
SecureTrain: An Approximation-Free and
Computationally Efficient Framework for

Privacy-Preserved Neural Network Training
Qiao Zhang , Chunsheng Xin , Senior Member, IEEE, and Hongyi Wu, Fellow, IEEE

Abstract—Data privacy is a fundamental challenge for Deep
Learning (DL) in many applications. In this work, we propose
SecureTrain, which aims to carry out privacy-preserved DL model
training efficiently and without accuracy loss. SecureTrain enables
joint linear and non-linear computation based on theHomomorphic
Secret Share (HSS) technique,to carry out approximation-free non-
polynomial operations, to achieve training stability and prevent
accuracy loss. Meanwhile, it eliminates the time consuming
Homomorphic permutation operation (Perm) and features an
efficient piggyback design,by carefully devising the share set and
exploiting the dataflow of the whole training process. This design
significantly reduces the overall system training time. We analyze
the computation and communication complexity of SecureTrain
and prove its security. We implement SecureTrain and benchmark
its performance with well-known dataset for both inference and
training.For inference, SecureTrain not only ensures privacy-
preserved inference, but achieves an inference speedup as high as
48! compared with state-of-the-art inference frameworks. For
training, SecureTrain maintains the model accuracy and stability
comparable to plaintext training, which is a sharp contrast to other
schemes. To the best of knowledge, this is the first work that
addresses two fundamental challenges, accuracy loss/training
instability, and computation efficiency, in privacy-preserved deep
neural network training.

Index Terms—Homomorphic encryption, neural network
training, privacy preserving, secret share.

I. INTRODUCTION

DEEP learning (DL) has demonstrated phenomenal suc-
cess in recent years, achieving state-of-the-art results

for solving complex problems in a multitude of applications
such as image classification [1], face recognition [2], and
object detection [3]. DL has also become a powerful tool in
the field of networking [4], [5] such as mobility analysis [6],

network control [7], network security [8] and signal proc-
essing [9]. The success of DL relies on three core elements,
massive computing power, expertise to construct good DL
models, and large datasets for model training [10]–[12]. It
is common that the entities possessing data are different
than the organizations that own the computing power and
DL expertise. For example, end users, enterprises, and
regional Internet Service Providers (ISPs) possess large
volume of data, while the DL talent and computing power
are mostly gathered in technology giants such as Google
and Microsoft. The former has a strong motivation to uti-
lize the computing power and DL talent of the latter to
solve challenging problems in networks, e.g., to optimize
network design. However, a fundamental challenge is data
privacy. For example, those data can have precious busi-
ness value and need to be protected. Moreover, they can be
sensitive and protected by laws from disclosure [13]–[19].
To this end, there has been a great interest in the research
community to develop privacy-preserved DL systems, such
as the CryptoNets [20], SecureML [21], MiniONN [22],
EzPC [23], and Xonn [24].

Fig. 1 illustrates a privacy-preserved DL system to pro-
vide real-time, networked diagnosis to patients who are
covered by Wireless Body Area Networks (WBANs). Each
patient is monitored by various sensors, such as ear tempe-
tature sensor, electrocardiograph and pulse oximeter. The
health data of patients, e.g., the temperature, heart rate and
blood oxygen, is collected by WBANs and reported to a
health provider such as a hospital. The latter sends the
health data to a server in a cloud (e.g., the Microsoft
cloud), which hosts a trained DL model to provide the
health diagnosis service. To protect the privacy of sensitive
data, the health provider (as a client) encrypts the data
before sending to the server. The encrypted data is proc-
essed by the server on the crypto domain, and the diagno-
sis result, which is also on the crypto domain, is returned
to the client. The client decrypts the result into plaintext,
and uses it to assist patient treatment. The data privacy is
fully protected in this process by the underlying encryption
scheme, such that the sensitive patient information is not
leaked. Furthermore, the privacy-preserved DL system also
aims to protect the intellectual property of the DL model
on the server to ensure the users (such as health providers)
cannot learn the server’s proprietary model.

Manuscript received August 7, 2020; revised October 5, 2020; accepted
October 27, 2020. Date of publication November 25, 2020; date of current ver-
sion January 11, 2022. This work was supported in part by the National Sci-
ence Foundation under Grant CNS-1828593, OAC-1829771, EEC-1840458,
and CNS-1950704, Office of Naval Research under Grant N00014-20-1-2065,
and the Commonwealth Cyber Initiative, an investment in the advancement of
cyber R&D, innovation and workforce development. For more information
about CCI, visit cyberinitiative.org. Recommended for acceptance by Dr. Fan
Wu. (Corresponding author: Hongyi Wu.)

The authors are with the School of Cybersecurity, and the Department of
Electrical and Computer Engineering, Old Dominion University, Norfolk, VA
23529 USA (e-mail: qzhan002@odu.edu; cxin@odu.edu; h1wu@odu.edu).

This article has supplementary downloadable material available at https://
doi.org/10.1109/TNSE.2020.3040704, provided by the authors.

Digital Object Identifier 10.1109/TNSE.2020.3040704

IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022 187

2327-4697 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7752-0528
https://orcid.org/0000-0002-7752-0528
https://orcid.org/0000-0002-7752-0528
https://orcid.org/0000-0002-7752-0528
https://orcid.org/0000-0002-7752-0528
https://orcid.org/0000-0001-5575-2849
https://orcid.org/0000-0001-5575-2849
https://orcid.org/0000-0001-5575-2849
https://orcid.org/0000-0001-5575-2849
https://orcid.org/0000-0001-5575-2849
mailto:
mailto:
mailto:

While there has been good progress on privacy-preserved
DL, the current systems are primarily designed for inference
only, and face great challenges for model training. Due to the
intractability of privacy-preserved non-polynomial computa-
tions (e.g., activation and softmax), the current approaches
have chosen to approximate the non-polynomial functions to
enable computation over the crypto domain. As to be dis-
cussed in Sec. II, such approximation comes with a price that
leads to system accuracy drop [25], [26]. Moreover, applying
it to model training (backpropagation) results in unwarranted
stability [21], [27]–[29]. Although one can infinitely approxi-
mate a function to alleviate those problems, e.g., using piece-
wise linear functions, the resulted large-size approximation
function hinders the system efficiency and usability. The
detailed analysis is given in Sec. II. Furthermore, the current
systems use a large number of Homomorphic permutation
operation (Perm) to achieve inference over the crpto domain,
since it is needed to compute the weighted sum and convolu-
tion, two critical operations in DL. As discussed in Sec. III-B,
the Perm operation is very time-consuming, and results in
poor system efficiency of current systems.

In this paper, we propose a novel framework, called secure
model training (SecureTrain), to address the two fundamental
challenges faced by privacy-preserved DL model training: (1)
model accuracy loss and training instability due to use of func-
tion approximation, and (2) computation efficiency. The over-
arching goal is to eliminate the use of function approximation
to carry out training without accuracy loss and instability,
and reduce the use of Perm operation to improve computation
efficiency. First of all, in order to achieve approximation-free
computation, SecureTrain features an innovative design that
enables joint linear and non-linear computation based on the
Homomorphic Secret Share (HSS) [30]–[32]. Second, it elimi-
nates the time consuming Perm operations by carefully
designing the share set. Moreover, SecureTrain exploits the
data flow in both forward propagation and backpropagation to
enable an efficient piggybacking, thus further accelerating the
overall computation and reducing the communication cost.

