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Abstract – Unit Commitment (UC) is an important problem in 
power system operations. It is traditionally planned for 24 hours 
with one-hour time intervals. To accommodate the increasing net-
load variability, sub-hourly UC has been suggested for improved 
system flexibility. Such a problem is larger and more complicated 
than hourly UC because of the increased number of periods and 
reduced unit ramping capabilities per period. The computational 
burden is further exacerbated for systems with large numbers of 
virtual transactions leading to dense transmission constraint 
matrices. Consequently, the state-of-the-art and practice method, 
branch-and-cut (B&C), suffers from poor performance. In this 
paper, our recent Surrogate Absolute-Value Lagrangian Relaxation 
(SAVLR) is enhanced by embedding ordinal-optimization concepts 
for a drastic reduction in subproblem solving time. Rather than 
formally solving subproblems by using B&C, subproblem solutions 
satisfying SAVLR’s convergence condition are obtained by 
modifying solutions from previous iterations or solving crude 
subproblems. All virtual transactions are included in each 
subproblem to reduce major changes in solutions across iterations. 
A parallel version is also developed to further reduce the 
computation time. Testing on MISO’s large cases demonstrates that 
our ordinal-optimization embedded approach obtains near-optimal 
solutions efficiently, is robust, and provides a new way of solving 
other MILP problems. 

Index Terms -- Ordinal Optimization, Parallel Processing, 
Surrogate Absolute-Value Lagrangian Relaxation, Sub-hourly 
Unit Commitment 

NOMENCLATURE 
Index 
i index for conventional units 
v index for virtual transactions 
y index for dispatchable demand bids 
n index for nodes 
z index for three types of reserves 
l index for transmission lines 
t Index for time periods 
s index for three types of start-ups 
j index for subproblems 
Parameters 
𝐷𝑛,𝑡 system demand at node 𝑛 at time t 
𝑅𝑧,𝑡 required amount for reserve type z at time t 
𝐹𝑙, 𝐹𝑙

maximum and minimum transmission capacities of line l 
𝛼𝑛,𝑙 generation shift factor at node n for line l 
𝑇𝑖

𝑀𝑈 minimum up time of unit i 
𝑇𝑖

𝑀𝐷 minimum down time of unit i 
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𝑃𝑖,𝑡, 𝑃𝑖,𝑡
maximum and minimum power output for unit i at time t 

𝑅𝑅𝑖 ramp rate for unit i 
𝑇𝐸𝑖 maximum daily energy of unit i 
𝑇𝑆𝑖 maximum daily start-up times of unit i 
𝑀𝑣,𝑡, 𝑀𝑣,𝑡

minimum and maximum generations (or demands) of virtual 
transaction v at time t 

𝐷𝑦,𝑡
maximum level of dispatchable demand bid y at time t 

𝐶𝑖,𝑠,𝑡
𝑆𝑡𝑎𝑟𝑡 cost coefficient for start-up s of unit i at time t 

𝐶𝑖,𝑡
𝑁𝐿 no-load cost coefficient of unit i at time t 

𝐶𝐸 piece-wise linear generation cost of unit i 
𝐶𝑖,𝑧,𝑡

𝑅 cost coefficient for reserve z of unit i at time t 
𝐶𝑣,𝑡

𝑉 cost coefficient of virtual transactions v at time t 
𝐶𝑦,𝑡

𝑌 cost coefficient of dispatchable demand bid y at time t 
𝑐𝑇 penalty coefficient of transmission capacity constraints’ 

violations 
𝑐𝐷 penalty coefficient of system demand constraints’ violations 
𝑐𝑅 penalty coefficient of system reserve constraints’ violations 
Decision Variables 
𝑥𝑖,𝑡 commitment status of unit i at time t 
𝑢𝑖,𝑡 start-up status of unit i at time t 
𝑤𝑖,𝑡 shut-down status of unit i at time t 
𝑏𝑖,𝑠,𝑡 three types (hot, intermediate and cold) of start-ups  
𝑝𝑖,𝑡 generation level of unit 𝑖 at time t 
𝑚𝑣,𝑡 generation level of virtual transaction 𝑣 at t 
𝑑𝑦,𝑡 power required by dispatchable demand bid y at time t 
𝑟𝑖,𝑧,𝑡 reserve contribution for type z of unit 𝑖 at time t 
𝑓𝑡,𝑙 power flow through line l at time t 
𝜆𝑡 Lagrangian multipliers for system demand constraints 
𝑠𝑡,𝑙, 𝑠𝑡,𝑙 non-negative slack variables for transmission constraints 
𝑠𝑧,𝑡

𝑅 slack variables for system-wide reserve constraints 
𝑞𝑡

𝐷,+, 𝑞𝑡
𝐷,− non-negative variables for linearization  

I. INTRODUCTION

NIT Commitment (UC) is an important problem in
power system operations – it identifies how to meet the 

