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Abstract — Unit Commitment (UC) is an important problem in
power system operations. It is traditionally planned for 24 hours
with one-hour time intervals. To accommodate the increasing net-
load variability, sub-hourly UC has been suggested for improved
system flexibility. Such a problem is larger and more complicated
than hourly UC because of the increased number of periods and
reduced unit ramping capabilities per period. The computational
burden is further exacerbated for systems with large numbers of
virtual transactions leading to dense transmission constraint
matrices. Consequently, the state-of-the-art and practice method,
branch-and-cut (B&C), suffers from poor performance. In this
paper, our recent Surrogate Absolute-Value Lagrangian Relaxation
(SAVLR) is enhanced by embedding ordinal-optimization concepts
for a drastic reduction in subproblem solving time. Rather than
formally solving subproblems by using B&C, subproblem solutions
satisfying SAVLR’s convergence condition are obtained by
modifying solutions from previous iterations or solving crude
subproblems. All virtual transactions are included in each
subproblem to reduce major changes in solutions across iterations.
A parallel version is also developed to further reduce the
computation time. Testing on MISQ’s large cases demonstrates that
our ordinal-optimization embedded approach obtains near-optimal
solutions efficiently, is robust, and provides a new way of solving
other MILP problems.

Index Terms -- Ordinal Optimization, Parallel Processing,
Surrogate Absolute-Value Lagrangian Relaxation, Sub-hourly
Unit Commitment

NOMENCLATURE

=
5

index for conventional units

index for virtual transactions

index for dispatchable demand bids
index for nodes

index for three types of reserves
index for transmission lines

Index for time periods

index for three types of start-ups
index for subproblems

R N

Parameters
D¢ system demand at node n at time ¢

R,: required amount for reserve type z at time ¢

Fz, F, maximum and minimum transmission capacities of line /
ay, generation shift factor at node » for line /

MY minimum up time of unit i

TMD minimum down time of unit i

i
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Fi’ Pt maximum and minimum power output for unit 7 at time ¢

RR; ramp rate for unit

TE; maximum daily energy of unit i

TS; maximum daily start-up times of unit i

MV‘ oMy, minimum and maximum generations (or demands) of virtual
transaction v at time ¢

Ey' . maximum level of dispatchable demand bid y at time ¢

cltart cost coefficient for start-up s of unit 7 at time ¢

cht no-load cost coefficient of unit 7 at time ¢

cE piece-wise linear generation cost of unit i

Ck.. cost coefficient for reserve z of unit 7 at time ¢

Cyy cost coefficient of virtual transactions v at time ¢

Cye cost coefficient of dispatchable demand bid y at time ¢

cT penalty coefficient of transmission capacity constraints’
violations

cP penalty coefficient of system demand constraints’ violations

ck penalty coefficient of system reserve constraints’ violations

Decision Variables

Xit commitment status of unit 7 at time ¢

Uy start-up status of unit 7 at time ¢

Wit shut-down status of unit i at time ¢

bist three types (hot, intermediate and cold) of start-ups

Dit generation level of unit { at time ¢

my,, generation level of virtual transaction v at ¢

dy power required by dispatchable demand bid y at time ¢

Tizt reserve contribution for type z of unit i at time ¢

fer power flow through line / at time ¢

A¢ Lagrangian multipliers for system demand constraints

Se1s Sti non-negative slack variables for transmission constraints

sk, slack variables for system-wide reserve constraints

. gt non-negative variables for linearization

1. INTRODUCTION

NIT Commitment (UC) is an important problem in
power system operations — it identifies how to meet the
system demand by committing units and deciding generation
levels while minimizing the total cost of production subject to
individual unit constraints and system-wide reserve and
transmission capacity constraints. A UC problem is generally
formulated as a Mixed-Integer Linear Programming (MILP)
problem over a 24-hour horizon with one hour as the time
interval. Increasing dynamics on the grid prompted the industry
to consider whether UC with sub-hourly intervals would
increase system performance [1]. Sub-hourly UC has thus been
suggested as a way to improve system flexibility and reliability
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because it can accommodate greater intra-hour net load
variability [2]-[7]. Sub-hourly UC, however, is much more
complex than hourly UC because of 1) the increased number of
periods leading to larger problem sizes, and 2) the much
reduced unit ramping capabilities per period resulting in more
complicated convex hulls (the smallest convex set enclosing all
feasible solutions) as presented in Figure 9 of [8]. The
computational burden is further exacerbated for systems with a
large number of virtual transactions and dispatchable demand
bids which cause dense transmission capacity constraint
matrices [9]. As a result, even without explicitly modeling of
uncertainties caused by, e.g., intermittent renewables,
deterministic sub-hourly UC is difficult to solve. In this paper,
deterministic sub-hourly UC with large numbers of units,
virtual transactions and dispatchable demand bids is considered
with 15 minutes as the time interval, and the goal is to obtain
near-optimal solutions within 30 minutes.

As will be reviewed in Section II, branch-and-cut (B&C)
[10], the state-of-the-art and practice method for hourly UC,
cannot handle the increased complexity and suffers from poor
performance for sub-hourly UC. Lagrangian Relaxation (LR)
[11][12] was one of the earlier methods for hourly UC. It
reduces complexity by relaxing coupling constraints and
decomposing the relaxed problem into subproblems. Standard
LR, however, has several major difficulties, such as high
computational requirements, zigzagging of multipliers, and the
need to adaptively guesstimate the unknown optimal dual value.
Surrogate Lagrangian Relaxation (SLR) overcame these major
difficulties [13]. Its convergence has then been accelerated by
adding absolute-value penalty terms in our recent Surrogate
Absolute-Value Lagrangian Relaxation (SAVLR) method [14].
Within SAVLR, MILP subproblems are normally solved by
using B&C. Subproblem solving, however, may still be time-
consuming for sub-hourly UC with large numbers of units,
virtual transactions and dispatchable demand bids.

