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Abstract—Unit commitment (UC) problems faced by Indepen-
dent System Operators on a daily basis are becoming increasingly
complex due to the recent push for renewables and the considera-
tion of sub-hourly UC to accommodate the increasing variability
in the net load. A disruptive solution methodology to address the
growing complexity is therefore required. Quantum computing
offers a promise to overcome the combinatorial complexity
through the use of the so-called “qubits.” To make the best use
of quantum computers available currently or in the foreseeable
future to solve UC problems with a much larger number of
binary variables than the number of qubits available, this paper
devises a novel solution methodology based on a synergistic
combination of quantum computing and Surrogate Lagrangian
Relaxation (SLR) to solve UC problems. Our new contributions
include: 1) A Quantum-SLR (QSLR) algorithm incorporating
quantum approximate optimization algorithm (QAOA) into the
SLR method, which overcomes the fundamental difficulties of
previous LR-based quantum methods such as zigzagging of
multipliers and the need to know or estimate the optimal dual
value for convergence; 2) A Distributed QSLR framework (D-
QSLR) capable of coordinating local quantum/classical com-
puting resources with those within neighborhoods and, in the
meantime, protecting data privacy; 3) A Quantized UC model to
obtain accurate commitment unit subproblems decision by using
a quantum machine; and 4) A time-unit-decomposed quantum
UC approach to overcoming the quantum resources’ limitations.
Promising quantum test results validate the effectiveness of QSLR
and the scalability of the UC-oriented D-QSLR algorithm, which
demonstrate QSLR’s enormous potential in UC optimization.

Index Terms—Quantum Computing, Unit Commitment, Surro-
gate Lagrangian Relaxation, Distributed Quantum Optimization,
Quantum Approximate Optimization Algorithm.

I. INTRODUCTION

UNIT commitment (UC) problems are faced by Indepen-
dent System Operators on a daily basis and are becoming

increasingly complex with high penetration of renewables
and the consideration of sub-hourly UC to accommodate the
increasing variability in the demand. The scale and complexity
of the problem are, thus, expected to drastically increase with
the growth of the number of distributed energy resources
(DER), controllable loads providing fluctuating demands, and
complicated structures [1], [2]. The number of discrete deci-
sion variables associated with the increased number of units
as well as within the sub-hourly UC leads to the much
increased combinatorial complexity. To address the complexity
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of discrete optimization problems (such as the UC problems),
traditional auxiliary technologies (e.g. parallel computing [3]
and parameter tunning strategies for optimization algorithms
(e.g. ADMM-based approaches) [4]) may become inadequate
in the network application with discrete decision variables
since the search region increases tremendously [5]. To enable
the successful resolution of UC problems in the presence of
the increasing system scale, a disruptive solution methodology
is required.

Quantum computing [6] has been proven promising to
tackle classical computers’ barriers [7]–[11]. It offers a great
potential to overcome the combinatorial complexity through
the so-called “qubits,” which are capable of holding an ex-
ponential amount of information as compared to the usual
“bits” within classical computer [12]–[15]. Current quan-
tum computing algorithms enable solving binary optimization
problems. There are different paradigms to realize quantum
optimization including adiabatic quantum computing (AQC)
[16], and gate model quantum computing [17]. The primary
objective of these two kinds of quantum algorithms is to
devise methods that require less time and quantum resources
to obtain an optimal or near-optimal solution. In these existing
methods, the Grover-based adaptive search approaches are
implemented for quadratic unconstrained binary optimization
(QUBO) problems to find the optimum values with a quadratic
speed-up by applying Grover search [18]. Variational quantum
eigensolver (VQE) is one of the first attempts for solving
binary problems by finding the ground states of a Hamiltonian
of a system [19]. An improved VQE-type algorithm is devised
to find the minimum objective, meanwhile, reducing the initial
state preparation [20]. Another quantum optimization approach
is the quantum approximate optimization algorithm (QAOA)
to solve QUBO problems [21], which obtains the optimal ob-
jective value [22], [23] through the parametrization evolution
of the quantum gates. In a broader sense, the aforementioned
variational optimal approaches work by choosing a set of
quantum states [17], then by using classical optimization
routines to determine parameter values of the above quantum
states that maximize or minimize a given objective function.

Quantum computing has the potential to solve large-scale
mixed binary programming (MBP) problems through quantum
entanglement and superposition in the near future. Never-
theless, the state-of-the-art quantum optimizer is inapplicable
to UC problems (also many other MBP problems) as they
consist of binary decision valuables and continuous generation
valuables in mathematical theory. Hybrid algorithms with a
trade-off between quantum depth and computing performance
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offer the potential to solve MBP problems, which are suited
to today’s noisy intermediate-scale quantum devices [24] with
a relatively small number of qubits and limited quality. A
decomposition-based hybrid quantum/classical optimization
approach is extended for MBP problems by using the alter-
nating direction method of multiplier (ADMM), which splits
MBP problems into QUBO subproblems solved by quantum
computer and continuous constrained convex subproblems on
classical computer [25], [26]. While this method is suitable to
address combinatorial complexity by encoding binary subprob-
lems through the entangled states within qubits, the method
generally does not converge when solving large discrete com-
binatorial programming problems such as UC problems.

Surrogate Lagrangian Relaxation (SLR) [27], [28], on the
other hand, is an appropriate solution technique with conver-
gence proved to cope with the scale and number of variables
by splitting into a few smaller-sized subproblems. Inspired
by the SLR method, this paper devises a Quantum Surrogate
Lagrangian Relaxation algorithm (QSLR), which is expected
to solve the MBP problem through quantum computing. Then,
a UC-oriented distributed QSLR is established to tackle UC
problems, meanwhile, protecting the privacy and saving com-
munication expenses. Our contributions are threefold:
• A QSLR algorithm is devised by incorporating QAOA into

the SLR scheme in which binary subproblems are solved
through quantum computing and continuous subproblems
are solved by a classical solver. The method has the po-
tential for solving rapidly-growing large-scale mixed-integer
programming problems, including the UC problem, in the
near future.

• A distributed QSLR (D-QSLR) algorithm is established
for practical engineering systems to coordinate local quan-
tum/classical computing resources with neighborhoods. This
scheme enables the QSLR algorithm to protect data privacy,
flexibly regulate quantum/classical sources and support the
plug-and-play of subsystems.

