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Abstract

In this article, we develop and analyze a novel fully discrete decoupled finite element method to solve a flow-coupled ternary
hase-field model for the system consisting of three immiscible fluid components. Based on the L2-gradient flow approach,

the conserved Allen–Cahn type dynamics is used to describe the free interface motion, where multiple nonlocal type Lagrange
multipliers are used to accurately conserve the volume of each phase. The scheme is also linear, second-order time accurate,
and unconditionally energy stable, due to the combination of several effective numerical techniques, including the two-step
backward differentiation scheme, finite element discretization, explicit-SAV (scalar auxiliary variable) method for handling
the nonlinearity, and projection method of Navier–Stokes equation. At each time step, the non-local splitting technique only
requires solving several decoupled constant-coefficient elliptic equations. The implementation issues are discussed in detail.
The solvability and the unconditional energy stability of the scheme are rigorously proved. Plenty of 2D and 3D numerical
simulations are carried out to numerically demonstrate the accuracy, energy stability, and applicability of the proposed scheme.
© 2021 Elsevier B.V. All rights reserved.
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1. Introduction

The mathematical modeling and numerical simulation of the three-component immiscible and incompressible
uid system using the diffusive interface (phase-field) method begin with a series of pioneering works in [1–4].
ts basic modeling framework is to use three independent phase-field variables to label the three immiscible fluid
omponents separately, and then assume the total free energy as the combination of the respective hydrophobic
double-well potential) and hydrophilic (gradient potential) effects of each fluid component. The system not only
eeds to consider that the surface tension between every two fluid components may be different but also needs to
nclude some special cases (e.g., the so-called “total spreading” when some coefficients of the gradient potential

ight be non-positive). Therefore, to make the entire system always be well-posed, a common practice is to add
n additional energy potential to the total free energy, which is formulated as a sixth-order polynomial function
nvolving all three phase-field variables, cf. [1,2]. In this way, as long as the specific consistency conditions of the
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surface tension parameters are satisfied, the partial differential equation (PDE) system can always maintain the law
of energy dissipation.

Although the use of this sixth-order polynomial potential can bring a good energy dissipation property to the
hree-phase system, it also brings additional numerical challenges in designing energy stable algorithms. This is
ecause formally, this term couples the three phase-field variables very closely together in a nonlinear manner.
hrough long-term exploration, so far, some unconditionally energy stable methods for the three-phase model have
een developed, including the Invariant Energy Quadratization (IEQ) [5] and Scalar Auxiliary Variable (SAV) [6,7]
ethods, the convex splitting method [8], semi- or fully-implicit method [2–4], etc. Among them, the semi-implicit,

EQ, SAV methods are second-order time accurate, while the convex-splitting is first-order time accurate. The semi-
mplicit [2,3] and convex splitting method [8] are both nonlinear and coupled type, where the multiple phase-field
ariables are coupled in a nonlinear manner, resulting in relatively high computational costs at each time step. The
EQ method [5] has linear structure. But it is still a coupled type method. The SAV method [6,7] is both linear and
ully-decoupled.

It should be pointed out that most of the numerical schemes mentioned above (IEQ, SAV, convex-splitting) are
eveloped for the reduced version of the three-phase fluid flow model, i.e., the situation without coupling the flow
eld. This is because the complexity of the three-phase model itself is already very high. Hence it is natural to
onsider the algorithm design for the reduced version first. When the flow field is involved, the model turns to
highly coupled complex form, which brings great difficulties to the design of an easy-to-implement numerical

cheme. There may be some intuitions that one only needs to simply combine the method of dealing with the
o-flow model and the method of dealing with the Navier–Stokes equations (e.g., the projection/Gauge/penalty
ethods, etc., cf. [9–15]) to successfully obtain the desired scheme. But the reality is opposite. The simple stacking

dea can indeed produce some numerical schemes. However, when considering to achieve some desired features,
uch as temporal second-order accuracy, full decoupling, linearity, and energy stability, then the numerical scheme
esign will become very challenging.

To understand the difficulty of this problem more clearly, we emphasize that there exist substantial differences
etween the following two types of schemes, one is the “second-order time accurate and fully-decoupled” scheme,

and the other is the “second-order time accurate, fully-decoupled, and energy-stable” scheme. It seems that there
is not much difference between these two types of schemes, and the latter only emphasizes stability more. But in
fact, there exist huge differences in the difficulty of achieving these two schemes. For example, the former can be
obtained as long as the second-order temporal discretization is used for all terms. However, after the energy stability
requirement is considered, it will no longer be possible to arbitrarily discretize coupled nonlinear terms to reach
both second order and unconditional energy stability, because the premise of adopting any discretization method
has become whether the provable energy stability can be guaranteed.

After clarifying the difference between these two types of schemes, we immediately discover that the main
challenge in designing a full decoupling scheme is about how to discretize the advection and surface tension terms,
since it is these two terms to couple the phase-field equations and fluid equations together. Here, we summarize
the available numerical schemes according to the temporal discretization techniques of these two terms. So far,
there are mainly five different methods that can achieve the energy stability, including the fully-implicit method
(cf. [16,17]), the implicit–explicit method (cf. [18–22]), fully-explicit method (cf. [23]), the stabilized-explicit
method (cf. [24–27]), and the explicit-auxiliary variable method [28]. The fully-implicit method leads to a nonlinear
and fully-coupled scheme. The implicit–explicit method can generate a linear scheme, and even a second-order
time-accurate scheme (for the matched-density case), but the resulted scheme is still fully-coupled. In [21,22], the
unconditional energy stability is achieved only for the semi-discretization scheme, while the spectral method is used
for the spatial discretization in the numerical experiments. The fully-explicit scheme can achieve a full decoupling
structure, however, it can only obtain conditional energy stability on the time step, see [23]. The explicit-stabilization
method [24–27] and the explicit-auxiliary variable method [28] are the only numerical methods that have fully-
decoupled structure while ensuring unconditional energy stability. However, the explicit-stabilization method is only
first-order accurate in time. In [28], which considers the Cahn–Hilliard equation, the unconditional stability of the
explicit-auxiliary variable method is achieved only for the semi-discrete scheme in which the space is assumed to
be continuous, while the spectral method is used for the spatial discretization in the numerical experiments.

Therefore, in this article, we aim to construct a fully discrete finite element method to solve the flow-coupled

three-component phase-field model. We first replace the classic flow-coupled three-phase Cahn–Hilliard model,
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which was developed in [1–3], by a relatively simpler conserved Allen–Cahn equation, where multiple nonlocal
Lagrange multipliers are added so that the volume of each phase can be conserved accurately. This is a well-known
effective volume-preserving method for the L2-gradient flow model originated from [29], and has been applied in
various models (especially two-phase case), see [30–39]. There also exist many works for handling the nonlinearity
in the phase field models, including the convex-splitting method [40–45], the implicit quadrature method [46], the
stabilization method [27,47–49], the IEQ method [50–53], the scalar auxiliary method (SAV) method [53–55], etc.
Finite element methods have also been developed to solve various phase field models [56–68].

After the new flow-coupled three-component phase-field model is formulated, we aim to design the first fully
discrete finite element scheme for it. More importantly, we expect that the scheme can follow the following five
properties: (i) it has a fully-decoupled structure; (ii) it is second-order time accurate; (iii) it is unconditionally
energy stable; (iv) it only needs to solve linear equations at each time step; and (v) it only needs to solve equations
with constant coefficients, thereby saving the extra computational cost caused by handling variable coefficients.

To this goal, inspired by the semi-discrete version of the explicit-auxiliary variable method developed in [28]
and the finite element method for spatial discretization [69], this article proposes a fully discrete numerical scheme
to deal with the flow-coupled version of the ternary phase-field model. Its key idea to handle the time marching
is the introduction of two auxiliary variables and the corresponding special ordinary differential equations (ODEs).
Using these tools, the original system is then reformulated into an equivalent form by using an ingenious coupling
method. Here, we highlight that the newly obtained PDE system is completely equivalent to the original system in the
continuous level. When the new system is properly discretized, the discretized ODE plays a key role in achieving the
full decoupling structure while maintaining the provable unconditional energy stability. The advantage to achieve an
equivalent system for the original model is that the property of unconditional energy stability can be easily obtained
by using simple explicit methods to discretize nonlinear terms. The nonlocal auxiliary variable can also be used
to decompose every discrete equation into several sub-equations with constant coefficients, so that each variable
can be solved independently at each time step, thereby greatly improving the computational efficiency. We further
strictly prove the solvability of the scheme and its unconditional energy stability, and conduct various numerical
examples to demonstrate the stability and accuracy numerically. Moreover, the proposed algorithm design framework
is also applicable for establishing efficient numerical schemes to solve other coupled systems with high nonlinearity,
including the hydrodynamics-coupled model discussed here, or the magnetic field [70], electric field [71,72], etc.
The developed model can be coupled with variable density/viscosity to study the drop dynamics and approximate
the real world simulation more accurately [73,74].

The rest of the paper is organized as follows. In Section 2, we introduce the Navier–Stokes coupled, three-
component volume-conserved Allen–Cahn phase-field model, and derive its associated PDE energy dissipation law.
In Section 3, we introduce the numerical scheme, explain its implementations in detail, and prove its solvability and
discrete energy dissipation law rigorously. Then we provide numerous numerical examples in Section 4 to illustrate
the accuracy and stability of the developed scheme and some concluding remarks in Section 5.

2. Model system

We first formulate the Navier–Stokes coupled volume-conserved Allen–Cahn phase-field model to simulate a
three-phase fluid flow system with three incompressible and immiscible fluid components. Let Ω be a smooth,
open bounded, connected domain in Rd , d = 2, 3. Let φi (x, t) with i = 1, 2, 3 be the i th phase-field variable which
represents the volume fraction of the i th fluid component in the three-phase mixture, i.e.,

φi (x, t) =

{
1 inside the i th component,
0 outside the i th component.

(2.1)

A smooth layer with the thickness ϵ is used to connect the interface between the regions of {φi = 0} and {φi = 1}.
Assuming that the three-phase fluid mixture is perfect (free-leakage), thus the three unknown variables

(φ1, φ2, φ3)(x, t) satisfy the following condition:

φ1(x, t) + φ2(x, t) + φ3(x, t) = 1, (2.2)
which can be called as the “perfect mixture” or “hyperplane link condition” or “free-leakage condition”, see [1,2,25].
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In this paper, we adopt the total free energy formulated in [1,2,25] for the three-component model, which
onsiders different surface tension parameters. Hence, after coupling with the fluid momentum, the total free energy
s given as

E(u, φ1, φ2, φ3) = Ekinetic + Emix , (2.3)

where

Ekinetic =

∫
Ω

1
2
|u|

2dx, Emix = λ

∫
Ω

3ϵ
8

( 3∑
i=1

Σi |∇φi |
2
+

12
ϵ

F(φ1, φ2, φ3)
)

dx. (2.4)

ere, u is the fluid velocity field, λ is a positive parameter that characterizes the relative magnitude of the kinetic
nergy Ekinetic and mixing energy Emix , the three gradient terms of each of the phase-field variable in Emix

ontribute to the hydrophilic type (a tendency of mixing) of interactions, the energy potential F represents the
ydrophobic type (a tendency of separation) of interactions, and the parameter ϵ ≪ 1 is related to the width of the
nterface. The coefficients Σi , i = 1, 2, 3, which are related to the surface tension parameters among each phase,
epresent the “spreading” coefficient of the i th at the interface between j th phase and kth phase. In [1,2,25], it is
hown that when the three surface tension parameters σi j (σ12, σ13, σ23) verify the following conditions:

Σi = σi j + σik − σ jk, i = 1, 2, 3, (2.5)

he three-phasic system is algebraically consistent with the two-phasic system. Note that Σi might not be always
ositive. If Σi > 0,∀i , the spreading is said to be “partial”, and if there exists Σi < 0 for some i , it is called “total”.
he nonlinear potential F(φ1, φ2, φ3) is given as

F(φ1, φ2, φ3) =
Σ1

2
φ2

1 (1 − φ1)2
+

Σ2

2
φ2

2 (1 − φ2)2
+

Σ3

2
φ2

3 (1 − φ3)2
+ P(φ1, φ2, φ3), (2.6)

here

P(φ1, φ2, φ3) =

{
3Λφ2

1φ
2
2φ

2
3 , for 2D,

3Λφ2
1φ

2
2φ

2
3 P̃, for 3D,

(2.7)

is a non-negative constant, P̃ =
∑3

i=1 gα(φi ), and gα(x) =
1

(1+x2)α
with 0 < α ≤

8
17 .