In Section III, the deterministic sub-hourly UC formulation,
which is the same as that of hourly UC but with 15 minutes as
the time interval, is briefly presented. System demand
constraints and reserve requirements should be strictly satisfied.
Transmission capacity constraints, however, are modeled as
“soft” and allowed to be violated with a predetermined penalty
coefficient. Additionally, although uncertainties are not
explicitly modeled, three types of reserves are included. This is
the current standard practice for Independent System Operators
(ISOs) to manage uncertainties.

In Section IV, our solution methodology is presented. To
avoid introducing too many multipliers, only system demand
constraints are relaxed. System reserve constraints are
converted to soft constraints following the approach of [15],
which, together with soft transmission capacity constraints, are
not relaxed. More importantly, inspired by the Ordinal
Optimization (OO) concepts that an “order” is easier to obtain
than “values” and a problem with a softened goal is easier to
solve than the original problem, a novel approach is developed
by embedding the OO concepts within SAVLR. Specifically,
rather than formally solving a subproblem by using B&C, “good
enough” feasible subproblem solutions that satisfy the SAVLR
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convergence condition are obtained by modifying solutions from
previous iterations or solving crude subproblems following OO
concepts [16][17]. B&C is called to solve a subproblem only
when such a good-enough solution cannot be obtained. This
novel idea leads to a drastic reduction in CPU times because
B&C is rarely called. Virtual transactions and dispatchable
demand bids are included in all subproblems to reduce
multiplier zigzagging and improve convergence. Finally, a
parallel version is also developed to further reduce the CPU time.

In Section V, multiple Midcontinent ISO (MISO)’s “hard”
cases, whose solutions are difficult to obtain within 20 or 30
minutes even for hourly UC by using B&C [9], are tested with 15
minutes as the time interval over a horizon of 36 hours. Results
demonstrate that our approach obtains high-quality solutions in a
computationally efficient way, significantly outperforms existing
methods, and is robust.

This manuscript is a major improvement over our
preliminary results presented at the 2020 IEEE Power and
Energy Society General Meeting [18]. Key enhancements
include: 1) the specific use of OO concepts in SAVLR for sub-
hourly UC is elaborated; 2) a parallel version is developed to
further reduce the CPU time; 3) more MISO’s hard cases are
tested and analyzed to demonstrate the performance and
robustness of our method; and 4) the reasons why B&C is rarely
used to solve subproblems are examined. Our approach presents
a new optimization concept to solve subproblems by not using
standard MILP methods, and lead to significant reduction of
computational requirements. It will have vital implications on
solving other complex MILP problems in power systems and
beyond.

II.LITERATURE REVIEW

Subsection II.A reviews the literature on sub-hourly UC. In
subsection I1.B, branch-and-cut (B&C), the standard method to
solve hourly UC, is presented. Decomposition and coordination
approaches based on Lagrangian Relaxation are reviewed in
subsection II.C. In subsection II.D, the Ordinal Optimization
(OO0) concepts are presented.

A. Sub-hourly unit commitment

With the increasing dynamics on the grid, hourly UC cannot
capture the sub-hourly net load variability [1]. Sub-hourly UC
has thus been suggested as a way to improve system flexibility
and reliability [2]. In [3] and [4], deterministic sub-hourly UC
is compared with hourly UC. With the increased number of time
intervals, sub-hourly UC captures more variability in system
demand, leading to more economic solutions than hourly UC.
In [5], both deterministic and stochastic sub-hourly UC are
compared with hourly UC. It is shown that sub-hourly dispatch
results have lower costs. In [6], reserves are shown to be
significantly lowered for sub-hourly UC than hourly UC under
high penetration of intermittent renewables. The impacts of
sub-hourly UC on power system dynamics are analyzed in [7].
It was shown that long-term frequency deviation is reduced for
sub-hourly UC, leading to improved reliability. However, in
view that sub-hourly UC is much more difficult to solve than
hourly UC as explained earlier, it is mostly used in near real-
time markets looking ahead 1-3 hours. It is relatively new to
apply it in day-ahead markets with a horizon of 24-36 hours.
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B. Branch-and-cut (B&C)

UC problems are generally formulated as MILP problems,
and solved by using B&C [10]. For a given problem, the method
applies “valid cuts” and tries to delineate the convex hull of
feasible solutions. If the convex hull or its facets adjacent to the
optimal solution are obtained, then the optimal solution can be
quickly obtained by solving the corresponding Linear
Programming (LP) problem. If the above is difficult to achieve
as explained in Section I, then the method relies on time-
consuming branch-and-bound. In [3] and [6], B&C is used to
solve small sub-hourly UC problems with less than 100 units.
For large sub-hourly UC problems, however, B&C suffers from
poor performance when directly applied. In [19], solutions of
MISO hourly UC from B&C are used to provide initial
solutions for sub-hourly UC. Good solutions are then obtained
by a “polishing” method, which adaptively fixes binary and
continuous variables while filtering out the constraints that are
unlikely to be violated.