• A quantum-encoded UC optimal model is formulated for
the quantum solver to find the minimum objective values
of unit-wise subproblems. Furthermore, the time-unit de-
composition through D-QSLR is devised for large-scale UC
problems to address the quantum resource limitations.
The remainder of this paper is organized as follows: Section

II gives a description of Quantum Surrogate Lagrangian Re-
laxation as well as the distributed QSLR framework. Section
III focuses on the D-QSLR implementation for UC problems.
Case studies that verify the effectiveness and accuracy perfor-
mance of QSLR and UC-oriented D-QSLR methods in Section
IV, followed by the Conclusion in Section V.

II. QUANTUM SURROGATE LAGRANGIAN RELAXATION

Benefiting from quantum superposition and entanglement,
currently available quantum computing capabilities have the
potential to solve MBP problems. In this section, a QSLR
algorithm is developed to efficiently solve MBP problems.
The key innovation of the method is the decomposition
of MBP problems into binary and continuous subproblems,
which are efficiently solved through quantum and classical

computing, respectively, and are subsequently coordinated by
updating Lagrangian multipliers. Then, a privacy-friendly D-
QSLR framework is developed by coordinating local quan-
tum/classical resources.

A. Framework Design of QSLR

We start with the prototypical MBP problem in the follow-
ing form:

min
x∈χ,y∈R

I∑
i=1

{fi(xi) + hi(yi)}

s.t.
I∑

i=1

gi(xi, yi) = 0

(1)

where x = x1, . . . , xI , y = y1, . . . , yI , χ is the binary set of
{0,1}. Functions fi(xi) and gi(xi, yi) are linear and hi(yi) is
convex. It is assumed that the feasible set is nonempty.

The separability of the problem is exploited by relaxing
coupling constraints by introducing Lagrangian multipliers
λT = (λ1, . . . , λn) and by decomposing the resulting relaxed
problem into individual subproblems. A subproblem associ-
ated with unit i can be represented as follows:

min
xi,yi,λ

Li(xi, yi, λ) = min
xi,yi,λ

{fi(xi) + hi(yi) + λT gi(xi, yi)}
(2)

The resulting subproblem is further decomposed into sev-
eral subproblems: binary and continuous, and the high-level
description of the overall methodology is presented below:

• Binary subproblems: These subproblems are encoded into
quantum formulations and solved by a QAOA-based quan-
tum algorithm which will be devised in subsection B. The
solution to the binary subproblem is obtained as follows:

{xk+1
i } = argmin{Li(x

k
i , y

k
i , λ

k)} (3)

where xk+1
i = {xk1 , . . . , xk+1

i , . . . , xkI}.
• Continuous subproblems: To solve continuous subproblems,

classical methods are used. The solution to the continuous
subproblem is obtained as follows:

{yk+1
i } = argmin{Li(x

k+1
i , yki , λ

k+1)} (4)

where yk+1
i = {yk1 , . . . , yk+1

i , . . . , ykI }.
After solving the binary and continuous subproblems, and

the “surrogate optimality condition” is checked [29, eq. (12),
p. 178], multipliers are updated in the following way:

λk+1 = λk + sk · g(xk+1, yk+1) (5)

In the above, stepsizes are updated following [29, eq. (20),
p. 180]. The process repeats until convergence.

To efficiently solve binary subproblems, the subproblems
will be reformulated in a quantum form amenable for quantum
optimization as presented next.
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B. Quantum Reformulation of MBP Problems

The main underlying feature of quantum computing is
the discretized (more commonly referred to as “quantized”)
nature of the quantum mechanical system [30]. Unlike that
of classical objects, the rotation (spin) of quantum particles
is not continuous. For example, electrons have a spin of
–1/2 or +1/2 and photons can have a spin of –1 or +1.
This quantization feature will be exploited to capture and
solve binary subproblems presented above whereby decision
variables, by definition, can only take the values of either 0
or 1. Moreover, unlike those of classical systems, the exact
value of a spin is unknown with certainty before measure-
ment. Rather, a spin is an entangled superposition of two
possible values. Accordingly, one quantum bit (“qubit”) can
hold two bits of information. Two quantum bits, analogously
to a quantum mechanical system with two particles with
two possible values of spin each, can hold up to 4 bits
of information, etc. Generally, a system with N particles
will result in a quantum mechanical system that entangles
2N possible states, which in terms of quantum computing
means that N qubits can hold up to 2N bits of information.
Upon measurement of the entangled state, out of 2N , only
one possible combination of spins is possible. In terms of
the binary subproblems under consideration, the sought-for
optimal solution to the subproblem is also a combination
of binary values. The ensuing questions are: 1) How to use
quantum computing to encode the binary variables by using
qubits and 2) How to make sure that upon measurement, the
resulting binary subproblem solution is optimal.

To answer the above questions, an Ising model is used. His-
torically, the Ising model was used to capture the interaction
of spins arranged on a lattice in the presence of an external
magnetic field ϱi [31]. Mathematically, an Ising model consists
of a set of spins ϖ, each taking a value of κi ∈ {0, 1}|ϖ|

[32]. Denoting ς as a set of pair-wise interactions Θi,l between
spins, we can formulate the energy E of the spin system using
a Hamiltonian function as follows:

E =
∑

(i,l)∈ς

Θi,lκiκl +
∑
i∈ϖ

ϱiκi (6)

The system tends to a state with the lowest energy. A notewor-
thy feature of the system is that there are no constraints and
the system eventually settles down at the ground state (the
state with the corresponding minimum value of the energy
function) purely through pairwise interactions and through the
interaction with the magnetic field.

Analogously, a discrete subproblem can be viewed as a
system of interacting binary variables, although, each sub-
problem is constrained. To map the binary subproblems onto
the Ising model, the subproblem is converted into the QUBO
problem by penalizing constraint violation within the objective
function. That particular binary subproblem will be explained
in the next section. The relationship between an Ising model
and a QUBO formulation as follows:

Lp(x
k
i ) =

n∑
1≤i,l≤n

Ki,lx
k
i x

k
l +

n∑
i=1

σix
k
i + σ0 (7)

H

H

H
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CPU

Fig. 1. Quantum circuit architecture for QSLR

where Ki,l, σi are coefficients and σ0 is a constant value which
can be ignored. The mapping (κi = 2xki − 1) between (6)
and (7) enables the QSLR algorithm for searching optimal
binary solutions by finding the ground state of a Hamiltonian
function. Once the ground state of the Ising model is reached,
the optimal solution to the QUBO problem is obtained.