system demand by committing units and deciding generation 
levels while minimizing the total cost of production subject to 
individual unit constraints and system-wide reserve and 
transmission capacity constraints. A UC problem is generally 
formulated as a Mixed-Integer Linear Programming (MILP) 
problem over a 24-hour horizon with one hour as the time 
interval. Increasing dynamics on the grid prompted the industry 
to consider whether UC with sub-hourly intervals would 
increase system performance [1]. Sub-hourly UC has thus been 
suggested as a way to improve system flexibility and reliability 
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because it can accommodate greater intra-hour net load 
variability [2]-[7]. Sub-hourly UC, however, is much more 
complex than hourly UC because of 1) the increased number of 
periods leading to larger problem sizes, and 2) the much 
reduced unit ramping capabilities per period resulting in more 
complicated convex hulls (the smallest convex set enclosing all 
feasible solutions) as presented in Figure 9 of [8]. The 
computational burden is further exacerbated for systems with a 
large number of virtual transactions and dispatchable demand 
bids which cause dense transmission capacity constraint 
matrices [9]. As a result, even without explicitly modeling of 
uncertainties caused by, e.g., intermittent renewables, 
deterministic sub-hourly UC is difficult to solve. In this paper, 
deterministic sub-hourly UC with large numbers of units, 
virtual transactions and dispatchable demand bids is considered 
with 15 minutes as the time interval, and the goal is to obtain 
near-optimal solutions within 30 minutes.  
 As will be reviewed in Section II, branch-and-cut (B&C) 
[10], the state-of-the-art and practice method for hourly UC, 
cannot handle the increased complexity and suffers from poor 
performance for sub-hourly UC. Lagrangian Relaxation (LR) 
[11][12] was one of the earlier methods for hourly UC. It 
reduces complexity by relaxing coupling constraints and 
decomposing the relaxed problem into subproblems. Standard 
LR, however, has several major difficulties, such as high 
computational requirements, zigzagging of multipliers, and the 
need to adaptively guesstimate the unknown optimal dual value. 
Surrogate Lagrangian Relaxation (SLR) overcame these major 
difficulties [13]. Its convergence has then been accelerated by 
adding absolute-value penalty terms in our recent Surrogate 
Absolute-Value Lagrangian Relaxation (SAVLR) method [14]. 
Within SAVLR, MILP subproblems are normally solved by 
using B&C. Subproblem solving, however, may still be time-
consuming for sub-hourly UC with large numbers of units, 
virtual transactions and dispatchable demand bids.  

In Section III, the deterministic sub-hourly UC formulation, 
which is the same as that of hourly UC but with 15 minutes as 
the time interval, is briefly presented. System demand 
constraints and reserve requirements should be strictly satisfied. 
Transmission capacity constraints, however, are modeled as 
“soft” and allowed to be violated with a predetermined penalty 
coefficient. Additionally, although uncertainties are not 
explicitly modeled, three types of reserves are included. This is 
the current standard practice for Independent System Operators 
(ISOs) to manage uncertainties. 

In Section IV, our solution methodology is presented. To 
avoid introducing too many multipliers, only system demand 
constraints are relaxed. System reserve constraints are 
converted to soft constraints following the approach of [15], 
which, together with soft transmission capacity constraints, are 
not relaxed. More importantly, inspired by the Ordinal 
Optimization (OO) concepts that an “order” is easier to obtain 
than “values” and a problem with a softened goal is easier to 
solve than the original problem, a novel approach is developed 
by embedding the OO concepts within SAVLR. Specifically, 
rather than formally solving a subproblem by using B&C, “good 
enough” feasible subproblem solutions that satisfy the SAVLR 

convergence condition are obtained by modifying solutions from 
previous iterations or solving crude subproblems following OO 
concepts [16][17]. B&C is called to solve a subproblem only 
when such a good-enough solution cannot be obtained. This 
novel idea leads to a drastic reduction in CPU times because 
B&C is rarely called. Virtual transactions and dispatchable 
demand bids are included in all subproblems to reduce 
multiplier zigzagging and improve convergence. Finally, a 
parallel version is also developed to further reduce the CPU time. 

In Section V, multiple Midcontinent ISO (MISO)’s “hard” 
cases, whose solutions are difficult to obtain within 20 or 30 
minutes even for hourly UC by using B&C [9], are tested with 15 
minutes as the time interval over a horizon of 36 hours. Results 
demonstrate that our approach obtains high-quality solutions in a 
computationally efficient way, significantly outperforms existing 
methods, and is robust.  
 This manuscript is a major improvement over our 
preliminary results presented at the 2020 IEEE Power and 
Energy Society General Meeting [18]. Key enhancements 
include: 1) the specific use of OO concepts in SAVLR for sub-
hourly UC is elaborated; 2) a parallel version is developed to 
further reduce the CPU time; 3) more MISO’s hard cases are 
tested and analyzed to demonstrate the performance and 
robustness of our method; and 4) the reasons why B&C is rarely 
used to solve subproblems are examined. Our approach presents 
a new optimization concept to solve subproblems by not using 
standard MILP methods, and lead to significant reduction of 
computational requirements. It will have vital implications on 
solving other complex MILP problems in power systems and 
beyond. 

