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The specificity ofT cells is thateach T cellhasonly one T cellreceptor (TCR). AT cell clone
represents a collection of T cells with the same TCR sequence. Thus, the number of
different T cellclonesin anorganism reflectsthe number of different T cellreceptors(TCRs)
that arise from recombination of the V(D)J gene segments during T cell development in
the thymus. TCR diversity and more specifically, the clone abundance distribution, are
important factors in immune functions. Specific recombination patterns occur more
frequently than others while subsequent interactions between TCRs and self-antigens
are known to trigger proliferation and sustain naive T cell survival. These processes are
TCR-dependent, leading to clone-dependent thymic export and naive T cell proliferation
rates. We describe the heterogeneous steady-state population of naive T cells (thosethat
havenot yetbeenantigenically triggered) by using a mean-field model of a regulated birth-
death-immigration process. After accounting for random sampling, we investigate how
TCR-dependent heterogeneities in immigration and proliferation rates affect the shape of
clone abundance distributions (the number of different clones that are represented by a
specific number of cells, or "clone counts"). By using reasonable physiological parameter
values and fitting predicted clone counts to experimentally sampled clone abundances,
we show that realistic levels of heterogeneity in immigration rates cause very little change
to predicted clone-counts, but that modest heterogeneity in proliferation rates can
generate the observed clone abundances. Our analysis provides constraints among
physiological parameters that are necessary to yield predictions that qualitatively match
the data. Assumptions of the model and potentially other important mechanistic factors
are discussed.

Keywords: naive T cells, T-cell receptor, repertoire diversity, clone-count distributions, mathematical modeling,
immigration-proliferation model, heterogeneity
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INTRODUCTION

Naive T cells play a crucial role in the immune system's response
to pathogens, tumors, and other infectious agents. These cells are
produced in the bone marrow, mature in the thymus, circulate
through the blood, and migrate to the lymph nodes where they
may be presented with different antigen proteins from various
pathogens. Naive T cells mature in the thymus where the so-
called V, D, and J segments of genes that code T cell receptors
undergo rearrangement. Most T cell receptors (TCRs) are
comprised of an alpha chain and a beta chain that are formed
after VJ segment and VDJ segment recombination, respectively.
The number of possible TCR gene sequences is extremely large,
but while recombination is a nearly random process, not all
TCRs are formed with the same probability.

The unique receptors expressed on the cell surface of
circulating TCRs enable them to recognize specific antigens;
well-known examples include the naive forms of helper T cells
(CD4+) and cytotoxic T cells (CDS+.) The set of naive T cells
that express the same TCR are said to belong to the same T cell
clone. Upon encountering the antigens that activate their TCRs,
naive T cells turn into effector cells that assist in eliminating
infected cells. Effector cells die after pathogen clearance, but
some develop into memory T cells. Because of the large number
of unknown pathogens, TCR clonal diversity is a key factor
for mounting an effective immune response. Recent studies
also reveal that human TCR clonal diversity is implicated in
healthy aging, neonatal immunity, vaccination response and
T cell reconstitution following haematopoietic stem cell
transplantation (1, 2). Despite the central role of the naive T
cell pool in host defense, and broadly speaking in health and
disease, TCR diversity is difficult to quant ify. For example, the
human body hosts a large repertoire of T cell clones, however
the actual distribution of clone sizes is not precisely known (3).
Only recently have experimental and theoretical efforts been
devoted to understanding the mechanistic origins of TCR
diversity (4- 9). The goal of this work is to formulate a realistic
mathematical model that incorporates heterogeneity in naive
T cell generation and reproduction. Model predictions are
compared with T cell clone data to estimate reasonable and
realistic parameter values.

One way to describe the TCR repertoire is by tallying
the population n; of T cells carrying receptor i. Another is to
use the clone abundance distribution or "clone count" that
measures_the number of distinct clones composed of exactly &
T cells, ck = IZ;Z,II(n;, k), where theindicator function ll(n, k) = 1
if n = k and O othe rwise. Clone counts CK do not carry TCR
identity information as n; does, however, they can be used to
construct other summary indices for T cell diversity such as
Shannon's entropy, Simpson's index, or the whole population
richness C :[.',',C (10).

Clone counts CK and the total number of circulating naive T
cells are difficult to measure in humans. Nonetheless, high-
throughput DNA sequencing on samples of peripheral blood
containing T cells (11- 14) have provided some insight into TCR
diversity A commonly invoked model is that clone counts C
exhibit a power-law distribution (4, 12, 15-17) in the clone

abundance k. Several models have been developed to explain
observed features of clone counts (3, 4, 15, 18, 19), including the
apparent power-law behavior. One proposal is that T cells in
different clones have TCRs that have different affinities for self-
ligands that are necessary for peripheral proliferation (4- 06),
leading to clone specific replication rates. An alternative
hypothesis (7) is that specific TCR sequences are more likely to
arise in the V(D)J recombination process in the thymus (20)
leading to a higher probability that these TCRs are produced. De
Greefetal. (7) estimated the probability of production of a given
TCR sequence by using the Inference and Generation of
Repertoires (IGoR) simulation tool that quantitatively
characterizes the statistics of receptor generation from both
cDNA and gDNA data (20).

Although power-law models have been motivated, this
behavior has been observed across only about two decades
of clone sizes k, as shown in Figure 1. Moreover, the above
models have not systematically incorporated and compared
heterogeneity in both immigration and replication rates, and/
or fitted models to measured TCR clone abundance
distributions. Finally, some of them have not taken into
account subsampling in measurements, which will affect the
predicted clone counts, especially for small clone sizes £ which
can be missed in small samples. In this paper, we analyze the
effects of heterogeneity and sampling within a dynamic mean-
field model based on a stochastic clone-dependent birth-death-
immigration (BDI) process that includes (i) immigration
representing the arrival of new clones from the thymus,
(i1) birth during homeostatic proliferation of naive T cells that
yield newborn naive T cells with the same TCR as their parent,
and (iii) death representing cell apoptosis (10). We alsoinclude a
regulating "carrying capacity" mechanism through a total
population-dependent death rate which may represent the
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FI G URE1 | Norrralized naiveT cell dme oount data fromone patient in
Oakes et al. (12) pbtted on a log-log scale. Values of the normalized dme
couitsalmg the vertical axis are the average of three samplesamong CD4
and CD8cell subgroups. Cbnes are defined by diferentnudeotide sequences
associated w h different alphaor betachains of the TCR.
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global competition for cytokines, such as Interleukin-7 (21-25),
needed for naive T cell survival and homeostasis (26, 27). Since
these cytokine signals are TCR-independ ent, the regulatory
interaction, which ensures a finite homeostatic naive T cell
population, is clone-independent (23).

