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The specificity ofT cells is thateach T cellhasonly one T cellreceptor (TCR). AT cell clone 
represents a collection of T cells with the same TCR sequence. Thus, the number of 
different T cellclonesin anorganism reflectsthe number of different T cellreceptors(TCRs) 
that arise from recombination of the V(D)J gene segments during T cell development in 
the thymus. TCR diversity and more specifically, the clone abundance distribution, are 
important factors in immune functions. Specific recombination patterns occur more 
frequently than others while subsequent interactions between  TCRs and  self-antigens 
are known to trigger proliferation and sustain naive T cell survival. These processes are 
TCR-dependent, leading to clone-dependent thymic export and naive T cell proliferation 
rates. We describe the heterogeneous steady-state population of naive T cells (thosethat 
havenot yetbeenantigenically triggered) by using a mean-field model of a regulated birth- 
death-immigration process. After accounting for random sampling, we investigate how 
TCR-dependent heterogeneities in immigration and proliferation rates affect the shape of 
clone abundance distributions (the number of different clones that are represented by a 
specific number of cells, or "clone counts"). By using reasonable physiological parameter 
values and fitting predicted clone counts to experimentally sampled clone abundances, 
we show that realistic levels of heterogeneity in immigration rates cause very little change 
to predicted clone-counts, but that modest heterogeneity in proliferation rates can 
generate the observed clone abundances. Our analysis provides constraints among 
physiological parameters that are necessary to yield predictions that qualitatively match 
the data. Assumptions of the model and potentially other important mechanistic factors 
are discussed. 

Keywords: naive T cells, T-cell receptor, repertoire diversity, clone-count distributions, mathematical modeling, 
immigration-proliferation model, heterogeneity 
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INTRODUCTION 

Naive T cells play a crucial role in the immune system's response 
to pathogens, tumors, and other infectious agents. These cells are 
produced in the bone marrow, mature in the thymus, circulate 
through the blood, and migrate to the lymph nodes where they 
may be presented with different antigen proteins from various 
pathogens. Naive T cells mature in the thymus where the so- 
called V, D, and J segments of genes that code T cell receptors 
undergo rearrangement. Most T cell receptors (TCRs) are 
comprised of an alpha chain and a beta chain that are formed 
after VJ segment and VDJ segment recombination, respectively. 
The number of possible TCR gene sequences is extremely large, 
but while recombination is a nearly random process, not all 
TCRs are formed with the same  probability. 

The unique receptors expressed on the cell surface of 
circulating TCRs enable them to recognize specific antigens; 
well-known examples include the naive forms of helper T cells 
(CD4+) and cytotoxic T cells (CDS+.) The set of naive T cells 
that express the same TCR are said to belong to the same T cell 
clone. Upon encountering the antigens that activate their TCRs, 
naive T cells turn into effector cells that assist in eliminating 
infected cells. Effector cells die after pathogen clearance, but 
some develop into memory T cells. Because of the large number 
of unknown pathogens, TCR  clonal  diversity  is a  key factor 
for mounting an effective immune response.  Recent  studies  
also reveal that human TCR clonal diversity is implicated in 
healthy  aging,  neonatal  immunity,  vaccination  response  and 
T cell reconstitution following haematopoietic stem cell 
transplantation (1, 2). Despite the central  role of the  naive  T 
cell pool in host defense, and broadly speaking in health and 
disease, TCR diversity is difficult to quant ify. For example, the 
human body hosts a large repertoire of T cell clones, however 
the actual distribution of clone sizes is not precisely known (3). 
Only recently have experimental and theoretical efforts been 
devoted to understanding the mechanistic origins of TCR 
diversity (4- 9). The goal of this work is to formulate a realistic 
mathematical model  that  incorporates  heterogeneity  in  naive 
T cell generation and reproduction. Model predictions are 
compared with T cell clone data to estimate reasonable and 
realistic parameter values. 

One way to describe  the  TCR  repertoire  is  by  tallying  
the population n; of T cells carrying receptor  i.  Another  is to 
use  the  clone  abundance   distribution   or  "clone  count" that 
measures the number of distinct  clones composed of exactly k  
T cells, ck := I:;:, ll(n;, k), where theindicator function ll(n, k) = 1 
if n = k and O othe rwise. Clone counts ck do not carry   TCR 
identity information  as  n;   does, however, they can  be used  to 
construct other summary indices for T cell diversity such as 
Shannon's entropy, Simpson's  index,  or  the  whole population 
richness C :=I:;,ck (10). 

Clone counts ck and the total number of circulating naive T 
cells  are  difficult  to  measure  in  humans.  Nonetheless, high- 
throughput DNA sequencing on samples of peripheral blood 
containing T cells (11- 14) have provided some insight into TCR 
diversity.  A commonly invoked  model is that clone counts ck 
exhibit  a  power-law  distribution  (4,  12,  15- 17)  in  the clone 

abundance k. Several models have been developed to explain 
observed features of clone counts (3, 4, 15, 18, 19), including the 
apparent power-law behavior. One proposal is that T cells in 
different clones have TCRs that have different affinities for self- 
ligands that are necessary for peripheral proliferation (4- 6), 
leading to clone specific replication rates. An alternative 
hypothesis (7) is that specific TCR sequences are more likely to 
arise in the V(D)J recombination process in the thymus (20) 
leading to a higher probability that these TCRs are produced. De 
Greef et al. (7) estimated the probability of production of a given 
TCR sequence by using the Inference and Generation of 
Repertoires (IGoR) simulation tool that quantitatively 
characterizes the statistics of receptor generation from both 
cDNA and gDNA data (20). 

Although power-law models have been motivated, this 
behavior has been observed across only about  two decades 
of clone sizes k, as shown in Figure 1. Moreover, the above 
models have not systematically incorporated and compared 
heterogeneity in both immigration and replication rates, and/ 
or fitted models to measured TCR clone abundance 
distributions. Finally, some of them have not taken into 
account subsampling in measurements, which will affect the 
predicted clone counts, especially for small clone sizes k which 
can be missed in small samples. In this paper, we analyze the 
effects of heterogeneity and sampling within a dynamic mean- 
field model based on a stochastic clone-dependent birth-death- 
immigration (BDI) process that includes (i) immigration 
representing  the  arrival  of  new  clones  from  the  thymus, 
(ii) birth during homeostatic proliferation of naive T cells that 
yield newborn naive T cells with the same TCR as their parent, 
and (iii) death representing cell apoptosis (10). We alsoinclude a 
regulating "carrying capacity" mechanism through a total 
population-dependent  death  rate  which  may  represent the 
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global competition for cytokines, such as Interleukin-7 (21- 25), 
needed for naive T cell survival and homeostasis (26, 27). Since 
these cytokine signals are TCR-independ ent, the regulatory 
interaction, which ensures a finite homeostatic naive T cell 
population, is clone-independent (23). 