We analyze the computation and communication complex-
ity of SecureTrain and prove its security using the standard
simulation approach [33], [34]. The proposed SecureTrain is
benchmarked with well-known datasets for both inference and
training. For inference, our results show that SecureTrain not
only ensures privacy-preserved inference, but achieves an
inference speedup of 48!, 10!, 7! and 1.3!, respectively,
compared with state-of-the-art privacy preserved inference
systems: SecureML [21], MiniONN [22], EzPC [23], and
Xonn [24]. For training, SecureTrain achieves the training

accuracy and stability comparable to plaintext learning, which
is a sharp contrast to current systems such as [21], [25]–[29]
that suffer unwarranted stability as to be shown in Sec. VII-B.
To the best of knowledge, this is the first work that addresses
the two challenges, accuracy-loss/training instability, and
computation efficiency in privacy-preserved deep neural net-
work learning.
The rest of the paper is organized as follows. Sec. II dis-

cusses the related work about privacy-preserved DL. The
background for neural network training and security primi-
tives are introduced in Sec. III. The threat model is defined in
Sec. IV. Sec. V details the design of SecureTrain. Sec. VI
gives the security analysis. Experimental results are shown in
Sec. VII. Finally, Sec. VIII concludes the work.

II. RELATED WORK AND CHALLENGES

The existing efforts to enable privacy-preserved DL largely
focus on inference and can be broadly classified into six cate-
gories based on their underlying cryptographic techniques.
(1) Homomorphic Encryption (HE)-Based Approaches. In

CryptoNets [20], Faster CryptoNets [35] and CryptoDL [27],
the client encrypts data using HE and sends the encrypted data
to the server. The server performs polynomial computation
over encrypted data to calculate an encrypted result. The client
obtains the result and decrypts it. E2DM [36] adopts a more
efficient HE (i.e., packed HE [37]) which packs multiple mes-
sages into one ciphertext and thus improves the computation
efficiency.
(2) Garbled Circuit (GC)-Based Approaches. DeepSe-

cure [38] and Xonn [24] binarize the computations in the neu-
ral network and then employ GC [39] to let the client
obliviously obtain the private prediction without leaking its
sensitive data.
(3) Secret Share (SS)-Based Approaches. SS was employed

in [40] and [29] to split sensitive client data into shares. The
server owns only one share of the data and cannot recover the
original data. The computations are completed by interactive
share exchange.
(4) Secure Enclave (SE)-Based Approaches. The trusted

processor module such as Intel SGX was introduced in
[41]–[44] to construct a secure environment. The client and
server load their data and model to such a secure environment
and perform secure computation.
(5) Differential Privacy (DP)-Based Approaches. DP was

adopted in [45]–[47] to inject noise during the model training
such that the trained model can be released from the server to
the client with controlled leakage of the training data. The cli-
ent is thus able to run the released model in plaintext.
(6) Mixed Protocol (MP)-Based Approaches. In order to deal

with different properties of linearity (i.e., the weighted sum and
convolution functions) and nonlinearity (i.e., activation and pool-
ing functions) in neural network computations, theMP approaches
aim to orchestrate various cryptographic techniques to achieve
better performance [21]–[23], [25], [26], [28], [48]–[53]. Among
them, the schemes with the HE-based linear computation and
GC-based nonlinear computation demonstrate superior

Fig. 1. A Framework of privacy-preserved inference.

188 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

performance [22], [49], [50]. Specifically, GAZELLE [50]
achieves a speedup of three orders of magnitude than the clas-
sic CryptoNets [20].

Although it is highly desirable to extend the above privacy-
preserved inference frameworks to enable privacy-preserved
training, there exist intrinsic challenges to achieve this ambi-
tious goal. The challenges stem from the intractability and
inefficiency of performing privacy-preserved non-polynomial
computations, in particular the softmax function that is critical
for model training.

First, the HE-based approaches only support polynomial
computations (i.e., addition and multiplication), rendering it
impossible to directly compute softmax. The SS-based
approaches require multiple interactions between involved
parties [29], which are not communication-efficient especially
for higher-degree polynomial or nonlinear computations. The
GC-based approaches require the boolean circuits for target
functions [51], which render large circuit size for state-of-art
networks and make the computation inefficient. A common
approach is to approximate softmax using a tractable function,
e.g., (1) a sigmoid replacement [25]–[28] or (2) a representa-
tion of ReLU over the sum of ReLU [21], [29], where sigmoid
and ReLU are classic activation functions in DL [10]. Such
approximation, though enabling privacy-preserved computa-
tion, comes with a price: 1) the approximation granularity has
to be predetermined, which is not feasible in a collaborative
learning scenario where each client is reluctant to release its
data distribution property, 2) the model accuracy drops [25],
[26] in inference and 3) unwarranted stability or even failures
in training. Fig. 2 shows the change of validation accuracy
during training for a 4-layer neural network1 on MNIST data-
set [54], with different softmax approximations. As can be
seen, the softmax approximations result in the accuracy drop
(e.g., nearly 20% accuracy degradation with the approxima-
tion in [25]), or failure to converge, which can be seen from
the instability surges during training with the approximations
in [21], [26]–[29].

Second, although the softmax function can be infinitely
approximated, using piece-wise linear approximation or
polynomial expansion, or digitized with GC, the resulting

large-size approximation or digitization function hinders the
system efficiency. For instance, the GC-based digitalization
for softmax with n classes requires 80ðn# 1Þ gates per input
for boolean circuits [38]. Our benchmark experiments show
that it takes 11 seconds on a 3.2 GHz Intel Core processor to
compute a softmax function with precision up to 12 fractional
bits based on the IMAGENET dataset with 1000 classes [55].
Training a standard AlexNet network [10] based on IMAGE-
NET would require roughly 1.2 M softmax computations for
each epoch, which alone would take nearly 5 months should
the above approximation is adopted.

At last, in addition to softmax, similar challenges are observed
for other non-polynomial functions such as activation and pool-
ing. In fact, the critical functions in DL have been carefully
devised and proven effective by the machine learning commu-
nity. The classic neural networks such as AlexNet [10],
VGG [11] and ResNet [1] all use softmax to reach remarkable
classification performance. Approximating these functions for
the sake of privacy-preserved computation may lead to unac-
ceptable performance loss or failure.

In summary, the progress in privacy-preserved DL inference
has relied on approximation of non-polynomial functions. While
the degraded accuracy and increased computation time resulted
from the approximation can be controlled within a tolerance
level for some inference applications, this approach is not
directly applicable to achieve desired performance in training.

III. PRELIMINARIES

We now introduce the neural network training and the cryp-
tographic background. Table I summaries the key notations
that we use in the rest of the paper.

A. Neural Network Training

A neural network consists of multiple computation layers that
represent a complex relation between the high-dimensional
input and the output. Training a neural network is to fit
model parameters to a training dataset. A typical training
process consists of both forward propagation and backpropa-
gation. Consider a multiclass classification problem to clas-
sify m-dimension input xx ¼ ðx1; x2; . . . ; xmÞ into a number
of l classes, i.e., yyn ¼ ðy1; y2; . . . ; ylÞ. Assume that there are
totally n layers except for the input layer. wwi and bbi are the

Fig. 2. Validation accuracy of different approximations.

TABLE I
KEY NOTATIONS

1 The network structure is 784-128-128-10 where the input has 784 pixels
for each digit image and the output has 10 classes from 0 to 9.

ZHANG et al.: SECURETRAIN: AN APPROXIMATION-FREE AND COMPUTATIONALLY EFFICIENT FRAMEWORK 189

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

weight and bias matrices corresponding to the i-th ð1 & i &
nÞ layer. Generally, the input xx is denoted as the 0-th layer.