We derive analytic expressions for the steady state clone
counts in the entire organism and show that the predicted
distributions are negative binomials. However, since T cell
clone populations are measured in small blood subsamples
extracted from an organism, we modify our predictions to
include the effects of random subsampling and find that the
negative binomial structure is preserved. Finally, the subsampled
prediction will be averaged over distributions of TCR generation
(thymic output) and homeostatic proliferation rates. The
distribution of TCR generation rates are extracted from new
computational tools: Inference and Generation of Repertoires
(IGoR) (20) and Optimized Likelihood estimate of
immunoGlobulin Amino-acid sequences (OLGA) (28). Since
there are no equivalent tools that measure proliferation rates,
we will assume simple functions for the distribution of
homeostatic proliferation rates. These model-derived results
depend on the rate parameters of the model and the
hyperparameters defining the probability distributions over
these T cell production and proliferation rates (see Table 1).

Our results are then compared to the data shown in Figure 1
and used to estimate hyperparameters associated with the
heterogeneity in the TCR-spedficimmigration and proliferation
rates. Specifically, we quantify how the width of a simple uniform
proliferation ratedistribution and the heterogeneity ofimmigration
ratesfroma generative model affect thepredicted donecounts. Our
analysis explicitly shows that within reasonable physiological
parameter ranges, heterogeneity in the thymic immigration rate
cannot significantly change clone count distributions. However,
clone counts are sensitive to heterogeneity in T cell proliferation
rates. Thus, different levels of heterogeneity in proliferation rates
can giverise toqualitatively different clone countdistributions. This
finding of the dominance of proliferation in shaping clone count
distributions is consistent with the observation that in older
humans with severely reduced thymic output a broad clone
countdistribution isstill maintained (9,29).

TABLE1 | Model parameters 8andhyperparameters Bo-

( Hyperj Parameters definition

aE JR+ naive T cellproductbn rate

/iE JR+ mean productbn rate acrossallpossible Q TCRs
re (O,Rl naive T cellprolWeratbn rate

fE JRt mean prolWeration rateacrossallpossible Q TCRs
RE JR+ maximum prolWeratbn rateof all possible Q TCRs
WE(O, 1) dimensionlesswidth of box distributionof r

u>R naive T cell death rate at steady state

r,E[0,1) blood subsarnpling fraction

The dimensional parameters associated with our mechanistic population model. Hype-
peameters such as d, r, R, w define theprobabi61'f dstribution or heterogeneity in the
underling rateparameters @end r. In our analyses, we typicaly nondimensionalize

by normalizing al rates by R, the maximum proliferadon rate across all clones.

MATERIALS AND METHODS

To understand the observed clone counts, we focus on the clone
count distribution CK associated only with naive T cells, the first
type of cells produced by the thymus that have not yet been
activated by anyantigen. Antigen-mediatedactivationinitiates a
largely irreversible cascade of differentiation into effector and
memory T cells that we can subsume into a death rate. Thus, we
limit our analysis to birth, death, and immigration within the
naive T cell compartment . Here, we first present the
mathematical framework of the BDI process to provide an
initial qualitative understanding for clone counts.

Heterogeneous Birth-Death-

1mmigration Model

Themulticlone BDI process is depicted in Figure 2. We define Q
tobethetheoretical numberofall possible functional naive T cell
receptor clonesthat can be generated by V(D)J recombination in
the thymus which is estimated to be Q - 10"°- 10" (6, 28). As
we will later show, results of our model will not depend on the
explicit value of Qas longas Q» 1. Due to naive T cell death or
removal from the sampling-accessiblpool, not all possible clone
types will be presented in theorganism, so wedenote the number
of clones actually present in the body (or "richness") by C « Q,
where estimates of C rangefrom - 10°- 10%in mice and humans
(1, 6, 32,33, 35, 30).

Although naive T cells are difficult to distinguish from the
entire T cell population, thetotal number of naive T cells (across
all clones present) in humans has been estimated to be about
N - 10" Circulating naive T cells number approximately 10°
(37) but can exchange, at different time scales, with those that
reside in peripheral tissue, which may carry their own
proliferation and death rates. The effective pool that is
ultimately sampled is thus difficult to estimate, but
measurements show that the theoretical number of different
clones is much larger than the total number of naive T cells,
which is in turn much greater that the total number of different T
cell clones actually in thebody (Q » N » C). Regardless of the
precise values of the discrete quantities Q,N,C, they are related
to the discrete clone counts CK via

C=Lck«qandN=L kck. i
hi hi

Asdepicted in Figure 2, each distinctclonei (with 1 i Q) is
characterized byan immigration rate a, and a per cell replication
rate r;. Theimmigration rate @, isclone-specific because it depends
on the preferential V(D)J recombination process; the replication
rate 7, is also clone-specific due to the different interactions with
self-peptides that trigger proliferation. Since both the numbers of
theoretically possible (Q » 1) and observed (C » 1) clones are
extremely large, we can define a continuous, normalized
probability density n(a, r) from which immigration and
proliferation rates @ and r of a randomly chosen clone are
drawn. This means that the probability that a randomly chosen
clone has an immigration rate between a and a + da
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entire orgari sm(C- 1a6 - 1a6 forhuna ns (1, 6, 32- 34)).

and replication rate between rand r + dr is n(a, r)d a dr, and

lOOdﬁ 1 0 1(a,r)=1.

Since Q is finite and countable, there will exist maximum
values 4 and R for the immigration and proliferation rates,
respectiely, such that n(a, r)= 0 for a > 4 or r > R. In the BDI
process, the upper bound R on the proliferation rate prevents
unbounded numbers of naive T cells and is necessary for a self-
consistent solution. The heterogeneity in the immigration and
replication rates allows us to go beyond typical "neutral" BDI

0
Y ®
+1 +1 +1
clone 1 clone i clone ¢
[ ]
0
_1 . e m m _1 O enm _1 N
o s A ,
u uiNyo " )

FIGURE 2 | Schematic of a multid one birth-death-immigration process. Clones are defined by distinct TCR sequencesi. Each d one carries its own thymic output
and peripheral proliferation rates, a, and 7;, respectively. We assume alld oneshave the same popu ation-dependent death ratep(IV), wherelV is the total number of
cells in the organism that influence the death rate. Since Q » 1, we impose a continuous distribution over the rates a and r. Theoretically, there may be Q ::;; 10 s 6)
o r more (30, 31) possible viable V(D)J recombinations. The actual, effective number of different selected TCRs sequences is e,qg:lected to be muchless since
extremely low probabil y sequences may never be formed during theorgari sm's lifetime. A strict lovver boun d o n Q is theactualnumber of distinct d ones Cinan

significant contribution of this paper is that we go beyond the
neutral model (equal immigration, proliferation, and death rates
for all clones) by allowing for heterogeneous distributions ofthese
rates. Toincorporate TCR-dependentimmigration and replication
ratesina non-neutral model, we mustconsider distinct valuesof <X;
and r; for each clone i. In this case, an analytic solution for the
probability distribution over &, even at steady state, cannot be
expressed in an explicit form. Howeve,rsince the effective number
of naive T cells (N - 10°- 10" (35)) is large, we can exploit a
mean-field approximation to the non-neutral BDI model and

models, where both rates are fixed to a specific value for all
clones, a; = a and r; = r for all i.

Finally, we assume the per cell death rate p(N) is clone-
independent but a function of the total population N. This
dependence represents the competition among all naive T cells
for a common resource (such as cytokines), which effectively
imposes a carrying capacity on the population (24, 31, 38). The
specific form of the regulation will not qualitatively affect our
findings since we will ultimately be interested in only its value
U(N*) = p* at the mean steady state population N*.