We derive analytic expressions for the steady state clone 
counts in the entire organism and show that the predicted 
distributions are negative binomials. However, since T cell 
clone populations are measured in small blood subsamples 
extracted from an organism, we modify our predictions to 
include the effects of random subsampling and find that the 
negative binomial structure is preserved. Finally, the subsampled 
prediction will be averaged over distributions of TCR generation 
(thymic output) and homeostatic proliferation rates. The 
distribution of TCR generation rates are extracted from new 
computational tools: Inference and Generation of Repertoires 
(IGoR) (20) and Optimized Likelihood estimate of 
immunoGlobulin Amino-acid sequences (OLGA) (28). Since 
there are no equivalent tools that measure proliferation rates, 
we will assume simple functions for the distribution of 
homeostatic proliferation rates. These model-derived results 
depend on the rate parameters of the model and the 
hyperparameters defining the probability distributions over 
these T cell production and proliferation rates (see Table 1). 

Our results are then compared to the data shown in Figure 1 
and used to estimate hyperparameters associated with the 
heterogeneity in the TCR-spedfic immigration and proliferation 
rates. Specifically, we quantify how the width of a simple uniform 
proliferation ratedistribution and the heterogeneity ofimmigration 
ratesfroma generative model affect thepredicted donecounts. Our 
analysis explicitly shows that within reasonable physiological 
parameter ranges, heterogeneity in the thymic immigration rate 
cannot significantly change clone count distributions. However, 
clone counts are sensitive to heterogeneity in T cell proliferation 
rates. Thus, different levels of heterogeneity in proliferation rates 
can give rise toqualitatively different clone countdistributions. This 
finding of the dominance of proliferation in shaping clone count 
distributions is consistent with the observation that in older 
humans with severely reduced thymic output a broad clone 
count distribution is still maintained (9, 29). 

MATERIALS AND METHODS 
To understand the observed clone counts, we focus on the clone 
count distribution ck associated only with naive T cells, the first 
type of cells produced by the thymus that have not yet been 
activated by anyantigen. Antigen-mediatedactivation initiates a 
largely irreversible cascade of differentiation into effector and 
memory T cells that we can subsume into a death rate. Thus, we 
limit our analysis to birth, death, and immigration within the 
naive T cell compartment . Here, we first present the 
mathematical framework of the BDI process to provide an 
initial qualitative understanding for clone counts. 

 
Heterogeneous Birth-Death- 
1mmigration Model 
The multiclone BDI process is depicted in Figure 2. We define Q 
to be the theoretical number of all possible functional naive T cell 
receptor clones that can be generated by V(D)J recombination in 
the thymus which is estimated to be Q - 1013 

- 1018 (6, 28). As 
we will later show, results of our model will not depend on the 
explicit value of Q as long as Q » 1. Due to naive T cell death or 
removal from thesampling-accessiblepool, not all possible clone 
types will be presented in theorganism, so wedenote the number 
of clones actually present in the body (or "richness") by C « Q, 
where estimates of C rangefrom - 106 - 108 in mice and humans 
(1, 6,  32, 33, 35,  36). 

Although naive T cells are difficult to distinguish from the 
entire T cell population, thetotal number of naive T cells (across 
all clones present) in  humans  has been estimated  to  be  about 
N -  1011 

•  Circulating naive T cells number approximately 109
 

(37) but can exchange, at different time scales, with those that 
reside in peripheral tissue, which may carry their own 
proliferation and death rates. The effective pool that is 
ultimately sampled is thus difficult to estimate, but 
measurements show that the theoretical number of different 
clones is much larger than the total number of naive T  cells, 
which is in turn much greater that the total number of different T 
cell clones actually in the body (Q » N » C). Regardless of the 
precise values of the discrete quantities Q,N,C, they are related 
to the discrete clone counts ck via 

 
 

TABLE 1 I Model parameters 8 and hyperparameters Bo- 

c =  L ck «  Q and N =  L kck. 
hi hi 

 
(1) 

 
( H yperj Parameters definition Asdepicted in Figure 2, each distinct clone i (with 1   i Q) is 

characterized byan immigration rate a; and a per cell replication 
aE JR+ 
/iE  JR+ 
r E (0,RI 
'f  E  JR+ 
RE  JR+ 
WE(0, 1) 
µ•>R 
r,E[0,1) 

naive T  cellproductbn rate 
mean productbn rate acrossallpossible Q TCRs 
naive T cellprolWeratbn rate 
mean prolWeration rateacrossallpossible Q TCRs 
maximum prolWeratbn rateof all possible Q TCRs 
dimensionlesswidth of box distributionof  r 
naive T cell death rate at steady state 
blood subsarnpling fraction 

rate r;. Theimmigration rate a;isclone-specific because it depends 
on the preferential V(D)J recombination process; the replication 
rate r; is also clone-specific due to the different interactions with 
self-peptides that trigger proliferation. Since both the numbers of 
theoretically possible (Q » 1) and observed (C » 1) clones are 
extremely  large,  we  can  define  a  continuous, normalized 

   probability density n(a, r) from which immigration and 
The dimensional parameters associated with our mechanistic population model. Hype-
peameters such as a, r, R, w  define theprobabi61'f dstribution or heterogeneity in the 
underling rateparameters aend r. In our analyses, we typicaly nondimensionalize 
by normalizing al rates by R, the maximum proliferadon rate across all clones. 

proliferation rates a and r of a randomly chosen clone are 
drawn. This means that the probability that a randomly chosen 
clone  has  an  immigration  rate  between   a  and   a  +  da 
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and replication rate between rand r + dr is n(a, r)d a dr, and 

l oo da   l oo d  rn (a , r) = 1. 

Since Q is finite and countable, there will exist maximum 
values A and R for the immigration and proliferation rates, 
respectively, such that n(a, r) = 0 for a > A or r > R. In the BDI 
process, the upper bound R on the proliferation rate prevents 
unbounded numbers of naive T cells and is necessary for a self- 
consistent solution. The heterogeneity in the immigration and 
replication rates allows us to go beyond typical "neutral" BDI 
models, where both rates are fixed to a specific value for all 
clones,  a; =  a and r; =  r for all i. 

Finally, we assume the per cell death rate µ(N) is clone- 
independent but a function of the total population N. This 
dependence represents the competition among all naive T cells 
for a common resource (such as cytokines), which effectively 
imposes a carrying capacity on the population (24, 31, 38). The 
specific form of the regulation will not qualitatively affect our 
findings since we will ultimately be interested in only its value 
µ(N*) = µ*  at the mean  steady state population  N*. 