II. LITERATURE REVIEW 
Subsection II.A reviews the literature on sub-hourly UC. In 

subsection II.B, branch-and-cut (B&C), the standard method to 
solve hourly UC, is presented. Decomposition and coordination 
approaches based on Lagrangian Relaxation are reviewed in 
subsection II.C. In subsection II.D, the Ordinal Optimization 
(OO) concepts are presented. 
A. Sub-hourly unit commitment 
 With the increasing dynamics on the grid, hourly UC cannot 
capture the sub-hourly net load variability [1]. Sub-hourly UC 
has thus been suggested as a way to improve system flexibility 
and reliability [2]. In [3] and [4], deterministic sub-hourly UC 
is compared with hourly UC. With the increased number of time 
intervals, sub-hourly UC captures more variability in system 
demand, leading to more economic solutions than hourly UC. 
In [5], both deterministic and stochastic sub-hourly UC are 
compared with hourly UC. It is shown that sub-hourly dispatch 
results have lower costs. In [6], reserves are shown to be 
significantly lowered for sub-hourly UC than hourly UC under 
high penetration of intermittent renewables. The impacts of 
sub-hourly UC on power system dynamics are analyzed in [7]. 
It was shown that long-term frequency deviation is reduced for 
sub-hourly UC, leading to improved reliability. However, in 
view that sub-hourly UC is much more difficult to solve than 
hourly UC as explained earlier, it is mostly used in near real-
time markets looking ahead 1-3 hours. It is relatively new to 
apply it in day-ahead markets with a horizon of 24-36 hours. 
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B. Branch-and-cut (B&C)  
 UC problems are generally formulated as MILP problems, 
and solved by using B&C [10]. For a given problem, the method 
applies “valid cuts” and tries to delineate the convex hull of 
feasible solutions. If the convex hull or its facets adjacent to the 
optimal solution are obtained, then the optimal solution can be 
quickly obtained by solving the corresponding Linear 
Programming (LP) problem. If the above is difficult to achieve 
as explained in Section I, then the method relies on time-
consuming branch-and-bound. In [3] and [6], B&C is used to 
solve small sub-hourly UC problems with less than 100 units. 
For large sub-hourly UC problems, however, B&C suffers from 
poor performance when directly applied. In [19], solutions of 
MISO hourly UC from B&C are used to provide initial 
solutions for sub-hourly UC. Good solutions are then obtained 
by a “polishing” method, which adaptively fixes binary and 
continuous variables while filtering out the constraints that are 
unlikely to be violated.  
C. Decomposition and coordination approaches  
 Lagrangian Relaxation (LR) is a price-based decomposition 
and coordination method, and was one of the early methods to 
solve UC problems [12]. It reduces complexity by relaxing 
coupling constraints and decomposing the relaxed problem into 
subproblems, which are coordinated by iteratively updating 
Lagrangian multipliers based on subgradient directions. The 
standard LR methods, however, have several major difficulties: 
1) significant efforts to obtain a subgradient – requiring solving 
all subproblems optimally; 2) zigzagging of multipliers in view 
of the geometry of the dual function for MILP problems; and 3) 
the need to guesstimate the unknown optimal dual value.  
 All the major difficulties mentioned above have recently 
been overcome in the Surrogate Lagrangian relaxation (SLR) 
method [13]. SLR updates Lagrangian multipliers based on 
“surrogate” subgradients [20], which are obtained by solving 
one or a few subproblems not to optimality, but as long as the 
“surrogate optimality condition” (see (29) in subsection IV.B) 
is satisfied. Since only a subset of subproblems needs to be 
solved to update multipliers, the computational requirements 
are much reduced; and the changing of surrogate subgradient 
directions across iterations is also reduced as compared to that 
of the traditional LR, leading to much smoothened multiplier 
trajectories. Moreover, unlike previous LR-based methods, 
SLR does not require the knowledge of the unknown optimal 
dual value for convergence proof as well as for practical 
implementations. Recently, the convergence of SLR has been 
significantly improved by introducing absolute-value terms, 
which are exactly linearizable, to penalize the violations of 
relaxed system-wide constraints in the Surrogate Absolute-
Value Lagrangian Relaxation (SAVLR) method [14]. 
Subproblems in SLR and SAVLR are generally solved as MILP 
problems by using B&C. This, however, may still take a long 
time for sub-hourly UC problems with large numbers of units, 
virtual transactions and dispatchable demand bids.  
D. Ordinal Optimization 

Ordinal Optimization (OO) has been effectively used in 
computationally intensive simulation-based optimization, and 
has two major concepts [17]. The first is that an “order” is easier 
to obtain than “values.” Taking two objects A and B as an 

example, it is easier to know which object is heavier than to 
know the exact weights of A and B. Second, a problem with a 
softened goal is easier to solve than the original problem. For 
example, it is easier to obtain a solution that falls within top the 
5% of all solutions than to obtain the optimal solution. OO thus 
uses crude models and quick simulation runs to roughly order 
solution candidates, and then select solutions that are good 
enough with high probabilities for further exploration. OO has 
recently been used to solve subproblems in generalized 
assignment problems [21].  

III. PROBLEM FORMULATION  
This section considers a power system with I conventional 

units, V virtual transactions, Y dispatchable demand bids, N 
nodes, Z types of reserves, and L transmission lines, which are 
distributed among J areas. The 15-minute UC is formulated as 
an MILP problem following [22]. The formulation is the same 
as that for hourly UC, except that 15 minutes are used as the 
time interval over T periods (or T/4 hours). Constraints include 
(1) system-wide demand, reserve, and transmission capacity 
constraints; (2) individual unit-level constraints, e.g., 
generation capacity and ramp-rate constraints for conventional 
units; and capacity constraints for virtual transactions and 
dispatchable demand bids as presented below. 
Constraints 
System Demand Constraints. The total generation from all 
resources should equal system demand at each period, i.e.,  

, , , ,
1 1 1 1

 ,,
I V Y N

i t v t y t n t
i v y n

p m d tD
   

                        (1)                    

where the continuous generation level of unit 𝑖 (1 ≤ 𝑖 ≤ 𝐼) at 
time t (1 ≤ 𝑡 ≤ 𝑇) is denoted as 𝑝𝑖,𝑡, the continuous generation 
level of virtual transaction 𝑣 (1 ≤ 𝑣 ≤ 𝑉)  at t is denoted as 
𝑚𝑣,𝑡 , and the continuous power required by dispatchable 
demand bid 𝑦 (1 ≤ 𝑦 ≤ 𝑌) at t is denoted as 𝑑𝑦,𝑡. The system 
demand at node 𝑛 (1 ≤ 𝑛 ≤ 𝑁) at t is denoted as 𝐷𝑛,𝑡.  
System Reserve Constraints. In the current standard practice for 
ISOs, to maintain reliability, reserves are used to manage 
uncertainties.  Following [23], three types of reserves including 
regulation, regulation plus spinning, and operating reserve are 
considered, indexed by z = 1, 2, and 3, respectively: 