Assuming that the three fluid components have the matched density and viscosity, and following the modeling
ramework given in [1,2,25], the Navier–Stokes coupled conserved Allen–Cahn model for the three-phase fluid flow
ystem based on the L2-gradient flow approach is formulated as:

φi t + ∇ · (uφi ) = −M
1
Σi
µ̄i , i = 1, 2, 3, (2.8)

µi = −
3
4
ϵΣi∆φi +

12
ϵ

( fi + βL ), i = 1, 2, 3, (2.9)

ut + u · ∇u − ν∆u + ∇ p + λ

3∑
i=1

φi∇µi = 0, (2.10)

∇ · u = 0, (2.11)

where µ̄i = µi −
1

|Ω |

∫
Ω µi dx, µi =

δE
λδφi

and δE
δφi

is the chemical potential, M > 0 is the mobility, fi = ∂i F , p
s the pressure, ν represents the fluid viscosity parameter, βL is the Lagrange multiplier to ensure the free-linkage

condition (2.2) and it can be derived as βL = −
1

ΣT
( f1
Σ1

+
f2
Σ2

+
f3
Σ3

) with ΣT =
1
Σ1

+
1
Σ2

+
1
Σ3

.
The initial conditions read as{

u|(t=0) = u0, p|(t=0) = p0,

φ1|(t=0) = φ0
1 , φ2|(t=0) = φ0

2 , φ3|(t=0) = φ0
3 , φ

0
1 + φ0

2 + φ0
3 = 1.

(2.12)

The boundary conditions read as (n is the unit outward normal on the boundary ∂Ω ),

u|∂Ω = 0, ∂nφi |∂Ω = 0, i = 1, 2, 3. (2.13)

ote that the periodic boundary conditions are also widely used in [2,3,5–8].
4
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Remark 2.1. Different from the regular Allen–Cahn dynamics that cannot conserve the volume, three nonlocal
agrange multiplier terms are used in µ̄i of (2.8). By integrating each side of (2.8), it is easy to see that the volume

can be accurately conserved for each phase, namely,
d
dt

∫
Ω

φi dx = 0, (2.14)

which is derived by using the boundary condition (2.13) for u. Similar volume conservation method had been used
or the reduced version of three-phase model (no flow field coupled), see [7].

emark 2.2. Remarkably, it can be proved that the system (2.8)–(2.9) with three unknown phase-field variables
s equivalent to a system with only two unknown phase-field variables that read as⎧⎪⎨⎪⎩

φi t + ∇ · (uφi ) = −M
1
Σi
µ̄i , i = 1, 2,

µi = −
3
4
ϵΣi∆φi +

12
ϵ

( fi + βL ), i = 1, 2,
(2.15)

nd the unknown variables for the third phase (φ3, µ3, µ̄3) are given by the following explicit formula:

φ1 + φ2 + φ3 = 1, (2.16)
µ1

Σ1
+
µ2

Σ2
+
µ3

Σ3
= 0, (2.17)

µ̄1

Σ1
+
µ̄2

Σ2
+
µ̄3

Σ3
= 0. (2.18)

ince the proof is quite similar to Theorem 3.1, we omit the details here.

emark 2.3. From [1,2], the following two statements hold.
(i) For any ξ1 + ξ2 + ξ3 = 0, there exists a constant Σ > 0 such that

Σ1|ξ1|
2
+ Σ2|ξ2|

2
+ Σ3|ξ3|

2
≥ Σ

(
|ξ1|

2
+ |ξ2|

2
+ |ξ3|

2
)
, (2.19)

if and only if the following condition holds:

Σ1Σ2 + Σ1Σ3 + Σ2Σ3 > 0,Σi + Σ j > 0,∀i ̸= j. (2.20)

(ii) For 2D case, as long as Λ > 0, the bulk free energy F(φ1, φ2, φ3) defined in (2.6) is bounded from below
f φ1 + φ2 + φ3 = 1, and the lower bound only depends on Σ1,Σ2,Σ3 and Λ. For 3D case, it is shown in [1] that
he bulk energy F is bounded from below when 0 < α ≤

8
17 .

Therefore, to form a meaningful physical system, we assume that the condition (2.20) always holds throughout
this paper.

We now show the model equations (2.8)–(2.11) follow a dissipative energy law. Some notations are given here.
Given any two functions φ(x) and ψ(x), their L2 inner product is denoted by (φ,ψ) =

∫
Ω φ(x)ψ(x)dx, and the

L2 norm for any function φ(x) is ∥φ∥ = (φ, φ)
1
2 .

We multiply the L2 inner product with λµi for (2.8) and take the summation for i = 1, 2, 3 to get
3∑

i=1

λ(φi t , µi ) = −λM
3∑

i=1

1
Σi

(µ̄i , µi ) −λ

3∑
i=1

∫
Ω

∇ · (uφi )µi dx  
I

. (2.21)

For the term 1
Σi

(µ̄i , µi ), we derive

1
Σi

(µ̄i , µi ) =
1
Σi

(µi −
1

|Ω |

∫
Ω

µi dx, µi )

=
1
Σi

(µi −
1

|Ω |

∫
Ω

µi dx, µi −
1

|Ω |

∫
Ω

µi dx) + (µi −
1

|Ω |

∫
Ω

µi dx,
1

|Ω |

∫
Ω

µi dx)

=
1 µi −

1
∫
µi dx

2
=

1
∥µ̄i∥

2
= Σi

 µ̄i
2

,

(2.22)
Σi |Ω | Ω Σi Σi

5
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since (µi −
1

|Ω |

∫
Ω µi dx, 1) = 0. We take the L2 inner product of (2.9) with −λφi t , perform integration by parts

nd take the summation for i = 1, 2, 3 to obtain

−λ

3∑
i=1

(µi , φi t ) = −λ
3
4
ϵ

3∑
i=1

Σi
d
dt

∥∇φi∥
2
− λ

12
ϵ

3∑
i=1

( fi + βL , φi t ). (2.23)

e take the L2 inner product of (2.10) with u, performing integration by parts, we obtain

1
2

d
dt

∥u∥
2
+

∫
Ω

(u · ∇)u · udx  
I I I

+ν∥∇u∥
2
− (p,∇ · u) + λ

3∑
i=1

∫
Ω

φi∇µi · udx  
I I

= 0. (2.24)

Then, by combining (2.21), (2.23), (2.24), using (2.11) for the pressure term, the equality (βL , (φ1 + φ2 + φ3)t ) =

βL , (1)t ) = 0 due to (2.16), and using (2.27) and (2.28), we derive the following identity:

d
dt

E(u, φ1, φ2, φ3) = −ν∥∇u∥
2
− λM

(
Σ1

 µ̄1

Σ1

2

+ Σ2

 µ̄2

Σ2

2

+ Σ3

 µ̄3

Σ3

2

  
I V

)
.

(2.25)

Since Σi may not be always positive, to prove the energy is dissipative, we have to show that two statements hold,
(i) E(u, φ1, φ2, φ3) is always bounded from below; (ii) the term IV in (2.25) is always positive.

If (2.20) is satisfied, from (2.16), we derive ∇(φ1 + φ2 + φ3) = 0. This implies
3∑

i=1

Σi∥∇φi∥
2

≥ Σ

3∑
i=1

∥∇φi∥
2

≥ 0

from (2.19). From Remark 2.3 and (2.16), we know that F(φ1, φ2, φ3) is always bounded from below. Therefore
E(u, φ1, φ2, φ3) given in (2.3) is always bounded from below. From (2.18) and (2.19), when (2.20) holds, the term
V is bounded from below since

Σ1

 µ̄1

Σ1

2

+ Σ2

 µ̄2

Σ2

2

+ Σ3

 µ̄3

Σ3

2

≥ Σ

( µ̄1

Σ1

2

+

 µ̄2

Σ2

2

+

 µ̄3

Σ3

2
)

≥ 0. (2.26)

hus the total energy of the system (2.8)–(2.11) is dissipative (i.e., d
dt E(u, φ1, φ2, φ3) ≤ 0), and (2.25) is the

ssociated energy dissipative law. The wellposedness of the model is an interesting future work which may borrow
he existing ideas in [75,76].

emark 2.4. After taking the inner products with suitable functions to derive the PDE energy law (2.25), we note
hat the term I (from advection) and term II (from surface tension) are canceled by using integration by parts, i.e.,∫

Ω

(
φi∇µi · u + ∇ · (uφi )µi

)
dx = 0, i = 1, 2, 3, (2.27)

here the boundary conditions (2.13) for u are used. Similarly, by applying the divergence-free condition and the
oundary condition (2.13) for u, it is easy to see that the term III associated with the advection term is also zero,
.e., ∫

Ω

(u · ∇)u · udx = 0. (2.28)

2.27) and (2.28) imply that the terms of advection and surface tensions have no any impacts on the energy law, that
s, these two kinds of terms can be viewed to satisfy the “zero-contribution-to-energy” property. This view point
an help us to design a fully-decoupled scheme in the next section.

. Numerical methods

To achieve the goal of obtaining a full decoupling scheme, we need to carry out some equivalent reformulations
o the original PDE system (2.8)–(2.11).
6
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3.1. Reformulation to an equivalent system

Inspired by (2.27) and (2.28), we introduce a new nonlocal variable Q(t) and its associated ODE system that
ead as:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Qt = λ

3∑
i=1

∫
Ω

(∇ · (u(φi − φ̂0
i ))µi + (φi − φ̂0

i )∇µi · u)dx +

∫
Ω

(u · ∇)u · udx,

∇ · u = 0,
Q|t=0 = 1,u|∂Ω = 0, ∂nφi |∂Ω = 0, i = 1, 2, 3,

(3.1)

here φ̂0
i =

1
|Ω |

∫
Ω φ

0
i dx.

By utilizing (2.27) and (2.28), we find that the ODE (3.1) is trivial indeed, since it is equivalent to: Qt =

0, Q|(t=0) = 1. Hence, the exact solution of (3.1) is Q(t) = 1. Using the nonlocal variable Q(t), we modify the
ystem (2.8)–(2.11) to the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φi t + Q∇ · (u(φi − φ̂0
i ))  

Q−term

= −M
1
Σi
µ̄i , i = 1, 2, 3,

µi = −
3
4
ϵΣi∆φi +

12
ϵ

( fi + βL ), i = 1, 2, 3,

ut + Qu · ∇u  
Q−term

−ν∆u + ∇ p + λQ
3∑

i=1

(φi − φ̂0
i )∇µi  

Q−term

= 0,

∇ · u = 0,

Qt = λ

3∑
i=1

(∇ · (u(φi − φ̂0
i )), µi ) + λ

3∑
i=1

((φi − φ̂0
i )∇µi ,u) + ((u · ∇)u,u),

Q|t=0 = 1,u|∂Ω = 0, ∂nφi |∂Ω = 0, i = 1, 2, 3.