Mean-Field Approximation of the 
BDI Process 
The exact steady-state probabilities of configurations of the 
discrete abundances ck for a fully stochastic neutral BDI model 
with  regulated  death  rate µ(N)  were  recently  derived (10). 
In Dessalles et al. (10) exact results were derived for the steady- 
state  probability  P(cI •   C2, . . . , ck  ) under  uniform  immigration, 
proliferation,  and  death  rates  a,   r,  and  µ,  respectively.  The 

significant contribution of this paper is that we go beyond the 
neutral model (equal immigration, proliferation, and death rates 
for all clones) by allowing for heterogeneous distributions of these 
rates. Toincorporate TCR-dependentimmigration and replication 
ratesina non-neutral model, we mustconsider distinct valuesof <X; 
and r; for each clone i. In this case, an analytic solution for the 
probability distribution over ck , even at steady state, cannot be 
expressed in an explicit form. Howeve,rsince the effective number 
of naive T cells (N - 109 

- 1011 (35)) is large, we can exploit a 
mean-field approximation to the non-neutral BDI model and 
derive expressions for the mean values of the discrete clone 
counts ck . We will show later that under realistic parameter 
regimes,  the mean-field approximation  is quantitatively accurate. 
Breakdown of the mean field approximation has been carefully 
analyzed in other studies (39 ). 

 
i) Deterministic Approximation for the Total 
Population and the Effective Death Rate 
To implement the mean-field approximation in the presence of a 
general regulated death rate µ(N ), we start by writing the 
deterministic, "mass-action" ODE for the mean number of cells 
n<ll, (t) with a realized immigration rate a and proliferation rate 
r in a BDI process 

 
dna,,(t ) 
-  d t-  -   =  a + rna,,(t ) -  µ(N (t ))na,,(t ) . (2) 

Next, we define and exploit the density of realized valuesof a 
and r. Since Q» l , the number ofTCRs that are associated with 
immigration  rate between  a  and a + da  and a replication rate 
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lo 

 
between r and r + dr is denoted Qn(a, r)dadr, where n(a, r) 
is a normalized density that describes how these realized values 
of a and r are distributed. Our model for the total mean number 
N(t) of naive T cells can then be estimated as a weighted integral 
over all no;,(t) 

 
N(t) = QloAdaloRdr na ,,,   (t )n(a , r ) . (3) 

 
Note that the limits of the integration above can equivalently 

be taken as A, R-+ oo as long as n(a, r) = 0 when a> A or r > R. 
At steady-state,the solution to Eq. 2 can be simply expressed as 

"coverage" of the entire repertoire (6).  Values of N* and Q  that 
are consistent with measurements and physiologic expectations 
give 1 « 1. Once 1 / a and n;.(r) are estimated, we can self- 
consistently determine µ*  from Eq.  6.  Besides 1 / a, the   self- 
consistent value of µ* will also depend on the function n,(r ). 
Note from the form of Eq. 6, the self-consistent µ* is inversely 
related to A. 

 
ii) Mean-Field Model of Clone Counts 
Given a  relationship  such  as  Eq.  6  that  determines  µ* , 
we can explicitly develop a model that quantifies naive T cell 
subpopulations according to their immigration and proliferation 

n*    - a 
a, r - µ (N* ) -  r 

 
(4) 

rates a and r. For a given, realized value of a and r, wedenote the 
expected number of clones of size k with these immigration and 
proliferation  rates  by ck(a, r).  The mean-field equations for  the 

in which N* is the predicted steady-statevalue of N(t) as t -+ oo. 

Thus, upon weighting Eq. 4 over all possible values of a and r, 
we find 

dynamics of these mean clone counts in the neutral model were 
derived in (39, 40) and are reviewed in Section 1 of the 
Supplementary Material. In a neutral model, we assume that 
all clones Q carry the same rates a and r so that the mean field 

N* =  Q r dr  {°° da   a n (a,   r )  
lo µ ( N * ) - r' 

 
(5) 

evolution  equation for ck(a, r) is given by solving (38, 39) 
 

dck ( a,   r ) 
dt = a [ck_1 ( a , r ) - ck( a , r ) ] 

a self-consistent equation for N* which depends implicitly on 
the parameters that define the distribution n(a, r). Eq. 5 clearly 
shows why a finite cutoff n(a, r > R) = 0, R < µ(N*) is required 
since the integral diverges if n(a, r 2:: µ(N*)) > 0. However, as 
long as n(a, r) decays faster than 1/ci!, the a -integration 
converges with an explicit cutoff A. 

We will first assume that a and rare uncorrelated and that 
the distribution factorises: n(a,r) = na(a )n,(r ). Then, the self- 
consistent effective steady state death rate µ* = µ(N*) depends 
only on the combination 

N* r dr n;.( r) 
( a Q )=  lo ( µ * - r)' 

where 

 

+  r [( k -  l )ck _1 ( a , r ) -  kck ( a , r ) ] (  7 ) 

+  µ ( N  ) [( k +  l )c+k i  ( a  , r )  - kck( a , r ) ] , 

along with the constraint L  k=-Ock (a , r) = GJ + L ; 1 ck(a, r) = Q. 
Note that ck(a,r) and na,r are related via L  ;  1 kck (a , r ) =  na·,, 
We use the notation ck to denote the predicted done counts 
derived from our mathematical model to distinguish them from 
measured clone counts ck . Equation 7 assumes that both ck(a, r) 
and N are uncorrelated, allowing us to write the last term as a 
product of functions of the mean population N = L ; 1 kck and 
ck+1 , ck     . Under steady-state,we approximate µ(N) byµ* found by 
solving Eq. 6 as a function of 1, a, and the hyperparameters 
defining n,(r). The steady-state solution of Eq. 7 follows a 
negative binomial distribution with parameters CJlr and r/µ * < 1 
(10, 39) ( a/(r )k 1 k-                1 a 

 
 

is the mean immigration rate across all possible clones. To 
simplify  subsequent  notation,  we  normalize  all  rates  by  the 

ck2:1 ( a , r,  µ*  ) =  Q   1-;.) ;. TIJ](-;-+i!), (8) 

maximum proliferation rate R. To avoid population blow-up, 
we impose that the maximum proliferation is smaller than the 
steady-statedeath rate R < µ*. By measuring time in units of 1/R, 
we redefine r/R -+ r l, cx/R -+ a, a / R -+ a, µ* JR -+ µ* , and 
R2 n (a , r) -+ n(a, r) so that these quantities are now 
dimensionless, unless otherwise explicitly stated . The steady- 
state self-consistent condition becomes 

 
!'}*= = {1 dr  n;(.r ) .  (6) 
aQ a    lo µ *  -  r 

Since the effective Q is a large, uncertain number, we 
parameterize our model in  terms of 1  = N*IQ, the total steady 
state naive T cell population normalized by the total possible 
number  of clones Q.  It is sometimes  deemed a  measure of the 

The predicted number of absent clones is c0 = Q- L  k=l ck (a , r, 
µ* ).  The  solution  8  depends  implicitly  on  the parameter 1 
/ a through µ* determined by  Eq.  6.  Although ck(a, r, µ* ) has 
not yet been averaged over a, r,  it  also  implicitly depends on 1 
and the parameters that define n,(r) through µ* and Eq. 6. 
Specifically, larger 1  leading to smallerµ* 
results in a more slowly decaying ci a, r, µ*)  as a function of k. 
This behavior will be propagated through subsampling and 
averaging over a and r. 

Subsampling 
Unless an animal issacked and itsentire naive T cell population is 
sequenced, TCR clone distributions are typically measured from 
sequencing TCRs in a small blood sample. In such samples, low 
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J1 

 
population clones may be missed. In order to compare our 
predictions with measured clone abundance distributions, we 
must revise our predictions to allow for random   cell sampling. 