, , ,
1

, , ,
I

i z t z t
i

r R z t


                           (2)  

where the amount of reserve contribution of unit 𝑖 at time t for 
type z of reserve is denoted as the continuous variable 𝑟𝑖,𝑧,𝑡, and 
the required amount of type z reserve at time t is denoted as 𝑅𝑧,𝑡.    
Transmission Capacity Constraints. DC power flow is 
considered, and the flow in line 𝑙 (1 ≤ 𝑙 ≤ 𝐿) at t, 𝑓𝑡,𝑙, cannot 
exceed the line’s capacities at each period:  

, , , , t l t l lf s F t l    ,                         (3)  

, , , , t l t l lf s F t l    , with                        (4) 

, , , ,, ,
1

, , .
n n n

N

i t v t y t n tt l n l
n i I v V y Y

f m d Dp t l
   

 
 


   



     (5)                                       

In the above, transmission capacities of line l are denoted as 𝐹𝑙 
and 𝐹𝑙; the sets of units, virtual transactions and dispatchable 
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demand bids at node n are denoted as 𝐼𝑛 , 𝑉𝑛 , and 𝑌𝑛 , 
respectively. The generation shift factor 𝛼𝑛,𝑙  indicates the 
change of power flow through line l with respect to a change in 
injection at node n. Following [15], the above transmission 
capacity constraints (3) and (4) are modeled as “soft” 
constraints, and are allowed to be violated by non-negative 
continuous variables 𝑠𝑡,𝑙  and 𝑠𝑡,𝑙  with a fixed penalty 
coefficient 𝑐𝑇 as will be seen in (18).  
Individual unit-level constraints. Minimum up/down-time 
constraints follow Equations (6)-(7) of [22]:  

 , , , [ , ], ,
i

t
MU

i i t i
t MU

u u t T T i
  

     (6) 

 , ,1 , [ , ], ,
i

t
MD

i i t i
t MD

w u t T T i
  

      (7) 

where start-up and shut-down statuses for unit i at time t are 
denoted as binary variables 𝑢𝑖,𝑡  and 𝑤𝑖,𝑡 , respectively; and 
minimum up and down times are denoted as 𝑇𝑖

𝑀𝑈  and 𝑇𝑖
𝑀𝐷 , 

respectively. The following logical constraints guarantee that 
𝑢𝑖,𝑡 and 𝑤𝑖,𝑡 take the appropriate values when unit i starts up or 
shuts down:  
 , , 1 , , , , ,i t i t i t i tx x u w i t       (8) 
where commitment status for unit i at time t is denoted as the 
binary variable 𝑥𝑖,𝑡. Capacity constraints, ramping constraints, 
and reserve limits are given in (A9)-(A10), (A11) and (A12) of 
[24], respectively. They are described as follows: 
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In the above, the maximum and minimum power output for unit 
i at time t are denoted as 𝑃𝑖,𝑡 and 𝑃𝑖,𝑡, respectively. The ramp 
rate for unit i is denoted as 𝑅𝑅𝑖. For a certain unit, the energy 
generated within 24 hours (or 96 periods) is limited by its 
maximum daily energy available 𝑇𝐸𝑖: 
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Similarly, the daily start-up times are limited by 𝑇𝑆𝑖: 
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 Virtual transactions include virtual generations and virtual 
demands. They are subject to capacity constraints:  

, ,0 , , ,v t v tm M v VG t                          (15)   

, , ,0, ,v t v tM m v VD t                          (16) 
where VG and VD are the sets of virtual generations and virtual 
demands, respectively. The generation level (or demand) of 
virtual transaction v at time t is denoted by 𝑚𝑣,𝑡, and is limited 
by 𝑀𝑣,𝑡 (or 𝑀𝑣,𝑡). Similarly, dispatchable demand bid y has a 
maximum limit 𝐷𝑦,𝑡 on its level 𝑑𝑦,𝑡 at period t. 

, ,0 , [1, ], .y t y td D y Y t                       (17) 

 Virtual transactions and dispatchable demand bids are related 
to continuous variables only and have linear costs 𝐶𝑣,𝑡

𝑉 𝑚𝑣,𝑡 and 
𝐶𝑦,𝑡

𝑌 𝑑𝑦,𝑡, respectively.  
Objective Function 
 The objective function is formulated as:  
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(18) 

In the above, three types of start-ups (hot, intermediate and 
cold) indexed by 𝑠 (1 ≤ 𝑠 ≤ 𝑆) are represented by the binary 
variable 𝑏𝑖,𝑠,𝑡, which is selected according to the values of 𝑢𝑖,𝑡 
and 𝑤𝑖,𝑡 based on Equations (2)-(3) of [22]. Costs and penalties 
within (18) include costs from conventional units (start-up costs 
{𝐶𝑖,𝑠,𝑡

𝑆𝑡𝑎𝑟𝑡𝑏𝑖,𝑠,𝑡} , no-load costs {𝐶𝑖,𝑡
𝑁𝐿𝑥𝑖,𝑡} , piece-wise linear 

generation costs {𝐶𝐸(𝑝𝑖,𝑡)} , and reserve costs {𝐶𝑖,𝑧,𝑡
𝑅 𝑟𝑖,𝑧,𝑡 }); 

costs from virtual transactions {𝐶𝑣,𝑡
𝑉 𝑚𝑣,𝑡}  and dispatchable 

demand bids {𝐶𝑦,𝑡
𝑌 𝑑𝑦,𝑡}; and linear soft transmission capacity   

penalties. The problem is subject to system demand constraints 
(1), system reserve constraints (2), transmission capacity 
constraints (3)-(5), and all unit-level constraints (6)-(17). The 
overall problem is an MILP problem since the objective 
function and all constraints are linear, and both binary and 
continuous variables are included.  