Mean-Field Approximation of the

BDI Process

The exact steady-state probabilities of configurations of the
discrete abundances CKfor a fully stochastic neutral BDI model
with regulated death rate y(N) were recently derived (10).
In Dessalles et al. (10) exact results were derived for the steady-
state probability P C2,...,¢ ) under uniform immigration
proliferation, and death rates a, r, and p, respectiely. The

derive expressions for the mean values of the discrete clone
counts (K. We will show later that under realistic parameter
regimes, the mean-field approximation is quantitatively accurate.
Breakdown of the mean field approximation has been carefully
analyzed in other studies (39 ).

i) Deterministic Approximation for the Total
Population and the Effective Death Rate

To implement the mean-fieldapproximation in the presence ofa
general regulated death rate y(N ), we start by writing the
determinstic, "mass-actiol ODE for the mean number of cells
n<ll, (t) with arealized immigration rate @ and proliferation rate
rin a BDI process

dna,(t)
-dt- - = a+ma,t)- u(N(t)na,t). (2)

Next, we define and exploit the density of realized valuesof a
and r. Since Q» 1, the number of TCRs that are associated with
immigration rate between a and a + da and a replication rate
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between r and r + dr is denoted Qn(a, r)dadr, where n(a, r)
isanormalized density that describes how these realized values
of @ and r are distributed. Our model for the total mean number
N(t)ofnaive T cells can then be estimated as a weighted integral
over allno;, (t)

N(t) = QloAdaloRdr na,(t )n(a ,r). 3)

Notethat the limits of the integration above can equivalently
be taken as A, R-+ooaslongas n(a, r)= 0 when a> A orr>R.
Atsteady-state,the solution to Eq. 2 can be simply expressed as

n* - a
ar_ p(N*)' r (4)

in which N* is the predicted steady-statevalue of N(t) as t -+ oo.

Thus, upon weighting Eq. 4 over all possible values of @ and r,
we find

N*= Qr dr{°°da anfa r) )
lo lo uine-r

a self-consistent equation for N* which depends implicitly on
the parameters that define the distribution n(a, ). Eq. 5 clearly
shows why a finite cutoff n(a, r > R) = 0, R < y(N*) is required
since the integral diverges if n(a, r 2:: y(N*) > 0. However, as
long as n(a, r) decays faster than 7/ci/, the a -integration
converges withanexplicit cutoff 4.

We will first assume that @ and rare uncorrelated and that
the distribution factorises: n(a,r) = na(a )n,(r ). Then, the self-
consistent effective steady state death rate p* =p(N* depends
only on the combination

N* rdrn;i(_r)
(a)= 1o (y=*-ry

where

o= ﬂA arm,(e)de

is the mean immigration rate across all possible clones. To
simplify subsequent notation, we normalize all rates by the
maximum proliferation rate R. To avoid population blow-up,
we impose that the maximum proliferation is smaller than the
steady-statedeath rate R < y*. By measuring time in units of /R,
we redefine /R -+ 1, cx/R -+ a,a/R -+ a, u* JR -+ u*, and
R? n (a, 1) -+ n(a, 1) so that these quantities are now
dimensionless, unless otherwise explicitly stated. The steady-
state self-consistentcondition becomes

F= = {1dr ml ()
aQ a lO gr-r
Since the effective Q is a large, uncertain number, we
parameterize our model in terms of 1 = N*/Q, the total steady
state naive T cell population normalized by the total possible
number of clones Q. It is sometimes deemed a measure of the

"coverage" of the entire repertoire (6). Values of N* and Q that

are consistent with measurements and physiologic expectations
give 1 « 1.Once 1/ @ and n;.(r) are estimated, we can self-

consistently determine u* from Eq. 6. Besides 1/ d, the self-
consistent value of p* will also depend on the function n,(r ).
Note from the form of Eq. 6, the self-consistent y* is inversely
related to A.

ii) Mean-Field Model of Clone Counts

Given a relationship such as Eq. 6 that determines py*,
we can explicitly develop a model that quantifies naive T cell
subpopulations according to their immigration and proliferation
rates @ and r. For a given, realized value of @ and r, wedenote the
expected number of clones of size k with these immigration and
proliferation rates by ck(a, r). The mean-field equations for the
dynamics of these mean clone counts in the neutral model were
derived in (39, 40) and are reviewed in Section 1 of the
Supplementary Material. In a neutral model, we assume that
all clones Q carry the same rates @ and r so that the mean field
evolution equation for ck(a, r) is given by solving (38, 39)

dk(da, r) ~
-t =afck 1(a,r)-ck(a,r)]

trl(k- 1)&_(a,r)- ké(a,r)] ()
SN[k 1)k (5 1) - kok(a, 1)),

along with the constraint L k0é (a, r) = GJ + L , | Ck(a, 1) =Q.
Note that ck(a,r) and na,r are related via L ; ;kdk(a, r)= na-,
We use the notation ck to denote the predicted done counts
derived from our mathematical model to distinguish them from
measured clone counts d . Equation 7 assumes that both ck(a, r)
and N are uncorrelated, allowing us to write the last term as a
product of functions of the mean population N = L ; ; kck and
ck+4, de. Under steady-state,we approximate p(N) byu* found by
solving Eq. 6 as a function of 1, d, and the hyperparameters
defining n,(r). The steady-state solution of Eq. 7 follows a
negative binomial distribution with parameters CJlirand r/u* <1

(10, 39) ( a/(r )le a
wain o g 3 TH(5=#),

The predicted number of absent clones is co= Q- L k&t (a,r,
u*). The solution 8 depends implicitly on the parameter 1
/ @ through p* determined by Eq. 6. Although ck(a, r, u*) has
not yet been averaged over a, r, it also implicitly depends on 1
and the parameters that define n,(r) through p*and Eq. 6.
Specifically, larger 1 leading to smallerp*
results in a more slowly decaying CI a, r, u* as a function of k.
This behavior will be propagated through subsampling and
averaging over @ and r.

Subsampling

Unless an animal issacked and itsentire naive T cell population is
sequenced, TCR clone distributions are typically measured from
sequencing TCRs in a small blood sample. In such samples, low
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population clones may be missed. In order to compare our
predictions with measured clone abundance distributions, we
must revise our predictions to allow for random cell sampling.