The total expected number of clones in the sample (the 
richness) can be found via direct summation: 

 
co 

We define1J as the fraction of naive T cells in an organism that is 
drawn in a sample and assume that all naive T cells in the 
organism have the same probability 1J of being sampled. This is 
true only if naive T cells carrying different TCRs are not 
preferentially partitioned into different tissues and are uniformly 
distributed within an animal. Let us assume that a specific clone is 

C (a , r, µ*,17) = L ck(a , r, µ* ,17) 
k= I 

[ ( 1  -   r / µ* )   a]/r 
= Q  l- l -   ( l - 17) r/µ* · 

(12) 

represented by R.cells in an organism. If N*17 » R.,the probability 
that k cells are randomly sampled from the same clone 
approximately follows a binomial distribution with parameters £ 
and 1J (40-44) 

 
                 (9) 

The associated mean sampled clone count 4 depends on the 
predicted whole-organismclone count and JP'[klf] via the formula 

 
q (a , r, µ*,17) "" L ct(a , r,µ*)lP'[klR.] 

h     . k 
(10) 

 
 
 

where ce(a. r, µ*) is determined by Eq. 8. Explicitly performing 
the sum in Eq.  10 yields the sampled clone count 

 4 (a , r, µ*,17) 

Asshown in Figure 3, random subsampling greatly affects the 
observed clone counts, with smallsampling fractions1J leading to 
fast decay ink of q (a, r,µ*,17) and shifting ck at large k to much 
smaller valuesof k while reducing thevalues of ck forsmall k (42). 
Note that setting 1J = 1 in Eq. 11 leads to Eq. 8, the whole-body 
clone count. In Figures 3A, B we plot results from our model 
using two very different dimensionless parameter sets, a=  10·5

,  

r = 1/2, 1 = 0.01, and a = A =10, r = 1/2, to generate two 
qualitatively different patterns of neutral model clone counts ck. 
If the subsampling 1J « 1 is sufficiently small, the resulting 4 
corresponding to the two qualitatively different ck can appear 
similar.  This  implies  that  small  sampling  fractions  make the 
estimation of whole-body clone counts from sampled data 
somewhat ill-conditioned, i.e., different whole-body clone 
counts, upon sampling, may yield  similar  sampled  clone 
counts. Although sampling  can strongly affect the inference of  
ck , immigration and proliferation rate distributions may  also 
affect the observed clone count as we investigate below. Q( ) (k ) f k-1 Heterogeneity and Determination 

w  / µ* 1  - r/µ* ( =  TI  l - ( r/µ*) l - ( /µ*) 
 

 

7a+J·)· of n ( a, r I Oo) 

l - 1J)( l - 1J)( r  
 

( 11) 
The fundamental result given in Eq. 11 applies only to the clone 
count density in a neutral model in which the immigration   and 
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= { b/w 

 

proliferation rates are a and r for all clones. We now average the 
sampled clone counts 4 ( a , r, µ* ,17) (Eq. 11)  and  the  richness 
C (a , r, µ*, 17) (Eq. 12) over a distribution of immigration and 
proliferation rates n( a,  r)  to  capture the heterogeneity  across 

1/2+w/2, respectively. The dimensionless self-consistency 
condition (Eq. 6) thus yields 

(  .!_ +w   ) i  w_/a (.!..- ) 
 

TCR clones. This final result can then be compared with 
experimentally measured  clone counts. Recall that  n( a,  r) can 

* 2 2 
µ   = 

2 2 
w/a-    1 (14) 

depend on hyperparameters Bo that define the shape of n. We 
then explicitly denote the distribution by n(a, rlBo). 

Once n( a, rlBo) is de fined, we can weight sampled clone 
counts accordingly. For example, one may assume Bo= { a,w}, 
with  each  of  the  two  hyperparameters  defining  n (a, rl00)  = 
na  (a l a ) n, (rlw), leading to 

T o understand the effects of proliferation rate heterogeneity 
we begin by considering it effects on whole-organism (17 = 1) 
clone counts. Since the function ci a, r, µ* ) defined by Eq. 8 
contains the exponentially decaying term ( r!µ* )k, a fixed 
dimensionless value of µ* and r = 1/2 leads to an exponential 
decay in ck in k. However, if w > 0,  different valuesof r  and µ* 

 
 

00  

4 (µ*,17,0 0  = { a , w}) = da  fo dr n(a, rl00 )ci ( a , r, µ*,17) . 
contribute to this decay term, yielding nontrivial behavior and a 
much  slower  decay as  seen  in  Figure  4  for 1/  a = 8, 80 and 
different values of w. 

 

i) Proliferation Rate Heterogeneity 
First, we consider a distribution of TCR sequence-dependent 
proliferation rates. Since TCR-antigen affinity depends on the 
receptor amino-acidsequence, the rate of T cell activation and 
subsequent proliferation can be clone -spe cific (31, 45). Thus, the 
specific interactions between TCRs and low-affinity MHC/self- 
peptide complexes maps to a distribution of proliferation rates 
among all the Q possible clones. Since there are no data (known 
to us) that can be used to infer this mapping or the specific shape 
of n,(rlw), we assume, for simplicity, a simple uniform "box" 
distribution  centered about a mean value r =  1/  2: 

ii) Immigration Rate Heterogeneity 
Next, we use previous studies that predict V(D)J recombination 
frequencies associated with each TCR sequence to construct a 
distribution 7ra (O.) for the TCR sequence-dependent thymic 
output. A statistical model for differenti al V(D)J recombination 
in humans is implementedin the Optimized Likelihood estimate 
of immunoGlobulin Amino-acid sequences (OLGA) software 
(28), which is an updated version of the Inference and 
Generation of Repertoires (IGoR) software (20). Below, we 
estimate  na  (a l a )  by sampling a  large number  of  TCRs from 
OLGA that  draws sequences  according  to  their generation 
probability. Our working assumption is that thymic selection is 

n,(rlw) iflr - 1/21 < w/2 
otherwise 

 
(13) uncorrelated with V(D)J recombination so the relative 

probabilities of forming different TCRs provide an accurate 
representation  of  the  ratios  of  the  TCRs  exported into 

where O w 1 represents the relative width of the uniform box 
distribution . The minimum and maximum dimensionless 
proliferation  rates in  this  distribution  are  then  1/2-w/2 and 

the periphery. 
Both IGoR and OLGA can be used to generate the 

probabilities  corresponding  to  each  drawn  sequence  but this 
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, allowing us to use this sampling procedure to reliablyestimate ,ra(ala ). 

, 

 
requires significant computational time and memory. 
Equivalently, since the sequence draws are proportional to the 
underlying probabilities, we simply drew N,. sequences and 
counted the frequencies of each amino acid sequence. Out of 
N,.sequence draws from IGoR or OLGA, there will be C,.distinct 
amino sequences (the richness of the drawn sequences). Since 
some sequences are drawn j>1 times, C,. N,.. If bj distinct 
sequences  are  drawn  j   times,  and   the   maximum  observed 
frequency max{j} = J, C,. = L}=ibj, N,. = L}=Jbj, while b/C,. 
is the fraction  of all drawn  sequences  that  appear  j  times. For 
N,. =  109     we  found  C,. =  372,806,648  ""  3.72  x  108   and a 
maximum observed frequency max{j} = J = 52,294 for  the 
alpha chain and C,. = 875,920,705 "" 8.76 x 108 and J = 6430 
for the beta chain. 