IV. SOLUTION METHODOLOGY  
Subsection IV.A presents the key steps of decomposing the 

problem into subproblems based on SAVLR with a few major 
modifications. In subsection IV.B, ordinal optimization 
concepts are introduced to provide “good enough” feasible 
subproblem solutions so as to avoid solving subproblems as 
MILP problems. In subsection IV.C, coordination of 
subproblem solutions, algorithm initialization, and finding 
feasible solutions are presented. Subsection IV.D presents a 
parallel version of the method to further reduce the CPU time. 

A. Problem decomposition  
This subsection presents the decomposition process based on 

SAVLR. The system-wide constraints are firstly relaxed or 
softened, and then the relaxed problem is decomposed into 
subproblems by properly grouping conventional units, virtual 
transactions and dispatchable demand bids.  
Relaxing or softening system-wide constraints  
 Unlike the approach presented in [14], not all system-wide 
constraints are relaxed here. Instead, only system demand 
constraints are relaxed by using the Lagrangian multipliers 𝜆 =
 (𝜆1, … , 𝜆𝑇)′,  where each element t is a scalar; and their 
violations are penalized with the adjustable penalty coefficient 
𝑐𝐷. To avoid having an excessive number of multipliers, soft 
transmission capacity constraints are not relaxed, but are 
allowed to be violated with a fixed penalty coefficient 𝑐𝑇 
following the approach of [15]. As for system reserve 
constraints, although they are modeled as hard constraints in (2), 
they are also treated as soft during the iterative multiplier 
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updating process and are not relaxed. Specifically, the non-
negative slack variable 𝑠𝑧,𝑡

𝑅  is introduced, and the original 
system reserve constraints (2) are softened as:  

,, , ,
1

,1 , .R
I

i z t z tt
i

zr R z ts Z


                  (19) 

Here, an adjustable penalty coefficient 𝑐𝑅  is used to penalize 
the positive value of slack variable 𝑠𝑧,𝑡

𝑅 , slightly different from 
the approach of [15]. By dynamically increasing 𝑐𝑅 when the 
original system reserve constraints are violated, feasibility can 
be emphasized. At the final stage of the solution process to find 
feasible solutions, the original system reserve constraints (2) 
are required to be satisfied.  
 With the above, the relaxed problem is:  
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where  
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is the violation of demand constraints, and is penalized with the 
coefficient 𝑐𝐷 . The relaxed problem is subject to softened 
system reserve constraints (19), transmission capacity 
constraints (3)-(5), and unit-level constraints (6)-(17).  
Formulating subproblems 
  Following [14], conventional units in the relaxed problem 
(20) are divided into J subproblems based on areas (a 
subproblem j is formed by collecting all terms in (20) related to 
area 𝑗 (1 ≤ 𝑗 ≤ 𝐽) ). Virtual transactions and dispatchable 
demand bids can also be divided into these subproblems based 
on areas. This, however, will cause subproblem solutions to 
drastically change across iterations because virtual transactions 
and dispatchable demand bids do not have discrete decision 
variables and are only subject to simple bounds (15)-(17). 
Consequently, their solutions are sensitive to the values of 
Lagrangian multipliers. This, in turn, may cause significant 
changes of multipliers across iterations, resulting in slow 
convergence. Therefore, different from conventional units, all 
virtual transactions and dispatchable demand bids are included 
in every subproblem. The objective function of a subproblem is 
formed by collecting all the terms in (18) associated with 
decision variables belonging to that subproblem while fixing 
decision variables of conventional units belonging to other 
subproblems at their latest available values. For compactness of 
expression, subscripts “j” and “-j” are used to indicate whether 
variables belong to subproblem j or not. For example, 𝐼𝑗 is the 
set of conventional units belonging to subproblem j, and 𝐼−𝑗 is 
the set of conventional units not belonging to subproblem j. The 
objective function of subproblem j at iteration k is thus as 
follows:  
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In the above, 
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indicates the violation of demand constraints. The associated 
absolute-value penalty term is linearized with the introduction 
of the non-negative continuous variables 𝑞𝑡

𝐷,+ and 𝑞𝑡
𝐷,− and the 

following constraint as explained on the page 63 of [25]: 
, , 1( , , , ) .,D D k k k k

t t t j jq q g p p m d t  
               (24) 

In the above, 𝑞𝑡
𝐷,+ and 𝑞𝑡

𝐷,− represent the violation of demand 
constraint at the positive and negative side, respectively. For 
system reserve and transmission capacity constraints, the 
decision variables of units belonging to other subproblems are 
fixed at their latest available values, and constraints (19) and 
(3)-(5) are rewritten as:  
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This subproblem is subject to the updated system reserve 
constraints (25), transmission capacity constraints (26)-(28), 
and unit-level constraints (6)-(17). It is still an MILP problem. 

B. Quick searching process for good-enough feasible 
subproblem solutions  
 In SAVLR, subproblems are solved to satisfy the following 
surrogate optimality condition (Equation (14) of [14]): 
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where 1( , , , , , , )k k k k k k k
j j j jL b x p p m d 

 is the “surrogate dual value” 
at iteration k, and is given by:  
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The right-hand side of (29) is similarly defined.  
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To satisfy (29), subproblems are normally solved by using 
B&C. This is generally acceptable from the computational 
standpoint, since subproblems are much smaller than the 
original problem. However, for large sub-hourly subproblems, 
e.g., MISO’s, B&C may suffer from poor performance. This 
difficulty is resolved by a novel exploitation of the Ordinal 
Optimization concepts.  