(3.2)

The above modifications that have been made to the original system (2.8)–(2.11) to obtain the new system (3.2)
include the following steps:

• (i) first, we modify the advective term ∇ · (uφi ) to ∇ · (u(φi − φ̂0
i )) since ∇ · (uφ̂0

i ) = ∇ · u = 0;
• (ii) second, we modify the surface tension term

∑3
i=1 φi∇µi to

∑3
i=1(φi − φ̂0

i )∇µi since φ̂0
i ∇µ

0
i = ∇(φ̂0

i µ
0
i )

can be absorbed into the pressure gradient;
• (iii) third, we combine the original system (2.8)–(2.11) with the new ODE (3.1);
• (iv) fourth, we multiply the advection term and the surface tension term with Q. Since Q(t) = 1, based on a

simple fact of “a × 1 = a”, the modified system (3.2) is equivalent to the original system (2.8)–(2.11).

Second, we introduce another nonlocal variable U (t) such that

U (t) =
√

(F(φ1, φ2, φ3), 1) + B, (3.3)

here B is a positive constant that is used to ensure the radicand positive. Note that the existence of B is obvious
ince F(φ1, φ2, φ3) is always bounded from below from Remark 2.3(ii). Note that this boundedness property is
alid under the condition φ1 + φ2 + φ3 = 1 which will be shown in Remark 3.1. Then, using the variable U , we
ewrite the chemical potential µi given in the second equation of (3.2) to the following form:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

µi = −
3
4
ϵΣi∆φi +

12
ϵ

(Hi + β)U, i = 1, 2, 3,

Ut =
1
2

3∑
i=1

(Hi , φi t ),

U | = U 0
=

√
(F(φ0, φ0, φ0), 1) + B,

(3.4)
(t=0) 1 2 3

7
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R

S

(
(
s

where

β = −
1
ΣT

(
H1

Σ1
+

H2

Σ2
+

H3

Σ3

)
, (3.5)

Hi =
fi

√
(F(φ1, φ2, φ3), 1) + B

, i = 1, 2, 3. (3.6)

By integrating the second equation in (3.4) and applying the initial condition for U |(t=0), we can obtain the second
equation of (3.2). This implies (3.4) is equivalent to the original formulation for µi given in (3.2).

Finally, by replacing second equation in (3.2) using (3.4), we obtain a new system that reads as

φi t + Q∇ · (u(φi − φ̂0
i )) = −M

1
Σi
µ̄i , i = 1, 2, 3, (3.7)

µi = −
3
4
ϵΣi∆φi +

12
ϵ

(Hi + β)U, i = 1, 2, 3, (3.8)

Ut =
1
2

3∑
i=1

(Hi , φi t ), (3.9)

ut + Qu · ∇u − ν∆u + ∇ p + λQ
3∑

i=1

(φi − φ̂0
i )∇µi = 0, (3.10)

∇ · u = 0, (3.11)

Qt = λ

3∑
i=1

(∇ · (u(φi − φ̂0
i )), µi ) + λ

3∑
i=1

((φi − φ̂0
i )∇µi ,u) + ((u · ∇)u,u), (3.12)

with the initial conditions that read as{
u|(t=0) = u0, p|(t=0) = p0, Q|(t=0) = 1,U |(t=0) = U 0,

φ1|(t=0) = φ0
1 , φ2|(t=0) = φ0

2 , φ3|(t=0) = φ0
3 , φ

0
1 + φ0

2 + φ0
3 = 1,

(3.13)

nd the boundary conditions that read as

u|∂Ω = 0, ∂nφi |∂Ω = 0, i = 1, 2, 3. (3.14)

emark 3.1. Eqs. (3.7)–(3.8) are equivalent to the following two phase-field variables system⎧⎪⎨⎪⎩
φi t + Q∇ · (u(φ − φ̂0

i )) = −M
1
Σi
µ̄i , i = 1, 2,

µi = −
3
4
ϵΣi∆φi +

12
ϵ

(Hi + β)U, i = 1, 2,
(3.15)

and φ3, µ3, µ̄3 are given by the following explicit formula:

φ1 + φ2 + φ3 = 1, (3.16)
µ1

Σ1
+
µ2

Σ2
+
µ3

Σ3
= 0, (3.17)

µ̄1

Σ1
+
µ̄2

Σ2
+
µ̄3

Σ3
= 0. (3.18)

ince the proof is quite similar to Theorem 3.1, we omit the details here.

From the above-detailed reformulations, it is easy to see the new system (3.7)–(3.12) with the initial conditions
3.13) and boundary conditions (3.14) is equivalent to the original system (2.8)–(2.13). Thus, the new system (3.7)–
3.14) also holds the energy dissipation law by performing a similar process to obtain (2.25). Since the energy
tability proof at the discrete level follows the same line, we perform the detailed derivation for comparisons.
8
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n

We multiply the L2 inner product of (3.7) with λµi and take the summation for i = 1, 2, 3 to get

λ

3∑
i=1

(φi t , µi ) = −Mλ
3∑

i=1

Σi

 µ̄i

Σi

2

− λQ
3∑

i=1

(∇ · (u(φi − φ̂0
i )), µi )  

I1

. (3.19)

We multiply the L2 inner product of (3.8) with −λφi t and take the summation for i = 1, 2, 3 to get

−λ

3∑
i=1

(µi , φi t ) + λ
3
8
ϵ

d
dt

(
3∑

i=1

Σi∥∇φi∥
2

)
= −λ

12
ϵ

3∑
i=1

U (Hi , φi t )  
IV1

−λ
12
ϵ

(β,
3∑

i=1

φi t ).
(3.20)

e multiply (3.9) with λ 24
ϵ

U to derive

d
dt

(
λ

12
ϵ

|U |
2
)

= λ
12
ϵ

3∑
i=1

U (Hi , φi t )  
IV2

. (3.21)

By multiplying the L2 inner product of (3.10) with u, we get

1
2

d
dt

∥u∥
2
+ ν∥∇u∥

2
− (p,∇ · u) = −λQ

3∑
i=1

((φi − φ̂0
i )∇µi ,u)  

II1

−Q((u · ∇)u,u)  
III1

. (3.22)

By multiplying (3.12) with Q, we get

d
dt

(1
2
|Q|

2
)

= λQ
3∑

i=1

(∇ · (u(φi − φ̂0
i )), µi )  

I2

+ λQ
3∑

i=1

((φi − φ̂0
i )∇µi ,u)  

II2

+ Q((u · ∇u),u)  
III2

. (3.23)

Combining the above five equalities (3.19)–(3.23), using (β,
∑3

i=1 φi t ) = (β, (1)t ) = 0, noting that the two terms
with the same Roman numerals under curly braces cancel each other out, and using (3.16) and (3.18), we derive

d
dt

E(u, φ1, φ2, φ3,U, Q) = −ν∥∇u∥
2
− λM

(
Σ1

 µ̄1

Σ1

2

+ Σ2

 µ̄2

Σ2

2

+ Σ3

 µ̄3

Σ3

2)
≤ −ν∥∇u∥

2
− λMΣ

( µ̄1

Σ1

2

+

 µ̄2

Σ2

2

+

 µ̄3

Σ3

2)
≤ 0,

(3.24)

here

E(u, φ1, φ2, φ3,U, Q) =
1
2
∥u∥

2
+ λ

3
8
ϵ

3∑
i=1

Σi∥∇φi∥
2
+ λ

12
ϵ

|U |
2
+

1
2
|Q|

2, (3.25)

that is bounded from below from (2.19).

Remark 3.2. After taking the inner products of the suitable functions to derive the energy law for the original PDE
system (2.8)–(2.11), we notice that the terms associated with the advection (term I in (2.21)) and surface tension
term (term I I I in (2.24)) cancel each other out, this means the discretization of these two terms must be matched,
hereby leading to the coupled type schemes.

But for the newly modified system (3.7)–(3.14), from the derivation of the energy law, it can be seen that we
o longer require that the discretization of these two terms must match, because the ODE (3.12) could provide all
eeded terms that can cancel all trouble terms (e.g., I1 in (3.19) can be canceled by I2 in (3.23) instead of II1 in

(3.22))). In other words, when developing numerical schemes, we can use different discretization methods to deal
with the advection term I and surface tension term II , so that it is possible to construct a full decoupling type
1 1

9
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l

w

B

scheme. This technique using the auxiliary variable Q to handle the coupling terms of surface tension and advection
is motivated from the SAV method [6,7,77] that can only handle a single system. This article innovatively applies
the method of auxiliary variables to deal with coupling systems.

3.2. Numerical scheme

In this subsection, we develop a fully-discrete numerical algorithm for the system (3.7)–(3.12), which is an
equivalent system of the hydrodynamically-coupled ternary model (2.8)–(2.11).

Some finite-dimensional discrete subspaces are introduced here. Suppose that the polygonal/polyhedral domain
Ω is discretized by a conforming and shape regular triangulation/tetrahedron mesh Th that is composed by open
disjoint elements K such that Ω̄ =

⋃
K∈Th

K̄ . We use Pl to denote the space of polynomials of total degree at most
and define the following finite element spaces:

Yh =
{
φ ∈ C0(Ω ) : φ|K ∈ Pl1 (K ),∀K ∈ Th

}
,

V h =
{
v ∈ C0(Ω )d

: v|K ∈ Pl2 (K )d ,∀K ∈ Th
}

∩ H 1
0 (Ω )d ,

Oh =
{
q ∈ C0(Ω ) : q|K ∈ Pl2−1(K ),∀K ∈ Th

}
∩ L2

0(Ω ),

(3.26)

here H 1
0 (Ω ) = {u ∈ H 1(Ω ) : u|∂Ω = 0} and L2

0(Ω ) = {q ∈ L2(Ω ) :
∫
Ω qdx = 0}. Hence,

Yh ⊂ H 1(Ω ), V h ⊂ H 1
0 (Ω )d , Oh ⊂ L2

0(Ω ). (3.27)

esides, we assume the pair of spaces (V h, Oh) satisfy the inf–sup condition [78]:

βc∥q∥ ≤ sup
v∈V h

(∇ · v, q)
∥∇v∥

, ∀q ∈ Oh,

where the constant βc only depends on Ω . A well known inf–sup stable pair (V h, Oh) is the Taylor–Hood
element [78].

The semi-discrete formulations of the system (3.7)–(3.12) in the weak form reads as: find φi , µi ∈ H 1(Ω ),
Q,U ∈ R, u ∈ H 1

0 (Ω )d , p ∈ L2
0(Ω ), such that

(φi t , w) − Q(u(φi − φ̂0
i ),∇w) = −M

1
Σi

(µ̄i , w), i = 1, 2, 3, (3.28)

(µi ,Θ) =
3
4
ϵΣi (∇φi ,∇Θ) +

12
ϵ

U (Hi + β,Θ), i = 1, 2, 3, (3.29)

Ut =
1
2

3∑
i=1

(Hi , φi t ), (3.30)

(ut , v) + Q((u · ∇)u, v) + ν(∇u,∇v) − (p,∇ · v) + Q
3∑

i=1

((φi − φ̂0
i )∇µi , v) = 0, (3.31)

(∇ · u, q) = 0, (3.32)

Qt = −λ

3∑
i=1

(u(φi − φ̂0
i ),∇µi ) + λ

3∑
i=1

((φi − φ̂0
i )∇µi ,u) + ((u · ∇)u,u), (3.33)

for Θ, w ∈ H 1(Ω ), v ∈ H 1
0 (Ω )d , q ∈ L2

0(Ω ).
We let δt > 0 be a time step size and tn

= nδt for 0 ≤ n ≤ N with T = Nδt , and use ψn
h to denote the

numerical approximation in the related finite element space to the function ψ(·, t) at t = tn . For the weak form
(3.28)–(3.33), we construct a time marching scheme based on the second-order backward differentiation formula
(BDF2) as follows.