C. Quantum optimization mechanism of QAOA

For the aforementioned combinatorial optimization prob-
lems, QAOA is used to find the optimal solutions by minimiz-
ing the expectation value with respect to the energy E. Such
expectation function is reformulated by quantum states entan-
gling the entire possible states. Eventually, the minimization of
objective values can be achieved by optimizing the parameters
of quantum gates.

Specifically, the expectation function with respect to the
energy E is formulated by using the quantum state |ψ(γ⃗, β⃗)⟩
following [33] as:

Fp(γ⃗, β⃗) = ⟨ψ(γ⃗, β⃗)|E|ψ(γ⃗, β⃗)⟩ (8)

In order to express quantum state |ψ(γ⃗, β⃗)⟩, a transverse field
Hamiltonian is used to construct the quantum state together
with E, which is expressed as Q =

∑nq

iq
U3(π, 0, π), where

Pauli gate U3(π, 0, π) =

[
cos(π/2),−ejπsin(π/2)
ej0sin(π/2), ejπcos(π/2)

]
. Even-

tually, the state |ψ(γ⃗, β⃗)⟩ can be prepared for optimization by
applying rq loops:

|ψ(γ⃗, β⃗)⟩ = Qrq · Erq ·Qrq−1 · Erq−1 · · ·Q1 · E1|ψ0⟩. (9)

Thus, QAOA enables the minimization of the expectation
by adjusting the quantum states as follows,

(γ⃗∗, β⃗∗) = argmin
γ⃗,β⃗

Fp(γ⃗, β⃗), (10)

which is typically carried out with numerical optimization
routines.

To benchmark QAOA, a desired approximation ratio ℓ∗ [34]
is defined to quantify how close the expectation value of the
Hamiltonian with respect to the ground state energy.

Fp(γ⃗, β⃗)

Cmin
≥ ℓ∗ (11)
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where Cmin denotes the ground state of the objective function.
With the increase of rq loops in a quantum circuit, the eval-
uated expectation would be approaching the minimal value:
limrq→∞ Fp(γ⃗, β⃗) = Cmin in theory.

The minimization of expectation (10) is achieved by oper-
ating the established QAOA quantum circuit in Fig.1 several
times. Each time the near-optimal values of the parameters
(γ⃗, β⃗) is measured. Subsequently, a classical optimizer is
used to optimize the parameters [35]. Eventually, a sequence
of unitary quantum gates acting on the initial state of the
system will generate a final state close to the ground state
|ψ(γ⃗∗, β⃗∗)⟩ by repeatedly measuring the quantum state in the
computational basis.

D. Overall Procedure of QSLR Algorithm

In the QSLR framework, after decomposition, the original
MBP problem is split into a QUBO as (7) solved by QAOA-
based quantum solver and a convex problem as (4) decoded
with off-the-shelf solvers, such as CPLEX and Gorubi. Once
multipliers reach convergence tolerance, MBP feasible solu-
tions are obtained. The entire QSLR algorithm is summarized
in the following steps:

1) Initialization: Subproblem solutions x0, y0 as well as
stepsizes and multipliers s0, λ0 are initialized.

2) Binary-Subproblem Solving: Binary subproblems xk+1
i

are solved by a QAOA-based solver.
To achieve the aforementioned QAOA theoretical procedure,

a quantum-circuit-based prototype is developed as shown
in Fig.1. At the beginning step, the quantum state |ψ0⟩ is
initialized as |0⟩⊗nq in the computational basis.

• Step 1 nq Hadamard gates are applied to qubits for
superposition, which results in the state:

|ψ1⟩ = H⊗nq ⊗ |ψ0⟩ =
1√
2nq

∑
Υ∈{0,1}nq

|Υ⟩ (12)

where H is hardmard gate.
• Step 2 Evolve with the Hamiltonian and transverse

field Hamiltonian by implementing unitary gates U(E, γ)
and U(Q, β), respectively. Then, repeat rq times with
different parameters (γ⃗, β⃗) to form the state:

|ψ2⟩ =
rq∏

kq=1

(U(Q, β)⊗ U(E, γ))⊗ |ψ1⟩

=
1√
2nq

rq∏
kq=1

(

nq∏
jq=1

ejβrqQjq

mq∏
lq=1

ejγrqElq )
∑

Υ∈{0,1}nq

|Υ⟩

(13)
• Step 3 Measure in the computational basis to compute

the expectation of Hamiltonian on (8).
• Step 4 Use a classical optimization algorithm to compute

the minimum value. Then, repeat the above steps. A
sufficient number of repetitions will produce a state which
represents a close enough solution.

3) Continuous-Subproblem Solving: Continuous subprob-
lems are solved by the classical optimizer. After that, a
surrogate optimality condition is checked based on the above
Steps 2) and 3).

4) Coordination and Updating: The coupling constraints
are relaxed by introducing Lagrangian multipliers.

5) Coordination and Updating: As discussed in Section
II.A, the separability of the problem is exploited by relaxing
coupling constraints by introducing Lagrangian multipliers. To
improve the convergence performance of QSLR, we introduce
the contraction-mapping stepsize without requiring the optimal
dual value [29]. Appendix B presents how the stepsizes are
derived. Multipliers are updated using the stepsizes sk are set
as:

sk = αk s
k−1||g(xk−1, yk−1)||

||g(xk, yk)||
, 0 < αk < 1, k = 1, 2, ...

(14)
with

αk = 1− 1

Mkp
, p = 1− 1

kr
(15)

where M > 1, 0 < r < 1.
Update αk by using (15) firstly. Given that (αk, x

k, yk),
update stepsizes sk. Then, update multipliers λk+1 according
to (5). Use the updated λk+1 to minimize the decomposed
Lagrangian functions of (3,4).

6) Feasible solution search: To obtain feasible solutions,
penalty terms ρ||g(x, y)||2 are added. The penalty function of
the binary part consists of ρ||g(xk, yk)||2 components, while,
that of the continuous part is added as ρ||g(xk+1, yk)||2.