We model the effective immigration rate of a TCR sequence 
drawn j times to be proportional to j so that aj = a.j . To fix the 
proportionality a,., we identify  the mean  immigration  rate 
averaged across the C,. observed sequences with the mean 
physiological rate a 

 
(15) 

                  (17) 

Alternatively, when drawing sequences IGoR and OLGA (using 
the Pgen feature) onecan alsodirectly output their probabilitiesp;, 
whose values would be proportional to the frequency j if large 
numbers of sequences are drawn as described above. We can use 
these countable sequences and  probabilities to construg. a  and 
na(a) by defining a;= aQC,.pJpr where Pr=  L, ;:,Pi·  By 
plotting the values of p;, we arrive at a distribution similar to 
that shown  in  Figure  5.  In  this  case  too,  we find that a large 
number of low-probability sequences dominates the averaging of 
clone counts using the distribution of immigration rates 
constructed using IGoR/OLGA. 

Now that we have specified the distributions for na(a la ) and 
n,(rlw), we can compute the mean, sampled, immigration- and 
proliferation-averagedclone counts and compare them with 
measurements. The full formula for the immigration and 
proliferation rate-averaged clone counts under subsampling is 

ck( a,  µ* ,w, 17) =  loo da  lo' dr na(al a )n,( r lw )ct(a, r, µ* ,17) 

=-Q  LJ -bj l    ( l+w) / 2  -dr( 1Jr/ µ* )k
X

 

k ! j=l C,. (1- w)/ 2  W 1 - (1-17)r/µ* 
(16) 

( 1 -   r/µ * ) -t rkr=l( ai  )· 
 

 
The frequencies j of the drawn realization of clones are 

plotted in decreasing order against the C,. distinct sequences  in 

1 - (1-17)r/ µ* i=O   -;:-    1     '  
(18) 

Figures SA, B. From these frequencies j and the number of 
sequences bj exhibiting them, we approximate averages of any 
function y(a) over na(a la ) by taking a sum over the values  ai 

where aj isgiven by Eq. 16andµ*isgiven by Eq. 14. Eq. 18isour 
"full model" from which we make predictions of clones count- 
related  quantities  and  compare  them  with data. Using this 
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expression, we can mathematically study  the  importance  of 
the heterogeneities in a and r by comparing predictions from  
simple  forms  of  na  (a la )  and  n,.(r l w),    as  presented  in 
Section  2  of  the  Supplementary   Material   to  those  derived 
from n(a, r) = 8(a - a)8(r -t) of the neutral model. 

From Figure 5, observe that b1 »  bj>  l  ·  In  fact, a majority of 
the  naive  T  cell  population  is  comprised  of  clones  that are 
produced only once. The linear-scale insets also show a   long 
tail indicating a large number  of  clones  that  are  generated 
few times.  Thus, for sufficiently small  a, our  formulae for  ck 
and all subsequent quantities can be approximated by taking the 
a / r « 1 limit. As we show in Section 3 of the Supplementary 
Material, such a simpler expression remains highly accurate, 
provided  the  dimensionless  a < 1-0  2,   and  allows efficient 
computation . This  implies that  the  full  result  arising from 
averaging 4(a,r, µ* ,17) over na (a la ) can also be approximated 
by using a single effective value 4(a,r, µ* ,17), supporting our 
overall conclusion that predicted heterogeneity in human T cell 
immigration rates do not appreciably influence clone count 
distributions. While physiological distributions  na  (a l a)  do  not 
yield clone counts appreciably different from those of a neutral 
immigration model, small changes in proliferation rate 
heterogeneity w can significantly affect the clone count structure 
4. Nonetheless,  for  completeness,  we  will  perform  the   full 
summation over a; (Eq. 18). All parameters, hyperparameters, 
and variables used in our modeling and data analysis are listed in 
Tables l , 2. 

 
 

TABLE 2 I Model variablesand their definitions. 
 

 

variables definition 
 

 

theoretical number of possible TCRs - 1013 - 1018 

(36) 

RESULTS AND ANALYSIS 

Before performing a quantitative comparison with measured 
clone counts from Oakes et al (12), we discuss the qualitative 
features of our model and typical physiological parameter ranges. 
While even the basic model parameters are difficult to measure, 
our nondimensionalized model unifies the mechanisms and 
concepts common to the maintenance of diversity in the T cell 
repertoire across different organisms. 

When considering the data, we observe that even after 
significant subsampling, there are appreciable clone counts at 
reasonably large clone sizes k, whereas the unsampled clone 
counts decay exponentially ink  with rate log(µ*Ir ). Even though 
r may take on a range of values, as determined by n,.(r), the 
slowest decay of ck arises from the largest possible values of r. 
Thus, a larger proliferation rate heterogeneity w will generally 
yield a longer-tailed ck, as illustrated in Figure 4. Since the data 
we analyze are derived from human samples, we will use the 
following arguments as a  rough  guide  to  the  relevant range  
of  parameters: 

 
• The average total number of naive T cells is not completely 

known but is estimated to be about N"-  1011 (35).  However, 
the circulating population in the peripheral blood is 
approximately two orders of magnitude smaller. These 
circulating naive T cells nonetheless exchange with those in 
the much larger population in the lymph and other tissues. 
The timescale of this exchange (relative to the age of the 
organism being sampled or the intersample times) will 
determine the effective statistically accessible N* relevant for 
sampling clone counts 4. We will use an order-of-magnitude 
estimate on the lower range of measurements and estimate 
N*- 1010_1011. 

• T he theoretical total possible number Q of TCRsof either alpha 
or  beta  chains may be in  the range 1013- 1018  (46),  but  the 

NEZ' 
N(Q Ellr 
N'E llr 
I\{' = 11N'  E JR+ 
N,EZ' 
c e z• 

c• e z+ 
C(     E  JR+ 
c•(e,rfJ e .JR 
c.er 
ck e z • 
c,J(/J e nr 
c e z• 
C (8,1 )))    E JR+ 

 
F. = k : E 10 1 ) 
k 

·(e 77)=  kc   (B, 1)1 E   10  1 ) 
k      ' CS(8, rfJ ' 

number of naiveT cens in o rganism - 1010  -  1011   (5) 
number of naive T cells frommodel 
steady-state number of naiveT cells frommodel 
subsarnpled numberof naive cells frommodel 
number of  draws from IGoR/OLGA 
total number of cbn es inorgari sm(richness) - 1<:P - 
1 <:P (36 ) 
tota l number of sampled d ones(sampled richness) 
total number of cbn es inorgari sm from model 
total number of sampled d ones frommodel 
number of different sequences draw,  from IGoR/ 
OLGA 
discretenumberof d ones of size k 
model of number of d ones containingk cells 
discretenumberd ones of size k in sample 
modeled numberof sampled cbn es containing k 
cells 
fraction of all sampled cells in d ones of size k 

 
modeled fractim  of allsampled cells ind ones of size k 

actual number of clones with immigration rate a; that allows it 
to be produced even once in a lifetime is more relevant and 
probably much smaller. Thus, the effective value of Q may 
reside at the lower range, leading to A= N*/Q -  104    - 10"2

 

• The average (dimensional) immigration rate per  clone  a 
can be deduced from the total thymic output of all clones 
aQ, which has been estimated across a wide range of values 
aQ - 107 - 108/day (29, 47- 50). If we use an effective 
repertoire  size of  Q  -   1013- 1014, the average  per clone 
immigration rate becomes a -  1-0   7  -    1-0  5/day. 