Inspired by the OO concepts introduced in subsection II.D, a 
novel idea to significantly speed up the subproblem solving 
process is as follows. Rather than solving a subproblem by 
using an MILP method such as B&C, “good-enough” feasible 
solutions that satisfy the surrogate optimality condition (29) can 
be quickly obtained through “ordering” solution candidates. 
These candidates can be derived, for example, by modifying 
solutions obtained in the previous iterations for feasibility using 
heuristics, e.g., neighborhood search [19]. They can also be 
obtained by solving a crude subproblem, e.g., an LP relaxed 
version, and then making solutions feasible to the subproblem 
using heuristics. Solution candidates are arranged base on the 
ascending order of the associated surrogate dual values. A good 
enough subproblem solution is then obtained if the solution 
candidate with smallest surrogate dual value satisfies (29) the 
surrogate optimality condition. These ways to obtain 
subproblem solutions are much more computationally efficient 
than by using B&C. Only when good-enough solutions cannot 
be obtained, B&C is used. This approach is therefore much 
faster than solving subproblems exclusively by using B&C as 
will be demonstrated in Section V. 
C. Coordination of subproblem solutions, initialization and 
finding feasible solutions  

This subsection presents the coordination of subproblem 
solutions through updating multipliers and penalty coefficients; 
initialization of subproblem solutions, multipliers and penalty 
coefficients; and finding feasible solutions at the termination of 
iterative subproblem solving and multiplier updating process. 
Updating multipliers and penalty coefficients  

If the surrogate optimality condition (29) is satisfied by the 
solution obtained from the OO concepts, the surrogate 
subgradient is obtained as the values of 1( , , , )k k k k

t j jg p p m d
 in 

(23), and multipliers 𝜆 are updated following (17) of [14]: 
 1 1( , , , ), .t
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t jg p p m d ts  

    (31) 
In (31), the step size 𝑠𝑘 is obtained following (18-19) of [14]. 
The penalty coefficient 𝑐𝐷 is updated based on (20) of [14]: 
 , 1 , , 1.D k D kc c      (32) 
When (29) is not satisfied by the solution obtained from the OO 
concepts, B&C is used to solve the problem. If (29) is satisfied 
by the B&C solution, the multipliers 𝜆 and penalty coefficient 
𝑐𝐷  are updated by (31)-(32). Otherwise, the above updating 
process is skipped, and the next subproblem is solved. 
However, if (29) cannot be satisfied for all the J subproblems 
within a major iteration (i.e., all subproblems are solved once), 
then the penalty coefficient 𝑐𝐷 is deemed to be too large, and is 
reduced by following (21) of [14].  
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As mentioned in subsection IV.A, the penalty coefficient on 
transmission capacity constraints 𝑐𝑇  is a fixed value, and the 

penalty coefficient on system reserve constraints 𝑐𝑅  is 
dynamically increased to minimize the violation of original 
reserve constraints. If any slack variable 𝑠𝑧,𝑡

𝑅  is positive, 𝑐𝑅 is 
increased by multiplying a constant α (>1); and remains the 
same otherwise, i.e.,  

 , if 0, 1
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R R
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                      (34) 

The above process will lead to the convergence of multipliers 𝜆 
to the optimal 𝜆∗ as presented in Theorem 1 of [14]. 
Initializing subproblems solutions, multipliers and penalty 
coefficients 

The initialization of SAVLR parameters is also implemented 
by using the “good enough” concept. Before the iterative 
subproblem solving process, the hourly LP-relaxed UC 
problem is solved. Its solution is rounded and duplicated to all 
15-minute intervals within the same hour as the initial 
subproblem solutions. They are modified to provide solution 
candidates for the first major iteration as presented in 
subsection IV.B. Lagrangian multipliers are initialized by using 
the results obtained from the hourly LP relaxed UC problem as 
well. The initial penalty coefficients are set to be an order of 
magnitude higher than multiplier values.   
Finding feasible solutions 

The iterative subproblem solving and multiplier updating 
process terminates when stopping criteria are satisfied, e.g., the 
gap calculated against a lower bound is less than a certain 
percentage, the time limit is reached, or each subproblem has 
been solved for a certain number of times. With system-level 
constraints relaxed or softened, subproblem solutions, when put 
together, may not satisfy the original constraints (1)-(17). A 
feasible solution is then constructed by using heuristics. For 
example, subproblem solutions are adjusted by using 
neighborhood search (e.g., the one embedded in Gurobi or 
CPLEX); or a portion of the binary variables is fixed at 
subproblem solution values, and the remaining decision 
variables are solved by using B&C. To measure the quality of a 
feasible solution, the best known lower bound obtained by 
using B&C in advance is used to calculate the optimality gap 
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condition satisfied? 
 

Time limit, or other 
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Fig. 1. Flowchart of the sequential SAVLR+OO+B&C 
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following (17) in [15]. 
The above approach synergistically incorporates SAVLR, 

Ordinal Optimization, and B&C (SAVLR+OO+B&C), and the 
flow chart is presented in Figure 1. With the unique feature of 
SAVLR that subproblems are not required to be fully 
optimized, the OO concepts significantly speed up the 
subproblem solving process by not using the MILP methods 
unless needed. Furthermore, with the convergence condition  
(29) satisfied at most iterations, the quality of the feasible 
solution obtained at the end is generally good – similar to that 
of solutions obtained by using B&C to solve subproblems, even 
though the quality of subproblem solutions may not be as good 
as that obtained by using B&C. This will be demonstrated in 
numerical testing of Section V. 