7) Stopping criteria: if ||g(xk, yk)|| ≤ ξ is satisfied, obtain
feasible solutions, otherwise go to step 1).

E. Distributed Coordination of Subproblems

Generally, engineering systems are composed of several
subsystems with local QPU/CPU. This subsection establishes a
D-QSLR scheme adaptive to the practical feature. Meanwhile,
it is friendly to privacy protection and better efficiency.

Fig. 2 demonstrates the architecture of D-QSLR, where
each local sub-problem is assigned and regulated by the
coordinator. Consider a system consisting of one coordina-
tor and n distributed sub-systems with QPU/CPU resources
and communication capabilities. Each subsystem is assigned
solvers (quantum/classical optimizers) and capable of solving
the subproblem. In the physical assignment, each subproblem
corresponds to a thread, and the coordinator corresponds to a
separate thread to update stepsizes and multipliers.

The entire D-QSLR scheme can be summarized in the
following steps:

Step 1: Coordinator updates stepsizes sk based on received
solutions (αk, xk, yk), Then, updates and broadcasts multipli-
ers λk+1 to all subsystems.

Step 2: For the received λk+1, minimize decomposed
Lagrangian functions of (3, 4). Binary subsystems are op-
timized by QAOA-based solver to find solutions xk+1, and
send them to continuous parts for yk+1 updating. Then, a
surrogate optimality condition is checked based on the updated
binary/continuous subproblems.

Step 3: Check stopping criteria, if it’s satisfied, obtain
feasible solutions, otherwise go to Step 1.

Within the D-QSLR scheme, each subproblem can be fur-
ther decomposed into smaller, more computationally manage-
able subproblems.
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Fig. 2. Coordination architecture of D-QSLR

In summary, QSLR is an enhanced hybrid quantum opti-
mization algorithm which leverages the decomposition and
coordination aspect of the SLR method. Specifically, the UC
problem is decomposed into the binary subproblems and
continuous subproblems which are efficiently solved through
quantum and classical computing, respectively, and are subse-
quently coordinated by updating Lagrangian multipliers. The
binary subproblems are first converted into QUBO problems
by penalizing constraint violation within the objective func-
tions and then encoded into quantum formulations by mapping
them into Ising models.

III. DISTRIBUTED QSLR FOR THE UC PROBLEM

This section establishes a D-QSLR-enabled UC algorithm
for scalable and efficient UC decision. After presenting a
conventional UC problem formulation in subsection III.A,
the quantum UC formulation is devised in subsection III.B.
Given the limited number of qubits, the UC problem cannot
be solved by using quantum computers in its entirety. To
enable the efficient use of quantum computing, the problem
is decomposed into more manageable subproblems, which are
then efficiently coordinated by using Lagrangian multipliers
in subsection III.C.

A. Conventional UC Problem Formulation

The objective of the UC problem is to minimize the total
generation cost:

min
Pi,t

G∑
i=1

T∑
t=1

(ai · P 2
i,t + bi · Pi,t + ci) (16)

where Pi,t is the generation of unit i at time t, ai, bi and ci
are coefficients of unit ith cost function, T is the number of
operation periods, and G is the number of units.

The minimization is subject to the following constraints
[36]:
• System Demand Constraints: The total generated power

should meet the demand Dt at time t:
G∑
i=1

Pi,t = Dt (17)

• Generation Capacity Constraints: Generation Pi,t of online
units are constrained between minimum Pmin

i and maxi-
mum Pmax

i :

xi,t · Pmin
i ≤ Pi,t ≤ xi,t · Pmax

i (18)

where xi,t is the on/off decision variable of unit i at time t.
• Ramp-Rate Constraints: Ramp-rate constraints require that

the change of power generation levels between two consec-
utive time periods does not exceed ramp rates:

Pi,t − Pi,t−1 ≤ Ri · xi,t−1 + Vi · (1− xi,t−1) (19)

Pi,t−1 − Pi,t ≤ Ri · xi,t + Vi · (1− xi,t) (20)

where Ri is the ramp rate of unit i and Vi is the start-
up/shut-down ramp rate.

B. Quantum-Encoded UC model

To exploit the reduction of complexity of the overall prob-
lem as well as to make use of the limited quantum computing
resources, the decomposition and coordination of the D-QSLR
method will be used to relax the system demand constraints
and to decompose the resulting relaxed problem into hourly-
unit-wise subproblems. The subproblem of unit i at time t is
represented as follows:

min
Pi,t,xi,t

{
ai · P 2

i,t + bi · Pi,t + ci + λt(Pi,t)
}

(21)

subject to constraints (16)-(18).
At iteration k, after all hourly subproblems (21) are solved

for unit i and checked to satisfy a surrogate optimality
condition [37], multipliers are updated as:

λk+1
t = λkt + sk · gk(Pi,t) (22)

where gk(Pi,t) =
∑G

i′=1:i′ ̸=i P
k−1
i′,t + P k

i,t −Dt.
Binary Subproblem. In the following, to solve subproblems
by using quantum computers, hourly-unit-wise constraints will
be converted to quadratic terms and the resulting quadratic
unconstrained mixed-binary subproblems will be decomposed
into QUBO subproblems (which will be solved by using
quantum computers), and quadratic unconstrained continuous
subproblems (which will be solved by using classical comput-
ers). The conversion into subproblems through the Ising model
amenable for quantum solvers will be explained ahead.

Firstly, the generation capacity inequality constraints (18)
need to be transformed into equality constraints. In this case,
non-negative slack variables ξc,t, ξc,t : ξc,t ≥ 0, ξc,t ≥ 0
are added to the binary subproblem to convert the inequality
constraints into equality constraints as follows:

xi,t · Pmin
i − Pi,t + ξc,t = 0 (23)

Pi,t − xi,t · Pmax
i + ξc,t = 0 (24)
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Then, based on the quantum reformulation technique in-
troduced in Section II.B, the UC-based quantum functions for
(23) and (24) are mapped into the Ising model [38] as follows:

Ec = ρ||xi,t · Pmin
i − Pi,t + ξc,t||2

= ρPmin
i (Pmin

i − 2Pi,t + 2ξc,t)xi,t + ρ(Pi,t − ξc,t)
2

= σc(i,t)κi,t + ζc(i,t)
(25)

Ec = ρ||Pi,t − xi,t · Pmax
i + ξc,t||2

= ρPmax
i (Pmax

i − 2Pi,t − 2ξc,t)xi,t + ρ(Pi,t + ξc,t)
2

= σc(i,t)κi,t + ζc(i,t)
(26)

where σc(i,t), σc(i,t), ζc(i,t) and ζc(i,t) denote coefficients
related to the unit output. Ec and Ec are energy functions
of lower and upper capacity constraints, respectively.