• The mean proliferation rate r is difficult to measure but has 
been  estimated  to  be on  the order  of r -   10-4 - 1-0       3/day 
(29). Ifwe nondimensionalize using R =  2r, the dimensionless 
a - 10-4 -  1-0  1• 

• The sampling fraction 17, although in principle determined 
experimentally, is also hard to quantify dueto the uncertainty 
in  N*. Blood  sampling  volume  fractions from  humans are 
typically 1J -  10"3;  however, in  recent experiments (12)  the 

Theva-iabteswith oonote measured numbers, while pop.1/ationswrittenas functionsof 
parameters 8 are thosepredicted from our model (the dima, sion/ess parameters used 
in  our  model  are 8  =  {a, r}).  The  probability distributions 1t (DI are defined by 
hyperparameters  8o ( the dimensoi nless  hyperparameters used in this study are 8o = 
{a,w }). Uponaveraging{Ye:iictedquantitiessuchasq (a,r)over /!(QI   8ol w e  md   q (8o). 

number of enumerated sequences - 105
, which, given rough 

estimates ofeffectiveN* - 1010-1011, yield17- 10-6 - 104  
. Due 

to this uncertainty in 17, we will explore different fixed values 
of1J around 10"5

• 
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Using the above guide for reasonable parameter ranges, we 
now consider fitting our results in Eqs. 18, S9-Sl 4 to some of the 
available data (12). Before doing so, note that although the log- 
log plots shown  in  Figures  IA, B  provide a simple visual for 
log 4 or   log[cjj C J, fitting  must  be  performed  on  the linear 
scale. The measured data includes data at values of k for which 
no  clones  were  detected  so  that  4 = 0.  These  data points 
nonetheless should  be included  in the fitting as  they represent 
realizations of the system. However, on the log scale these zero 
data points translate to log 4 -+ -oo so numerical fitting on the 
log-log scale  could  be  misleading  once  a  value  of  4 = O is 
encountered. Thus, we will fit our mean-field model on the 
linear scale to the fractionft of the total number of sampled cells 
that are in clones of size k 

unknown repertoire size Q since 4 is proportional to Q. The 
implicit factor of Q in 4 from Eq. 11 cancels the explicit Q in 
thedenominator ofEq. 19 so thatft as well as 4/Cdepend on Q 

only through the determination of µ* through A= N*!Q in Eq. 6. 
Our mathematical framework provides only mean sampled 
clone counts while each sample of the data represents one 

realization. Large sample -to-sample variations in the clone 
counts would render the fitting less informative, but these large 

variations were not seen in the triplicate samples in Oakes et al. 
(12). Mechanistically, we expect that for large k the number of 
cells contributing toft is also large so demographic stochasticity 
is relatively smalland results in small uncertainties in thevalue of 
k, and not in the magnitude of ft. Large clones are also likely to 
include memory T cells that have been produced after antigen 
stimulation  of specific clones.  Memory T  cells are difficult  to {sc-  1 ) = kq (a ,?., w,17-) 

 
 

k£i(a , A,w,1J ) 
 

 

accurately distinguish from naive T cells (12 ) but we will see that 

 
Jk   a,11,,W,1] - N s -      "'=ct o1 ocJ:t ca-,  1 

 
w,1J)

 large k components offt negligibly influence the fitting. We can 
 

= -k-q-....(...a....,?-.,-w-,17-) 
Q17?. 

(19) now compare our modelft(a,A,w,17) with the data ft (data) by 
constructing the error 

 
where the denominator Q17?. comes directly from the definition 
Lt= l ct(a , ?.117) = N 5 

, the sampling relation N = 17N*, and Eq. 6. 
Note that we have switched  the  dependence  from  µ*  to  ?. 
(see Eq. 14). Rather than using N directly from the number of 
reads in an experimental sample, equivalently, we use the model 
expression N = Q17?. to arrive at the last equality in Eq. 19. This 
form  ensures  strict  normalization  and  is  independent  of  the 

H(a, ?.,w,17) =  i  lft(data) - ft(a,?.,w,11)12 (20) 
k=I 

 

and exploring how it depends on the parameters a,?.,w, and 
sampling fraction fl. Our goal is to find relationships among the 
parameters?., a, and w that minimize H(a,?.,w,17). 

In Figures 6A- C the data ffc(data) were derived from the 
average of three samples of beta chain CD4 sequences from one 
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, 10-5, and 10-e, respectively. Since a is on a log scale, the error is minimal along a line A,,.., 
oc a; the error does not changeappreciably along this path ard only slightly decreases as lardabecome smaller. For the neutral model (w = 0), the error is very 
sensitive to the sampling fraction r,.Here, a fixed, physiobg icaUy reasonable value of a results in a minimizing4 that is ui reasonably large, in excess of one ard 
that does not agree well w h our expectatbns of l = N* /0 « 1. Panels (D-F ) show results for the distributed proliferation rate model at full width (w = 1). In this 
case, the errorsare insensitive to the specific choice of 11and the m inim izing Anin va lu es are m uch sma ller, oonsistent w h our est imatesof N* and repertoire size. 
For w = 1, the values of the errors Hare also smaller along the A,,.., - a m ini mum  va lley. 
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patient (12). These data, were used to compute and plot the error 
H(a,?.,w = 0, 17) as a function of?.for various values of a using 
the neutral model (w = 0, Eq. S9 in Section 2 of the Supplementary 
Material). For reasonable values of dimensionless a"" 1-0    5  

-  0.01 
and sampling fractions 1J = 1·0 4, 1·0 5

, and 1·0 6, we find that the 
value  of  ?. that  minimizes  H( a, ;t, w = 0,17),  Ami n, is  typically 
0(1)   or  large.r  In  Figures   6D- F   we   use    the    full -width 
distribution n;.(rlw = 1) to show the  error  for  the  same  data 
using the same sampling fractions 1J = 1·0 4, 1·0 5, 10-6.  Note that 
the values of Amin are significantly smaller than those in found 
using w = 0 in Figures 6A- C and that the results are rather 
insensitive  to   the  sampling  fraction  17. These  smaller    values 
of   Ami n  are   more  consistent   with   known   physiological 
understanding. Thus, the distributed proliferation rate model 
provides a much more self-consistent fit to the  data  than  the 
fixed proliferation rate neutral model Figure 6 also reveals that the 
values of H along the minimum valley are nearly constant, only 
slightly decreasing as a -+ 0. For each value of a we can identify 
the  corresponding  Ami n that  minimizes  H.  However  since  the 
values of H(a,Amin• w = 0, 17) for each (a,Amin) pair do not 
change appreciably, we cannot independently determine both. 