Find φn+1
ih , µn+1

ih ∈ Yh , U n+1, Qn+1
∈ R, ũn+1

h ∈ V h, pn+1
h ∈ Oh , such that

(
aũn+1

h − bun
h + cun−1

h

2δt
, vh) + Qn+1((u∗

· ∇)u∗, vh) + ν(∇ũn+1
h ,∇vh) (3.34)

+(∇ pn
h , vh) + λQn+1

3∑
((φ∗

i − φ̂0
i )∇µ∗

i , vh) = 0,

i=1

10
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(
aφn+1

ih − bφn
ih + cφn−1

ih

2δt
, wh) − Qn+1(u∗(φ∗

i − φ̂0
i ),∇wh) (3.35)

= −M
1
Σi

(µ̄n+1
ih , wh), i = 1, 2, 3,

(µn+1
ih ,Θh) =

3
4
ϵΣi (∇φn+1

ih ,∇Θh) +
12
ϵ

(H∗

i + β∗,Θh)U n+1 (3.36)

+
S
ϵ
Σi ((φn+1

ih − φ∗

ih),Θh), i = 1, 2, 3,

aU n+1
− bU n

+ cU n−1
=

1
2

3∑
i=1

(H∗

i , aφn+1
ih − bφn

ih + cφn−1
ih ), (3.37)

1
2δt

(aQn+1
− bQn

+ cQn−1) = −λ

3∑
i=1

(u∗(φ∗

i − φ̂0
i ),∇µn+1

ih ) (3.38)

+λ

3∑
i=1

((φ∗

i − φ̂0
i )∇µ∗

i , ũn+1
h ) + ((u∗

· ∇)u∗
· ũn+1

h ),

(∇(pn+1
h − pn

h ),∇qh) = −
2
δt

(∇ · ũn+1
h , qh), (3.39)

un+1
h = ũn+1

h −
δt
2

(∇ pn+1
h − ∇ pn

h ), (3.40)

where⎧⎨⎩
a = 3, b = 4, c = 1, u∗

= 2un
h − un−1

h , φ∗

i = 2φn
ih − φn−1

ih ,

µ∗

i = 2µn
ih − µn−1

ih , H∗

i = Hi (φ∗

1 , φ
∗

2 , φ
∗

3 ), β∗
= −

1
ΣT

(
H∗

1

Σ1
+

H∗

2

Σ2
+

H∗

3

Σ3

)
,

(3.41)

S > 0 is a stabilization parameter. Some detailed explanations of the scheme are given in the following remarks.

emark 3.3. From the discretization method of (3.38), it can be seen that the discrete value of Qn+1 will not be
trictly equal to 1, because the integral terms in (3.38) are not equal to zero. This is completely reasonable since

Qn+1 is only a numerical approximation to the exact solution Q(t)|tn+1 = 1. That is, Qn+1 will approximate to
Q(t) with a certain order of accuracy.

emark 3.4. For the Navier–Stokes equation, the second-order pressure-correction scheme is used to decouple the
omputation of the pressure from that of the velocity. We refer to [9] for an extensive overview of projection-type
ethods. This projection method was analyzed in [79], where it is shown (discrete in time, continuous in space)

hat the scheme is second-order accurate for velocity but only first-order accurate for pressure. The loss of pressure
ccuracy is caused by the artificial Neumann boundary condition imposed on the pressure [80]. The final solution
n+1
h satisfies the discrete divergence-free condition, which can be deduced by taking the L2 inner product of (3.40)
ith ∇qh ∈ Oh , that is

(un+1
h ,∇qh) = (ũn+1

h ,∇qh) −
δt
2

(∇(pn+1
h − pn

h ),∇qh). (3.42)

rom the boundary condition of ũn+1
h , we derive (ũn+1

h ,∇qh) = −(∇ · ũn+1
h , qh) by applying integration by parts.

herefore, from (3.39), we derive

(un+1
h ,∇qh) = 0. (3.43)

emark 3.5. The initialization of the second-order scheme requires all values at t = t1, which can be obtained by
onstructing the first-order scheme based on the backward Euler method. By setting a = 2, b = 2, c = 0, ψ∗

= ψ0

or any variable ψ , the first-order scheme can be easily obtained. Moreover, by using mathematical induction, it is
asy to conclude that the following volume conservation property holds:∫

φn+1
ih dx =

∫
φn

ihdx = · · · =

∫
φ0

ihdx, i = 1, 2, 3. (3.44)

Ω Ω Ω

11
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Remark 3.6. When the system has very high stiffness issues caused by the model parameters or other conditions,
xceedingly small time steps are needed to achieve reasonable accuracy while some numerical methods are
ormally unconditionally energy stable, see the stabilized-IEQ/SAV methods in [7,77,81–84]. To fix such an inherent
eficiency, a commonly used effective way is to add an extra linear stabilization term with the corresponding
emporal order (cf. the second-order term related to S in (3.36)). The scale of the splitting errors caused by this

term is about ∼
S
ϵ2 δt2∂t tφ(·), which is actually consistent with the error caused by the second-order extrapolated

onlinear term f (φ). In Section 4, we present numerical evidence to show that this stabilizer is effective to improve
he energy stability while using large time steps in Fig. 4.2. Similar linear stabilization techniques had been widely
sed in the numerical scheme for solving the phase-field type models, e.g., the methods of linear stabilization, IEQ,
AV, convex-splitting methods, etc., see [5,7,77,81–89].

The following theorem ensures the numerical solutions φn+1
1h , φn+1

2h , φn+1
3h computed by the scheme (3.34)–(3.40)

lways satisfy the free-leakage condition
∑3

i=1 φ
n+1
ih = 1, namely, no volume loss.

heorem 3.1. The system (3.35)–(3.36) with three phase-field variables is equivalent to the following scheme
nvolving the computations of two unknown phase-field variables,

(
3φn+1

ih − 4φn
ih + φn−1

ih

2δt
, wh) − Qn+1(u∗(φ∗

i − φ̂0
i ),∇wh) = −M

1
Σi

(µ̄n+1
ih , wh), i = 1, 2, (3.45)

(µn+1
ih ,Θh) =

3
4
ϵΣi (∇φn+1

ih ,∇Θh) +
12
ϵ

(H∗

i + β∗,Θh)U n+1
+

S
ϵ
Σi (φn+1

ih − φ∗

ih,Θh), i = 1, 2. (3.46)

he variables φn+1
3h , µn+1

3h , µ̄n+1
3h can be updated by the following relations:

φn+1
3h = 1 − φn+1

1h − φn+1
2h , (3.47)

µn+1
3h

Σ3
= −(

µn+1
1h

Σ1
+
µn+1

2h

Σ2
), (3.48)

µ̄n+1
3h

Σ3
= −(

µ̄n+1
1h

Σ1
+
µ̄n+1

2h

Σ2
). (3.49)

Proof. First, we derive (3.35)–(3.36) by assuming (3.45)–(3.49) are satisfied. We take the sum of (3.45) for i = 1, 2
to obtain

(
3φn+1

3h − 4φn
3h + φn−1

3h

2δt
, wh) − Qn+1(u∗(φ∗

3 − φ̂0
3 ),∇wh) = −M

1
Σ3

(µ̄n+1
3h , wh), (3.50)

here we use (3.47) at t = tn+1, tn, tn−1, (3.49), and (3.43).
Furthermore, from (3.47), (3.48), and the definition of β∗ in (3.41), we derive

(µn+1
3h ,Θh) = −Σ3(

µn+1
1h

Σ1
+
µn+1

2h

Σ2
,Θh)

= −Σ3

(3
4
ϵ(∇(φn+1

1h + φn+1
2h ),∇Θh) +

12
ϵ

(H∗

1 + β∗

Σ1
+

H∗

2 + β∗

Σ2
,Θh

)
U n+1

+
S
ϵ

(φn+1
1h + φn+1

2h − φ∗

1 − φ∗

2 ,Θh)
)

=
3
4
ϵΣ3(∇φn+1

3h ,∇Θh) +
12
ϵ

(H∗

3 + β∗,Θh)U n+1
+

S
ϵ
Σ3(φn+1

3h − φ∗

3 ,Θh).

here we use the identity

H∗

1 + β∗

Σ1
+

H∗

2 + β∗

Σ2
+

H∗

3 + β∗

Σ3
= 0, (3.51)

hat is the reformulation of (3.41).
Second, we assume that Eqs. (3.35)–(3.36) are satisfied and derive (3.45)–(3.49). We use mathematical induction

nd assume (3.47) are valid for t = tn and t = tn−1. The validity of (3.47) at t = t1 can be shown by taking a

imilar procedure of proof for the first-order version of the scheme, see Remark 3.5.

12
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c

T

For any m, we define

Φm
= φm

1h + φm
2h + φm

3h, µ
m

=
µm

1h

Σ1
+
µm

2h

Σ2
+
µm

3h

Σ3
. (3.52)

By taking the summation of (3.35) for i = 1, 2, 3, we derive

3
2δt

(Φn+1
− 1, wh) = −M(µ̄n+1, wh), (3.53)

where the combination of three advective terms vanishes that is because

Qn+1
3∑

i=1

(u∗(φ∗

i − φ̂0
i ),∇wh) = Qn+1(u∗

3∑
i=1

(φ∗

i − φ̂0
i ),∇wh)

= Qn+1(u∗(1 − 1),∇wh) = 0. (3.54)

By taking the summation of (3.36) for i = 1, 2, 3, and using the identity (3.51), we derive

(µn+1,Θh) =
3
4
ϵ(∇Φn+1,∇Θh) +

S
ϵ

(Φn+1
− 1,Θh). (3.55)

Taking wh = −
2δt
3 µ

n+1 in (3.53), and Θh = Φn+1
− 1 in (3.55), and taking the summation of the two obtained

equations, we derive

3
4
ϵ∥∇Φn+1

∥
2
+

S
ϵ
∥Φn+1

− 1∥
2
+

2δt
3

M∥µ̄n+1
∥

2
= 0. (3.56)

Since the left hand side of (3.56) is a sum of non-negative terms, thus µ̄n+1
= 0 and Φn+1

= 1, i.e., (3.47) is valid.
Hence, from (3.55), we get µn+1

= 0 that implies (3.48) and (3.49). □

3.3. Implementation

In this subsection, we discuss how to obtain the decoupled structure of the scheme (3.34)–(3.40), where we make
full use of the nonlocal features of the two additional variables U and Q.

Step 1. First, we use the nonlocal scalar variable Qn+1 to split φn+1
ih , µn+1

ih ,U n+1 for i = 1, 2, 3 into a linear
ombination form that reads as{

φn+1
ih = φn+1

i1h + Qn+1φn+1
i2h , µ

n+1
ih = µn+1

i1h + Qn+1µn+1
i2h ,

µ̄n+1
ih = µ̄n+1

i1h + Qn+1µ̄n+1
i2h ,U

n+1
= U n+1

1 + Qn+1U n+1
2 .

(3.57)

hen the scheme (3.35)–(3.36) can be rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2δt

(φn+1
i1h + Qn+1φn+1

i2h , wh) − Qn+1(u∗(φ∗

i − φ̂0
i ),∇wh)

= −M
1
Σi

(
µ̄n+1

i1h + Qn+1µ̄n+1
i2h , wh

)
+ (

bφn
ih − cφn−1

ih

2δt
, wh),

(µn+1
i1h + Qn+1µn+1

i2h ,Θh) =
3
4
ϵΣi (∇(φn+1

i1h + Qn+1φn+1
i2h ),∇Θh)

+
12
ϵ

(H∗

i + β∗,Θh)(U n+1
1 + Qn+1U n+1

2 )

+
S
ϵ
Σi (φn+1

i1h + Qn+1φn+1
i2h − φ∗

i ,Θh).