Meanwhile, the constraints (19, 20) are converted into
equality constraints by introducing slack variables φr,t, φr,t :
φr,t ≥ 0, φr,t ≥ 0 as follows:

Pi,t − Pi,t−1 +Rixi,t−1 + Vi(1− xi,t−1)− φr,t = 0 (27)

Rixi,t + Vi(1− xi,t)− Pi,t−1 + Pi,t − φr,t = 0 (28)

Then, the UC-based quantum functions for (27) and (28)
are established as follows:

Er = ρ||Pi,t − Pi,t−1 +Rixi,t−1 + Vi(1− xi,t−1)− φr,t||2

= ρ(Pi,t − Pi,t−1 − φr,t + Vi)
2 + ρ(Ri − Vi)[Ri + Vi+

2(Pi,t − Pi,t−1 − φr,t)]xi,t−1 = σr(i,t)κi,t + ζr(i,t)
(29)

Er = ρ||Rixi,t + Vi(1− xi,t)− Pi,t−1 + Pi,t − φr,t||2

= ρ(Pi,t − Pi,t−1 − φr,t + Vi)
2 + ρ(Ri − Vi)[Ri + Vi+

2(Pi,t − Pi,t−1 − φr,t)]xi,t = σr(i,t)κi,t + ζr(i,t)
(30)

where σr(i,t), σr(i,t), ζr(i,t) and ζr(i,t) are coefficients related
to unit i output at time t; Er and Er denote energy functions
of lower and upper ramp-rate constraints.

In the quantum language, all constraints are integrated
into the quantum energy function. In detail, the total energy
function of unit i at time t is represented as a weighted sum
of the aforementioned sub-energy formulations as follows:

Ei,t = ηc · Ec + ηc · Ec + ηr · Er + ηr · Er (31)

where, ηc and ηc are weighted coefficients of generation
constraints, ηr and ηr denote weighted coefficients of ramp
rate constraints.

After the above mapping the binary subproblem to the
Hamiltonian, the UC problem is prepared for the quantum
optimization algorithm.

Continuous Subproblem. After receiving binary decision
values, classical methods are implemented for such subprob-
lems by (16)-(20). To obtain feasible solutions, penalty terms
ρ||gk(Pi,t)||2 are added into continuous subproblems.

In the next subsection, the D-QSLR procedure to solve the
UC problem is discussed.
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Fig. 3. D-QSLR-based UC architecture

C. D-QSLR-based UC optimization

As shown in Fig. 3, each unit in the distributed operation of
the power grid minimizes its operation cost. Then, the entire
power generations of all units are regulated to satisfy the
network demand. The detailed D-QSLR process of solving
the UC problem is described as algorithm 1.

Given that the multipliers and stepsizes at all time sequences
t ∈ T are initialized, the coordinator delivers multipliers λt to
each corresponding subproblem (i, t).

For the binary part of the subproblem (i, t), the en-
ergy functions of decision variable xi,t contained constraints
are encoded based on (23-31). Then, the expectation value
Fp(γ⃗, β⃗) = ⟨ψ(γ⃗, β⃗)|Ei|ψ(γ⃗, β⃗)⟩ is optimized and measured
by the QAOA-based optimal solver on the local QPU.

Next, the updated xi,t, P k
i,t−1 and xki,t−1 are sent to the

continuous part of the subproblem (i, t). The generation Pi,t

is optimized by classical optimization solver on its local CPU.
After checking the surrogate optimality condition based on

the updated {Pi,t, xi,t}, the subproblem (i, t) sends {Pi,t, xi,t}
to the coordinator for updating multipliers. Other subproblems
follow the same procedure. Finally, the iterative calculation
continues until the convergence of the entire UC problem
reaches the tolerance.

D. Practical considerations of D-QSLR-based UC optimiza-
tion on quantum machine

Current quantum machines are crippled by noise and short
of quantum coherence. Therefore, when testing quantum UC
algorithm, proper settings of the quantum machine are required
which would affect the performance of the quantum UC
algorithm as follows:
• Sufficient quantum shots (i.e., the operation number of the

quantum circuit) need to be executed to achieve a relatively
precise measurement when calculating the binary part of
each UC subproblem.

• The depth of the quantum circuit is one of the major factors
that determine the performance of the quantum algorithm,
because a large depth may cause inaccurate measurement
results due to high level noises. A small repeat time often
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Algorithm 1: D-QSLR-based UC Algorithm

Initialize: Coordinator: λ0t , k, s0,M, p, r, Itermax, ξ,
||g(Pi,t)

0||, N , H; Subproblem: ai, bi, ci, Pi,t, xi,t,
Pmin
i , Pmax

i , Vi, Ri, ρ;
while k≤Itermax and

∑
i,t ||g(Pi,t)

k|| ≥ξ do
Update(Coordinator): sk,αk,||g(Pi,t)

k||, λk+1
t

Eq. (14, 15, 22);
For subproblem (i, t): Input: λk+1

t , P k
i,t−1, x

k
i,t−1 ;

if binary part then
Convert constraints to Ising function
Ei Eq. (23-31);

Prepare computational basis and Hamitonian;
Execute QAOA, Optimize: γ⃗, β⃗;
Min: ⟨ψ(γ⃗, β⃗)|Ei|ψ(γ⃗, β⃗)⟩, Output: xk+1

i,t

else
Input:xk+1

i,t , P k
i,t−1, x

k
i,t−1;

Optimize: Lp(Pi,t, xi,t) Eq.(16-21);
Update:P k+1

i,t ; Send to Coordinator;
end

end
Result: Pi,t, xi,t.

enables the reduction of the depth of the QAOA quantum
circuit and relieves the stress on the optimization of gate
parameters. In general, problems containing more variables
and constraints may cause a deeper quantum circuit. Mean-
while, different quantum machines also affect the depth
because of different hardware configurations and basic quan-
tum gates. For example, if the Pauli-Z gate doesn’t exist, the
Hardmard gate and Pauli-X gate are compiled together to
realize the function of the nonexistent Pauli-Z gate, which
would increase the depth.