D. Parallelization of the method 
 To further reduce the CPU time, a parallel version of the 
approach is developed. The idea is to build subproblem models 
in parallel, and solve them in parallel at each iteration. Results 
from subproblems at each iteration are then merged to form a 
combined solution to update Lagrangian multipliers and penalty 
coefficients. There are, however, several difficulties. First, 
solving all subproblems in parallel at an iteration may lead to 
significant zigzagging of multipliers. This is precisely one of 
the major difficulties of the traditional LR: when all 
subproblems are solved, subgradient, rather than surrogate 
subgradient, are obtained. With “ridges” in the dual function, 
subgradient may change drastically across iterations, leading to 
multiplier zigzagging across ridges and slow convergence. 
Second, as explained in subsection IV.A, all virtual transactions 
and dispatchable demand bids are included in each subproblem. 
There are thus multiple values for each transaction or bid after 
solving multiple subproblems in parallel. Which one should be 
used? Finally, even if each subproblem solved in parallel 
satisfies the surrogate optimality condition, the merged solution 
might not, leading to convergence difficulties.   
 To overcome the above-mentioned difficulties, the following 
steps are taken. First, a small subset of subproblems (10% to 
40% based on testing experience) is solved in parallel in a batch 
in a round-robin manner following the suggestion of [15]. To 
resolve the second and third difficulties identified above, a 
solution checking process is developed when merging 
subproblem results to form a combined solution. The results for 
conventional units from subproblems in the batch are combined 
in multiple ways. By fixing virtual transactions and 
dispatchable demand bids at the values obtained from the 
previous batch of subproblems, the merged solutions can be 
checked whether the surrogate optimality condition (29) is 
satisfied. If (29) is satisfied, values of virtual transactions and 
dispatchable demand bids are then determined by solving an 
extra LP problem with all units’ variables fixed. If no combined 
solution satisfies (29), the solution of the subproblem with the 
lowest surrogate dual value (30) is selected, and there is no need 
to solve the extra LP problem. For example, suppose that three 
subproblems are solved in a batch. A combined solution 
obtained by merging three subproblem results is first checked 
to see if the surrogate optimality condition is satisfied. If so, the 
extra LP problem is solved, and multipliers and the penalty 
coefficient 𝑐𝐷  are updated, and then the next batch of three 
subproblems is solved in parallel. If not, a combined solution 

obtained by merging any two subproblem solutions is checked 
to see if the surrogate optimality condition is satisfied, and the 
process repeats. If no merged solution satisfies (29), then the 
solution of the subproblem with the lowest surrogate dual value 
is selected, and there is no need to solve the extra LP problem. 
The flow chart of the parallel version is presented in Figure 2.  

V.  NUMERICAL TESTING  
Our method, both the sequential and the parallel versions, 

have been implemented by using Gurobi 7.5.0 and Python 2.7. 
Testing has been performed on the HIPPO platform of a MISO 
server with Intel Xeon @2.3GHz, 64GB RAM and 24 cores 
with Linux Redhat 6.6. Two examples of MISO’s UC problems 
are considered with 15 minutes as the time interval over 36 
hours. Example 1 is used to demonstrate the computational 
efficiency of our new method. In Example 2, three additional 
MISO cases with different numbers of units and locations of 
virtual transactions are tested to demonstrate the robustness of 
our method. For both examples, high quality solutions are 
difficult to obtain by using B&C alone within 20 minutes (1200s) 
or 30 minutes (1800s) even for hourly UC.  
Example 1  
 In this example, a MISO 15-min interval UC problem is 
considered over 36 hours. There are 1,105 conventional units, 
15,843 virtual transactions, 75 dispatchable demand bids, and 
227 transmission lines. Following the process of Section IV, the 
problem is decomposed into 10 subproblems, each with roughly 

m=n 

Fig. 2. Flowchart of the parallel SAVLR+OO+B&C  
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110 units and all virtual transactions and dispatchable demand 
bids. The initialization of our method is as follows: the average 
value of initial multipliers is $12.56/MW; the initial penalty 
coefficient is $125.6/MW; the fixed penalty coefficient is 
$2000/MW; and the initial adjustable penalty coefficient for not 
meeting system reserve constraints is $500/MW with the 
growth rate α equal to 1.01. The problem is solved by using 
B&C, SAVLR+B&C (solving subproblems sequentially by 
using B&C), and both sequential and parallel versions of the 
new method. In the parallel version, 3 subproblems are solved 
in parallel in a round robin manner. The stopping criterion is set 
as 1% of the gap (calculated by the feasible solution cost and 
the best known lower bound obtained by B&C in advance). 

TABLE I 
PERFORMANCE OF DIFFERENT METHODS FOR EXAMPLE 1  

Methods Solving 
Time (s) 

CPU Time 
(s) Gap (%) 

B&C 5211 5443 0.90 
    

SAVLR 
+B&C 2985 4086 0.90 

    
SAVLR+ 

OO+B&C (sequential)  1484 3237 0.77 

    
SAVLR+ 

OO+B&C (parallel) 979 1639 0.84 

 The overall results are summarized in Table I. As can be seen 
from the table, B&C obtains a feasible solution with a gap of 
0.90% after more than 5,000s. For SAVLR+B&C, a feasible 
solution with a gap of 0.90% is obtained after 4,000s. For the 
sequential version of our approach, as shown in the third row of 
Table I, a feasible solution with a gap of 0.77% is obtained after 
3,237s. The total solving time is 1,484s, and the rest are model 
loading and miscellaneous times. For the parallel version of our 
approach, as shown in the last row, a near-optimal solution with 
a gap of 0.84% is obtained after 1,639s.  