(3.58)

According to Qn+1, we split the system (3.58) into two sub-systems as follows,⎧⎪⎪⎨⎪⎪⎩
a

2δt
(φn+1

i1h , wh) = −M
1
Σi

(µ̄n+1
i1h , wh) + (

bφn
ih − cφn−1

ih

2δt
, wh),

(µn+1,Θh) =
3
ϵΣi (∇φn+1,∇Θh) +

12
(H∗

+ β∗,Θh)U n+1
+

S
Σi (φn+1

− φ∗,Θh),
(3.59)
i1h 4 i1h ϵ i 1 ϵ i1h i

13
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B
(

M

l

N
o
p

W

⎧⎪⎨⎪⎩
a

2δt
(φn+1

i2h , wh) = −M
1
Σi

(µ̄n+1
i2h , wh) + (u∗(φ∗

i − φ̂0
i ),∇wh),

(µn+1
i2h ,Θh) =

3
4
ϵΣi (∇φn+1

i2h ,∇Θh) +
12
ϵ

(H∗

i + β∗,Θh)U n+1
2 +

S
ϵ
Σi (φn+1

i2h ,Θh).
(3.60)

y applying a procedure similar to the second step of the proof in Theorem 3.1 to the two sub-systems (3.59) and
3.60), we derive⎧⎪⎪⎨⎪⎪⎩

φn+1
11h + φn+1

21h + φn+1
31h = 1,

µn+1
11h

Σi
+
µn+1

21h

Σ2
+
µn+1

31h

Σ3
= 0,

µ̄n+1
11h

Σi
+
µ̄n+1

21h

Σ2
+
µ̄n+1

31h

Σ3
= 0,

φn+1
12h + φn+1

22h + φn+1
32h = 0,

µn+1
12h

Σi
+
µn+1

22h

Σ2
+
µn+1

32h

Σ3
= 0,

µ̄n+1
12h

Σi
+
µ̄n+1

22h

Σ2
+
µ̄n+1

32h

Σ3
= 0.

(3.61)

oreover, by setting wh = 1 in (3.59) and (3.60), we obtain∫
Ω

φn+1
i1h dx =

∫
Ω

φn
ihdx = · · · =

∫
Ω

φ0
ihdx,

∫
Ω

φn+1
i2h dx = 0, i = 1, 2, 3. (3.62)

We continue to use the splitting technique for the variables φn+1
i1h , µ

n+1
i1h , i = 1, 2, 3, namely, they are split into a

inear combination form by using two nonlocal variables U n+1
1 and U n+1

2 , which reads as{
φn+1

i1h = φn+1
i11h + U n+1

1 φn+1
i12h, µn+1

i1h = µn+1
i11h + U n+1

1 µn+1
i12h,

φn+1
i2h = φn+1

i21h + U n+1
2 φn+1

i22h, µn+1
i2h = µn+1

i21h + U n+1
2 µn+1

i22h .
(3.63)

By substituting the split form of all variables in (3.63) into (3.59)–(3.60), and decomposing the results according
to the nonlocal variable U n+1

1 and U n+1
2 , we obtain the following four independent subsystems that read as⎧⎪⎪⎨⎪⎪⎩

a
2δt

(φn+1
i11h, wh) = −M

1
Σi

(µ̄n+1
i11h, wh) + (

bφn
ih − cφn−1

ih

2δt
, wh),

(µn+1
i11h,Θh) =

3
4
ϵΣi (∇φn+1

i11h,∇Θh) +
S
ϵ
Σi (φn+1

i11h − φ∗

i ,Θh),
(3.64)

⎧⎪⎨⎪⎩
a

2δt
(φn+1

i12h, wh) = −M
1
Σi

(µ̄n+1
i12h, wh),

(µn+1
i12h,Θh) =

3
4
ϵΣi (∇φn+1

i12h,∇Θh) +
12
ϵ

(H∗

i + β∗,Θh) +
S
ϵ
Σi (φn+1

i12h,Θh),
(3.65)

⎧⎪⎨⎪⎩
a

2δt
(φn+1

i21h, wh) = −M
1
Σi

(µ̄n+1
i21h, wh) + (u∗(φ∗

i − φ̂0
i ),∇wh),

(µn+1
i21h,Θh) =

3
4
ϵΣi (∇φn+1

i21h,∇Θh) +
S
ϵ
Σi (φn+1

i21h,Θh),
(3.66)

⎧⎪⎨⎪⎩
a

2δt
(φn+1

i22h, wh) = −M
1
Σi

(µ̄n+1
i22h, wh),

(µn+1
i22h,Θh) =

3
4
ϵΣi (∇φn+1

i22h,∇Θh) +
12
ϵ

(H∗

i + β∗,Θh) +
S
ϵ
Σi (φn+1

i22h,Θh).
(3.67)

ote that the two sub-systems (3.65) and (3.67) are identical which implies φn+1
i12h = φn+1

i22h, µ
n+1
i12h = µn+1

i22h . Thus we
nly need to solve any one of these two systems. Meanwhile, by performing a derivation process similar to the
roof of the second step of Theorem 3.1, the following conditions hold:{

φn+1
311h = 1 − φn+1

111h − φn+1
211h, φn+1

312h = −φn+1
112h − φn+1

212h,

φn+1
321h = −φn+1

121h − φn+1
221h, φn+1

322h = −φn+1
122h − φn+1

222h .
(3.68)

e set wh = 1 in the four sub-systems (3.64)–(3.67) to obtain∫
Ω

φn+1
i11hdx =

∫
Ω

φn
ihdx = · · · =

∫
Ω

φ0
ihdx =

∫
Ω

φ∗

i dx,∫
φn+1

i12hdx =

∫
φn+1

i21hdx =

∫
φn+1

i22hdx = 0, i = 1, 2, 3.
(3.69)
Ω Ω Ω

14
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S

Moreover, the practical implementation of the four linear systems (3.64)–(3.67) can be further simplified. By
etting wh = Θh and combine the two sub-equations in each subsystem together, (3.64)–(3.67) become⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
2Mδt

(φn+1
i11h,Θh) +

3
4
ϵ(∇φn+1

i11h,∇Θh) +
S
ϵ

(φn+1
i11h,Θh) = G i1,

a
2Mδt

(φn+1
i12h,Θh) +

3
4
ϵ(∇φn+1

i12h,∇Θh) +
S
ϵ

(φn+1
i12h,Θh) = G i2,

a
2Mδt

(φn+1
i21h,Θh) +

3
4
ϵ(∇φn+1

i21h,∇Θh) +
S
ϵ

(φn+1
i21h,Θh) = G i3,

a
2Mδt

(φn+1
i22h,Θh) −

3
4
ϵ(∇φn+1

i22h,∇Θh) +
S
ϵ

(φn+1
i22h,Θh) = G i4,

(3.70)

here⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
G i1 = (

bφn
i − cφn−1

i

2Mδt
+

S
ϵ
φ∗

i ,Θh),

G i2 = −
12
ϵΣi

(
H∗

i −
1

|Ω |

∫
Ω

H∗

i dx + β∗
−

1
|Ω |

∫
Ω

β∗dx,Θh

)
,

G i3 = (u∗(φ∗

i − φ̂0
i ),∇Θh), G i4 = G i2.

(3.71)

We can directly solve the four independent elliptic equations in the system (3.70) to obtain φn+1
i11h , φn+1

i12h , φn+1
i21h ,

φn+1
i22h, i = 1, 2, 3 since all terms at the right-hand side of (3.70) are given explicitly. Note that all coefficients are

constants, so solving them directly will be very efficient. Or one can solve φn+1
i11h , φn+1

i12h , φn+1
i21h , φn+1

i22h for i = 1, 2
from (3.70), and update φn+1

311h , φn+1
312h , φn+1

321h , φn+1
322h from (3.68). Once φn+1

i11h , φn+1
i12h , φn+1

i21h , φn+1
i22h with i = 1, 2, 3 are

obtained, the variables µn+1
i11h , µn+1

i12h , µn+1
i21h , µn+1

i22h for i = 1, 2, 3 can be easily updated by using the second equation
in the four sub-systems (3.64)–(3.67).

Step 2. Second, we rewrite (3.37) as the following form

U n+1
=

1
2

3∑
i=1

(H∗

i , φ
n+1
ih ) + gn, (3.72)

where gn is an explicit form that reads as

gn
=

1
a

(bU n
− cU n−1) −

1
2a

3∑
i=1

(H∗

i , bφn
ih − cφn−1

ih ). (3.73)

By substituting the linear form of U n+1, φn+1
ih given in (3.57) into (3.72), we obtain

U n+1
1 + Qn+1U n+1

2 =
1
2

3∑
i=1

(H∗

i , φ
n+1
i1h + Qn+1φn+1

i2h ) + gn. (3.74)

Then, according to Qn+1, we decompose (3.74) into the following two equalities:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U n+1

1 =
1
2

3∑
i=1

(H∗

i , φ
n+1
i1h ) + gn,

U n+1
2 =

1
2

3∑
i=1

(H∗

i , φ
n+1
i2h ).

(3.75)

ubstituting the linear form of (φi1h, φi2h)n+1 given in (3.63) into (3.75), we get⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
U n+1

1 =
1
2

3∑
i=1

(H∗

i , φ
n+1
i11h + U n+1

1 φn+1
i12h) + gn,

U n+1
2 =

1
2

3∑
(H∗

i , φ
n+1
i21h + U n+1

2 φn+1
i22h)dx.

(3.76)
i=1

15
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U

µ

After applying a simple factorization to the two equations in (3.76), we derive⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
U n+1

1 =

1
2

∑3
i=1(H∗

i , φ
n+1
i11h) + gn

1 −
1
2

∑3
i=1(H∗

i , φ
n+1
i12h)

,

U n+1
2 =

1
2

∑3
i=1(H∗

i , φ
n+1
i21h)

1 −
1
2

∑3
i=1(H∗

i , φ
n+1
i22h)

.

(3.77)

The solvability of U n+1
1 and U n+1

2 , i.e., the two denominators in (3.77) are not zero, are important, that can be
proven rigorously by applying a simple energy estimation to the subsystem (3.65) or (3.67), as follows.

By setting wh = −
2δt
a µ

n+1
i12h and Θh = φn+1

i12h in (3.65), combining the obtained equations, and taking the
summation for i = 1, 2, 3, we derive

2Mδt
a

3∑
i=1

Σi

 µ̄n+1
i12h

Σi


2

+
3
4
ϵ

3∑
i=1

Σi∥∇φ
n+1
i12h∥

2
+

S
ϵ

3∑
i=1

Σi∥φ
n+1
i12h∥

2

= −
12
ϵ

(
3∑

i=1

(H∗

i , φ
n+1
i12h) +

3∑
i=1

(β∗, φn+1
i12h)

)
.

(3.78)

From φn+1
112h +φn+1

212h +φn+1
312h = 0 that is given in (3.68), it is easy to derive

µn+1
112h
Σ1

+
µn+1

212h
Σ2

+
µn+1

312h
Σ3

= 0 by using (3.51).