Forward Propagation: The forward propagation calculates
weighted-sums.2 layer by layer. The output of the i-th layer is
activation aai ¼ fðzziÞ, where zzi is the weighted-sum aai#1wwi þ
bbi; fð(Þ is the activation function, e.g., the ReLU function fðxÞ ¼
maxf0; xg, sigmoid function fðxÞ ¼ 1

1þe#x , and tanh function

fðxÞ ¼ e2x#1
e2xþ1

. The last layer adopts the softmax function to map

a high-dimensional vector into a list of prediction probabilities,
yyn ¼ ezzn=

Pl
j¼1 e

znj , where zzn ¼ aan#1wwn þ bbn.
Backpropagation: Once the forward propagation derives the

prediction probability yyn, the distance between the prediction
and the true label tt ¼ ðt1; t2; . . . ; tlÞ is calculated as the cost.
SecureTrain adopts the widely used cross entropy cost function,
C ¼ #

Pl
j¼1ðtj ln yj þ ð1# tjÞ lnð1# yjÞÞ [1], [10], [11]. The

weight and bias are then updated based on the backward error
propagation as bwbwi ¼ wwi # hDwwi and bbbbi ¼ bbi # hDbbi where h is
the learning rate. The gradients Dwwi, Dbbi are calculated as
follows,

Dwwi ¼ aai#1ddi;Dbbi ¼ ddi; (1)

where ddn ¼ yyn # tt based on the cross-entropy cost, ddi ¼
ddiþ1wwiþ1) @aai

@zzi
, and aa0 ¼ xx. As for the ReLU function, it is

straighforward to compute @aai
@zzij

¼ 1 if zzij * 0, and @aai
@zzij

¼ 0
otherwise.

Since the learning rate h is a constant pre-determined by the
client and server, we simplify the notations for updating the
weight and bias as follows, assuming h has been multiplied
into ddi,

bwbwi ¼ wwi # aai#1ddi; bbbbi ¼ bbi # ddi: (2)

B. Cryptographic Tools

(1) Packed Homomorphic Encryption. Homomorphic
Encryption (HE) is a crypto system that supports certain compu-
tations on encrypted data to obtain encrypted results, which,
after decryption, match the corresponding results computed on
the plaintext. It has found increasing applications in data com-
munications, storage and computation [57]. Traditional HE
operates on individual ciphertexts one by one [48]. The packed
homomorphic encryption (PHE) enables packing multiple val-
ues into a single ciphertext and performs component-wise homo-
morphic computation in a Single Instruction Multiple Data
(SIMD) manner [37]. Among various PHE techniques, Secure-
Train uses the popular Cheon-Kim-Kim-Song (CKKS)
scheme [58]. The secure computation involves two parties at a
time, i.e., a client C and a server S. When multiple clients are
involved in training, they interact with the server in sequence.

In CKKS, the encryption algorithm encrypts a plaintext vector
x inRn into a ciphertext ½x,withn slots.We denote ½x,C and ½x,S
as the ciphertexts encrypted by the private keys of client C and
server S, respectively. The decryption algorithm returns the
plaintext vector x from the ciphertext ½x,. Certain computation

can be performed on the ciphertext. In general, an evaluation
algorithm operates on input ciphertexts ½x1,; ½x2,; (((and outputs
a ciphertext ½x0, ¼ fð½x1,; ½x2,; (((Þ. The function f is con-
structed by homomorphic addition (Add), homomorphic multi-
plication (Mult) and homomorphic permutation (Perm). For
example, Addð½x,; ½y,Þ ¼ ½x, þ ½y, outputs a ciphertext ½xþ y,
which encrypts the elementwise sum of x and y. Multð½x,; uÞ ¼
½x,) u outputs a ciphertext ½x) u,which encrypts the element-
wise multiplication of x and plaintext u. It is worth pointing out
that SecureTrain is designed to require only scalar multiplication
between a ciphertext and a plaintext, but not the much more
expensive multiplication between two ciphertexts. Specifically,
the run-time for the ciphertext-ciphertext multiplication is more
than 4 times slower than the ciphertext-plaintext multiplication.
Perm(½x,) permutes the n slots in ½x, into another ciphertext
½xp,, where xp ¼ ðxðp0Þ; xðp1Þ; (((Þ and pi 2 f0; 1; . . . ;
n# 1g.
The complexities of the Add and Mult are significantly

lower than Perm. For instance, our experiments on the Micro-
soft Seal Library [59] show that Perm is 254 times slower than
Add and 97 times slower than Mult. The permutation is
mainly used to obtain the arithmetic multiplication (dot prod-
uct) in PHE, which is needed to compute the weighted sum
and convolution in neural networks. Table II shows the run-
time of the arithmetic multiplication (denoted as “Arith.
Mult”) between two vectors with a dimension from 256 to
4096. There exists a significant gap of over 200! between
Perm and other HE operations. SecureTrain completely elimi-
nates Perm in inference and training, thus substantially reduc-
ing the computation time.
(2) Homomorphic Secret Share. In the secret sharing proto-

col, a value is shared between two parties, such that combining
the two secrets yields the true value. SecureTrain is developed
with an efficient secret share mechanism based on the homo-
morphic secret share (HSS) [30]–[32]. Specifically, a two-
party HSS scheme for a class of programs PP consists of algo-
rithms ðGen;Enc; EvalÞ with the following syntax: 1)
Genð1!Þ: On input a security parameter 1!, the key generation
algorithm outputs a public key pk and a pair of evaluation
keys ðek0; ek1Þ. 2) Encðpk; xxÞ: Given public key pk and secret
input value xx, the encryption algorithm outputs a ciphertext ctct.
3) Evalðb; ekb; ðctct1; . . . ; ctctnÞ; P Þ: On input party index b 2
f0; 1g, evaluation key ekb, vector of n ciphertexts, a program
P 2 PP with n inputs, the homomorphic evaluation algorithm
outputs yb, constituting party b’s share of an output y ¼ P ðxxÞ.
For different functions (i.e., different programs P) with dif-

ferent homomorphic encryption (i.e., the different encryption
algorithms Encðpk; xxÞ), the Eval function should be

TABLE II
RUN-TIME FOR ARITH. MULT

2 The convolution operation in Convolutional Neural Network (CNN) can
also be transformed into weighted-sum operation [56]

190 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

specifically designed, which, in our case is to develop Eval
function for the linear and nonlinear computations in neural
networks with the packed homomorphic encryption. Here cre-
ative designs are required to enable its effective application in
practice. This is because in many applications the two parties
need to securely obtain xx and perform computation on their
respective shares to produce correct results. How to compute xx
(i.e., construct a set of data ctct1; . . . ; ctctn) and reconstruct the
results (i.e., get the yb) by Eval function at each party is non-
trivial, particularly for encrypted nonlinear computations in
neural networks.

IV. THREAT MODEL

As described in Section I, SecureTrain enables multiple cli-
ents to collaboratively train a neural network model. Similar
to [21], [25]–[27], [40], [48], we adopt the semi-honest model,
in which both the clients and server try to learn additional
information from the received message, while they have
bounded computational capability and do not collude. Specifi-
cally, a client C and the server S follow the protocol. However,
C may want to learn the data from other clients, or intermedi-
ate results during training, or model parameters after training.
On the other hand, S may attempt to learn the data from C, or
intermediate results during training, or the model parameters
after training. Hence, the goal is to keep each client blind with
other clients’ private data while making the server oblivious
of the private data from all the clients. Meanwhile, the inter-
mediate results during training and model parameters after
training need to be confidential to both server and client as
they can expose the user data [14], [48].

We will prove that the proposed SecureTrain framework is
secure under semi-honest corruption using the ideal/real secu-
rity [33]. Since most of neural network applications are built
on well-known architectures such as AlexNet [10], VGG16/
19 [11] and ResNet50 [1], the clients and server are assumed
to negotiate the network architecture at the beginning of train-
ing. Our framework does not target at protecting the architec-
ture (number of layers, kernel size, etc), but the model
parameters which are valuable information and can be used to
derive client training data.

There is an array of emerging attacks to the security and pri-
vacy of neural networks [13]–[15], [60]–[62] that can be clas-
sified by the targeted processes: training, inference (model), or
input.

(1) Training. The attack in [60] attempts to steal hyperpara-
meters during training based on the assumption that the train-
ing dataset is available to the public in plaintext. This attack is
not applicable in our case since our training data is encrypted.
The membership inference attack [13], [63] aims to find out
whether an input belongs to the training set by exploring the
similarities between a duplicated model and the targeted
model. This attack is not applicable to our framework since
the users’ data format, training process and model parameters
are fully protected.