C. Decomposition and coordination approaches

Lagrangian Relaxation (LR) is a price-based decomposition
and coordination method, and was one of the early methods to
solve UC problems [12]. It reduces complexity by relaxing
coupling constraints and decomposing the relaxed problem into
subproblems, which are coordinated by iteratively updating
Lagrangian multipliers based on subgradient directions. The
standard LR methods, however, have several major difficulties:
1) significant efforts to obtain a subgradient — requiring solving
all subproblems optimally; 2) zigzagging of multipliers in view
of the geometry of the dual function for MILP problems; and 3)
the need to guesstimate the unknown optimal dual value.

All the major difficulties mentioned above have recently
been overcome in the Surrogate Lagrangian relaxation (SLR)
method [13]. SLR updates Lagrangian multipliers based on
“surrogate” subgradients [20], which are obtained by solving
one or a few subproblems not to optimality, but as long as the
“surrogate optimality condition” (see (29) in subsection IV.B)
is satisfied. Since only a subset of subproblems needs to be
solved to update multipliers, the computational requirements
are much reduced; and the changing of surrogate subgradient
directions across iterations is also reduced as compared to that
of the traditional LR, leading to much smoothened multiplier
trajectories. Moreover, unlike previous LR-based methods,
SLR does not require the knowledge of the unknown optimal
dual value for convergence proof as well as for practical
implementations. Recently, the convergence of SLR has been
significantly improved by introducing absolute-value terms,
which are exactly linearizable, to penalize the violations of
relaxed system-wide constraints in the Surrogate Absolute-
Value Lagrangian Relaxation (SAVLR) method [14].
Subproblems in SLR and SAVLR are generally solved as MILP
problems by using B&C. This, however, may still take a long
time for sub-hourly UC problems with large numbers of units,
virtual transactions and dispatchable demand bids.

D.Ordinal Optimization
Ordinal Optimization (OO) has been effectively used in
computationally intensive simulation-based optimization, and

has two major concepts [17]. The first is that an “order” is easier
to obtain than “values.” Taking two objects A and B as an
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example, it is easier to know which object is heavier than to
know the exact weights of A and B. Second, a problem with a
softened goal is easier to solve than the original problem. For
example, it is easier to obtain a solution that falls within top the
5% of all solutions than to obtain the optimal solution. OO thus
uses crude models and quick simulation runs to roughly order
solution candidates, and then select solutions that are good
enough with high probabilities for further exploration. OO has
recently been used to solve subproblems in generalized
assignment problems [21].

III. PROBLEM FORMULATION

This section considers a power system with / conventional
units, V" virtual transactions, Y dispatchable demand bids, N
nodes, Z types of reserves, and L transmission lines, which are
distributed among J areas. The 15-minute UC is formulated as
an MILP problem following [22]. The formulation is the same
as that for hourly UC, except that 15 minutes are used as the
time interval over T periods (or 7/4 hours). Constraints include
(1) system-wide demand, reserve, and transmission capacity
constraints; (2) individual unit-level constraints, e.g.,
generation capacity and ramp-rate constraints for conventional
units; and capacity constraints for virtual transactions and
dispatchable demand bids as presented below.

Constraints
System Demand Constraints. The total generation from all
resources should equal system demand at each period, i.e.,

1 Vv Y N
Zpi,t+zmv,t_zd ,tzan,t’vt’ (D
i=1 v=1 y=1 n=1

where the continuous generation level of uniti (1 <i <) at
time # (1 < t < T) is denoted as p; ¢, the continuous generation
level of virtual transaction v (1 < v < V) at ¢ is denoted as
m,,, and the continuous power required by dispatchable
demand bid y (1 <y <Y) at ¢ is denoted as d, ;. The system
demand atnode n (1 < n < N) attis denoted as D,, ;.
System Reserve Constraints. In the current standard practice for
ISOs, to maintain reliability, reserves are used to manage
uncertainties. Following [23], three types of reserves including
regulation, regulation plus spinning, and operating reserve are
considered, indexed by z = 1, 2, and 3, respectively:

I

n’,z,t

i=1
where the amount of reserve contribution of unit i at time ¢ for
type z of reserve is denoted as the continuous variable 7; , , and
the required amount of type z reserve at time ¢ is denoted as R, ;.
Transmission Capacity Constraints. DC power flow is
considered, and the flow in line [ (1 <[ < L) at ¢, f;;, cannot
exceed the line’s capacities at each period:

>R,,,Vz,V1, )

fr1=5.<F Vi,Vl, 3)
frgt 8,2 F VLV with 4)
N
ft,[ = Zan,[ ZP,’J + z m,, — Z dy,t _Dn,t Ve, V1. (5)
n=1 iEIH veVn yEY,,

In the above, transmission capacities of line / are denoted as F;
and F,; the sets of units, virtual transactions and dispatchable
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demand bids at node n are denoted as I,, V,,, and Y,
respectively. The generation shift factor a,,; indicates the
change of power flow through line / with respect to a change in
injection at node n. Following [15], the above transmission
capacity constraints (3) and (4) are modeled as “soft”
constraints, and are allowed to be violated by non-negative
continuous variables s;; and s.; with a fixed penalty
coefficient ¢ as will be seen in (18).