This implies
µ̄n+1

112h
Σ1

+
µ̄n+1

212h
Σ2

+
µ̄n+1

312h
Σ3

= 0. Hence, by using (2.19), we derive⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i=1

Σi

 µ̄n+1
i12h

Σi


2

≥ Σ

3∑
i=1

 µ̄n+1
i12h

Σi


2

≥ 0,

3∑
i=1

(β∗, φn+1
i12h) = (β∗,

3∑
i=1

φn+1
i12h) = 0,

3∑
i=1

Σi∥φ
n+1
i12h∥

2
≥ Σ (∥φn+1

112h∥
2
+ ∥φn+1

212h∥
2
+ ∥φn+1

312h∥
2) ≥ 0,

3∑
i=1

Σi∥∇φ
n+1
i12h∥

2
≥ Σ (∥∇φn+1

112h∥
2
+ ∥∇φn+1

212h∥
2
+ ∥∇φn+1

312h∥
2) ≥ 0.

(3.79)

Thus we obtain −
∑3

i=1(H∗

i , φ
n+1
i12h) ≥ 0. This also means −

∑3
i=1(H∗

i , φ
n+1
i22h) ≥ 0 since φn+1

i12h = φn+1
i22h . Hence,

n+1
1 ,U n+1

2 given in (3.77) are uniquely solvable.
Step 3. Third, we use the nonlocal variable Qn+1 to split the velocity field ũn+1

h as the following form:

ũn+1
h = ũn+1

1h + Qn+1ũn+1
2h . (3.80)

By replacing the variables ũn+1
h in (3.34), and then splitting the obtained equation according to Qn+1, we arrive at

a system that includes two linear elliptic sub-equations with constant coefficients as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
a

2δt
(ũn+1

1h , vh) + ν(∇ũn+1
1h ,∇vh) = (−∇ pn

h +
bun

h − cun−1
h

2δt
, vh),

a
2δt

(ũn+1
2h , vh) + ν(∇ũn+1

2h ,∇vh) = (−(u∗
· ∇)u∗

− λ

3∑
i=1

(φ∗

i − φ̂0
i )∇µ∗

i , vh).
(3.81)

Step 4. Fourth, we solve the auxiliary variable Qn+1. Using the split form for the variables ũn+1
h in (3.80) and

n+1
ih in (3.57), one can rewrite the scheme (3.38) as the following form:

(
a

− ϑ2)Qn+1
=

1
(bQn

− cQn−1) + ϑ1, (3.82)

2δt 2δt

16
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v

H

T

where⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
ϑ1 = − λ

3∑
i=1

(u∗(φ∗

i − φ̂0
i ),∇µn+1

i1h ) + λ

3∑
i=1

((φ∗

i − φ̂0
i )∇µ∗

i , ũn+1
1h ) + ((u∗

· ∇)u∗, ũn+1
1h ),

ϑ2 = − λ

3∑
i=1

(u∗(φ∗

i − φ̂0
i ),∇µn+1

i2h ) + λ

3∑
i=1

((φ∗

i − φ̂0
i )∇µ∗

i , ũn+1
2h ) + ((u∗

· ∇)u∗, ũn+1
2h ).

(3.83)

The solvability of (3.82) is also important and it can be proven by showing a
2δt − ϑ2 ̸= 0 as follows. By setting

h = ũn+1
2h in the second equation of (3.81), we get

−((u∗
· ∇)u∗, ũn+1

2h ) − λ(
3∑

i=1

(φ∗

i − φ̂0
i )∇µ∗

i , ũn+1
2h ) =

a
2δt

∥ũn+1
2h ∥

2
+ ν∥∇ũn+1

2h ∥
2

≥ 0. (3.84)

By setting wh = −µn+1
i2h and Θh =

a
2δt φ

n+1
i2h in (3.60), and combining the two obtained equations and taking the

summation for i = 1, 2, 3, we derive
3∑

i=1

(u∗(φ∗

i − φ̂0
i ),∇µn+1

i2h ) =M
3∑

i=1

Σi

 µ̄n+1
i2h

Σi


2

+
3aϵ
8δt

3∑
i=1

Σi∥∇φ
n+1
i2h ∥

2

+
aS

2ϵδt

3∑
i=1

Σi∥φ
n+1
i2h ∥

2
+

12a
2ϵδt

U n+1
2

3∑
i=1

(H∗

i , φ
n+1
i2h )

+
12a
2ϵδt

U n+1
2 (β∗,

3∑
i=1

φn+1
i2h ).

(3.85)

From the second equation of (3.75), we get

U n+1
2

3∑
i=1

(H∗

i , φ
n+1
i2h ) =

1
2

( 3∑
i=1

(H∗

i , φ
n+1
i2 )

)2
≥ 0. (3.86)

By using (3.61) and (2.19), we derive

3∑
i=1

Σi

 µ̄n+1
i2h

Σi


2

≥ Σ

3∑
i=1

 µ̄n+1
i2h

Σi


2

≥ 0,
3∑

i=1

Σi∥∇φ
n+1
i2h ∥

2
≥ Σ

3∑
i=1

∥∇φn+1
i2h ∥

2
≥ 0,

3∑
i=1

Σi∥φ
n+1
i2h ∥

2
≥ Σ

3∑
i=1

∥φn+1
i2h ∥

2
≥ 0, (β∗,

3∑
i=1

φn+1
i2h ) = 0.

(3.87)

ence, we derive
3∑

i=1

(u∗(φ∗

i − φ̂0
i ),∇µn+1

i2h ) ≥ 0. (3.88)

herefore, (3.84) and (3.88) imply that −ϑ2 ≥ 0, thereby ensuring the solvability of (3.82).
Step 4. Finally, we update φn+1

ih , µn+1
ih for i = 1, 2, 3 and U n+1 from (3.57), ũn+1

h from (3.80), and un+1
h , pn+1

h
from (3.39)–(3.40).

Therefore, to summarize, by using the nonlocal variables Qn+1 and U n+1, and the splitting technique, we arrive
at the full decoupling implementation method of the proposed scheme (3.34)–(3.40). At each step, we only need to
solve a series of independent elliptic equations. Moreover, all these equations are linear, fully-decoupled, and only
have constant coefficients, which means very efficient calculations in practice.

Remark 3.7. For the sake of completeness, here we present the stabilized-explicit method (cf. [24–27]) that is
another widely used fully-decoupled type scheme for Navier–Stokes coupled phase-field model. For simplicity, we

only consider the two-phasic case (i.e., let φ = φ1 = 1 −φ2, φ3 = 0), and only discretize the related terms in time,
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while other terms remain continuously so that the readers can see more clearly. The scheme reads as⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

φn+1
− φn

δt
+ ((un

−δtφn
∇µn+1  

stabilization term

) · ∇)φn
+ µ̄n+1

= 0,

un+1
− un

δt
+ (u · ∇)u − ν∆u + ∇ p + λφn

∇µn+1  
explicit since µn+1 is obtained above

= 0,
(3.89)

e can see that the scheme (3.89) is a fully-decoupled and linear scheme, but the added stabilization term in the
dvection contains the implicit processed potential µn+1, so it is necessary to solve the phase-field equation with
ariable coefficients at each time step. In addition, this scheme only has a first-order version. Compared with it,
he scheme (3.35)–(3.40) developed in this paper is fully-decoupled, second-order in time, and only needs to solve
quations with constant coefficients, which illustrates very high efficiency in practice.

Except for the above-listed scheme, we also recall some positivity preserved schemes developed in [38,39] for
he flow-coupled conserved Allen–Cahn type two-phasic model. Those schemes are fully-coupled type, however,
hey are only energy stable when the fluid velocity vanishes.

.4. Unconditional energy stability

In this subsection, we show the fully discrete scheme follows unconditional energy stability. We will use the
ollowing two identities repeatedly:

2(3a − 4b + c)a = |a|
2
− |b|

2
+ |2a − b|

2
− |2b − c|2 + |a − 2b + c|2, (3.90)

(3a − 4b + c)(a − 2b + c) = |a − b|
2
− |b − c|2 + 2|a − 2b + c|2. (3.91)

heorem 3.2. If (2.20) holds, then the scheme (3.34)–(3.40) satisfies the following discrete energy dissipation
aw:

1
δt

(En+1
h − En

h ) ≤ −ν∥∇ũn+1
h ∥

2
− λMΣ

3∑
i=1

 µ̄n+1
ih

Σi


2

≤ 0, (3.92)

here

En+1
h =

1
2

(1
2
∥un+1

h ∥
2
+

1
2
∥2un+1

h − un
h∥

2
)

+
δt2

3
∥∇ pn+1

h ∥
2

+ λ
3ϵ
8

3∑
i=1

(
Σi (

1
2
∥∇φn+1

ih ∥
2
+

1
2
∥2∇φn+1

ih − ∇φn
ih∥

2)
)

+ λ
12
ϵ

(1
2
|U n+1

|
2
+

1
2
|2U n+1

− U n
|
2
)

+
1
2

(1
2
|Qn+1

|
2
+

1
2
|2Qn+1

− Qn
|
2
)

+ λ
S
2ϵ

3∑
i=1

(Σi∥φ
n+1
ih − φn

ih∥
2) ≥ 0.

(3.93)

roof. We first show En+1
h ≥ 0. Since (2.20) holds, from (2.19) and (3.47), we derive⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

3∑
i=1

Σi∥∇φ
n+1
ih ∥

2
≥ Σ

3∑
i=1

∥∇φn+1
ih ∥

2
≥ 0,

3∑
i=1

Σi∥2∇φn+1
ih − ∇φn

ih∥
2

≥ Σ

3∑
i=1

∥2∇φn+1
ih − ∇φn

ih∥
2

≥ 0,

3∑
i=1

Σi∥φ
n+1
ih − φn

ih∥
2

≥ Σ

3∑
i=1

∥φn+1
ih − φn

ih∥
2

≥ 0,

(3.94)

hich implies En+1
≥ 0.
h
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We continue to show the energy law (3.92) holds.
By taking vh = 2δt ũn+1

h in (3.34), we obtain

(3ũn+1
h − 4un

h + un−1
h , ũn+1

h ) + 2νδt∥∇ũn+1
h ∥

2
+ 2δt(∇ pn

h , ũn+1
h )

= −2δt Qn+1((u∗
· ∇)u∗, ũn+1

h ) − 2δtλQn+1
3∑

i=1

(φ∗

i ∇µ∗

i , ũn+1
h ).

(3.95)

We rewrite (3.40) as

ũn+1
h − un+1

h =
2δt
3

∇(pn+1
h − pn

h ). (3.96)

aking the L2 inner product of the above equality with un+1
h , we derive

(ũn+1
h − un+1

h ,un+1
h ) =

2δt
3

(∇(pn+1
h − pn

h ),un+1
h ) = 0, (3.97)

nd

(3un+1
h − 4un

h + un−1
h , ũn+1

h − un+1
h )

= (3un+1
h − 4un

h + un−1
h ,

2δt
3

∇(pn+1
h − pn

h )) = 0,
(3.98)

here (3.43) is used. By using (3.97) and (3.98), we deduce

(3ũn+1
h −4un

h + un−1
h , ũn+1

h )

=
(
3ũn+1

h − 3un+1
h , ũn+1

h

)
+
(
3un+1

h − 4un
h + un−1

h , ũn+1
h

)
=
(
3ũn+1

h − 3un+1
h , ũn+1

h + un+1
h

)
+
(
3un+1

h − 4un
h + un−1

h ,un+1
h

)
=

1
2

(∥un+1
h ∥

2
− ∥un

h∥
2
+ ∥2un+1

h − un
h∥

2
− ∥2un

h − un−1
h ∥

2
+ ∥un+1

h − 2un
h + un−1

h ∥
2)

+ 3∥ũn+1
h ∥

2
− 3∥un+1

h ∥
2.

(3.99)

We rewrite (3.40) as

un+1
h +

2
3
δt∇ pn+1

h = ũn+1
h +

2
3
δt∇ pn

h .