(2) Model. The model extraction attack [14] exploits the lin-
ear transformation at the inference stage to extract the model

parameters. The model inversion attack [15] attempts to
deduce the training datasets by finding the input that maxi-
mizes the classification probability. These attacks require full
knowledge of the probability vectors from softmax layer,
which are protected in SecureTrain. The Generative Adversar-
ial Networks (GAN)-based attacks [61] can recover the train-
ing data by accessing the model. For SecureTrain, since the
model parameters are well protected during and after training,
this attack can be defended effectively.

(3) Input. A plethora of attacks adopt adversarial examples
by adding a small perturbation to the input, causing misclassi-
fication by the neural network [62], [64]–[68]. This work con-
siders rational clients that aim to train a good neural network
model. Thus, this type of attacks do not apply in our
framework.

V. SYSTEM DESIGN

A key design challenge to enable secure and privacy-
preserved training is to develop a secure training framework
that is accurate and efficient. The accuracy is imperative to
ensure the success of training, while the computation effi-
ciency is critical for practical applicability. In this paper, we
propose a novel secure training framework, SecureTrain, that
features the following design principles. First, SecureTrain is
developed based on the Homomorphic Secret Sharing (HSS)
approach [30]–[32] that enables secure and approximation-
free computation for linear and non-linear functions, in order
to achieve stable neural network training without accuracy
loss. Second, SecureTrain is carefully designed according to
the neural network architecture, by piggybacking part of the
computation of the backpropagation into the forward propaga-
tion, and by combining linear and non-linear computation in
both the forward and back propagation to accelerate the over-
all computation and minimize the total communication cost.

A. System Overview

The proposed SecureTrain framework supports multiple cli-
ents to work with a server to collaboratively train a neural net-
work. The server sequentially interacts with each client to
complete the training process. In the following discussion, we
will focus on one client and one server only. Once the training
with one client is finished, the client passes its share of the
neural network model parameters to the next client. Note that
the randomness of the share does not reveal user data or model
parameters to the next client.

To start the training process, the weight and bias (i.e., ww and
bb) of each layer are initialized randomly. Without loss of gen-
erality, we consider the operation of one layer in the neural
network in the discussions since the operations of different
layers are similar. Moreover, for the ease of description, we
omit the subscript or superscript to denote the network layer,
and simply refer to ww and bb unless specified otherwise.

A novel secret share scheme is carefully crafted to protect
both the user data and the neural network model parameters.
More specifically, the client C and server S respectively keep
their weight and bias shares wwC, wwS , bbC, and bbS , subject to ww ¼

ZHANG et al.: SECURETRAIN: AN APPROXIMATION-FREE AND COMPUTATIONALLY EFFICIENT FRAMEWORK 191

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

wwC þ wwS and bb ¼ bbC þ bbS . Initially, the client C has the input
data and the random share of weights and bias, while the
server S has the other share of weights and bias. During train-
ing, the client and server update their shares of the weights
and bias, respectively. Each training round consists of three
stages, namely forward propagation, softmax calculation, and
backpropagation.

B. Forward Propagation

During the forward propagation, the input data is fed in the
forward direction through the network layers, as introduced in
Sec. III-A. Each layer takes a vector of data, xx, as input to
compute a linear transformation (i.e., the weighted sum,
zz ¼ xxwwþ bb) followed by the nonlinear activations (i.e.,
aa ¼ fðzzÞ). The output (i.e., the activations aa) is then fed to the
next layer, serving as the input to continue the forward propa-
gation. The challenge is how to perform such computations in
a secure and privacy-preserved manner based on the shares
owned by C and S.

The overall design principle of SecureTrain is based on the
Homomorphic Secret Sharing (HSS). In this research, we
apply HSS to develop an efficient approach to enable secure
linear and non-linear computation. In particular, the key con-
tribution is to devise innovative evaluation algorithms, i.e.,
Eval, based on the HSS masked paring scheme to ensure
P ðxxÞ, i.e., the linear and non-linear functions in each layer,
can be efficiently reconstructed from Evalðxx1; P Þ and
Evalðxx2; P Þ. The computation in all layers is essentially simi-
lar, but the treatment for the first layer and the rest layers is
slightly different. In the following discussion, we introduce
Layer 1 first and then highlight the difference in computing
Layer k when k 2.

1) Calculation for the First Layer: As illustrated in Fig. 3,
the input of the first layer is the client’s data xx. In order to pro-
tect xx, C generates two random vectors xx1 and xx2 where xx ¼
xx1 þ xx2. It also generates two random numbers r1 and r2. C
sends a tuple ðr1xx1; r2xx2Þ to S. This design is based on the
ðt; wÞ-threshold scheme [69] tailored by data splintering [70].
The detailed security analysis is given in Appendix A. Fur-
thermore, C computes and sends ½r2,C, ½

r2
r1
,C and ½r2ðxxwwC þ

bbCÞ,C to S. Hereafter, the subscription ½(,C denotes ciphertext
encrypted by the client’s private key, while ½(,S denotes
ciphertext encrypted by the private key of the server. All

encryptions, unless specified otherwise, are realized by packed
HE (e.g., CKKS).
Here ðr1xx1; r2xx2Þ, ½r2,C, ½

r2
r1
,C, and ½r2ðxxwwC þ bbCÞ,C form the

HSS based share set xx1, which will be used by S for calculat-
ing the linear weighted sum Evalðxx1; xwxwþ bbÞ as to be intro-
duced next.
Calculation of Linear Weighted Sum at Server. The server

S has its share of the neural network model parameters, i.e.,
wwS and bbS . Upon receiving ðr1xx1; r2xx2Þ, ½r2ðxxwwC þ bbCÞ,C,
½r2,C and ½

r2
r1
,C from C, S computes the following:

r1xx1wwS) ½r2r1,C ¼ ½r2xx1wwS,C;
bbS) ½r2,C ¼ ½r2bbS,C;

(

(3)

where ‘)’ denotes element-wise multiplication, which is
based on the packed HE if it involves ciphertext.3 Then S
computes ½r2xx1wwS,C þ r2xx2wwS þ ½r2bbS,C ¼ ½r2ðxxwwS þ bbSÞ,C;
and finally obtains the following which is essentially the
weighted sum, but scrambled by r2 and encrypted by C:

½r2ðxxwwS þ bbSÞ,C þ ½r2ðxxwwC þ bbCÞ,C ¼ ½r2zz,C; (4)

Calculation of Non-Linear ReLU Activation at Client. The
next step is to calculate the activation. Here, we focus on
ReLU, which is predominantly used in state-of-the-art deep
neural networks due to its superior performance [10]. Similar
design can be readily extended to other activation functions
(e.g. sigmoid and tanh functions), as shown in Appendix B.
S cannot perform the activation calculation directly as dis-

cussed in Sec. II. A naive approach is to let S send ½r2zz,C to C,
which then recovers zz and calculates the ReLu function. How-
ever, releasing the weighted sum zz to C can leak the model
parameters as shown in [14], [48].
To securely perform the activation calculation, S scrambles

each element in r2zz by a random vector vvS:

½r2zz,C) vvS ¼ ½r2zz) vvS ,C: (5)

Meanwhile, S generates a vector uuS satisfying uuS) vvS ¼
f11g, and constructs two vectors gg1 and gg2 with the same
dimension as zz:

gg1 ¼ ½g11; g12; . . . ; g1j; (((,;
gg2 ¼ ½g21; g22; . . . ; g2j; (((,;

where ðg1j; g2jÞ is a pair of polar indicators, given below:

ðg1j; g2jÞ ¼
ð0; uS

j Þ; if vSj > 0;

ðuS
j ;#uS

j Þ; if vSj < 0:

(

(6)

S encrypts gg1 and gg2 into ½gg1,S and ½gg2,S , and sends them
along with ½r2zz) vvS ,C to C. These three items form the HSS
based share set xx2, which will be used by C for calculating the
non-linear ReLU activation Evalðxx2; fðzzÞÞ. Note that, ½gg1,S
and ½gg2,S can be transmitted offline since gg1 and gg2 are

Fig. 3. Forward propagation.