We define 7J as the fraction of naive T cells in an organism that is
drawn in a sample and assume that all naive T cells in the
organism have the same probability 7J of being sampled. This is
true only if naive T cells carrying different TCRs are not
preferentially partitioned into different tissues and are uniformly
distributed within an animal. Let us assume that a specific cloneis
represented by R.cellsinanorganism. IfN*17» R.,the probability
that & cells are randomly sampled from the same clone
approximately follows a binomial distribution with parameters £
and 1J (40-44)

Pk ~ (p)n-m kst ©)

The associated mean sampled clone count 4 depends on the
predicted whole-organismclone countand JP'[klf] viathe formula

q(a,r 1) "L ct(a,r,p*)P[kR)
bk

(10)
= Salonrw) () (1 -n)™*.
=

where ce(a. r, u*) is determined by Eq. 8. Explicitly performing
the sum in Eq. 10 yields the sampled clone count

o )i

=TI 1- (/¥ vp¥)

1- 1J)(

o
|- (l -t Ju¥) ‘H ?+J)

1- 10)(r
(11)

a=10°%>.=0.01
unsampled
11=10-3
=10 -
=10 °

™~

10° 102 103

clone size k

d ai ecouitloses tts peak as tt shifts to a rapidlydecreasingpatterns

FIGURE 3 | The electsof sampling a, tv..o diferent neutral-model relativecb ne counts c:/C'pb tted using the d irnensiai lessprotiferatbn rater= 112in Eqs. 11 and
12 or Eq. 10 and S9 from Sectia, 2 of the Supplementary Material. In (A), we used a= 10.s, 1 =0.01. The effect of samplingis illustratedfor r,= 1 (no subsampling), 10-
3, 10-4, 10.s,and 10-6.Alld onecouitsarequalitatively similar, with sLtlsampling increasing the exponential decayince. In (B), we use a physiobgically unrealistic set of
parameters,a=1 =10, wh ch leads to a qualitatively diferent unsampled cb ne count pattern that exhibitsa peak. However, uidler small sLtisampling fractbns r,, the
that are nct sigri ficantly diferent from sampledcb necounts predicted using the parameters a
and lin ! Al This indicates inferring p arameters using ¢ b ne counts is iU-co n d ttioned (rather insensitive to parameters) , is too small.

The total expected number of clones in the sample (the
richness) can be found via direct summation:

co

C(a,r,u517)=Lck(a,r, u*,17)
k=1

L-rp* ) HJ/I'

I- (1-100/p*

(12)

[
=Q I-

Asshown in Figure 3, random subsampling greatly affects the
observed clone counts, with smallsampling fractions 7J leading to
fast decay ink of q (a, r,u* 17) and shifting ck at large k to much
smaller valuesof k while reducing thevalues of ck forsmall k (42).
Note that setting 7J = 1 in Eq. 11 leads to Eq. 8, the whole-body
clone count. In Figures 3A, B we plot results from our model
using two very different dimensionless parameter sets, a= 10->
r=12,1=001,and a = 4 =10, r = 1/2, to generate two
qualitatively different patterns of neutral model clone counts ck.
If the subsampling 7J « 1 is sufficiently small, the resulting 4
corresponding to the two qualitatively different ck can appear
similar. This implies that small sampling fractions make the
estimation of whole-body clone counts from sampled data
somewhat ill-conditioned, ie., different whole-body clone
counts, upon sampling, may yield similar sampled clone
counts. Although sampling can strongly affect the inference of
ok, immigration and proliferation rate distributions may also
affect the observed clone count as we investigate below.

Heterogeneity and Determination
of 1 (a, r | Oo0)

The fundamental result given in Eq. 11 applies only to the clone
count density in a neutral model in which the immigration and

a=10,>. =10
unsampled
11=10 3

« 11=10- -
11=10-5
11=10--

10! 102
clone size k

10°
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proliferation rates are @ and r for all clones. We now average the
sampled clone counts 4 (a, r, u*,17) (Eq. 11) and the richness
C(a,r u* 17) (Eq. 12) over a distribution of immigration and
proliferation rates n( a, r) to capture the heterogeneity across

TCR clones. This final result can then be compared with
experimentally measured clone counts. Recall that n( a, r)can
depend on hyperparameters BO that define the shape of n. We
then explicitly denote the distribution by n(a, I"|BO).

Once n( a, FlBo) is de fined, we can weight sampled clone
counts accordingly. For example, one may assume B0= { a,wi,
with each of the two hyperparameters defining 7 (a, roy =
a (ala)n,(rlw) leading to

4(us17,00={a,w})= fO da fJOdrn(a,rlOo)ci(a,r,p*,17).

i) Proliferation Rate Heterogeneity

First, we consider a distribution of TCR sequence-dependent
proliferation rates. Since TCR-antigen affinity depends on the
receptor amino-acidsequence, the rate of T cell activation and
subsequent proliferationcan be clone -specific (31, 45). Thus, the
specific interactions between TCRs and low-affinity MHC/self-
peptide complexes maps to a distribution of proliferation rates
among all the Q possible clones. Since there are no data (known
to us) that can be used to infer this mapping or the specific shape
of n,(rlw), we assume, for simplicity, a simple uniform "box"
distribution centered about a mean valuer= 1/ 2:

ifie- 1/21<w/2

otherwise

n,(rlw) ={b/W (13)

where O w 1 represents the relative width of the uniform box
distribution . The minimum and maximum dimensionless
proliferation rates in this distribution are then 1/2-w/2 and

1/2+w/2, respectively. The dimensionless self-consistency
condition (Eq. 6) thus yields

( .!_-w%vﬂa (’— )
* 2 2 2 2

u = wa 1 (14

T o understand the effects of proliferation rate heterogeneity
we begin by considering it effects on whole-organism (17 = 1)
clone counts. Since the function ¢i a, r, u*) defined by Eq. 8
contains the exponentially decaying term ( rlu* )k, a fixed
dimensionless value of y* and r = 1/2 leads to an exponential
decay in ck in k. However, if w > 0, different valuesof r and p*
contribute to this decay term, yielding nontrivial behavior and a
much slower decay as seen in Figure 4 for 1/ @ =8, 80 and
different values of w.

i) Immigration Rate Heterogeneity
Next, we use previous studies that predict V(D)J recombination
frequencies associated with each TCR sequence to construct a
distribution 7ra (O.) for the TCR sequence-dependent thymic
output. A statistical model for differential V(D)J recombination
in humans isimplementedin the Optimized Likelihood estimate
of immunoGlobulin Amino-acid sequences (OLGA) software
(28), which is an updated version of the Inference and
Generation of Repertoires (IGoR) software (20). Below, we
estimate A (ala) by sampling a large number of TCRs from
OLGA that draws sequences according to their generation
probability. Our working assumption is that thymic selection is
uncorrelated with V(D)J recombination so the relative
probabilities of forming different TCRs provide an accurate
representation of the ratios of the TCRs exported into
the periphery

Both IGoR and OLGA can be used to generate the
probabilities corresponding to each drawn sequence but this

proliferation rate r

A B . .
- s a= 10-.:;; .x.= 0.008 a=10 ;;.x.=0.08
5 061 ’ 10 |
e mealnl + w=0l 10! 0.0
3 o 08 d w=0.2 W 0.025
h4, 02 stdinJ ' S<10! w=04 | o8 W 0.05
o 00 u w=0.6 W: 0.075
b 0 10 6 _
o3 06 S0 C O weos w=0.1
10
0 0 — w=s
een ©
W\
il 04 ' 4
-S <107 10
1RRN
Ieé, 1 0.2 0 102 A . 10
" o] A VAR
00
00 02 04 06 0.8 1D e 10 0 w10

clone size k
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requires significant computational time and memory.
Equivalently, since the sequence draws are proportional to the
underlying probabilities, we simply drew »,. sequences and
counted the frequencies of each amino acid sequence. Out of
N,.sequence draws from IGoR or OLGA, there will be C,.distinct
amino sequences (the richness of the drawn sequences). Since
some sequences are drawn j>1 times, C,. N,. If bj distinct
sequences are drawn j times, and the maximum observed
frequency max {j} = J, C,.= L} =1bj, N,.= L}=Jbj, while b/C..
is the fraction of all drawn sequences that appear j times. For

= 10”, we found C,.= 372,806,648 " 3.72 x 10° and a
maximum observed frequency max{j} = J = 52,294 for the
alpha chain and C,. = 875,920,705 "" 8.76 x 108 and J = 6430
for the beta chain.