An alternate representation is shown in Figure 7 where the 
relationship between a and Ami n is seen to beapproximately linear 
for both the neutral model (w =  O) and   the    heterogeneous, full.. 
width  model  (w  =  1).  The  color  shading  represents    the 
corresponding value of H(a,Amin• w,17). One major observation 
is that the full-width case yields values of (a,Amin) that are closer 
to  measured  and   expected  physiological  values  and  that   these 
results are also lesssensitive to 1J compared to those of the neutral 
case. On  the other hand, although the variation  in  H is   negligible 
across a in  both cases, the  fully heterogeneous  model (w = 1) 
carries a slightly larger error than the neutral one (w = O). This is 
solely a consequence of our use of ft which weights the small k 
values significantly more  in  the fitting. 

Since experimentally we expect small A, we also investigate 
whether small errors H emerge for values of (a,Amin « 1) at 
intermediate O <w < 1. In Figure 7C, weplot Ami nasa function of w 
forvariousvalues of a. Note that even small w significantly reduces, 
relative to the neutral case, the corresponding Amin· However, if our 
target is Amin 10"4  · 1·0 3, the required  w can become quite large. 
These results indicate that more heterogeneity is associated with 

more realistic values of the experimentallyobserved values of N"IQ. 
Finally,  to  explore  the   dependence   of   the  error  on   the 

proliferation  rate heterogeneity w, we fix a,;t,  and  17, and  plot 
H(a,?.,w,17)  as   a  function  of  w.  Figure  8  shows  that  the H- 
minimizing w is very sensitive to ?./ a: for fixed 17, as ?./ a is 
decreased the error is lowest for larger proliferation heterogeneity 
w. The minimum value of H( a,?.,w,17), however, is rather 
insensitive to ?./ a for all chosen 17. Hence, near-optimal 
solutions with A« 1 can be found when the proliferation rate 
heterogeneity w is appreciable. Using the parameters associated 
with the minima in Figure SA (1J = 1·0 4 

, we plot our predicted ft 
against the data fl(data) in Figure 9. As can be seen, when 
proliferation rate heterogeneity is allowed, the best-fits have small 
error and are found using realistic values,?.« 1. Note that most  
of the information in the data lies in howfl(data) decreases over 
the first few values of k. The neutral model (w = O) fits best for 
smallvalues of k, but the corresponding values of?.anda are too 
large and small, respectively. The goodness of fit of our  model  
to the data depends mostly on the predicted initial decreases 
infl(a,?.,w,17). The constraints among the parameters?., a, w, 
and 1J derived from our  model and  can be applied  to different 
clone counts such as the data shown in Figure 1. However, due to 
the ill-conditioning when 1J « l, the differences in  these 
constraints across different  data  sets  do  not  vary  appreciably  
are only quantitatively different. Generally, the more rapidly 
decaying a  clone count, the smaller  the  w, the smaller the 17, of 
the  larger the ;t, all else being equal. 
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FIGURE 7 I I..Dg· log plots of  Amo values as functions of a for r,= 10'4,  105'  ,  105'  ,  and 10-e for (A) the neutral model, w = 0, and (B) the full-width distributed 
prolWerationratemodel, w = 1. These a.JNes trace the values of A.nil along the minimumvalley inand show the relative insensttivtty of  the distributed proliferation rate 
model to the subsampling fractionr,. In both (A, B), the minimum line sbp esare near one, with (B) showinga slightly greater slope, indicating Amo is a ppr ox imately 
proportional to a over the entire range of w. The oolor intenstty along the lines in (A, B) indicates variationin the total error abng  the minimum valley; their un Wo rrnity 
showsthat the errors are nearly constant ab ng each line. (C) Log-linear pb t of Amr> as a function of prolWerat ionrate heterogenetty w for a = 2 x 1-0  5 , 1-0   •. The 
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DISCUSSION 

Here, we review and justify a number of critical biological 
assumptions and mathematical approximations used in our 
analysis. The effects of  relaxing  our approximations  are 
also discussed. 

 
Distinct T Cell Components 
It is known that naive T cells can change in time, with recent 
thymic emigrants evolving into mature naive T cells that carry 
different proliferation and death rates (51). For simplicity, we 
have assumed a single naive T cell compartment. Toincorporate 
naive T cell evolution, we can allow the distribution n,(r) to 
evolve  in  time  to  reflect  the  relative abundances  of  T cell 

subpop ulations, or, one can explicitly include multiple 
compartments, with cells from a recent emigrant compartment 
transitioning into a mature compartment. Each compartment 
would be described by its own steady-state death rates, clone 
counts, and distributions of proliferation rates. An analysis of a 
related sequential cell state transition model has been developed 
for clonal  tracking in hematopoiesis  (41). 

 
Factorization of 1t (a, r) 
For  mathematical  tractability,  we  have  assumed  n( a , rl90)  = 
na  ( a l a )n, (r l w).  Given  the  typical  physiological  values of  a, 
the clone count formulae derived from our model can be 
accurately  approximated  by a  single  value  of  a. Thus, we 
expect  that  the  immigration   rate  distribution  can be 
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FIGURE 8 I The error H(a, l, w, "I) using CD4 alpha data from Oakes et al. (12) pb ttedas a function of w tor varbus l / a. We fixed l = 1o-sand varied, fromleft to 
right, a= 2 x 1o-5 (red), 6 x 10.s (green), 104      (blue)and 1.4 x 104        (black). From (A-C ), 'T/ = 1 04   , 10.s, and 10 . Smaller values of l /a resut in larger best- fit 
valuesof w. 
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approximated by na(a la ) = 8(a - a ). This allows further 
approximation of our formulae as shown in Section 3 of the 
Supplementary Material. In Section 4 of the Supplementary 
Mat eri al, we explicitly show that factorisation is  an  
accurate approximation. 

We have also assumed that selection is uncorrelated with the 
generation probabilities of the TCR nucleotide sequences 
encoded in IGoR/OLGA. The assumption is that the 
recombination statistics are uncorrelated with the statistics of 
thymic selection, a process that is based on TCR amino acid 
sequences. However, we note that it has been suggested that 
selection pressure may induce a correlation between TCRs 
generated and selected (52). The corresponding statistics of the 
frequencies of selected TCRs would be modified from those of the 
generated TCRs shown in Figure 5. Nonetheless, we assume that 
the resulting distribution can still be approximated by a single-a 
model which will not qualitatively alter our  conclusions. 