IV. NUMERICAL TESTING

In the case studies, we validate the correctness and effec-
tiveness of QSLR and D-QSLR-based UC methods in two
typical examples. The scalability of the D-QSLR-based UC
method is verified as well. In subsection A, a generalized MBP
example that is decomposed into continuous subproblems and
binary subproblems is used to demonstrate the correctness and
convergence of QSLR and to compare it with that of QADMM
in terms of mathematical aspect. In subsection B, a 3-unit 4-
hour UC example is used to test the performance of D-QSLR
and to compare results with those of classical1 sequential
SLR. The characteristics of each generator are described in
Table I. Stepsizing related parameters within D-QSLR are:
M = 50 and r = 0.05. In subsection C, the 24-hour UC
problems of the 3-unit, 6-unit, 102-unit, and 1020-unit systems
are respectively solved in order to test the scalability of the
new method. The aforementioned tests are implemented on
the noise-free quantum simulator (statevector) with IBM’s
Qiskit (0.23.4), Terra (0.16.3), and IBMQ provider (0.11.1).
In subsection D, the MBP and 3-unit 4-hour UC cases are
executed on the practical quantum machine (IBMQ belem) to

1Here, the term “classical” is used as opposed in meaning to “quantum.”

TABLE I
UNIT DATA FOR 3-UNIT SYSTEM

Unit Pmax Pmin a b c

1 600 100 0.0020 10 500

2 400 100 0.0025 8 300

3 200 100 0.0050 6 100

TABLE II
OPTIMAL SOLUTIONS OF DIFFERENT QUANTUM METHODS

Method v w t u obj Iteration

QSLR 1 0 0 2 1 2

QADMM 1 0 0 2 1 19

 

Fig. 4. Convergence violations gb of different quantum methods

analyze the effect of a noisy quantum environment on QSLR
and D-QSLR-based UC methods. The original SLR method
is implemented in python 3.7 on a 2.40 GHz PC with an i9-
1085H CPU.

A. Demonstration of QSLR by using an MBP Example.

This subsection compares the performance of QSLR with
the existing QADMM. An MBP example [25] is as follows:

min
v,w,t∈χ,u∈R

v + w + t+ 5(u− 2)2,

s.t. v + w = 1,

v + w + t ≥ 1,

v + 2w + t+ u ≤ 3.

(32)

For QSLR, the initial parameters are set as g0 = 100 and
s0 = 0.019. For QADMM, the y decision and the penalty
coefficient for constraints are set 1000 and 900. The initial
value of ρ is 1001 [25].

Based on the devised QSLR procedure, the MBP problem
is decomposed into a binary subproblem Lb = v + w + t +
λ(v+2w+ t) solved by the QAOA method and a continuous
subproblem Lc = 5(u − 2)2 + λ(u + ζb − 3) solved by
the classical optimizer, where ζb denotes a slack variable.
Fig. 4 shows the reduction of constraint violations gb within
QSLR and QADMM. The optimal solutions of QSLR and
QADMM are shown in Table II.2 Fig. 5 presents the optimal
objective values Lb of the binary subproblem with different

2For this small example, optimal solutions are known. Generally, feasible
solutions are always obtained.
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initial multipliers. Figs. 6 and 7 show the optimal binary
objective values Lb and constraint violations gb of QSLR under
different initial stepsizes, respectively. For the small problem
instance, the following insights are drawn:

 

Fig. 5. Optimal values of binary subproblem Lb under different initial
multipliers

 

Fig. 6. Optimal values of binary subproblem Lb under different initial
stepsizes

 

 Fig. 7. Constraint violations gb under different initial stepsizes

• QSLR obtains the same optimal solution as existing
QADMM algorithm. For example, as shown in the Table.II,
the results yield: [v, w, t] = [1, 0, 0], u = 2 and the objective
is 1, which validates the correctness of QSLR.

• QSLR has a better convergence performance than the exist-
ing QADMM method. For instance, QSLR takes 2 iterations
to find the optimal solutions, which is less 15 iterations
than that of QADMM. The faster convergence of QSLR is
attributed to the intrinsic “contraction-mapping” nature of
stepsizes, which overcome difficulties due to the presence
of binary variables.

 

Fig. 8. Constraint violation performance of 3-unit system

• The initial values of multipliers can affect the convergence
performance of the binary subproblem objective values. For
instance, as shown in Fig.5, more iterations are required
for QSLR to find the eventual optimal value of binary sub-
problem with the increase of multiplier. When the multiplier
is initialized as 20, 13 iterations are required to reach the
eventual optimal solution. However, 3 iterations are needed
under λ = 1.

• A proper stepsize benefits to the convergence of QSLR.
For instance, as shown in Fig.6, 13 iterations are required
to achieve the optimal value for the binary subproblem
when the stepsize is initialized as 0.019. However, when the
stepsize is increased to 0.045, the iterations are decreased
to 8. Nevertheless, the beneficial effects decrease when the
stepsize is increased to 0.075. In detail, the iterations under
s = 0.075 are identical to those under s = 0.065. Mean-
while, the stepsize has the same impacts on the convergence
performance of the constraint violation in Fig.7.

B. Demonstration of D-QSLR-based UC method.

TABLE III
OPTIMAL POWER GENERATION OF 3-UNIT SYSTEM 100MW)

Unit T1 T2 T3 T4 Ptot cost

1 1.62/1.60 3.40/3.40 1.00/1.00 0.00/0.00 6.02/6.00 83.24/83.02

2 4.00/4.00 4.00/4.00 2.19/2.20 1.00/1.00 11.19/11.20111.06/111.06

3 2.00/2.00 2.00/2.00 2.00/2.00 1.00/1.00 7.00/7.00 52.50/52.50

Dt 7.60 9.40 5.20 2.00 24.20 246.80/246.58

Note: SLR/D-QSLR

This subsection mainly demonstrates the correctness and
effectiveness of D-QSLR. The performance of D-QSLR is
compared with that of classical SLR. Based on the devised D-
QSLR-based UC optimization procedure, the 3-unit problem is
decomposed into 3-unit subproblems by relaxing the demand
constraint. Further, each unit’s subproblem is divided into 4
hourly subproblems to overcome the difficulties associated
with a limited number of qubits. Specifically, each on/off
decision variable is optimized by the quantum method; power
generation variables are optimized by the classical optimizer.
In Table III, the optimal results of the 3-unit UC system
are described. In Fig. 8, the reduction of demand constraint
violations at each hour is shown. It can be seen that:
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TABLE IV
PARTIAL RESULT OF 1020-UNIT SYSTEM (100MW)