3 The addition between two ciphertext (or between one ciphertext and one
plaintext) is also in element-wise manner.

192 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

pre-generated by S. Upon receiving the inputs from S, C first
obtains yy ¼ zz) vvS by decrypting ½r2zz) vvS,C and canceling
the r2 term. We now show how the client C can compute
ReLU based on yy, ½gg1,S and ½gg2,S .
Lemma 1: ½gg1,S) yyþ ½gg2,S) fðyyÞ recovers the server-

encrypted true ReLu function outcome, i.e., ½fðzzÞ,S .
Proof: If C had the true weighted sum outcome, i.e., zz, the

corresponding ReLu function would be calculated as follows:

fðzjÞ ¼
zj; if zj * 0
0; if zj < 0;

!
(7)

for each element zj in zz, as introduced in Sec. III-A.
However, C only has yj ¼ vSj ! zj. Since vSj is a random

number that could be positive or negative, it is infeasible to
obtain the correct activation directly. Instead, C computes

½gg1,S) yyþ ½gg2,S) fðyyÞ: (8)

Since yj ¼ vSj ! zj, fðyjÞ may yield four possible outputs,
depending on the signs of vSj and zj.

fðyjÞ ¼

yj; if vSj > 0 & zj > 0

yj; if vSj < 0 & zj < 0

0; if vSj > 0 & zj & 0

0; if vSj < 0 & zj * 0:

8
>>><

>>>:
(9)

For example, when vSj > 0 and zj > 0, we have g1j ¼ 0 and
g2j ¼ uS

j according to Eq. (6). Therefore,

½g1j,S) yj ¼ ½0,S; ½g2j,S) fðyjÞ ¼ ½uS
j ! vSj ! zj,S:

Note that we have chosen vSj u
S
j ¼ 1. Therefore, Eq. (8) should

yield ½zj,S . This is clearly the server-encrypted ReLu output,
i.e., the correct result of ½fðzjÞ,S . Similarly, it can be shown
that Eq. (8) always produce the server-encrypted ReLu out-
come for other cases of vSj and zj in Eq. (9). The lemma is
thus proven. &

By Lemma 1, C has successfully obtained ½fðzzÞ,S . This ends
the computation in the first layer.

2) Calculation for the k-Th Layer ð2 & k & nÞ: In a neural
network, the activations will be fed into the next layer as the
input to continue the forward propagation. So, we essentially
want to let xx ¼ fðzzÞ and repeat the calculations discussed
above for all layers.

However, we are facing a new challenge because C only has
the encrypted ½fðzzÞ,S , but not the plaintext data as in the first
layer. C could still let xx ¼ ½fðzzÞ,S . As discussed in the first
layer, it is not an option to provide xx directly to S, since S
would recover fðzzÞ and accordingly derive the user data [14],
[15], [48]. As a result, C generates two shares, xx1 and xx2 where
xx1 is a random vector and xx2 ¼ xx# xx1, as discussed before.
Note that, xx2 is essentially encrypted by S since xx is in the
PHE domain. This leads to a fundamental challenge in calcu-
lating r2ðxxwwC þ bbCÞ, because it would require a vector multi-
plication namely the dot product, which is computationally
expensive in the PHE domain as discussed in Sec. III-B. This

renders it impractical to implement the envisioned secure
training framework for modern neural networks.

We take a different approach by again adopting the
ðt;wÞ-threshold splintering strategy. More specifically, C con-
structs the tuple ðh1wwC

1; h2wwC
2Þ, where wwC

1 þ wwC
2 ¼ wwC, and h1

and h2 are two random numbers. It sends the tuple along with
½ 1h1,C and ½

1
h2
,C to S. Similar to the discussion for the first layer, C

also sends ðr1xx1; r2xx2Þ, ½r2ðxx1wwC þ bbCÞ,C, ½r2,C and ½r2r1,C to S.
The above two tuples and five ciphertexts form the HSS based
share set xx1, which will be used by S for calculating the linear
weighted sumEvalðxx1; xwxwþ bbÞ.

Upon receiving the inputs from C, S performs the following
calculation using the received two tuples and five ciphertexts:
(1) Similar to the discussion in the first layer, S computes

r1xx1wwS) ½r2r1,C ¼ ½r2xx1wwS,C.
(2) Similar to the first layer, S computes r2xx2wwS .
(3) Similar to the first layer, S computes bbS) ½r2,C ¼

½r2bbS,C.
(4) S computes r2xx2h1wwC

1) ½ 1h1,C ¼ ½r2xx2wwC
1 ,C.

(5) S computes r2xx2h2wwC
2) ½ 1h2,C ¼ ½r2xx2wwC

2 ,C.
Summing up the above five terms along with ½r2ðxx1wwC þ

bbCÞ,C received from C, S obtains the following:

½r2ðxx1ww
C þ bbCÞ,C þ ½r2xx1ww

S,C þ r2xx2ww
S

þ ½r2xx2ww
C
1,C þ ½r2xx2ww

C
2,C þ ½r2bbS,C

¼ ½r2ðxxwwþ bbÞ,C ¼ ½r2zz,C: (10Þ

Thus, S has obtained the weighted sum but scrambled by r2
and encrypted by C. This is the same as Eq. (4) introduced in
the first layer. The same method can be applied to continue
the calculation of the non-linear activation. The process
repeats until it reaches the last layer, which is followed by
softmax to be discussed next.

C. Softmax Calculation

After S obtains the masked weighted sum ½r2zz,C for the last
layer, it starts to calculate the non-linear softmax function for
backpropagation. As discussed in Sec. II, softmax is critical to
the training process.

It is fundamentally challenging to efficiently calculate soft-
max under the secure training framework because the two
mainstream approaches for secure computation (HE and GC)
have limitations to calculate non-linear functions as discussed
in Sec. II. Fig. 4 illustrates the softmax calculation under the
secure training framework. The goal is to let C and S each
obtain a secret share of the true softmax value, i.e., ezzPl

j¼1
ezj

.

In order to precisely and securely calculate the softmax
shares, random vectors are introduced at three occasions to
protect the true value of zz. First, S generates a random vector
ddS with the same dimension as zz, and constructs ½e#ddS ,S which
will be used for noise cancellation later. Recall that S has
obtained ½r2,C from C in the forward propagation, so S can
compute

½r2zz,C þ ddS) ½r2,C ¼ ½r2ðzzþ ddSÞ,C; (11)

ZHANG et al.: SECURETRAIN: AN APPROXIMATION-FREE AND COMPUTATIONALLY EFFICIENT FRAMEWORK 193

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

where zz is scrambled by ddS , and thus even C decrypts the
above, it would not know zz. S sends both ½r2ðzzþ ddSÞ,C and
½e#ddS ,S to C. The above two ciphertexts form the HSS based
share set xx1, which will be used by C for calculating the non-
linear softmax Evalðxx1;

ezzPl

j¼1
ezj
Þ. Upon receiving them, C

decrypts the former and cancels r2 to obtain zzþ ddS , and then
computes the following:

reðzzþddSÞ) ½e#ddS ,S þ oo ¼ ½rezz þ oo,S ; (12)

where r is a random number and oo is a random zero-sum vec-
tor with

Pl
j¼1 oj ¼ 0. r and oo are introduced here to protect zz.

C further generates a random vector ddC and computes:

ddC) eðzzþddSÞ; (13)

where ddC is introduced to protect zz. C sends the results of
Eqs. (12) and (13) to S, which form the HSS based share set
xx2 that will be used by S for calculating the non-linear soft-
max Evalðxx2;

ezzPl

j¼1
ezj
Þ.