Mean-Field Approximation 
Our mean-field approximation for the mean clone count ck is 
embodied in Eq. 7, where correlations between fluctuations in the 
total population  N = L k kck   in  the  regulation term µ(N) and  the 
explicit ck terms are neglected. This approximation has been 
shown to be accurate fork ;5 N* when a(i > µ(N* ) (39). The 
mean-field results overestimate the clone counts for k ;5 N*. 
Moreover, when the total steady-state T cell immigration rate is 
extremely small, the effects of competitive exclusion dominate and 
a single large clone arises (39, 53, 54). Nonetheless, an  accurate 
approximation for the steady-state clone abundance ck can be 
obtained using a variation of the two-species Moran model as 
shown in (39). For the naive T cell system, because Q is so large, 
the mean immigration rate a is such that competitive exclusion is 
not a dominant feature. Moreover, since N* ;c; 1010 clones counts 
at comparable sizes are not observed and predicted to be negligible 
in all models. Since the values of ft(data) become exponentially 
smaller for large k, our inference is most sensitive to the values of 
ft(data) for small to modest k. The information in the data is 
primarily manifested by how the fl(data) decays ink, we before 
the mean -field approximation deviates from the exact solution. 
Thus, the parameters associated with the human adaptiveimmune 
system satisfy the conditions for the mean-field approximation to 
be accurate, justifying its use in the BDI model 

Steady State Assumption 
In this study, we only considered the steady state of our birth- 
death-immigration model in Eq. 8 because this limit allowed 
relatively easy derivations of analytical results. This was also the 
strategy for previous modeling work (4, 6, 7, 38, 39). However, 
the per-cloneimmigration and proliferation times may be on the 
order of months or years, a time scale over which thymic output 
diminishes as an individual ages (29, 55- 57). Indeed, clone 
abundance distributions have been shown to show specific 
patterns as a function of age (58- 60). Although N(t), with  fixed 
a and r relaxes to steady -state quickly, on a timescale of  months, 
the different subpopulations of specific sizes described by their 
number ck relax to quasi-steady-state across a spectrum of time 
scales depending on the clone sizes k (39, 61). The timescales of 

relaxation of the largest clones can be estimated from the 
eigenvalues of the linearized system (Eqs. 7) and are found to be 
- 10 years. Thymic involution could be modeled by using a time- 
dependent a{t) that slowly decreases with age (57). Although T 
cells are thought to be primarily maintained through proliferation, 
thymic regeneration has also been shown to affect the naive T cell 
pool many years after thymectomy in infants. Here, a time 
dependent increase in a(t) after early thymectomy  could  be 
used.  Indeed, the  clone counts may be determined  in  early life 
(17) suggesting the dynamics of certain clones may be very slow, 
precluding a strict steady-state analysis for the entire repertoire. 

In addition to time-dependent changes in a, more subtle time- 
inhomogeneities such as changes in proliferation and death rates 
have been demonstrated (55, 56, 62). Thus, our steady-state 
assumption could be relaxed by incorporation of time-dependent 
perturbations to the model parameters µ* and/or n(a, r). 
Longitudinal measurements of clone abundances or experiments 
involving time-dependent perturbations would provide significant 
insight into the overall dynamics of clone abundances. The 
timescales required to reach steady state fall between 1/(aQ) and 
1/ a . Thus, it is possible that some components of ck does not 
reach steady state in an organism's lifetime and our steady state 
model might not be be valid for all values of ck (57, 61 ) and a 
dynamic approach must be taken. 

Clustered Immigration 
Our mean field model assumed that each immigration event 
introduced a single naive T cell in the immune system. 
However, T cells can divide before leaving the thymus and reach 
a homeostatic state in the periphery. This process can bedescribed 
by the simultaneous immigration of more than one naive T cell 
with the same TCR. Clustered immigration of q cells can be 
implemented in the core model for ck (Eq . 7) via an immigration 
term of theform aqCck_,,(aq, r) -ci atf r)), where c·k q = 0 for k-q < 0 
(see Section  5  of  the  Supplementary  Material).  For  q > l, an 
informative analytic expression for ck is not available. In Figure S2 
of the Section 5 of the Supplementary Material, we show the 
predicted clone abundance ck for a neutral model in which q = 5. 
When compared to the case where there is only one cell per 
immigration, the clone abundance ck will have a larger slope for 
k ;§ q, making it kink more downward near k "" q. Thus, from 
Figures S2 and 9A, we can see that paired immigration (q = 2) 
would increase ft fork = 2, providing an improved fitting to data 
over single copy immigration (q = 1). 

Thus, in addition to appreciable sensitivity of the predicted clone 
counts to n,.(r lw), we also expect clustered immigration defined 
through the immigration rates aq,q > 1 to control the goodness of 
fit to data Indeed, Figure S2 suggests that the distribution of 
immigration duster sizes q, in addition to the proliferation rate 
heterogeneity w, is an important determinant of measured clone 
counts and that <Xq may be constrained by data We leave this for 
future  investigation. 

 
General  Conclusions 
We developed a heterogeneous multispecies birth -death - 
immigration model and analyzed it in the context of T  cell 
clonal heterogeneity; the clone abundance distribution is derived 
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in the mean-field limit. Unlike previous studies (4), our modeling 
approach incorporated sampling statistics and provided simple 
formulae, allowing us to predict clone abundances under 
different  rate  distributions  for  arbitrarily large  systems  (N* 
1010   

-   1011
) ,  without the need for simulation. The properties  of 

the BDI model and the overall shape of the sampled clone count 
data renders the first few k-values of q or  ft the most important 
for determining the constraints among the model parameters. In 
other words, only the initial rate of the decrease in ft(data) for 
small k governs the quality of fitting to the model, and one 
should not expect to be able to explicitly infer more than one or 
two free parameters. 

Our heterogeneous BDI model produced mean sampled clone 
count distributions that wecould directlycompare with measured 
clone counts. The unsampled clone counts ck of the neutral model 
(homogeneous a and  r) follow a negative binomial distribution 
which is further modified upon sampling and distribution over 
the heterogeneous immigration and proliferation rates. Although 
we  determined  na  (a l a )  through  a  code  that  implemented 
recombination statistics inferred from cDNA and gDNA 
sequences (20, 28), we found that the behavior of the model is 
rather insensitive to  distributions  na (a la ) with  mean values a 
much  smaller than the largest  proliferation  rates  r.  The model 
results are dominated bymanylow immigration-rate clones and a 
model that replaces a with its mean value a is sufficient. 

Conversely, we find that the shape of the clone count profiles 
ck are quite sensitive to the proliferation rate heterogeneity w. A 
small amount of heterogeneity quickly reduces the best-fit values 
of A to reasonable values. For estimated values 1J 10-6 - 1·0 4, 
a - 10-4, and smallvalues of1 = N*IQ ;5 1·0 3, requires a best-fit 
width w "" 1. Heterogeneity is needed to generate clones of 
sufficiently large size that persist after sampling. Although the 
number of TCR clones with large proliferation rates r may be 
small, such clones proliferate more rapidlycontributing to higher 
clone counts at larger sizes. In particular, wefound that the shape 
of expected clone abundance is sensitive to the behavior of the 
proliferation rate distribution near the maximum dimensional 
proliferation rate R, n,.(r ""R). The predicted clone counts are also 
modestlysensitive to the distribution of immigration cluster sizes 
q (representing transient proliferation just before thymic output). 
When q > 1 cells of a clone are simultaneously exported by the 
thymus, the predicted mean clone counts decay much more 
slowly for small k ;5 q (see Figure S2). This modification   will 
allow for better fitting since clustered immigration increases the 
predicted clone counts for larger k,0,4, etc., and eventually Ji, 
ft, etc . Thus, we expect that a model containing multiple 
clustered immigration rates a q2,1 will lower the error and 
provide better fitting, particularly at larger w. Additional 
analysis using a distribution of immigration cluster sizes may 
allow this type of clone count data to reveal more information 
about the physiological mechanism of naive T cell maintenance. 
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