Unit T1 T2 T3 T4 T5 T6

1 1.0021 2.1574 3.9590 3.3612 1.5585 1.0594

2 2.9042 4.0001 4.0012 3.9120 2.7107 3.9107

550 2.0000 2.0001 2.0001 1.9265 1.3252 1.9253

551 1.0000 1.1005 2.9013 1.1013 0.9972 1.0000

1019 1.1947 2.3956 3.5973 3.0162 1.8136 2.8475

1020 2.0001 2.0000 2.0001 1.9194 1.3181 1.9182

Dt 1713.7 2318.6 3136.1 2594.4 1657.5 2154.3

Unit T7 T8 T9 T10 T11 T12

1 1.1071 2.9082 4.7102 5.6803 3.8795 2.0794

2 4.0000 4.0002 4.0002 4.0016 3.2238 2.0238

550 2.0001 2.0003 2.0002 2.0010 2.0003 2.0000

551 1.0996 2.9007 4.7026 5.6728 3.8721 2.0719

1019 2.3156 3.5158 4.0002 4.0016 3.2139 2.0138

1020 2.0000 2.0003 2.0021 2.0017 2.0002 1.8597

Dt 2127.5 2943.9 3640.6 3970.3 3091.2 2036.8

Unit T13 T14 T15 T16 T17 T18

1 3.5599 5.3620 3.7850 1.9848 3.3075 4.2022

2 2.8021 4.0021 3.2061 2.0060 3.2061 4.0000

550 2.0000 2.0023 2.0001 1.4001 2.0001 2.0002

551 1.1980 3.0001 1.5526 1.0000 1.0000 1.8965

1019 2.8020 4.0021 3.1986 1.9985 3.1985 4.0000

1020 2.0000 2.0022 2.0002 1.4000 2.0000 2.0001

Dt 2439.4 3460.9 2676.3 1664.2 2501.1 3075.7

Unit T19 T20 T21 T22 T23 T24

1 6.0001 5.8004 4.0003 2.2002 1.0143 2.8145

2 4.0023 4.0021 4.0020 2.8021 2.8002 4.0002

550 2.0002 2.0023 2.0002 2.0000 2.0000 2.0001

551 3.6987 5.5007 3.9821 2.1820 1.0042 2.8045

1019 4.0022 4.0020 3.4005 2.2004 1.5964 2.7966

1020 2.0023 2.0021 2.0022 2.0002 1.9384 2.0003

Dt 3689.6 3960.5 3293.2 2272.5 1762.4 2790.6

• For the 3-unit UC problem, D-QSLR obtains the same
optimal solution as that of the classical SLR method. For
instance, under high power demands at hour 1, generators
1, 2, and 3 are combined with the grid to support the power
consumption (see Table III). When the power demand is
decreased to 200 MW at hour 4, the output of generator 1
is decreased to 0 MW, which means it’s disconnected from
the grid.

• D-QSLR method has a similar convergence performance of
demand constraint as the classical method. As shown in
Fig.8, the demand violation is gradually approaching zero.
At the 80th iteration, a penalty function is added, and the
demand violation eventually reaches convergence tolerance.

 

 

Fig. 9. Constraint violation performance of different system scales

  

Fig. 10. Power scheduling of 3-unit system

C. Performance of D-QSLR in Large UC Problems.

This subsection explores the performance of the D-QSLR
method in real-scale UC problems. The number of generators
is increased from 3 to 6, 102, and 1020, respectively, and
the time horizon is increased to 24 hours. The optimization
process shares the same procedure with that in Part B. Results
for a few selected units of a 1020-unit problem are shown in
Table IV. Fig. 9 shows the reduction of constraint violation
for the 3-unit, 6-unit, and 102-unit systems. Fig. 10 presents
the generation scheduling curve of the 3-unit system. A few
insights are:
• D-QSLR obtains the optimized generators’ output results

for larger problems. For example, as shown in Fig. 10 and
Table IV, the generation of each generator is scheduled to
balance the power demand. .

• D-QSLR retains powerful convergence abilities with the
increase of the system scale. For instance, as shown in
Fig. 9, when the unit scale is 102, the demand constraint
violation is swiftly decreased after several iterations. This
is because the contraction-mapping stepsizes provide more
flexible adjustments of multipliers.

• Although the currently available quantum computers cannot
directly handle 24-hour subproblems because of the qubit
limitation. We developed a scheme to further decompose
the unit-wise subproblems into several hourly subproblems
amenable for quantum computing. As a result of efficient
QC-enabled subproblem showing as well as the efficient
coordination of the SLR method, the overall D-QSLR
demonstrated a potential to solve large-scale UC problems.

D. QSLR Test on Noisy-contained Quantum Machine.

In this subsection, we explore the QSLR and UC-
oriented D-QSLR performance on a noisy quantum machine
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IBMQ belem. The QSLR-based MBP example is tested at
first. The probability distributions of the MBP problem with
different quantum shots are shown in Fig. 11. In this figure,
each quantum state indicates one possible binary result of
[v, w, t]. Table V presents the calculation time of MBP on
the quantum machine. Then, the accuracy of D-QSLR on
IBMQ belem is tested by simulating the 3-unit 4-hour UC
problem. Table VI shows the probabilities of the correct unit
on/off decisions that IBMQ belem and quantum simulator
achieve. A quantum circuit of the UC problem is established in
Fig. 12. The quantum circuits for solving the aforementioned
problems are implemented using the IBM Qiskit package (see
Appendix A for detailed representations of quantum gates).

• Fig. 11 illustrates the effects of different quantum shots
on the measurement results. The quantum state in the
x-axis presents the potential binary values of the MBP
problem. The probability of each quantum state is obtained
by measuring the quantum circuit. The quantum states with
the highest probability denote the results of the binary
subproblem of the MBP case. Due to the noisy environment,
current quantum devices are required to run multiple times
to get a relatively accurate result. From Fig. 11, we can see
that when quantum shots are above 3024, the optimal results
can get a higher measurement probability. For example,
when the shots are 5024, the optimal results obtain 30.8%.
However, when the quantum shots are equal to 1024, opti-
mal results fail to get the highest probability measurement.