S decrypts ½rezz þ oo,S to obtain rezz þ oo, and subsequently
sums up all elements of the vector to compute r

Pl
j¼1 e

zj . At the
same time, since S has ddS , it obtains ddC) ezz by cancelling eddS in
Eq. (13). Therefore,S computes its softmax share as follows:

ddC) ezz

r
Pl

j¼1 e
zj
: (14)

Meanwhile, C constructs r
ddC

as its share of softmax. Clearly,

the true softmax value can be recovered by multiplying the
two shares:

ddC) ezz

r
Pl

j¼1 e
zj
) r

ddC
¼ ezz

Pl
j¼1 e

zj
:

The shares at C and S serve as the input for backpropagation.

D. Backpropagation

As introduced in Sec. III-A, the backpropagation begins from
the last layer to recursively update the network parameters. The
weights and bias in the i-th layer are updated as follows where xx

is the activation from the previous layer, and ww, bb, and dd are the
weight, bias and error in current layer.

bwbw ¼ ww# xxdd; bbbb ¼ bb# dd; (15)

Fig. 5 shows the backpropagation. According to Eq. (15),
the weight ww, bias bb and error dd in current layer, as well as
non-linear activation xx in previous layer are needed to update
the weight and bias for the current layer. As discussed earlier,
ww, bb and xx are shared between C and S as wwC, bbC, r1xx1 and
wwS , bbS , r2xx2, respectively.
1) Update of Weight/Bias in the Last Layer: In order to

update the weights and bias for the last layer, we first intro-
duce how to calculate dd. Recall that, after the softmax calcula-
tion, C and S respectively have the shares r

ddC
and ddC)ezz

r
Pl

j¼1
ezj

.

For backpropagation, C sends ½ rddC,C and ½tt,C to S (piggybacked
to the transmission of the results of Eqs. (12) and (13)), where
½tt,C is the C-encrypted label vector. S computes the following
C-encrypted ciphertext, i.e., ½dd,C, which essentially shows the
difference between the output of softmax and the label vector:

ddC) ezz

r
Pl

j¼1 e
zj
) r

ddC

" #

C
½tt,C ¼

ezz
Pl

j¼1 e
zj
tt

" #

C

¼ ½dd,C: (16)

Next, three steps are followed within one communication
round to update the weights and bias at C and S.
Step 1: Bias Share Update at S. Once S obtains ½dd,C by

Eq. (16), it generates its share of dd as a random vector ddS and

updates its bias share by bbbb
S
¼ bbS # ddS . Note that this update

involves no communication as ddS is self-generated by S.
Meanwhile, four ciphertexts are created by S, which form the
HSS based share set xx1 and will be used to update weights and
bias shares at C. The first ciphertext is the other share of dd for
C: ½dd,C # ddS ¼ ½dd# ddS,C ¼ ½ddC,C: The second ciphertext is gen-
erated by masking dd element-wisely with a random noise vec-
tor llS: ½dd,C) llS ¼ ½dd) llS,C:
The third ciphertext, ½r2xx2

$$!,S , is transformed and encrypted
by S based on r2xx2, which is the share of S for the activation

Fig. 5. Backpropagation diagram.

Fig. 4. Softmax calculation.

194 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

function in the previous layer. As to be introduced in Step 2, C
will need to compute the arithmetic multiplication (dot prod-
uct) between r2xx2 and dd) llS . However, the arithmetic multi-
plication is computationally expensive if directly done in HE
as discussed in Sec. III-B. The transformation converts it into
element-wise multiplication, which is significantly more effi-
cient for HE computation. As illustrated in the figure below,
the transformation essentially expands the original vector r2xx2

to a matrix (r2xx2
$$!) by row filling, i.e., duplicating the element

of each row, such that the dot product can be realized by ele-

ment-wise multiplication. The fourth ciphertext, ½llS
!
,S , is

transformed and encrypted by S according to llS . It is gener-
ated in a way similar to the third ciphertext, but by column fill-
ing, i.e., duplicating the element of each column of llS .

Step 2: Weight/Bias Share Update at C. Upon receiving the
four ciphertexts generated by S, C decrypts ½ddC,C and ½dd) llS,C.
Note that since dd is perturbed by llS , C cannot deduce dd. Then,
C updates its bias share as:

bbbb
C
¼ bbC # ddC: (17)

C generates a randommatrixDC and updates its weight share as

bwbwC ¼ wwC # DC: (18)

We will show later that the shares at C and S together result in
a correct update of the weights and bias of the neural network.

C then calculates two terms that will enable S to update its
weight share in Step 3. Specifically, the first term is

xx1ðdd) llSÞ: (19)

The second term is

½r2xx2
$$!,S) dd) llS

$$$!
; (20)

where dd) llS
$$$!

is transformed from dd) llS by column filling as
illustrated in former figure. As C has r2, it can cancel r2 to obtain

½ xx2
$!) dd) llS

$$$!
,S: (21)

Adding Eq. (19) and Eq. (21) results in

xx1ðdd) llSÞ þ ½ xx2
$!) dd) llS

$$$!
,S ¼ ½xxðdd) llSÞ,S;

where xx ¼ xx1 þ xx2 as discussed in Sec. V-B.
Finally, C calculates the corresponding weight share for S as:

½xxðdd) llSÞ,S # DC) ½llS
!
,S ¼ ½xxðdd) llSÞ # DC) llS

!
,S; (22)

which forms the HSS based share set xx2 and is then sent to S
for weight update in Step 3.

Step 3: Weight Share Update at S. By decrypting the

ciphertext from Eq. (22), S gets xxðdd) llSÞ # DC) llS
!
: As llS is

known by S, it can be cancelled, yielding xxdd# DC:S finally
updates its weight share by

bwbwS ¼ wwS # ðxxdd# DCÞ: (23)

It is easy to verify that the sum of updated weight and bias
at C and S are

bbbb
C
þ bbbb

S
¼ bb# dd and bwbwC þ bwbwS ¼ ww# xxdd;

which are exactly the updated weights and bias as shown in
Eq. (15). By now the update of weights and bias at C and S is
completed for the last layer. The communication is within one
round.

2) Update of Weight/Bias in the k-Th Layer ðk & ðn# 1ÞÞ:
The backpropagation in the k-th layer is very similar to that in
the last layer as introduced above. The only difference is the
calculation of ½dd,C. In the last layer, ½dd,C ¼ ½ ezzPl

j¼1
ezj

tt,C as

shown in Eq. (16), which is simply the difference between the
output of softmax and the label vector. In the k-th layer, ½dd,C
depends on the derivative of the activation function, i.e., @xx

@zz .
More specifically, dd in the k-th layer should be computed as:

dd ¼ ddww) @xx
@zz ¼ ðddC þ ddSÞðwwC þ wwSÞ) @xx

@zz ;

where ww and dd are the weight and error of the ðkþ 1Þ-th layer,
while @xx

@zz is the derivative of the current layer’s activation
function.

The key challenge is to securely compute the derivative.
This can be achieved by embedding the computation into the
forward propagation. Recall that ½gg1,S and ½gg2,S have been
introduced in the forward propagation to enable C to obtain
the S-encrypted ReLU by Eq. (8). To compute the derivative,
S introduces another vector gg3 and sends ½gg3,S to C, where

g3j ¼
0; if vSj > 0

1; if vSj < 0;

(

(24)

Accordingly, while C calculates the S-encrypted ReLU by
Eq. (8), it also computes the S-encrypted ReLU derivative as
follows:

f 0
RðyyÞ þ ð1# 2f 0

RðyyÞÞ) ½gg3,S; (25)

where yy is the masked weighted sum as discussed in Sec. V-B
and f 0

RðyjÞ denotes the derivative of ReLU, which is 1 if yj >
0 or 0 otherwise as introduced in Sec. III-A.
Lemma 2: Eq. (25) yields the S-encrypted ReLU deriva-

tive, i.e., ½@xx
@zz,S .