Taking the L2 inner product of the above equation with itself and multiply the result with 3
2 , we derive

2δt(ũn+1
h ,∇ pn

h ) =
3
2
∥un+1

h ∥
2
−

3
2
∥ũn+1

h ∥
2
+

2δt2

3
∥∇ pn+1

h ∥
2
−

2δt2

3
∥∇ pn

h∥
2. (3.100)

e rewrite (3.40) as

un+1
h − ũn+1

h = −
2
3
δt∇ pn+1

h +
2
3
δt∇ pn

h . (3.101)

y taking the L2 inner product of the above equation with 3
2 un+1

h and using (3.43), we obtain

3
2
∥un+1

h − ũn+1
h ∥

2
+

3
2
∥un+1

h ∥
2

=
3
2
∥ũn+1

h ∥
2. (3.102)

We combine (3.95), (3.99), (3.100), and (3.102) to obtain

1
2

(∥un+1
h ∥

2
− ∥un

h∥
2
+ ∥2un+1

h − un
h∥

2
− ∥2un

h − un−1
h ∥

2
+ ∥un+1

h − 2un
h + un−1

h ∥
2)

+
3
2
∥un+1

h − ũn+1
h ∥

2
+

2δt2

3
(∥∇ pn+1

h ∥
2
− ∥∇ pn

h∥
2) + 2νδt∥∇ũn+1

h ∥
2

= − 2δt Qn+1((u∗
· ∇)u∗, ũn+1

h ) − 2δtλQn+1
3∑

((φ∗

i − φ̂0
i )∇µ∗

i , ũn+1
h ).

(3.103)
i=1
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i

By setting wh = 2δtλµn+1
ih in (3.35) and taking the summation for the obtained equations for i = 1, 2, 3, we

derive

λ

3∑
i=1

(3φn+1
ih − 4φn

ih + φn−1
ih , µn+1

ih ) + 2δtλM
3∑

i=1

Σi

 µ̄n+1
ih

Σi


2

= 2δtλQn+1
3∑

i=1

(u∗(φ∗

i − φ̂0
i ),∇µn+1

ih ).

(3.104)

By setting Θh = −λ(3φn+1
ih − 4φn

ih + φn−1
ih ) in (3.36) and taking the summation for the obtained equations for

= 1, 2, 3, we get

−λ

3∑
i=1

(µn+1
ih , 3φn+1

ih − 4φn
ih + φn−1

ih ) +
3
4
ϵλ

3∑
i=1

Σi (∇φn+1
ih ,∇(3φn+1

ih − 4φn
ih + φn−1

ih ))

= − λ
12
ϵ

U n+1
3∑

i=1

(H∗

i , 3φn+1
ih − 4φn

ih + φn−1
ih )

− λ
S
ϵ

3∑
i=1

Σi
(
φn+1

ih − φ∗

i , 3φn+1
ih − 4φn

ih + φn−1
ih

)
,

(3.105)

where the term λ 12
ϵ

U n+1∑3
i=1(β∗, 3φn+1

ih −4φn
ih+φ

n−1
ih ) vanishes by using

∑3
i=1(3φn+1

ih −4φn
ih+φ

n−1
ih ) = 3−4+1 = 0

that is due to (3.47).
Multiplying (3.37) with λ 24

ϵ
U n+1 and using (3.90), we obtain

λ
12
ϵ

(
|U n+1

|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
+ |U n+1

− 2U n
+ U n−1

|
2
)

= λ
12
ϵ

U n+1
3∑

i=1

(H∗

i , 3φn+1
ih − 4φn

ih + φn−1
ih ).

(3.106)

Multiplying (3.38) with 2δt Qn+1 and using (3.90), we obtain

1
2

(
|Qn+1

|
2
− |Qn

|
2
+|2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
+ |Qn+1

− 2Qn
+ Qn−1

|
2
)

= − 2λδt Qn+1
3∑

i=1

(u∗(φ∗

i − φ̂0
i ),∇µn+1

ih ) + 2λδt Qn+1
3∑

i=1

((φ∗

i − φ̂0
i )∇µ∗

i , ũn+1
h )

+ 2δt Qn+1((u∗
· ∇)u∗, ũn+1

h ).

(3.107)

Hence, by combining (3.103)–(3.107) and using (3.91), we get

1
2

(∥un+1
h ∥

2
− ∥un

h∥
2
+ ∥2un+1

h − un
h∥

2
− ∥2un

h − un−1
h ∥

2) +
2δt2

3
(∥∇ pn+1

h ∥
2
− ∥∇ pn

h∥
2)

+ λ
3ϵ
8

3∑
i=1

(
Σi (∥∇φn+1

ih ∥
2
− ∥∇φn

ih∥
2
+ ∥∇(2φn+1

ih − φn
ih)∥2

− ∥∇(2φn
ih − φn−1

ih )∥2)
)

+ λ
12
ϵ

(
|U n+1

|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
)

+
1
2

(
|Qn+1

|
2
− |Qn

|
2
+ |2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
)

+ λ
S
ϵ

3∑(
Σi
(
∥φn+1

ih − φn
ih∥

2
− ∥φn

ih − φn−1
ih ∥

2))
+ χ1 = χ2,

(3.108)
i=1
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where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

χ1 =
1
2
∥un+1

h − 2un
h + un−1

h ∥
2
+

3
2
∥un+1

h − ũn+1
h ∥

2

+ λ
3ϵ
8

3∑
i=1

Σi∥∇(φn+1
ih − 2φn

ih + φn−1
ih )∥2

+ λ
12
ϵ

|U n+1
− 2U n

+ U n−1
|
2
+

1
2
|Qn+1

− 2Qn
+ Qn−1

|
2

+ λ
2S
ϵ

3∑
i=1

Σi∥φ
n+1
ih − 2φn

ih + φn−1
ih ∥

2,

χ2 = −2δtν∥∇ũn+1
h ∥

2
− 2λδt M

3∑
i=1

Σi

 µ̄n+1
ih

Σi


2

.

(3.109)

rom (3.47) and (2.19), we derive⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

3∑
i=1

Σi∥∇(φn+1
ih − 2φn

ih + φn−1
ih )∥2

≥ Σ

3∑
i=1

∥∇(φn+1
ih − 2φn

ih + φn−1
ih )∥2

≥ 0,

3∑
i=1

Σi∥φ
n+1
ih − 2φn

ih + φn−1
ih ∥

2
≥ Σ

3∑
i=1

∥φn+1
ih − 2φn

ih + φn−1
ih ∥

2
≥ 0,

(3.110)

hich means

χ1 ≥ 0. (3.111)

rom (3.49) and (2.19), we derive

χ2 ≤ −2δtν∥∇ũn+1
h ∥

2
− 2λδt MΣ

3∑
i=1

 µ̄n+1
ih

Σi


2

≤ 0. (3.112)

inally, by dropping χ1 in (3.108) and using (3.112), it is easy to see that (3.108) becomes

1
2

(∥un+1
h ∥

2
− ∥un

h∥
2
+ ∥2un+1

h − un
h∥

2
− ∥2un

h − un−1
h ∥

2) +
2δt2

3
(∥∇ pn+1

h ∥
2
− ∥∇ pn

h∥
2)

+ λ
3ϵ
8

3∑
i=1

(
Σi (∥∇φn+1

ih ∥
2
− ∥∇φn

ih∥
2
+ ∥∇(2φn+1

ih − φn
ih)∥2

− ∥∇(2φn
ih − φn−1

ih )∥2)
)

+ λ
12
ϵ

(
|U n+1

|
2
− |U n

|
2
+ |2U n+1

− U n
|
2
− |2U n

− U n−1
|
2
)

+
1
2

(
|Qn+1

|
2
− |Qn

|
2
+ |2Qn+1

− Qn
|
2
− |2Qn

− Qn−1
|
2
)

+ λ
S
ϵ

3∑
i=1

(
Σi
(
∥φn+1

ih − φn
ih∥

2
− ∥φn

ih − φn−1
ih ∥

2))
≤ −2δtν∥∇ũn+1

h ∥
2
− 2λδt MΣ

3∑
i=1

 µ̄n+1
ih

Σi


2

≤ 0,

(3.113)

hich implies (3.92). □

emark 3.8. Note that 1
δt (En+1

h − En
h ) is the second-order approximation of the term d

dt E(u, φ) at t = tn+1. Since
or any smooth variable ψ with time, we always have the following heuristic approximations as

∥ψn+1
∥

2
+ ∥2ψn+1

− ψn
∥

2

2δt
−

∥ψn
∥

2
+ ∥2ψn

− ψn−1
∥

2

2δt

∼=
∥ψn+2

∥
2
− ∥ψn

∥
2

+ O(δt2) ∼=
d

∥ψ(tn+1)∥2
+ O(δt2). (3.114)
2δt dt
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and
∥ψn+1

− ψn
∥

2
− ∥ψn

− ψn−1
∥

2

2δt
∼= O(δt2). (3.115)

. Numerical simulation

In this section, we perform various numerical simulations to testify the accuracy, stability, and effectiveness of
he proposed algorithm (3.34)–(3.40) which is denoted as DSAV for convenience. We use Taylor–Hood element [78]
or V h and Oh that satisfies inf–sup condition and set the finite element spaces (3.26) with l1 = 1, l2 = 2, l3 = 1.
nd the obtained linear systems are solved by using the conjugate gradient method. The low computational cost

n these simulations also well demonstrates the efficiency of the proposed method. For example, the computation
ime cost of each time step of 2D example 4.2 is about 0.1 s, while the computation time of each time step of 3D
xample 4.3 is about 2.5 s.

.1. Accuracy and stability tests

In this subsection, we test the convergence and stability of the developed scheme (3.34)–(3.40). We set the
omputed domain as (x, y) ∈ Ω = [0, 1] × [0, 0.5]. The initial conditions are set as follows⎧⎪⎨⎪⎩φ

0
i (x, y) = tanh

(
r −

√
(x − xi )2 + (y − yi )2

ϵ

)
, i = 1, 2, φ0

3 = 1 − φ0
1 − φ0

2 ,

u0
= (u0, v0) = (0, 0), p0

= 0,

(4.1)

where ϵ = 0.04, r = 0.2, x1 = 0.72, x2 = 0.28, and y1 = y2 = 0.25. The model parameters are set as

M = 1, ν = 1,Λ = 1, B = 10, S = 4, λ = 0.01, (σ12, σ13, σ23) = (1, 1, 1). (4.2)

We first verify the spatial convergence order by plotting the error in various norms which are computed using
arious grid size h. We choose δt to be small enough (δt = 1e−5) so that the errors are only dominated by the

spatial discretization error. Since the exact solution is not known, we assume that the numerical solution calculated
with a very tiny grid size h =

1
512 is used as the approximate exact solution and refine the grid size h to test the

spatial accuracy. The numerical errors between the numerical solution of the exact solution at t = 1 are plotted in
Fig. 4.1(a). We can see that the second-order convergence rate is followed by the H 1-error for the velocity, L2-error

f the pressure p, and L2-error of the three phase-field variables. The third-order convergence rate is observed for
L2 error of the velocity. These results are in full agreement with the theoretical expectation of accuracy for P2/P1
lement of (u, p) and P1 element of φi .

In Fig. 4.1(b), we continue to verify the temporal convergence order by fixing the grid size h =
1

512 . In this
way, the spatial grid size is small enough and the spatial discretization errors are negligible compared to the time
discretization error. The L2-errors between the numerical solution of the exact solution (computed solution using a
very tiny step size δt = 1e−7) at t = 1 are plotted, where various time step sizes are used. It can be observed that
the scheme DSAV gives the second-order time accuracy of the velocity field and the average of φi , and the first-order
time accuracy of p (note that the pressure is only first-order accurate for the particular projection type scheme used
in this article due to the boundary layer phenomenon, see the theoretical/numerical evidence in [9,79,90,91]).

