attack approach.
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A APPENDIX
A.1 Details of the Studied Datasets
With their statistics given in the main content in Section 6.1, we
give a detailed introduction of the studied datasets.

• Cora [30] andCiteSeer [51] represent two citation network
that contains a collection of scienti�c publications. Each node
is a research article and is associated with a 0/1-valued word
vector, where each entry represents the absence/presence of
the corresponding unique word. As each article cites or is
cited by other papers, the links between pairs of nodes are
naturally formed. The dimension of the nodal vectors indi-
cates the volume of the used dictionary. For example, in Cora
each nodal vector is 1433-dimensioned, meaning that the
dictionary encodes 1433 unique words in total. The learning
task in both datasets is to classify the research articles into a
number of research domains. For example, the class labels in
Cora represent 7 domains in machine learning, e.g., neural
networks, probabilistic methods, genetic algorithms, and oth-
ers. Our task in Cora is thus to synthesize a small number of
articles that makes the GNN incapable of classifying existing
articles into the 7 classes correspondingly.

• PubMed [5] is formed by extracting diabetes-related pub-
lications from PubMed database. It di�ers from Cora and
CiteSeer in three aspects. First is its edge sparsity, which is
6⇥ higher than Cora and CiteSeer on average. Second is its
�ner learning granularity, as PubMed focuses on diabetes-
related articles only with a larger sample size, while Cora and
CiteSeer both cover a boarder research scope. Third, PubMed
represents the nodal features in a denser modality, where
each publication is described by a TF-IDF [50] weighted word
vector in a 500-dimensional latent space. Per these unique
properties of PubMed, the experiment carried out on it could
substantiate the generalizability of our attacking approach.

• Amazon [29] is is a dataset pro�ling the co-purchase be-
haviors of Amazon users, with the nodes representing the
products, the edges pinpointing the pairs of products that
are frequently bought together, the nodal features being
the product reviews encoded with the bag-of-words, and
the class labels indicating the product category. Amazon
has a signi�cantly smaller sparsity compared to the other

three datasets due to the Matthew e�ect in E-commerce [20],
where the more frequently a pair of products has been co-
purchased before, the more likely either one product in this
pair is recommended if the other is purchased. A successful
attacking on this dataset could hint the viability of applying
our GAFNC paradigm to undermine the deep-learning-based
recommender systems [47], helping the online business users
to build and uplift the awareness of analyzing and reinforc-
ing the robustness of their systems.

A.2 Evaluation Metrics: Accuracy, Recall,
Precision, and Macro-F1

To carry out a comprehensive evaluation, we employ accuracy,
precision, recall, and macro-F1 as the four metrics to gauge the
model performance. Due to the multi-class nature of the studied
datasets, we decompose the classi�cation problem into multiple
binary classi�cation subproblems, in each of which one class is
selected as the target class (positive) and the others are merged
into a non-target class (negative). Note, each subproblem su�ers
from imbalanceness, where the number of samples in the nega-
tive class signi�cantly overweighs that in the target class. As such,
we de�ne a few terms at �rst, and then introduce the intuition
behind these metrics. True Positive (TP) and True Negative (TN)
denote correct predictions, where the model prediction aligns the
groundtruth. False Positive (FP) and False Negative (FN) indicate
misclassi�cations, where FP means the model predicts the input
as positive but the true label is negative, and FN is vice versa. Ac-
curacy = (TP + TN )/(TP + TN + FP + FN ), which is the most
commonly-used and straightforward metric in node classi�cation.
It de�nes how likely the model would give correct prediction in
general, yet may introduce bias in imbalanced or multi-class set-
tings. Precision = TP/(TP + FP) and Recall = TP/(TP + FN )
decompose the Accuracy metric into a �ner-level of granularity by
favoring the positive class with small sample size, where Precision
measures how likely a predicted positive sample is indeed positive,
and Recall gives the ratio of correctly predicted positive samples in
that class. Macro-F1 = 2 ⇤ Precision ⇤ Recall/(Precision + Recall)
harmonizes Precision and Recall and is a more comprehensive and
robust metric. We would like to note that, although Accuracy is
mostly used in the literature, lowering the model performance with
poisoning attacks is relatively easy under the Accuracy metric, as
in many real tasks there exists pairs of classes being naturally di�-
cult to distinguish (e.g., ML, AI, and IR in CiteSeer). Macro-F1 that
gives a better measure of incorrectly classi�ed cases is thus a better
metric to evaluate our attacking e�cacy on.

A.3 Details of Ablation Model Variants
The details of the variants proposed in Section 6.1 are summarized
in the table below.

V1 V2 V3 V4 V5 GAFNC

Features Learned? 7 7 3 " " 3
Edges Learned? 7 3 7 7 3 3

V1: Purely Random Attack, where a number of new nodes with ran-
domly generated features are connected to the original graph with
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randomly selected nodes. V2: Random feature attack with learned
topology, which di�ers from V1 in the sense that the new nodes
having randomly generated features are learned to strategically
connect to the original in a way that maximizes the attacking ef-
�cacy. V3: Random topology attack with learned features, which is
parallel to V2 with randomly connected edges yet learnable nodal
features. V4: Random topology attack with sampled features, which

di�ers from V3 by having the newly added nodes sampled from the
original graph. V5: Learnable topology attack with sampled features,
which evolves from V4 with the connectivities between the new
nodes and original graph learned with edge masks. GAFNC, which
further upgrades V5 with a higher degree of freedom, both nodal
features and the topology of augmented graph are purely learned
from data through the method described in Section 5.
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