Proof: If vSj > 0, then g3j ¼ 0 and accordingly Eq. (25)
results in ½f 0RðyjÞ,S . Since yj ¼ vSj ! zj and vSj > 0, it is
straightforward to show that f 0

RðyjÞ ¼ f 0
RðzjÞ. Therefore,

Eq. (25) yields the S-encrypted ReLU derivative. On the other
hand, if vSj < 0, we have g3j ¼ 1, and thus Eq. (25) results in
½1# f 0

RðyjÞ,S . It is again easy to show that f 0
RðyjÞ ¼

1# f 0
RðzjÞ when vSj < 0. Therefore, Eq. (25) still yields the

S-encrypted ReLU derivative. &

Till now, C has obtained the ReLU derivative in a way pig-
gybacked to the forward propagation with marginal computa-
tion cost. A secret share approach can then follow to compute
the backpropagation using a method similar to the last layer as

ZHANG et al.: SECURETRAIN: AN APPROXIMATION-FREE AND COMPUTATIONALLY EFFICIENT FRAMEWORK 195

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

discussed in Sec. V-D1. The detailed design is presented in
Appendix C.

E. Complexity Analysis

The computation and communication complexities in a
layer of SecureTrain are summarized in Tables III and IV,
where ni is the input dimension at a layer; no is the output
dimension; ns is the number of slots in a CKKS ciphertext; sc
is the size of a CKKS ciphertext in bit; and sp is the size of a
plaintext value in bit. We assume ns - ni; no, which is also
adopted in [50].

The detailed analysis can be found in Appendix D. Table III
summarizes the computation complexity of SecureTrain in the
forward propagation (i.e., inference), softmax, and backpropaga-
tion. It also compares with classic methodology in [71] and the
state-of-the-art approach in GAZELLE [50]. Note that [71]
and [50] focus on inference only. SecureTrain reduces the layer-
wise forward calculation to constant complexity by integrating
secret-share-based plaintext calculation and the HE-based non-
permutation computation. It is worth pointing out that Secure-
Train finishes the linear and non-linear calculation for each layer
with above complexity while [71] and [50] only compute the lin-
ear part. Meanwhile, we give the analytical communication
complexity of SecureTrain in Table IV. The quantitative perfor-
mance comparison is given in Sec. VII.

VI. SECURITY

We prove the security of SecureTrain using the simulation
approach [33]. As discussed in Sec. IV, the semi-honest adversary
A can compromise any one of the client or server, but not both
(i.e., the client and server do not collude). Here, security means
that the adversary only learns the inputs from the party that it has
compromised, but nothing else beyond that. It is modeled by two
interactions. The first is an interaction in the real world that parties
follow the protocol in the presence of an adversary A and the
environment machine Z which chooses the inputs to the parties;
the second is an ideal interaction that parties forward their inputs
to a trusted functionality machine F . To prove security, we dem-
onstrate that no environment Z can distinguish the real and ideal
interactions. In other words, we want to show that the real-world
simulator achieves the same effect in the ideal interaction.

(1) Security against a semi-honest client. We define a simulator
sim that simulates an admissible adversaryA which has compro-
mised the client in the real world. As for forward propagation (see
Figure 3), sim conducts the following: 1) receives from Z the

HSS based share set xx1; 2) sends xx1 to F and receives the HSS
based share set xx2, including three ciphertexts (see from Eq. (5));
3) constructs another HSS based share set exex1, which has the same
data structure as xx1; and 4) sends exex1 to S and receives the HSS
based share set exex2. Here, exex2 is indistinguishable from xx2 due to
the randomness of vvS in Eq. (5) and the security of CKKS. Thus
the forward propagation is secure against a semi-honest client.
In softmax calculation as shown in Figure 4, sim conducts

as follows: 1) receives from Z a random number r and a ran-
dom vector ddC; 2) sends r and ddC to F and receives the HSS
based share set xx1, including two ciphertexts (see from
Eq. (11)); 3) constructs another random number er and random
vector ededC, which have the same structure as r and ddC; and 4)
receives from S the HSS based share set exx1. Here xx1 is indis-
tinguishable from exex1 due to the randomness of ddS in Eq. (11)
and the security of CKKS. Thus the softmax calculation is
secure against a semi-honest client.
In backpropagation as shown in Figure 5, sim conducts as

follows: 1) receives from Z the random matrix DC; 2) sends
DC to F and gets HSS based share set xx1; 3) constructs another
random matrix eDC; and 4) receives from S the HSS based
share set exx1. Here exex1 is indistinguishable from xx1 due to ran-
domness of ddS and llS , and the security of CKKS.
Furthermore, the calculation for ½dd,C is piggybacked in the

weight/bias update for previous layer to enable the next round
of weight/bias update. In such case, sim conducts as follows:
1) receives from Z a random vector ppC; 2) sends ppC to F and
gets a ciphertext according to Eq. (32) and a plaintext tuple
ðr3ddS1 ; r4ddS2 Þ; 3) constructs another random vector eppC; 4)
receives from S the ciphertext ½gg3,S and calculates the ReLU
derivative by Eq. (25); 5) calculates a ciphertext ½eppS,S by
Eq. (31) and sends ½eppC,C and ½eppS,S to S; and 6) receives from
S the ciphertext of Eq. (32) and the plaintext tuple with the
same structure as ðr3ddS1 ; r4ddS2 Þ. Here the ciphertext in step 2)
are indistinguishable from these in step 6) due to the random-
ness of qqS . The plaintext tuple in step 2) is also indistinguish-
able from the one in step 6) due to randomness of ddS . Thus,
the backpropagation is secure against a semi-honest client.
(2) Security against a semi-honest server. The proof is simi-

lar to the security against a semi-honest client, as detailed in
Appendix E.

VII. EVALUATION

We implement SecureTrain using a C++ backend. The source
code is published at GitHub.4 Both the client and server run

TABLE III
COMPUTATION COMPLEXITY

TABLE IV
COMMUNICATION COMPLEXITY IN EACH PART

4 https://github.com/ChiaoThon/SecureTrain

196 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

Ubuntu and have an Intel i7-8700 3.2 GHz CPU with 12 cores
and 16 GB RAM. The network link between them is a Gigabit
Ethernet. This experiment setting is similar to the ones adopted
in existing works such as [24]. The Microsoft SEAL package is
used for HE computations [59]. The CKKS scheme is adopted in
SecureTrain. Note that CKKS directly supports floating point
encryption/decryption/operations. That is, it does not need to
encode floating point numbers in NN compuation into integers
for encryption/decryption as many other encryption schemes.
The five parameters of CKKS, i.e., the polynomial modulus
degree, coefficient modulus size, noise standard deviation, num-
ber of slots in the ciphertext, and the precision of floating point
in bits, are set as 8192, 200, 3.2, 4096, and 40, respectively.
Such parameter selection can guarantee the correct decryption
of the 0-multiplicative-depth ciphertexts in SecureTrain (e.g.,
the randomized ciphertexts from server in Eq. (5)) on the crypto
domain, as demonstrated in SEAL library [59]. We test Secure-
Train on the widely usedMNIST dataset [54] with 60 K training
images and 10 K testing images. We adopt a classic neural net-
work model that has been widely used in previous works includ-
ing SecureML [21], GELU-Net [48], CryptoDL [27],
SecureNN [29] and ABY [28]. It includes four layers including
two hidden layers. The input dimension is 784 which corre-
sponds to the total number of pixels in a MNIST image. The
dimension for two hidden layers is 128. The output dimension is
10which corresponds to 10 digit classes ofMNIST dataset.

A. Performance in Inference

SecureTrain is able to conduct both inference and training.
We first look at the inference performance compared with
four state-of-the-art privacy-preserved inference frameworks.
Table V illustrates their inference performance including the
runtime, communication cost, and the inference accuracy. The
runtime is the duration from the moment when the client sends
an image to the server, to the moment when the client receives
the inference result from the server. SecureTrain achieves an
inference speedup of 48!, 10!, 7!, and 1.3!, respectively,
compared with SecureML [21], MiniONN [22], EzPC [23],
and Xonn [24]. SecureTrain achieves the same inference accu-
racy, 97.6%, as Minionn, EzPC and Xonn. With regard to the
communication cost, SecureTrain outperforms other schemes
by 2! to 40!. This is because all those schemes adopted GC
for non-linear activation calculations, while SecureTrain uses
a highly efficient approach based on HSS.