Using the same example, we further verify whether the DSAV scheme maintains energy stability. In Fig. 4.2, we
plot the evolution curves of the total free energy (3.93) calculated by the scheme DSAV, where we use h =

1
256 , vary

the time step size δt , and use two different sets of surface tension parameters (σ12, σ13, σ23) = (1, 1, 1) and (1, 3, 1).
We find that all obtained energy curves show monotonic attenuation, which confirms the unconditional stability of
DSAV. When the time step is relatively large, the energy curve with a large time step has an observable deviation
from the energy curve with a small time step. This is because larger time steps lead to larger errors. When the time
step is small, the obtained energy curves are very close, which indicates that these energy curves are getting closer
to the exact solution.

To show the effectiveness of the extra stabilization term S, in Fig. 4.2(b), we append a small inset subfigure
to plot the energy evolution curves calculated by the scheme DSAV but setting the stabilization parameter to be
S = 0. We find that the energy decays only for small time steps, i.e., δt ≤ 0.01/24. This phenomenon illustrates the
22
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Fig. 4.1. Convergence order of all unknown variables that are computed by using the various grid sizes and time steps.

Fig. 4.2. The time evolution of the total free energy (3.93) computed by using the scheme DSAV with different time steps, where (a)
(σ12, σ13, σ23) = (1, 1, 1) and (b) (σ12, σ13, σ23) = (1, 3, 1) (In (b), we append a small inset figure to show the energy evolution computed
with the stabilizer S = 0).

effectiveness of the stabilization term S in improving energy stability. This kind of phenomenon (with and without
stabilizer) had been also reported in [5,7,77,81–89] for the IEQ, SAV, convex-splitting methods, etc.

In Fig. 4.3, we plot the time evolution curves of the original energy (2.3) and the modified energy (3.93) for
(σ12, σ13, σ23) = (1, 1, 1) and (1, 3, 1) computed by using the time step size δt = 0.01/23. These two energy curves
have always coincided. We impose the profiles of 1

2φ1 + φ2 at the initial moment and the steady state in each
ubfigure. It can be seen that the two bubbles squeeze together for the partial spreading case, while one bubble is
bsorbed into the other for the total spreading case.

.2. Liquid lens between two stratified fluids

In this example, we study how the contact angles formed between a liquid lens and the fluid layer of two stratified
uids are affected by different surface tension parameters in 2D. The initial conditions of the three phase-field
ariables are set respectively as a circular lens and two stratified fluids, where the circular lens is located in the
iddle of the two stratified fluids, see also in [1,2,6,7,92].
23
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Fig. 4.3. The time evolution of the total free energy (2.3) in the original form and (3.93) in the discrete form computed by using the time
step δt = 0.01/23 where (a) (σ12, σ13, σ23) = (1, 1, 1) and (b) (σ12, σ13, σ23) = (1, 3, 1). In each subfigure, we append the profile of 1

2φ1 +φ2
t the initial moment and the steady state.

We set the computed domain as (x, y) ∈ Ω = [0, 0.7] × [0, 0.5] and the initial conditions read as follows (the
rofile of 1

2φ
0
1 +φ0

2 is shown in Fig. 4.4(a) where the region of {φ0
i = 1} and the contact angles of θi are specified),

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

u0(x, y) = 0, p0(x, y) = 0,

φ0
1 (x, y) = (1 − φ0

3 )
(

1
2

+
1
2

tanh
(4
ϵ

(y − 0.25)
))
, φ0

2 (x, y) = 1 − φ0
1 − φ0

3 ,

φ0
3 (x, y) =

1
2

tanh(
0.09 −

√
(x − 0.35)2 + (y − 0.25)2

ϵ/2
) +

1
2
.

(4.3)

We assume that the x-direction is periodic, and the y-direction is assumed to satisfy the boundary conditions
specified in (2.13). We set the model parameters to

M = 10, ν = 1,Λ = 7, λ = 0.01, B = 10, ϵ = 0.005, S = 4, δt = 1e−4, h =
1

512
. (4.4)

We use six different surface tension parameter sets, among which (σ12, σ13, σ23) = (1, 1, 1), (1, 0.6, 0.6),
(1, 0.8, 14), (1, 3, 1), (3, 1, 1), and (1, 1, 3), where the first three parameter sets are for the partial spreading cases,
and the last three parameter sets are for the total spreading cases. In Fig. 4.4(b)–(g), for each case, we plot the
steady-state solution for the profile of 1

2φ1 + φ2, where we can see the contact lens present various shapes with
various contact angles θ1, θ2, θ3 (the contact angles are sketched in Fig. 4.4(b)–(d)).

In the limit ϵ → 0, the relationship between the contact angles of the equilibrium state and three surface tension
arameters can be predicted by using Young’s relationship (cf. [2,93,94]),

sin θ1

σ23
=

sin θ2

σ13
=

sin θ3

σ12
. (4.5)

Theoretical prediction values of the contact angles according to the given surface tension parameters are shown
in Table 4.1. We can see that the computed steady-state solutions verify the theoretical prediction of the contact
angles. In addition, all these calculations are consistent with the numerical results given in [1,2,5–7], qualitatively.

To verify the consistency between the conserved three-phase Allen–Cahn model and the original three-phase
Cahn–Hilliard model developed in [1,2]. In Fig. 4.5, for the three partial spreading cases, we plot the interface
contours of {φi = 1/2} of the steady-state solutions computed by using these two models, where the original three-
phase Cahn–Hilliard model is computed by using the provided nonlinear scheme given in [1,2] with δt = 1e−6.
The interface contours show that there are almost no viewable differences between these two models on the contact

angles, which illustrates the effectiveness of the new model.
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Fig. 4.4. The initial profile and the steady-state solutions for six surface tension parameters. In each subfigure, we plot the profile of 1
2φ1+φ2.

(Note: the dashed lines are the approximate tangent lines of the junction point of the numerical solution for each phase-field variable.)

Fig. 4.5. Comparison of steady-state solutions of three partial spreading cases calculated using the conserved Allen–Cahn model (2.8)–(2.11)
and the ternary Cahn–Hilliard model that is computed by the nonlinear scheme given in [1,2] with δt = 1e−6.

4.3. The dynamics of a rising liquid droplet in 3D

In this example, we simulate the rising and deforming dynamics of a small and light 3D liquid droplet under
the action of gravity. For simplicity, the density difference between the rising droplet and the other two fluids is
25
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Table 4.1
Surface tension parameters (σ12, σ13, σ23) and the theoretical prediction of contact angles θ1, θ2, θ3 derived from Young’s relationship (4.5).

(σ12, σ13, σ23) (1,1,1) (1,0.6,0.6) (1,0.8,1.4)
(partial spreading) θ1 = θ2 = θ3 θ1 = θ2 > θ3 θ1 < θ3 < θ2

(σ12, σ13, σ23) (1,1,3) (1,3,1) (3,1,1)
(total spreading) θ1 = 0, θ2 = θ3 = π θ1 = θ3 = π, θ2 = 0 θ1 = θ2 = π, θ3 = 0

Fig. 4.6. The dynamics of a 3D rising liquid droplet with two surface tension parameter sets (σ12, σ13, σ23) = (1, 1, 1) and (1, 0.8, 1.4) with
the gravity parameter g0 = 10. In each subfigure, snapshots of the isosurfaces {φ3 = 1/2} (cyan) and {φ1 = 1/2} (yellow) are plotted.

onsidered to be relatively small, so we can use the Boussinesq approximation to approximate the gravity force
see also in [26,49,95]). Thus the momentum equation is replaced as follows:

ut + u · ∇u − ν∆u + ∇ p + λ

3∑
i=1

φi∇µi = g0φ3, (4.6)

here g0 = (0, 0, g0) and g0 is the pre-assumed gravity constant.
We set the computational domain as Ω = [0, 1] × [0, 1] × [0, 2], and assume the periodic boundary conditions

long the x, y-axes. The boundary conditions along the z-direction are specified in (2.13). The initial condition for
hese three fluid components are outlined in the first subfigure in Fig. 4.6(a) with the following formulations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ0
1 (x, y, z) = (1 − φ0

3 )
(

1
2

+
1
2

tanh
(5.5
ϵ

(z − 1)
))
,

φ0
2 (x, y, z) = 1 − φ0

1 − φ0
3 ,

φ0
3 (x, y, z) =

1
2

tanh(
0.26 −

√
(x − 0.5)2 + (y − 0.5)2 + (z − 0.3)2

ϵ/2
) +

1
2
,

0 0

(4.7)
u (x, y, z) = (0, 0, 0), p (x, y, z) = 0.
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Fig. 4.7. Comparisons of the contact angles of steady-state solutions computed using two surface tension parameters. In each subfigure, the
left one is the half domain where isosurfaces of {φ3 = 1/2} (cyan) and {φ1 = 1/2} (yellow) are plotted, and the right one is the 2D cut

lane of x = 1/2 where the interface contours of {φi = 1/2} are plotted. (Note: the dashed lines are the approximate tangent lines of the
junction point of the numerical solution for each phase-field variable.)

Fig. 4.8. The dynamics of a 3D rising liquid droplet with (σ12, σ13, σ23) = (1, 1, 1) and gravity parameter g0 = 20. Snapshots of the
isosurfaces {φ3 = 1/2} (cyan) and {φ1 = 1/2} (yellow) are taken at t = 0, 5, 9, 16, 17, and 18. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

We set the model parameters as

M = 1, ν = 1,Λ = 7, B = 10, ϵ = 0.025, S = 4, λ = 0.01, δt = 1e−3, h =
1

256
. (4.8)

In Fig. 4.6, we adopt the two sets of surface tension parameters of (σ12, σ13, σ23) = (1, 1, 1) and (1, 0.8, 1.4)
with the same gravity parameter of g0 = 10. We use different colors to plot the isosurfaces of {φ1 = 1/2} (yellow)
and {φ3 = 1/2} (cyan). We find that the droplet is eventually captured by the horizontal interface and floats steadily
there. To be able to observe the formed contact angles, in Fig. 4.7, we plot the half computed domain, and a 2D
cut-off plane of x = 1/2, where the contours of {φi = 1/2, i = 1, 2, 3} are plotted. It can be seen that the two sets
of surface tension parameters present totally different contact angles, and satisfy the predicted values from Young’s
relation given in Table 4.1. In Fig. 4.8, we use (σ12, σ13, σ23) = (1, 1, 1) but increase the gravity constant to g0 = 20.

e observe that the droplet rises faster and eventually penetrates the horizontal fluid layer to reach the upper part
f the computed domain. These 3D results (float/penetrate for low/high gravity) are qualitatively consistent with
he 2D simulations using the Cahn–Hilliard three-phase model given in [1].

. Concluding remarks

The goal of this article includes two folds. We first reformulate the flow-coupled three-component phase-field

odel using the conserved Allen–Cahn dynamics. Then we develop a novel fully-discrete, second-order time
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accurate numerical algorithm with full decoupling structure to solve this highly coupled and nonlinear model. The
main idea to design the algorithm is to utilize some special characteristics satisfied by those coupling terms (zero
contribution to the dissipation law of energy), and construct several special ODEs, so that the original system is
formulated in a form that is conducive for time discretization. By combining with other effective methods for
the fluid equations and nonlinear potentials, we arrive at a highly effective scheme that is very easy-to-implement
(linear, fully-decoupled), accurate (second-order accuracy in time), and stable (unconditionally energy stability).
The implementation is discussed in detail. The rigorous proof of the solvability and unconditional energy stability
are presented as well. Through ample numerical simulations, the effectiveness of the model and scheme are
demonstrated numerically.
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