Individual unit-level constraints. Minimum up/down-time
constraints follow Equations (6)-(7) of [22]:

4

u[,z- S u t:[T;MUBT]avL (6)

T=t—-MU,

it

l

w,, <l—u,,,t =[T"",T], Vi, (7

it?
r=t—MD,

where start-up and shut-down statuses for unit i at time ¢ are
denoted as binary variables u;, and w;,, respectively; and
minimum up and down times are denoted as TV and TM?,
respectively. The following logical constraints guarantee that
u; . and w; , take the appropriate values when unit i starts up or
shuts down:

X,

it -

Xii-1

=u;, _Wi,z’Vi’ v, ®)
where commitment status for unit i at time ¢ is denoted as the
binary variable x; .. Capacity constraints, ramping constraints,
and reserve limits are given in (A9)-(A10), (A11) and (A12) of

[24], respectively. They are described as follows:
3
Dit +zr},z,t < B,txi,tsVis Vi, )

Diy — il 2 B’,txi,t’Vi’ i, (10)

_ RR. .
_(RRi +Pi,twi,t)spi,z —Pis1 <RR; +(B,t _le Uy Vi, Ve, (11)

0<r_ <R

i SR, V2V (12)
In the above, the maximum and minimum power output for unit
i at time ¢ are denoted as ﬁi,t and P; ., respectively. The ramp
rate for unit i is denoted as RR;. For a certain unit, the energy
generated within 24 hours (or 96 periods) is limited by its

maximum daily energy available TE;:
96

S P crp, (13)
t=1 4

Similarly, the daily start-up times are limited by T'S;:
96
Du, <TS,. (14)
=1

Virtual transactions include virtual generations and virtual
demands. They are subject to capacity constraints:

0<m, <M, veVG,Vi,

vt =Wy ps

M,  <m,  <0,velVD,Vt,

Wy =My =

(15)
(16)

where VG and VD are the sets of virtual generations and virtual
demands, respectively. The generation level (or demand) of
virtual transaction v at time ¢ is denoted by m,,;, and is limited
by Mv't (or M), ;). Similarly, dispatchable demand bid y has a
maximum limit Ey_t on its level d,, ; at period ¢.

0<d,, <D,,ye[lY],Vt.

(17
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Virtual transactions and dispatchable demand bids are related
to continuous variables only and have linear costs C; ,m,,, and
Cydy ., respectively.

Objective Function
The objective function is formulated as:

[ T[S
Start NL E
ZZ{Z Cisi biss +Cip i +C (i)

i=l t=1 [ s=1

Z Vv T Y T
min +§ ck r +§ Ech - Ech (18)
N i,z,t"1,z,t vt vt ytEyt [
S,u,p,
XY z= v=1 t=l y=1 t=1

-1
T L
T —
v’ 225+ 5)

=1 I=1
In the above, three types of start-ups (hot, intermediate and
cold) indexed by s (1 < s < S) are represented by the binary
variable b; ¢, which is selected according to the values of u; .
and w; . based on Equations (2)-(3) of [22]. Costs and penalties
within (18) include costs from conventional units (start-up costs
{C3:¥ b5}, no-load costs {C/{'x;.}, piece-wise linear

generation costs {CE (p,-,t)}, and reserve costs {C, .Tiz¢ });
costs from virtual transactions {Cj,m,,} and dispatchable
demand bids {CJ‘,’ tdy}; and linear soft transmission capacity
penalties. The problem is subject to system demand constraints
(1), system reserve constraints (2), transmission capacity
constraints (3)-(5), and all unit-level constraints (6)-(17). The
overall problem is an MILP problem since the objective
function and all constraints are linear, and both binary and
continuous variables are included.

IV. SOLUTION METHODOLOGY

Subsection IV.A presents the key steps of decomposing the
problem into subproblems based on SAVLR with a few major
modifications. In subsection IV.B, ordinal optimization
concepts are introduced to provide “good enough” feasible
subproblem solutions so as to avoid solving subproblems as
MILP problems. In subsection IV.C, coordination of
subproblem solutions, algorithm initialization, and finding
feasible solutions are presented. Subsection IV.D presents a
parallel version of the method to further reduce the CPU time.

A. Problem decomposition

This subsection presents the decomposition process based on
SAVLR. The system-wide constraints are firstly relaxed or
softened, and then the relaxed problem is decomposed into
subproblems by properly grouping conventional units, virtual
transactions and dispatchable demand bids.

Relaxing or softening system-wide constraints

Unlike the approach presented in [14], not all system-wide
constraints are relaxed here. Instead, only system demand
constraints are relaxed by using the Lagrangian multipliers 1 =
(/11,...,/1T); where each element A, is a scalar; and their
violations are penalized with the adjustable penalty coefficient
c?. To avoid having an excessive number of multipliers, soft
transmission capacity constraints are not relaxed, but are
allowed to be violated with a fixed penalty coefficient c”
following the approach of [15]. As for system reserve
constraints, although they are modeled as hard constraints in (2),
they are also treated as soft during the iterative multiplier
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updating process and are not relaxed. Specifically, the non-
negative slack variable sf, is introduced, and the original
system reserve constraints (2) are softened as:

I

D sk 2R N<z<Z, 0

i=1
Here, an adjustable penalty coefficient c® is used to penalize
the positive value of slack variable s5, slightly different from
the approach of [15]. By dynamically increasing c® when the
original system reserve constraints are violated, feasibility can
be emphasized. At the final stage of the solution process to find
feasible solutions, the original system reserve constraints (2)
are required to be satisfied.