• Table VI further validates that a high accuracy performance
of D-QSLR on the quantum machine can be guaranteed in
a noisy environment. To demonstrate the effectiveness, each
subproblem is simulated for 100 times on IBMQ belem and
the quantum simulator, respectively. For example, x1 at T2
and x2 at T1 are achieved with 99% accuracy probability.
Besides, the rest of the on/off decision results are reached
with a 100% accuracy probability. This is because sufficient
shots and a low-depth quantum circuit (the depth is 22
in Fig.12) relieve the effect of noise disturbance on the
measurement and enable the quantum machine to get a
relatively accurate probability of the optimal quantum state.

• Quantum computing provides a potential direction for cal-
culation speed. Table V presents the simulation number
and time consumption of each procedure on IBMQ belem.
As shown in Table V, the current quantum device spends
almost 12 seconds on the quantum calculation per iteration.
Specifically, the running time/iteration takes 12.4 seconds
when shots are 8024, which means 1.5 milliseconds are cost
per shot. However, because of the limit of existing quantum
devices, queue and repeating shots take the majority of the
time.

It’s noted that quantum computers with hundreds of qubits
to solve the UC problem in its entirety are not available
yet. Meanwhile, today’s quantum machines are limited to
support quantum circuits with several tens of depths because
of the short coherence time of noisy quantum hardware and
other roadblocks including large error correction overhead, a
limited number of qubits, and limited connectivity between
qubits. For example, quantum computing needs to repeat the

 

Fig. 11. Probability distribution of the MBP example under different shots

TABLE V
CALCULATION PERFORMANCE OF THE MBP EXAMPLE

Number of Iterations 204 129 198 202

Shots/Iteration 8024 5024 3024 1024

Run time (s/Iteration) 12.4 12.2 11.9 12.9

Validating time (ms/Iteration) 785 789 914 755

Note: Number of Iterations: the total iterations of gate parameters opti-
mization; Shot/Iteration: the measurement number of each gate parameters
optimization; Run time: the time consumption of each optimization;
Validating time: the time consumption to verify that the quantum circuit
is able to be run.
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Fig. 12. Quantum circuit for D-QSLR based UC problem

calculation thousands of times to catch an accurate result
which is shown in Subsection D. During this process, time
costs consist of time delay, rebuilding circuits, repeating
calculations, and so on. Fortunately, more improved quantum
machines (e.g., the 27-qubit IBM quantum machine with 10
times accuracy improvement in 2020, and the 1000-plus-qubit
quantum computer by 2023 [39]) are under development. The
swift growth of quantum machine capacities is promising to
support the devised algorithm in near future, thereby enabling
the developed QSLR method, supported by solid convergence
principles, to solve larger instances with an increased speed.
The new method thus opens the door for efficient power

TABLE VI
PROBABILITY OF DECISION RESULTS IN 3-UNIT SYSTEM

T1 T2 T3 T4

x1 1/1 1/1 1/1 0/0

Prob. 100%/100% 99%/100% 100%/100% 100%/100%

x2 1/1 1/1 1/1 1/1

Prob. 99%/100% 100%/100% 100%/100% 100%/100%

x3 1/1 1/1 1/1 1/1

Prob. 100%/100% 100%/100% 100%/100% 100%/100%

Note: IBMQ belem /simulator. x denotes the binary results on the near-
term quantum machine (IBMQ belem) and the quantum simulator. Prob.
denotes the frequency of correct binary results in 100 times.
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system quantum optimization.

V. CONCLUSION

This paper is the first of the kind to develop a Quantum-
based Surrogate Lagrangian Relaxation (QSLR) algorithm
suitable for large-scale UC problems. Although the number
of qubits currently available is not sufficient to solve the
UC problem in its entirety, the decomposition and coordina-
tion feature of the SLR method enables subproblem solving
through quantum computers.

Case studies demonstrate the efficiency of QSLR in han-
dling the MBP problem compared with QADMM. Moreover,
the distributed QSLR solution scheme for UC optimization
also enables privacy protection for community grids and power
system safety and security management. Despite existing gaps
for practical applications of D-SQLR-based UC optimization
algorithm in system operation and planning due to qubit lim-
itation, short coherence times, and noises on today’s quantum
computers, D-QSLR lays a solid foundation for power system
optimization on the next-generation quantum computers.

APPENDIX A
QUANTUM GATES USED IN THE PAPER

The mathematical formulation of the Hadamard gate H is:

H =
1

2

[
1 1
1 −1

]
The mathematical formulation of the squared X gate

√
X

(or SX) is:
√
X =

1

2

[
1 + i 1− i
1− i 1 + i

]
The mathematical formulations of single-qubit rotation

gates RX and RZ can be expressed as:

RX(θ) =

[
cos(θ/2) −i sin(θ/2)

−i sin(θ/2) cos(θ/2)

]
RZ(θ) =

[
e−iθ/2 0

0 eiθ/2

]
The mathematical formulation of the controlled not gate

CNOT (or CX) denotes:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


APPENDIX B

CONTRACTION-MAPPING STEPSIZE

To guarantee the convergence to the optimal multipliers
without requiring the optimal dual value, the distances be-
tween multipliers at consecutive iterations are required to be
decreased as follows [29],

||λk+1
t − λkt || = αk||λkt − λk−1

t || (33)

where, 0 < αk < 1. The stepsizing formulation satisfying (33)
can be derived by using (5),

||sk · g(xk, yk)|| = αk||sk−1 · g(xk−1, yk−1)|| (34)

Here, stepsizes sk satisfying (34) can be uniquely achieved,
if norms of surrogate subgradients are not zero. Therefore,
norms of surrogate subgradients are dependent on a strict
positivity requirement: g(xk, yk) > 0. 3 Since sk and sk−1

are positive scalars, and norms of surrogate subgradients are
strictly positive, (34) implies

sk = αk s
k−1||g(xk−1, yk−1)||

||g(xk, yk)||
, 0 < αk < 1, k = 1, 2, ...

(35)
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