We model the effective immigration rate of a TCR sequence
drawn j times to be proportional toj so that aj= a.j. To fix the
proportionality ¢,., we identify the mean immigration rate
averaged across the C,. observed sequences with the mean
physiological rate &

—’ (15)

to find o, = &C, /N, and thus

L. (16)

4 (n/c.)

The frequencies j of the drawn realization of clones are
plotted in decreasing order against the C,. distinct sequences in
Figures SA, B. From these frequencies j and the number of
sequences bj exhibiting them, we approximate averages of any
function y(a) over na(a la ) by taking a sum over the values ai

J b
[ ma(alam@) ~ 3 Lr(a). (1)
ol e

Alternatively, whendrawingsequences IGoR and OLGA (using
the Pgen feature) onecan alsodirectly output their probabilitiesp;,
whose values would be proportional to the frequency j if large
numbers of sequences are drawn as described above. We can use
these countable sequences and probabilities to construg. @ and
na(a) by defining a;= aQC,.pdpr where Pr= L, ;;Pi- By
plotting the values of p,, we arrive at a distribution similar to
that shown in Figure 5. In this case too, we find that a large
number of low-probability sequences dominates the averaging of
clone counts using the distribution of immigration rates
constructed using IGoR/OLGA.

Nowthat we have specified thedistributions for na(a/a ) and
n,(rlw), we can compute the mean, sampled, immigration- and
proliferation-averagedclone counts and compare them with
measurements. The full formula for the immigration and
proliferation rate-averaged clone counts under subsampling is

I
c(a, p*w, 17) = 00 [0 dr na(ala )n,( riw)ct(a, r, (,17)
=2 Bt Ew o 101/ p* )kX

wi=le,. awe wo 1= Q=170
| -tkelai |-

=0 -p- 1

( 1=t *
I -(1-17)r/ u*
(18)
where ajisgiven by Eq. 16andpu*isgiven by Eq. 14. Eq. 1 8isour

"full model" from which we make predictions of clones count-
related quantities and compare them with data. Using this

10°
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104
g 10
o 107
10°

10° 0 3000
U

10° 102 10* 106 108
ranked clone no. i

spectra is self-similar once N.

FIGURE 5 | Ordered integer-valued frequenciesj, plotted on a log-log scale, of the C. distinct (A) alphaand (B) betachains drawn using OLGA. Theindex 1 i
C.< N.labelsthe distinct sequences drawn while biis defined as thenumber these sequences that exhibit the specific frequency j [b, and b,zare exp lic ly indicated
in (B)]. The highest frequency done appearsJ timessuch thatbi>J= 0. Since C.is comparable to N., the drawn sequences are dominated by the low probability
ones that appear only once. The insets display the frequencies on a linear scale and indicate the long-tailed behavior of the frequencies. The shape of the frequency
107, allowing us to use this sampling procedure to reliablyestimate ,ra(ala ).
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expression, we can mathematically study the importance of
the heterogeneities in @ and r by comparing predictions from
simple forms of A (ala) and n,(rlw), as presented in
Section 2 of the Supplementary Material to those derived
from n(a, r) = 8(a - a)8(r ~t) of the neutral model.

From Figure 5, observe that b1 » bj> /- In fact, a majority of
the naive T cell population is comprised of clones that are
produced only once. The linear-scale insets also show a long

tail indicating a large number of clones that are generated
few times. Thus, for sufficiently small @, our formulae for ck

andall subsequent quantities can beapproximated by taking the
a/r « 1 limit. As we show in Section 3 of the Supplementary
Material, such a simpler expression remains highly accurate,
provided the dimensionless @ < 1-0°, and allows efficient
computation . This implies that the full result arising from
averaging 4(a,r, |i*,17) over @ (a la ) can also be approximated
by using a single effective value 4(61, r, u*,17), supporting our
overall conclusion that predicted heterogeneity in human T cell
immigration rates do not appreciably influence clone count
distributions While physiological distributions & (a/a) do not
yield clone counts appreciably different from those of a neutral
immigration model, small changes in proliferation rate
heterogeneity w can significantly affect the clone count structure
4. Nonetheless, for completeness, we will perform the full
summation over &, (Eq. 18). All parameters, hyperparameters,
and variables used in our modeling and data analysis are listed in
Tables 1, 2.

TABLE 2 | Model variablesand their definitions.

variables definition
theoretical number of possible TCRs - 1013 - 10"
(36)
NEZ' number of naiveT cens in o rganism - 10" - 10" (5)
N(Q Ellr number of naive T cells frommodel
N'E llIr steady-state number of naiveT cells frommodel
N'=1IN" EJR+ subsarnpled numberof naive cells frommodel
N,EZ' number of draws from IGoR/OLGA
Cez total number of cbn es inorgari sm(richness) - 1<:P -
1<P(36)
Cee z+ tota Inumberofsampleddones(sampledrichness)
C( EJR+ total number of cbn es inorgari sm from model
co(enfe r total numberof sampledd ones frommodel
c.cr number of different sequences draw, from IGoR/
OLGA
ckez. discretenumberof d ones of size k
cJ(idenr model of number of d ones containingk cells
Ceze discretenumberd ones of size k in sample
C (8,1)) E JR+ modeled numberofsampled cbnescontainingk

cells
fraction of all sampled cells in d ones of size k

F=K:e101)
x ce .
0 1

ke (B 1 ¢ modeled fractim of allsampled cells ind ones of size k

ko cs(8,rfJ

Theva-iabteswith oonote measured numbers, while pop.1/ationswrittenas functionsof

parameters 8 are thosepredicted from our model (the dima, sion/ess parameters used
in our model are 8 = {a, r}). The probability distributions 1t (DI are defined by
hyperparameters 8o ( the dimensoinless hyperparameters used in this study are 80=
{a,w)). Uponaveraging{Ye:iictedquantitiessuchasq (a,r)over /(Ql 8ol we md q (80).

RESULTS AND ANALYSIS

Before performing a quantitative comparison with measured
clone counts from Oakes et al (12), we discuss the qualitative
features of our model and typical physiological parameter ranges.
While even the basic model parameters are difficult to measure,
our nondimensionalized model unifies the mechanisms and
concepts common to the maintenance of diversity in the T cell
repertoire across different organisms.