With the above, the relaxed problem is:

19)

l T S
Start NL E
zz{zci,:: by +Cly 4 CE ()
i=1 t=1[ s=1
A Vv T Y T
R V Y
3 c}zzcm Y,
min z=1 v=l 1=l y=1 t=1 (20)
A,0,u,p, r D T ’
s |+ Ag (pamd)+c” | g, (p.m.d) |
=, 7 r !
R R T —
LA IPIETLDIPY AR
z=1 t=1 t=1 [=1
where
N I 14 Y
gt(psmad) = ZDn,t _Zpi,t _va,t +Zdy,t9Vt9 (21)
n=1 i=l1 v=l y=1

is the violation of demand constraints, and is penalized with the
coefficient ¢®. The relaxed problem is subject to softened
system reserve constraints (19), transmission capacity
constraints (3)-(5), and unit-level constraints (6)-(17).
Formulating subproblems

Following [14], conventional units in the relaxed problem
(20) are divided into J subproblems based on areas (a
subproblem j is formed by collecting all terms in (20) related to
area j(1<j<]J)). Virtual transactions and dispatchable
demand bids can also be divided into these subproblems based
on areas. This, however, will cause subproblem solutions to
drastically change across iterations because virtual transactions
and dispatchable demand bids do not have discrete decision
variables and are only subject to simple bounds (15)-(17).
Consequently, their solutions are sensitive to the values of
Lagrangian multipliers. This, in turn, may cause significant
changes of multipliers across iterations, resulting in slow
convergence. Therefore, different from conventional units, all
virtual transactions and dispatchable demand bids are included
in every subproblem. The objective function of a subproblem is
formed by collecting all the terms in (18) associated with
decision variables belonging to that subproblem while fixing
decision variables of conventional units belonging to other
subproblems at their latest available values. For compactness of
expression, subscripts 4’ and “~j” are used to indicate whether
variables belong to subproblem j or not. For example, ; is the
set of conventional units belonging to subproblem j, and I_; is
the set of conventional units not belonging to subproblem . The
objective function of subproblem j at iteration k is thus as
follows:
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T S
Start 1.k NL k E,  k
ZZ|:ZQSI bi,s,t+ci,t xl.,[-i-C (pz‘,t)

iel f t=1 L s=1

Z V. T Y T
Rk vV k Y gk
+Zci,z,trl",z,t +ZZCv,tmv,t _ZZC)’JCZ)/J
z=1
T

e y
k ko k-1 k gk D,k D, D,—-
+Zﬂt gt(pj sP_j M ,d" )+ Z(qt ++qt )
=] t=1

=z T oL
WSS S

=1 =] = =

min
A0.u,p,
rX, Y,

.(22)

In the above,
g (p}.p m"* d")=

N 4 Y
k k-1 k k
ZDn,t - E Piy— Zpi,t _va,t +Zdy,t Ve,
n=l1

iel f iel J v=1 y=1

(23)

indicates the violation of demand constraints. The associated
absolute-value penalty term is linearized with the introduction
of the non-negative continuous variables g+ and g~ and the
following constraint as explained on the page 63 of [25]:

D, D,— ko k=1 _k gk
qt +_qt :g[(p/op—/ ,m 9d )3VI

In the above, g©** and g~ represent the violation of demand
constraint at the positive and negative side, respectively. For
system reserve and transmission capacity constraints, the
decision variables of units belonging to other subproblems are
fixed at their latest available values, and constraints (19) and
(3)-(5) are rewritten as:

24

PR Ry R A (25)
ielj ieL].
fl“{‘l _Etlfl < F} ,Vt,Vl, (26)
fh+sh 2 F v, 27)
N
Tk k k—1 k k k
ft‘,lzzan,l Zpi,t+zpi,t +va,t _Zdy,t _Dn,t ,‘v’t,Vl, (28)
n=1 iel; iel_; vel, yey,

This subproblem is subject to the updated system reserve
constraints (25), transmission capacity constraints (26)-(28),
and unit-level constraints (6)-(17). It is still an MILP problem.

B. Quick searching process for good-enough feasible
subproblem solutions

In SAVLR, subproblems are solved to satisfy the following

surrogate optimality condition (Equation (14) of [14]):
7 k k k k k-1 k k

H ’bj’icj’f'f’lcp;j ’kml ,6{ 1) ok ey (29)

<L(ﬂ‘ 9bj7 ’xj7 ’p;7 ’p—;’ Qm - 9d - )9

where L(A* ,b/'f , x‘l; , pf , pf;.l ,m",d") is the “surrogate dual value”

at iteration k, and is given by:
Frak 1k _k k -1 k kN —
LGy pyopymtd )=
T S 4
F3 | S S
z=1

iel; =1 | s=1

V. T Yy T T
+ZZ C‘Iitmv‘t _ZZ C)}'l,tdy,t +Z j’zkgt (p/; ,p:l > mk > dk)

v=l t=1 y=1 t=1 t=1

T zZ T T L
D,k D.k, D.k,— R R,k T —k k
+c Z(qt ++qf )+C Zzsz,t +c ZZ(SI,I+§1,I)‘
=1 z=l t=1 t=1 I=1

The right-hand side of (29) is similarly defined.

(30)
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To satisfy (29), subproblems are normally solved by using
B&C. This is generally acceptable from the computational
standpoint, since subproblems are much smaller than the
original problem. However, for large sub-hourly subproblems,
e.g., MISO’s, B&C may suffer from poor performance. This
difficulty is resolved by a novel exploitation of the Ordinal
Optimization concepts.