 The feasible solutions obtained by using different methods 
over time are compared in Figure 3. Only the parallel version 
of our approach satisfies the stopping criterion of 1% gap within 
the required 1800s (i.e., 30 minutes). In the testing, the new 
method (both sequential and parallel versions) obtains good 
feasible solutions after solving each subproblem only twice 

(i.e., after two “major iterations”), same as that of the 
SAVLR+B&C. Within the new method, B&C was never called 
to solve subproblems. Rather, good-enough feasible 
subproblem solutions are always obtained by modifying 
existing solutions obtained from previous iterations (as part of 
the Gurobi “presolving” process). By doing this, the average 
time to obtain a good-enough feasible solution (both sequential 
and parallel versions) is 53s, which is much less than solving a 
subproblem by using B&C of 162s. Moreover, by applying 
parallelization, the overhead of model building and 
miscellaneous time is much reduced from 1,753s to 660s, and 
the total solving time is reduced from 1,484s to 979s. These 
results show that the OO concepts significantly speed up the 
subproblem solving process. Furthermore, even though our 
subproblems are not solved by using B&C, both sequential and 
parallel versions obtain high quality overall solutions (within 
1% of the gap) after the same number of major iterations as that 
of SAVLR+B&C. Our new method thus significantly 
outperforms B&C and SAVLR+B&C.  

Example 2 
 To demonstrate the robustness of our method, three 
additional cases roughly of the size of Example 1 but with 
different days of the MISO system are tested. Characteristics of 
test cases are summarized in Table II.  

TABLE II 
CHARACTERISTICS OF CASE 1, 2 AND 3 

 # of units # of virtual 
transactions 

# of transmission 
constraints each 

interval 
Case 1 1,109 16,504 220 

    
Case 2 1,118 14,955 226 

    
Case 3 1,102 14,482 235 

 These three cases are solved by using B&C and the parallel 
version of our new method. Similar to that of Example 1, the 
problem is decomposed into 10 subproblems; 3 subproblems 
are solved in parallel. The initial values of multipliers and 
penalty coefficients are close to those values of Example 1. 
With 2 major iterations as the stopping criterion for our method, 
and 3,600s (1 hour) as the time limit for B&C, the testing results 
are summarized in Table III.  

TABLE III 
PERFORMANCE OF B&C AND OUR APPROACH FOR CASE 1, 2 AND 3  

 Methods Solving  
Time (s) 

CPU  
Time (s) Gap (%)  

 B&C 2548 3600 2.00 
Case 1     

 Our approach 
(parallel) 990 1409 1.10 

 B&C 2787 3600 4.31 
Case 2     

 Our approach 
(parallel) 638 993 3.09 

 B&C 3089 3600 76.00 
Case 3     

 Our approach 
(parallel) 619 1016 1.60 

 As can be seen from Table III, after 3,600s, B&C obtains a 
feasible solution with a gap of 2% for Case 1; a feasible solution 

0 10 20 30 40 50 60 70 80 90 100

C
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B&C SAVLR+B&C
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Fig. 3.  Comparison of the feasible solutions obtained by 
SAVLR+OO+B&C, Pure B&C and SAVLR+B&C over time.  
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with a gap of 4.31% for Case 2; and a feasible solution with a 
gap of 76% for Case 3. By using our parallel version, a feasible 
solution with a gap of 1.10% is obtained after 1,409s for Case 
1; with a gap of 3.09% after 993s for Case 2; and with a gap of 
1.60% after 1,016s for Case 3. Similar to that of Example 1, 
B&C was never called to solve subproblems in Cases 2 and 3. 
For Case 1, B&C was used only twice at the beginning of 
iterations. The above results thus demonstrate that our new 
approach obtains near-optimal solutions in a computationally 
efficient manner for different sub-hourly UC cases, and 
significantly outperforms B&C.  

VI. CONCLUSION 
This paper presents a novel decomposition and coordination 

approach. Instead of formally solving subproblems by using 
MILP methods, good-enough feasible subproblem solutions are 
obtained by modifying existing subproblem solutions or 
solving crude models based on the OO concepts. The approach 
leads to a significant reduction of computational requirements 
to obtain near-optimal solutions of a similar quality as 
compared to SAVLR+B&C.  

Our new approach can be extended to solve stochastic sub-
hourly UC with uncertainties upon further development.  In our 
previous works, uncertainties were explicitly modeled as 
discrete Markov processes. Without considering transmission 
capacity constraints, stochastic hourly UC was solved by using 
B&C [26]. With transmission capacity constraints, a hybrid 
Markovian and interval approach was developed, and after 
linearization, the problem was again solved by using B&C [27]. 
Branch-and-Cut, however, is not able to solve large 
deterministic sub-hourly UC as evident from numerical testing 
results presented in Section V, not to mention stochastic sub-
hourly UC. Our approach presented here is conceivable to solve 
stochastic sub-hourly UC with the OO concepts further 
extended to handle the complicated Markov processes. This 
belief is built on the fact that with decomposition and 
coordination, subproblem complexity is much reduced as 
compared to that of the original problem. Then with the OO 
concepts further extended to appropriately approximate the 
complicated Markov processes, subproblem solving can be fast. 

Our method represents a new optimization concept, and will 
have vital implications on solving other complicated MILP 
problems in power systems and beyond. Our next work will be 
on stochastic sub-hourly UC. 
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