When considering the data, we observe that even after
significant subsampling, there are appreciable clone counts at
reasonably large clone sizes k, whereas the unsampled clone
counts decay exponentially ink with rate log(u*/r ). Even though
r may take on a range of values, as determined by n,.(r), the
slowest decay of ck arises from the largest possible values of .
Thus, a larger proliferation rate heterogeneity w will generally
yield a longer-tailed ck, as illustrated in Figure 4. Since the data
we analyze are derived from human samples, we will use the
following arguments as a rough guide to the relevant range
of parameters:

» The average total number of naive T cells i 1s not completely
known but is estimated to be about N~ 101 (35). However,
the circulating population in the peripheral blood is
approximately two orders of magnitude smaller. These
circulating naive T cells nonetheless exchange with those in
the much larger population in the lymph and other tissues.
The timescale of this exchange (relative to the age of the
organism being sampled or the intersample times) will
determine the effective statistically accessible N* relevant for
sampling clone counts 4. We will usean order-of-magnitude
estimate on the lower range of measurements and estimate
N*- 1010 _1011.

» The theoretical total possible number Q of TCRsofeither alpha

or beta chains may be in the range 10" 10 8 (46), but the
actual number of clones with immigration rate a; that allows it

to be produced even once in a lifetime is more relevant and
probably much smaller. Thus, the effective value of Q may
reside at the lower range, leading to A= N¥/Q - 10* - 10"’

* The average (dimensional) immigration rate per clone &
can be deduced from the total thymic output of all clones
aQ, which has been estimated across a wide range of values
aQ - 107 - 10%/day (29, 47- 50). If we use an effective
repertoire size of Q - 10°7-10'4, the average per clone
immigration rate becomes @ = 1-0 7 - 1-0 */day.

» The mean proliferation rate r is difficult to measure but has
been estimated to be on the order ofr- 10-4 - 10 3/day
(29). Ifwe nondimensionalize using R = 2r, the dimensionless
a-104-1-0 "

» The sampling fraction 77, although in principle determined
experimentally, is also hard to quantify dueto the uncertainty
in N* Blood sam?lmg volume fractions from humans are
typically 1J- 10"7; however, in recent experiments (12) the
number of enumerated seque ces - 10° which, given rough
estimates ofeffectiveN* - 1011 ,yield17-10-6 - 10* Due
to this uncertainty in 717, we will explore different fixed values
of1J around 10"
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Using the above guide for reasonable parameter ranges, we
now consider fitting our results in Egs. 18, S9-S1 4 to some of the
available data (12). Before doing so, note that although the log-
log plots shown in Figures TA, B provide a simple visual for
log 4 or log[cjj C I, fitting must be performed on the linear
scale. The measured data includes data at values of & for which
no clones were detected so that 4 = 0. These data points
nonetheless should be included in the fitting as they represent
realizations of the system. However, on the log scale these zero
data points translate to log 4 -+ -o0 so numerical fitting on the
log-log scale could be misleading once a value of 4 =0Ois
encountered. Thus, we will fit our mean-field model on the
linear scale tothe fractionft ofthe total number of sampled cells
that are in clones of size k

{sc- =kq(a,?., wI17-) kfi(a,A,w,1J)
" .
Jk a,11,W,1]- I - 0 Oc./Ca-’ M)
(19)
_ kg (a2)
0172,

where the denominator Q177. comes directly from the definition
Ll‘1: Ict(a,?.117)= N° thesampling relation N = 77N* and Eq.6.
Note that we have switched the dependence from y* to 2.
(see Eq. 14). Rather than using N directly from the number of
reads in an experimental sample, equivalently, we use the model
expression N = Q17?. to arrive at the last equality in Eq. 19. This
form ensures strict normalization and is independent of the

unknown repertoire size Q since 4 is proportional to Q. The
implicit factor of Qin 4 from Eq. 11 cancels the explicit Qin
thedenominator ofEq. 19s0 thatff as well as 4/Cdepend onQ
only through the determination of y* through A= N*/Q inEq. 6.
Our mathematical framework provides only mean sampled
clone counts while each sample of the data represents one
realization. Large sample -to-sample variations in the clone
counts would render the fitting less informative, but these large
variations were not seen in the triplicate samples in Oakes et al.
(12). Mechanistically, we expect that for large & the number of
cells contributing toft is also large so demographic stochasticity
is relatively smalland results in small uncertainties in thevalue of
k, and not in the magnitude of fz. Large clones are also likely to
include memory T cells that have been produced after antigen

stieaplationaREARe It AR Memans T 1 59 s ST WEe Wat

large k components offt negligibly influence the fitting. We can

now compare our modelft(a,A,w,17) with the data ft (data) by
constructing the error

Ha, ?.,w,17) = i lft(data) - fi(a,?.,w,11)1° (20)
k=l

and exploring how it depends on the parameters a,?.,w, and
sampling fraction fl. Our goal isto find relationships among the
parameters?., a, and w that minimize H(a,?.,w,17).

In Figures 6A- C the data ffc(data) were derived from the
average of three samples of beta chain CD4 sequences from one

10 -
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8
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FIGURES | The error H(a,l, w, rfd pb tted as a function of a (onalog;o scale)ard A.Dar1<eroolors represent smallervaluesof error as shown by the scale bar on
the right. The data usedare the done couits of betachain sequencesof naive CD4 cens from one patient, averaged over three samples. Panels (A-C ) use the
simple neutral model (Egs. S9 and S10) and sampling fractbns 11 = 10*, 10-5,and 10-¢, respectively. Since dis on a log scale, the error is minimal along a line A,,..,
oc a8, the error does not changeappreciably along this path ard only slightly decreases as lard@become smaller. For the neutral model (w = 0), the error is very
sensitive to the sampling fraction 7,.Here, a fixed, physiobgicaUy reasonable value of @resultsina minimizing4 that is ui reasonably large, in excess of one ard
that does not agree well w h our expectatbns of | = N* /0 « 1. Panels (D-F ) show results for the distributed proliferation rate model at full width (w = 1). In this
case, theerrorsareinsensitiveto the specific choice of 11and the minimizing Aninvalues are much sma ller,oonsistentw h our estimatesof N*and repertoire size.
Forw= 1, the values of the errors Hare also smalleralong the 4,,.., - & minimum valley.
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patient (12). These data, were used to compute and plot the error
H(a,?.,w=0,17)as a function of?.for various values of @ using
the neutral model (w = 0, Eq. S91in Section 2 of the Supplementary
Material). For reasonable values of dimensionless & "0 %001
and sampling fractions 1J = 104, 10° and 106, we find that the
value of 2. that minimizes H( a, ;t, w=0,17), Amn, is typically
0(1) or larger In Figures 6D-F we use the full-width
distribution n;.(rlw = 1) to show the error for the same data
using the same sampling fractions 7J = 104, 1:0° 10-6. Note that
the values of Amin are significantly smaller than those in found
using w = 0 in Figures 6A- C and that the results are rather
insensitive to the sampling fraction /7. These smaller values
of Amm are more consistent with known physiological
understanding. Thus, the distributed proliferation rate model
provides a much more self-consistent fit to the data than the
fixed proliferation rate neutral model Figure 6 alsoreveals that the
values of /{ along the minimum valley are nearly constant, only
slightly decreasing as @ -+ 0. For each value of @ we can identify
the corresponding Amn that minimizes H. However since the
values of H(a,Amin* w = 0, 17) for each (a,Amin) pair do not
change appreciably, we cannot independently determine both.
An alternate representation is shown in Figure 7 where the

relationship between @ and Amnis seen to be approximately linear
for both the neutral model (w = O) and the heterogeneous, full..
width model (w 1). The color shading represents the

corresponding value of H(a,Amin® w,17). One major observation
is that the full-width case yields values of ((Z, Amin) that are closer

to measured and expected physiological values and that these

results are also lesssensitive to 1J compared to those of the neutral
case. On the other hand, although the variation in /is negligible
across @ in both cases, the fully heterogeneous model (w = 1)
carries a slightly larger error than the neutral one (w = O). This is
solely a consequence of our use of ff which weights the small &
values significantly more in the fitting.