Inspired by the OO concepts introduced in subsection I1.D, a
novel idea to significantly speed up the subproblem solving
process is as follows. Rather than solving a subproblem by
using an MILP method such as B&C, “good-enough” feasible
solutions that satisfy the surrogate optimality condition (29) can
be quickly obtained through “ordering” solution candidates.
These candidates can be derived, for example, by modifying
solutions obtained in the previous iterations for feasibility using
heuristics, e.g., neighborhood search [19]. They can also be
obtained by solving a crude subproblem, e.g., an LP relaxed
version, and then making solutions feasible to the subproblem
using heuristics. Solution candidates are arranged base on the
ascending order of the associated surrogate dual values. A good
enough subproblem solution is then obtained if the solution
candidate with smallest surrogate dual value satisfies (29) the
surrogate optimality condition. These ways to obtain
subproblem solutions are much more computationally efficient
than by using B&C. Only when good-enough solutions cannot
be obtained, B&C is used. This approach is therefore much
faster than solving subproblems exclusively by using B&C as
will be demonstrated in Section V.

C. Coordination of subproblem solutions, initialization and
finding feasible solutions

This subsection presents the coordination of subproblem
solutions through updating multipliers and penalty coefficients;
initialization of subproblem solutions, multipliers and penalty
coefficients; and finding feasible solutions at the termination of
iterative subproblem solving and multiplier updating process.
Updating multipliers and penalty coefficients

If the surrogate optimality condition (29) is satisfied by the
solution obtained from the OO concepts, the surrogate

subgradient is obtained as the values of g, ( pf , p’_‘;l,mk,dk ) in
(23), and multipliers A are updated following (17) of [14]:

At =2t +skgt(pil;,pfj_.l,mk,dk),‘v’t. (31)
In (31), the step size s¥ is obtained following (18-19) of [14].
The penalty coefficient c? is updated based on (20) of [14]:

P = Bt B> 1. (32)
When (29) is not satisfied by the solution obtained from the OO
concepts, B&C is used to solve the problem. If (29) is satisfied
by the B&C solution, the multipliers A and penalty coefficient
c? are updated by (31)-(32). Otherwise, the above updating
process is skipped, and the next subproblem is solved.
However, if (29) cannot be satisfied for all the J subproblems
within a major iteration (i.e., all subproblems are solved once),
then the penalty coefficient c” is deemed to be too large, and is
reduced by following (21) of [14].

cD,/c
D, k+1
Py S

(33)

As mentioned in subsection IV.A, the penalty coefficient on
transmission capacity constraints ¢’ is a fixed value, and the
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penalty coefficient on system reserve constraints cF is
dynamically increased to minimize the violation of original
reserve constraints. If any slack variable s5, is positive, c® is
increased by multiplying a constant o (>1); and remains the
same otherwise, i.e.,

| xaifst, 20, a>1
o = : (34)

et otherwise.

The above process will lead to the convergence of multipliers A
to the optimal A* as presented in Theorem 1 of [14].
Initializing subproblems solutions, multipliers and penalty
coefficients

The initialization of SAVLR parameters is also implemented
by using the “good enough” concept. Before the iterative
subproblem solving process, the hourly LP-relaxed UC
problem is solved. Its solution is rounded and duplicated to all
15-minute intervals within the same hour as the initial
subproblem solutions. They are modified to provide solution
candidates for the first major iteration as presented in
subsection IV.B. Lagrangian multipliers are initialized by using
the results obtained from the hourly LP relaxed UC problem as
well. The initial penalty coefficients are set to be an order of
magnitude higher than multiplier values.
Finding feasible solutions

The iterative subproblem solving and multiplier updating
process terminates when stopping criteria are satisfied, e.g., the
gap calculated against a lower bound is less than a certain
percentage, the time limit is reached, or each subproblem has
been solved for a certain number of times. With system-level
constraints relaxed or softened, subproblem solutions, when put
together, may not satisfy the original constraints (1)-(17). A
feasible solution is then constructed by using heuristics. For
example, subproblem solutions are adjusted by using
neighborhood search (e.g., the one embedded in Gurobi or
CPLEX); or a portion of the binary variables is fixed at
subproblem solution values, and the remaining decision
variables are solved by using B&C. To measure the quality of a
feasible solution, the best known lower bound obtained by
using B&C in advance is used to calculate the optimality gap

relaxed model

i/

Solve a subproblem under

Initialize by
an hourly LP

’ OO concepts
P Solve subproblem
Go to next v by B&C
subproblem

urrogate optimality No

ondition satisfied?

Update multipliers and
penalty coefficients

A

Search for
feasible solutions

Time limit, or other
criteria reached?

Fig. 1. Flowchart of the sequential SAVLR+OO+B&C
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following (17) in [15].

The above approach synergistically incorporates SAVLR,
Ordinal Optimization, and B&C (SAVLR+OO+B&C), and the
flow chart is presented in Figure 1. With the unique feature of
SAVLR that subproblems are not required to be fully
optimized, the OO concepts significantly speed up the
subproblem solving process by not using the MILP methods
unless needed. Furthermore, with the convergence condition
(29) satisfied at most iterations, the quality of the feasible
solution obtained at the end is generally good — similar to that
of solutions obtained by using B&C to solve subproblems, even
though the quality of subproblem solutions may not be as good
as that obtained by using B&C. This will be demonstrated in
numerical testing of Section V.

D. Parallelization of the method

To further reduce the CPU time, a parallel version of the
approach is developed. The idea is to build subproblem models
in parallel, and solve them in parallel at each iteration. Results
from subproblems at each iteration are then merged to form a
combined solution to update Lagrangian multipliers and penalty
coefficients. There are, however, several difficulties. First,
solving all subproblems in parallel at an iteration may lead to
significant zigzagging of multipliers. This is precisely one of
the major difficulties of the traditional LR: when all
subproblems are solved, subgradient, rather than surrogate
subgradient, are obtained. With “ridges” in the dual function,
subgradient may change drastically across iterations, leading to
multiplier zigzagging across ridges and slow convergence.
Second, as explained in subsection IV.A, all virtual transactions
and dispatchable demand bids are included in each subproblem.
There are thus multiple values for each transaction or bid after
solving multiple subproblems in parallel. Which one should be
used? Finally, even if each subproblem solved in parallel
satisfies the surrogate optimality condition, the merged solution
might not, leading to convergence difficulties.

To overcome the above-mentioned difficulties, the following
steps are taken. First, a small subset of subproblems (10% to
40% based on testing experience) is solved in parallel in a batch
in a round-robin manner following the suggestion of [15]. To
resolve the second and third difficulties identified above, a
solution checking process is developed when merging
subproblem results to form a combined solution. The results for
conventional units from subproblems in the batch are combined
in multiple ways. By fixing virtual transactions and
dispatchable demand bids at the values obtained from the
previous batch of subproblems, the merged solutions can be
checked whether the surrogate optimality condition (29) is
satisfied. If (29) is satisfied, values of virtual transactions and
dispatchable demand bids are then determined by solving an
extra LP problem with all units’ variables fixed. If no combined
solution satisfies (29), the solution of the subproblem with the
lowest surrogate dual value (30) is selected, and there is no need
to solve the extra LP problem. For example, suppose that three
subproblems are solved in a batch. A combined solution
obtained by merging three subproblem results is first checked
to see if the surrogate optimality condition is satisfied. If so, the
extra LP problem is solved, and multipliers and the penalty
coefficient ¢P are updated, and then the next batch of three
subproblems is solved in parallel. If not, a combined solution
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Initialize by
an hourly LP
relaxed model

1 Build subproblem
1 models in parallel

1
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Solve virtual subproblem
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coefficients conflict on virtual
transaction values)

Search for
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Time limit, or other
criteria reached?

Fig. 2. Flowchart of the parallel SAVLR+OO+B&C

obtained by merging any two subproblem solutions is checked
to see if the surrogate optimality condition is satisfied, and the
process repeats. If no merged solution satisfies (29), then the
solution of the subproblem with the lowest surrogate dual value
is selected, and there is no need to solve the extra LP problem.
The flow chart of the parallel version is presented in Figure 2.

V. NUMERICAL TESTING

Our method, both the sequential and the parallel versions,
have been implemented by using Gurobi 7.5.0 and Python 2.7.
Testing has been performed on the HIPPO platform of a MISO
server with Intel Xeon @2.3GHz, 64GB RAM and 24 cores
with Linux Redhat 6.6. Two examples of MISO’s UC problems
are considered with 15 minutes as the time interval over 36
hours. Example 1 is used to demonstrate the computational
efficiency of our new method. In Example 2, three additional
MISO cases with different numbers of units and locations of
virtual transactions are tested to demonstrate the robustness of
our method. For both examples, high quality solutions are
difficult to obtain by using B&C alone within 20 minutes (1200s)
or 30 minutes (1800s) even for hourly UC.

Example 1

In this example, a MISO 15-min interval UC problem is
considered over 36 hours. There are 1,105 conventional units,
15,843 virtual transactions, 75 dispatchable demand bids, and
227 transmission lines. Following the process of Section IV, the
problem is decomposed into 10 subproblems, each with roughly
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110 units and all virtual transactions and dispatchable demand
bids. The initialization of our method is as follows: the average
value of initial multipliers is $12.56/MW; the initial penalty
coefficient is $125.6/MW; the fixed penalty coefficient is
$2000/MW; and the initial adjustable penalty coefficient for not
meeting system reserve constraints is $500/MW with the
growth rate a equal to 1.01. The problem is solved by using
B&C, SAVLR+B&C (solving subproblems sequentially by
using B&C), and both sequential and parallel versions of the
new method. In the parallel version, 3 subproblems are solved
in parallel in a round robin manner. The stopping criterion is set
as 1% of the gap (calculated by the feasible solution cost and
the best known lower bound obtained by B&C in advance).

TABLE I
PERFORMANCE OF DIFFERENT METHODS FOR EXAMPLE 1
Solving CPU Time o
Methods Time (s) s) Gap (%)
B&C 5211 5443 0.90
SAVLR
+B&C 2985 4086 0.90
SAVLR+
0OO0+B&C (sequential) 1484 3237 0.77
SAVLR+ 979 1639 0.84

OO+B&C (parallel)

The overall results are summarized in Table I. As can be seen
from the table, B&C obtains a feasible solution with a gap of
0.90% after more than 5,000s. For SAVLR+B&C, a feasible
solution with a gap of 0.90% is obtained after 4,000s. For the
sequential version of our approach, as shown in the third row of
Table I, a feasible solution with a gap of 0.77% is obtained after
3,237s. The total solving time is 1,484s, and the rest are model
loading and miscellaneous times. For the parallel version of our
approach, as shown in the last row, a near-optimal solution with
a gap of 0.84% is obtained after 1,639s.