Since experimentally we expect small 4, we also investigate
whether small errors H emerge for values of (d, Amin « 1) at
intermediate O <w <1.In Figure 7C, weplot Amasa function of w
forvariousvaluesof @. Notethateven small wsignificantly reduces,
relative to the neutral case, the corresponding Amin- However, if our
target is Amin 10" - 103, the required w can become quite large.
These results indicate that more heterogeneity is associated with
more realistic values of the experimentallyobserved values of N"/Q.

Finally, to explore the dependence of the error on the
proliferation rate heterogeneity w, we fix d,;t, and /7, and plot
H(a,?.,w,17) as a function of w. Figure 8 shows that the H-
minimizing w is very sensitive to 2./ @: for fixed /7, as 2/a is
decreased the erroris lowest for larger proliferation heterogeneity
w. The minimum value of H( a,?.,w,17), however, is rather
insensitive to 2./ a for all chosen /7. Hence, near-optimal
solutions with A« 1 can be found when the proliferation rate
heterogeneity w is appreciable. Using the parameters associated
with the minima in Figure SA (1J= 109, we plot our predicted ft
against the data fl(data) in Figure 9. As can be seen, when
proliferation rate heterogeneity is allowed, the best-fits have small
error and are found using realistic values,?.« 1. Note that most
of the information in the data lies in howfl(data) decreases over
the first few values of k. The neutral model (w = O) fits best for
smallvalues of k, but the corresponding values of?.and@ are too
large and small, respectively. The goodness of fit of our model
to the data depends mostly on the predicted initial decreases
infl(a,?.,w,17). The constraints among the parameters?., a, w,
and 1J derived from our model and can be applied to different
clone counts such as the data shown in Figure 1. However, due to
the ill-conditioning when 71J « 1, the differences in these
constraints across different data sets do not vary appreciably
are only quantitatively different. Generally, the more rapidly
decaying a clone count, the smaller the w, the smaller the /7, of
the larger the ;t, all else being equal.
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FIGURE?7 | .Dg log plots of Amovaues as functions of a for 7, = 10", 10°, 10°, and 10-cfor (A) the neutral model, w = 0, and (B) the fullwidth distributed
prolllerationrate model, w = 1. These a.JNes trace the values of A.nilalong the minimumvaley inand show the relative insensttivtty of the distributed prolferation rate
model to the subsampling fractionr,. In both (A, B), the minimum line sbp esare near one, with (B) showinga slightly greater slope, indicating Amo is a ppr ox imately
proportional to @ over the entire range of w. The odor intenstty along the linesin (A, B) indicates variationin the totd eror abng the minimum valley; their unliorrrity
showsthat the errors are nearly constantab ng each line. (C) Log-linear pb tof Amr>as a function of prolWerat ionrate heterogenetty w fora =2 x 105, 10 =. The
lower darl<er ru rves in each pair oorrespond to 7,= 10" while the lighter a.JNes oo.rrespond to 7,= lo-e. The a.JNes show that even a small heterogenetty w quickly
reduces Amo to b elowone;however,if 1 is forced to be even smaller, the reqLried heterogenetty wincreases.
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counts in ths dataset). In (A), the best fit model for the neutral model (w = Oand ,z;,(a ja) = S(a - a)) using & = 10+ is given by A" 3 sho,vn by the sdid black ourve.
The dashed cuves represents best-fitcuves using the valuesassociated with the errorminimain, where @= 2 x 10 3, w” 0.09 (red), 6 x 10.s, w" 0.3 (green), 10* ,
w " 0.53 (blue)and 1.4 x 10°,w " 0.76 (black). N cte that the neutral moc:191 fits well for oriy the first 2-3 k-points, whle theheterogeneous model (w > ClJ fits betterat

larger k.

DISCUSSION

Here, we review and justify a number of critical biological
assumptions and mathematical approximations used in our
analysis. The effects of relaxing our approximations are
also discussed.

Distinct T Cell Components

It is known that naive T cells can change in time, with recent
thymic emigrants evolving into mature naive T cells that carry
different proliferation and death rates (51). For simplicity, we
haveassumed asinglenaive T cell compartment. Toincorporate
naive T cell evolution, we can allow the distribution n,(r) to
evolve in time to reflect the relative abundances of T cell

subpop ulations, or, one can explicitly include multiple
compartments, with cells from a recent emigrant compartment
transitioning into a mature compartment. Each compartment
would be described by its own steady-state death rates, clone
counts, and distributions of proliferation rates. An analysis of a
related sequential cell state transition model has been developed
for clonal tracking in hematopoiesis (41).

Factorization of 1t (a, r)

For mathemaica tractalility, we have assumed n(a,r|90) =

a (ala)n,(rlw). Given the typicd physidogica values of a,

the clone count formulae derived from our model can be
accurately approximated by a single value of 4. Thus, we
expect that the immigration rate distribution can be
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approximated by na(a la ) = 8(a - a ). This allows further
approximation of our formulae as shown in Section 3 of the
Supplementary Material. In Section 4 of the Supplementary
Mat eri al, we explicitly show that factorisation is an
accurate approximation.

We have also assumed that selection is uncorrelated with the
generation probabilities of the TCR nucleotide sequences
encoded in IGoR/OLGA. The assumption is that the
recombination statistics are uncorrelated with the statistics of
thymic selection, a process that is based on TCR amino acid
sequences. However, we note that it has been suggested that
selection pressure may induce a correlation between TCRs
generated and selected (52). The corresponding statistics of the
frequencies of selected TCRs would be modified from those of the
generated TCRsshown in Figure 5. Nonetheless, we assume that
the resulting distribution can still be approximated by a single-a
model which will not qualitatively alter our conclusions.