Feasible solutions over time

20 min 30:min
|

|
|
|
o | [ Y
8 Tl
) T
L
Sor— 1 A—A—AA =
xR
N 1 1
Gap: (.84% | HOTT% 10.9% i 09%
v, VoY Y
. . : , . . . . . . .
0 10 20 30 40 50 60 70 80 90 100
CPU time (min)
---8--- B&C ——&— SAVLR+B&C
—o— SAVIR+OO+B&C (sequential) —— SAVLR+OO+B&C (paralle])
Lower bound

Fig. 3. Comparison of the feasible solutions obtained by
SAVLR+OO+B&C, Pure B&C and SAVLR+B&C over time.

The feasible solutions obtained by using different methods
over time are compared in Figure 3. Only the parallel version
of our approach satisfies the stopping criterion of 1% gap within
the required 1800s (i.e., 30 minutes). In the testing, the new
method (both sequential and parallel versions) obtains good
feasible solutions after solving each subproblem only twice
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(i.e., after two “major iterations”), same as that of the
SAVLR+B&C. Within the new method, B&C was never called
to solve subproblems. Rather, good-enough feasible
subproblem solutions are always obtained by modifying
existing solutions obtained from previous iterations (as part of
the Gurobi “presolving” process). By doing this, the average
time to obtain a good-enough feasible solution (both sequential
and parallel versions) is 53s, which is much less than solving a
subproblem by using B&C of 162s. Moreover, by applying
parallelization, the overhead of model building and
miscellaneous time is much reduced from 1,753s to 660s, and
the total solving time is reduced from 1,484s to 979s. These
results show that the OO concepts significantly speed up the
subproblem solving process. Furthermore, even though our
subproblems are not solved by using B&C, both sequential and
parallel versions obtain high quality overall solutions (within
1% of the gap) after the same number of major iterations as that
of SAVLR+B&C. Our new method thus significantly
outperforms B&C and SAVLR+B&C.

Example 2

To demonstrate the robustness of our method, three
additional cases roughly of the size of Example 1 but with
different days of the MISO system are tested. Characteristics of
test cases are summarized in Table II.

TABLE II
CHARACTERISTICS OF CASE 1,2 AND 3

# of transmission

# of units # of VlrFual constraints each
transactions .
interval
Case 1 1,109 16,504 220
Case 2 1,118 14,955 226
Case 3 1,102 14,482 235

These three cases are solved by using B&C and the parallel
version of our new method. Similar to that of Example 1, the
problem is decomposed into 10 subproblems; 3 subproblems
are solved in parallel. The initial values of multipliers and
penalty coefficients are close to those values of Example 1.
With 2 major iterations as the stopping criterion for our method,
and 3,600s (1 hour) as the time limit for B&C, the testing results
are summarized in Table III.

TABLE III
PERFORMANCE OF B&C AND OUR APPROACH FOR CASE 1,2 AND 3
Solving CPU o
Methods  mc(s)  Time(s) 0P %)
B&C 2548 3600 2.00
Case 1
Our approach 990 1409 1.10
(parallel)
B&C 2787 3600 431
Case 2
Our approach 638 993 309
(parallel)
B&C 3089 3600 76.00
Case 3
Our approach 619 1016 1.60
(parallel)

As can be seen from Table III, after 3,600s, B&C obtains a
feasible solution with a gap of 2% for Case 1; a feasible solution
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with a gap of 4.31% for Case 2; and a feasible solution with a
gap of 76% for Case 3. By using our parallel version, a feasible
solution with a gap of 1.10% is obtained after 1,409s for Case
1; with a gap of 3.09% after 993s for Case 2; and with a gap of
1.60% after 1,016s for Case 3. Similar to that of Example 1,
B&C was never called to solve subproblems in Cases 2 and 3.
For Case 1, B&C was used only twice at the beginning of
iterations. The above results thus demonstrate that our new
approach obtains near-optimal solutions in a computationally
efficient manner for different sub-hourly UC cases, and
significantly outperforms B&C.

VI. CONCLUSION

This paper presents a novel decomposition and coordination
approach. Instead of formally solving subproblems by using
MILP methods, good-enough feasible subproblem solutions are
obtained by modifying existing subproblem solutions or
solving crude models based on the OO concepts. The approach
leads to a significant reduction of computational requirements
to obtain near-optimal solutions of a similar quality as
compared to SAVLR+B&C.

Our new approach can be extended to solve stochastic sub-
hourly UC with uncertainties upon further development. In our
previous works, uncertainties were explicitly modeled as
discrete Markov processes. Without considering transmission
capacity constraints, stochastic hourly UC was solved by using
B&C [26]. With transmission capacity constraints, a hybrid
Markovian and interval approach was developed, and after
linearization, the problem was again solved by using B&C [27].
Branch-and-Cut, however, is not able to solve large
deterministic sub-hourly UC as evident from numerical testing
results presented in Section V, not to mention stochastic sub-
hourly UC. Our approach presented here is conceivable to solve
stochastic sub-hourly UC with the OO concepts further
extended to handle the complicated Markov processes. This
belief is built on the fact that with decomposition and
coordination, subproblem complexity is much reduced as
compared to that of the original problem. Then with the OO
concepts further extended to appropriately approximate the
complicated Markov processes, subproblem solving can be fast.

Our method represents a new optimization concept, and will
have vital implications on solving other complicated MILP
problems in power systems and beyond. Our next work will be
on stochastic sub-hourly UC.
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