Mean-Field Approximation

Our mean-field approximation for the mean clone count ck is
embodied in Eq. 7, where correlations between fluctuations in the
total population N =L k kck in the regulation term y(N) and the
explicit ck terms are neglected. This approximation has been
shown to be accurate fork ;5 N* when a(i > p(N*) (39). The
mean-field results overestimate the clone counts for & ;5 N*.
Moreover, when the total steady-state T cell immigration rate is
extremely small, the effects of competitive exclusion dominate and
a single large clone arises (39, 53, 54). Nonetheless, an accurate
approximation for the steady-state clone abundance ck can be
obtained using a variation of the two-species Moran model as
shown in (39). For the naive T cell system, because Q is so large,
the mean immigration rate &8 is such that competitive exclusion is
notadominant feature. Moreover, since N *;C; 10'" clonescounts
at comparable sizes are not observed and predicted to be negligible
in all models. Since the values of ft(data) become exponentially
smaller for large k, our inference is most sensitive to the values of
ft(data) for small to modest k. The information in the data is
primarily manifested by how the fl(data) decays ink, we before
the mean-field approximation deviates from the exact solution.
Thus, the parameters associated with the human adaptiveimmune
systemsatisfythe conditions for the mean-fieldapproximation to
beaccurate, justifyingits usein the BDImodel

Steady State Assumption

In this study, we only considered the steady state of our birth-
death-immigration model in Eq. 8 because this limit allowed
relatively easy derivations of analytical results. This was also the
strategy for previous modeling work (4, 6, 7, 38, 39). However,
the per-cloneimmigration and proliferation times may be on the
order of months or years, a time scale over which thymic output
diminishes as an individual ages (29, 55- 57). Indeed, clone
abundance distributions have been shown to show specific
patterns as a function of age (58- 60). Although N(t), with fixed
4 and T relaxes to steady -state quickly, on a timescale of months,
the different subpopulations of specific sizes described by their
number ck relax to quasi-steady-state across a spectrum of time
scales depending on the clone sizes k (39, 61). The timescales of

relaxation of the largest clones can be estimated from the
eigenvalues of the linearized system (Eqs. 7) and are found to be
- 10 years. Thymic involution could be modeled by using a time-
dependent a{t) that slowly decreases with age (57). Although T
cells are thought to be primarily maintained through proliferation,
thymic regeneration has also been shown to affect the naive T cell
pool many years after thymectomy in infants. Here, a time
dependent increase in a(t) after early thymectomy could be
used. Indeed, the clone counts may be determined in early life
(17) suggesting the dynamics of certain clones may be very slow,
precluding a strict steady-state analysis for the entire repertoire.

In addition to time-dependent changes in a, more subtle time-
inhomogeneities such as changes in proliferation and death rates
have been demonstrated (55, 56, 62). Thus, our steady-state
assumption could be relaxed by incorporation of time-dependent
perturbations to the model parameters p* and/or n(a, 1).
Longitudinal measurements of clone abundances or experiments
involving time-dependent perturbations would provide significant
insight into the overall dynamics of clone abundances. The
timescales required to reach steady state fall between 1/(aQ) and
1/ a . Thus, it is possible that some components of ck does not
reach steady state in an organism's lifetime and our steady state
model might not be be valid for all values of ck (57, 61 ) and a
dynamic approach must be taken.

Clustered Immigration

Our mean field model assumed that each immigration event
introduced a single naive T cell in the immune system.
However, T cells can divide before leaving the thymus and reach
a homeostatic state in the periphery. This process can bedescribed
by the simultaneous immigration of more than one naive T cell
with the same TCR. Clustered immigration of g cells can be
implemented in the core model for ck (Eq. 7) via an immigration
term oftheform aqCck _,,(aq, r)-ci atfr)), whereckq= 0 fork-q <0
(see Section 5 of the Supplementary Material). For g > 1, an
informative analytic expression for ckis not available. In Figure S2
of the Section 5 of the Supplementary Material, we show the
predicted clone abundance ck for a neutral model in which g = 5.
When compared to the case where there is only one cell per
immigration, the clone abundance ck will have a larger slope for
k ;§ g, making it kink more downward near k "" ¢. Thus, from
Figures S2 and 9A, we can see that paired immigration (g = 2)
would increase f# fork = 2, providing an improved fitting to data
over single copy immigration (q = 1).

Thus, in addition to appreciable sensitivity of the predicted clone
counts to n,.(r lw), we also expect clustered immigration defined
through the immigration rates d¢,q > 1 to control the goodness of
fit to data Indeed, Figure S2 suggests that the distribution of
immigration duster sizes ¢, in addition to the proliferation rate
heterogeneity w, is an important determinant of measured clone
counts and that <Xq may be constrained by data We leave this for
future investigation.

General Conclusions

We developed a heterogeneous multispecies birth -death -
immigration model and analyzed it in the context of T cell
clonal heterogeneity; the clone abundance distribution is derived

Frontiers in Irnrnunobgy | www .frontiersin.org

13

February 2022 | volume 12 | Article 735135


https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles

DessaUes et al.

T Cell Clone Couit Distributions

in the mean-field limit. Unlike previous studies (4), our modeling
approach incorporated sampling statistics and provided simple
formulae, allowing us to predict clone abundances under
different rate distributions for arbitrarily large systems (N*
10'° - 10"y, without the need for simulation. The properties of
the BDI model and the overall shape of the sampled clone count
data renders the first few k-values of (J or ff the most important
for determining the constraints among the model parameters. In
other words, only the initial rate of the decrease in ft(data) for
small k& governs the quality of fitting to the model, and one
should not expect to be able to explicitly infer more than one or
two free parameters.

Our heterogeneous BDI model produced mean sampled clone
count distributions that wecould directlycompare with measured
clone counts. The unsampled clone counts ck of the neutral model
(homogeneous @ and r) follow a negative binomial distribution
which is further modified upon sampling and distribution over
the heterogeneous immigration and proliferation rates. Although
we determined A& (ala) through a code that implemented
recombination statistics inferred from c¢cDNA and gDNA
sequences (20, 28), we found that the behavior of the model is
rather insensitive to distributions A (a /la ) with mean values a
much smaller than the largest proliferation rates r. The model
results are dominated bymanylow immigration-rate clones and a
model that replaces @ with its mean value @ is sufficient.

Conversely, we find that the shape of the clone count profiles
ck are quite sensitive to the proliferation rate heterogeneity w. A
small amount of heterogeneity quickly reduces the best-fit values
of A to reasonable values. For estimated values 1J 10-6 - 1-04,
a - 10-4,and smallvaluesofl = N*/Q;5 1:03, requires a best-fit
width w "" 1. Heterogeneity is needed to generate clones of
sufficiently large size that persist after sampling. Although the
number of TCR clones with large proliferation rates r may be
small, such clones proliferate more rapidlycontributing to higher
clone counts at larger sizes. In particular, wefound that the shape
of expected clone abundance is sensitive to the behavior of the
proliferation rate distribution near the maximum dimensional
proliferation rate R, n,.(r ""R). The predicted clone counts are also
modestlysensitive to the distribution of immigration cluster sizes
g (representing transient proliferation just before thymic output).
When q > 1 cells of a clone are simultaneously exported by the
thymus, the predicted mean clone counts decay much more
slowly for small k ;5 q (see Figure S2). This modification will
allow for better fitting since clustered immigration increases the
predicted clone counts for larger k,0,4, etc., and eventually Ji,
ft, etc . Thus, we expect that a model containing multiple
clustered immigration rates a ¢2,; will lower the error and
provide better fitting, particularly at larger w. Additional
analysis using a distribution of immigration cluster sizes may
allow this type of clone count data to reveal more information
aboutthe physiological mechanism ofnaive T cell maintenance.
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