Next, as shown in Figure 6, we illustrate the performance
gain of SecureTrain in non-linear computation by comparing

the performance of ReLU calculation using GC and the
scheme used by SecureTrain. Specifically, the SecureTrain
scheme saves time about two orders of magnitude compared
with GC. In these cases, the runtime of GC ranges from 50 to
171 milliseconds while the SecureTrain scheme can complete
it around 0.4 ms. The communication cost reduction reaches
up to one order of magnitude, thanks to both significantly
reduced computation complexity and the scalability on data
processing of the packed HE technique.

B. Performance in Training

In neural network training, a critical step is the computation
of softmax, which is needed by the backpropagation. It is
more difficult than other nonlinear functions, due to the spe-
cific form of the function which involves the exponential nor-
malization of the input. The existing schemes all use
approximation (see Fig. 2), e.g., the piecewise linear sigmoid
approximation [25], Maclaurin sigmoid approximation [26],
polynomial sigmoid approximation by CryptoDL [27], ReLU
based sigmoid approximation by ABY [28], and ReLU based
approximation by SecureML [21] and SecureNN [29]. Note
that the first four schemes did not directly approximate the
softmax function, but used an approximated sigmoid to substi-
tute the softmax function.

Figs. 7(a)–(f) illustrate the training output over 10 epochs by
the above five approximation approaches compared with
SecureTrain that implements the original softmax function.
Each row in a subfigure is the output vector corresponding to the
10 digit classes at a given epoch by the corresponding approach,
while each column is the output value for a given class over 10
epochs. The training image is a digit ‘7’. Fig. 7(f) indicates that
the training using SecureTrain that implements the original soft-
max function efficiently learns the input feature even at the early
epochs, with a dominant value in the 8-th column (which corre-
sponds to the class ‘7’) and much smaller values in other col-
umns. In contrast, all five approximation approaches (Fig. 7(a)–
(e)) have poor performance. Among them, the piecewise linear

TABLE V
INFERENCE PERFORMANCE COMPARISON

Fig. 6. Performance comparison for ReLU calculation: (a) Runtime and (b)
Communication cost with different output dimensions.

ZHANG et al.: SECURETRAIN: AN APPROXIMATION-FREE AND COMPUTATIONALLY EFFICIENT FRAMEWORK 197

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

approximation (Fig. 7(a)) performs better and converges, while
other approximation approaches cannot learn the input feature
‘7’ well and do not converge.

Next we examine the overall training loss and testing accu-
racy, as illustrated in Fig. 8. Among the approximation
approaches, the piecewise linear approximation has a converged
training loss. However, there is still a significant performance
gap compared with SecureTrain, which converges significantly
faster and achieves a 93.17% testing accuracy after 10 epochs.
Other approximation approaches cannot even converge and
have a poor testing accuracy. Fig. 8(a) illustrates that these
approximation approaches have an unstable loss. ReLU based
sigmoid approximation and Maclaurin approximation have
about 10% accuracy, which is equivalent to a random guess, and
indicates the trained models actually have not learned the fea-
tures effectively. The polynomial based sigmoid approximation
has an almost flat loss curve and a poor 10% accuracy, which
indicates the model does not become better with the training.
This happens when the input has a relatively wide range, which
results in the polynomial approximation significantly deviating
from the original softmax function.

To examine the training stability of each approximation
approach, we train the network 500 times using each
approach, and record the loss and testing accuracy for each

experiment. Fig. 9 plots the probability density distribution
(PDF) of the loss from the 500 experiments. While Secure-
Train keeps the training loss around 0.23, the approximation
based approaches have large loss. This indicates the poor
training stability of those approaches. The polynomial based
sigmoid approximation has a loss around 2.3. While it is rela-
tively small, the problem of this approach is that the loss does
not reduce or converge throughout the training process.
Fig. 10 plots the PDF of the testing accuracy over the 500

trainings for each approach. The testing accuracies of Secure-
Train are all very close, centering around 93%. The piecewise
linear approximation has an accuracy of around 73% to 77%.
In contrast, other approximations have highly diverse accura-
cies among different experiments. This again indicates the
poor training stability. The polynomial based sigmoid has a
consistently poor accuracy around 10%, as the training process
does not really converge. In summary, the training by Secure-
Train is consistently stable, and the accuracy is much better
than the approximation based approaches.
Next, we explore the performance under different network

structures. We change the number of hidden neurons in each
hidden layer from as small as 8 to 1024, where 1024 is widely
used in modern neural network structures. All network struc-
tures are trained for 10 epochs. Fig. 11 illustrates the output
distribution of SecureTrain and the five approximation

Fig. 7. Comparison of the last layer output of different approximations over 10 epochs: (a) Piecewise linear approximation [25]; (b) Maclaurin approxima-
tion [26]; (c) ReLU based softmax approximation [21], [29]; (d) ReLU based sigmoid approximation [28]; (e) Polynomial based sigmoid approximation [27]; (f)
Non approximation in SecureTrain.

Fig. 8. Training loss and testing accuracy: (a) Loss during training and (b)
Testing accuracy with different approximation approaches.

Fig. 9. Probability density distribution of training loss with different approx-
imations: (a) Non approximation in SecureTrain; (b) ReLU based softmax
approximation [21], [29]; (c) Maclaurin approximation [26]; (d) Piecewise lin-
ear approximation [25]; (e) Polynomial based sigmoid approximation [27]; (f)
ReLU based sigmoid approximation [28].

198 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

approaches, as a function of the number of neurons in the hid-
den layer. Each row in a subfigure is the 10-dimension output
vector for a network with the given number of hidden neurons.
As can be seen, SecureTrain effectively learns the data feature
under different network structures, which has a large output
value for class ‘7’ (corresponding to the 8-th column in the
subfigure). Among the approximation schemes, the piecewise
linear approximation performs relatively better than others.
Nevertheless, it still has a significant performance gap com-
pared with SecureTrain. It needs 128 or more hidden neurons
to effectively recognize the input image. The remaining
approximation approaches show unstable output distributions
under different network structures. This illustrates the instabil-
ity of these approximations as they work for certain network
structures, but do not achieve the consistent stability for gen-
eral larger networks.

Fig. 12 plots the training loss over 10 epochs under different
network structures. We have the following observations. 1)
The piecewise linear approximation approach performs better
with a larger network (more hidden neurons); 2) the loss of
the Maclaurin based approximation increases under all net-
work settings; 3) the ReLU based approximation approach has

loss decreasing for the network with 128 hidden neurons,
while the loss bumps up and down or stays flat for all other
networks; 4) the ReLU based sigmoid approximation
approach performs similarly as the ReLU based approxima-
tion approach; 5) the loss of the polynomial based sigmoid
approximation stays flat or decreases slightly (by about 10#5

for 10 epochs), which is technically not trainable. In contrast,
SecureTrain converges for all network structures at a fast
pace, thanks to its novel implementation of the original
softamax.

The testing accuracies under different network structures
for each approach are illustrated in Fig. 13. SecureTrain sig-
nificantly outperforms all other approaches. Besides the low
accuracy, another serious issue for the approximation based
approaches (except the piecewise linear approximation) is that
their accuracy decreases under a larger, more sophisticated
network structures. The piecewise linear approximation
approach is better than other approximation based approaches
in that its accuracy increases under a larger network and
reaches around 80% accuracy for the network with 1024 hid-
den neurons. However, it is still significantly lower than the
94% accuracy of SecureTrain.

Fig. 10. Probability density distribution of accuracy with different approxi-
mations: (a) Non approximation in SecureTrain; (b) ReLU based softmax
approximation [21], [29]; (c) Maclaurin approximation [26]; (d) Piecewise lin-
ear approximation [25]; (e) Polynomial based sigmoid approximation [27]; (f)
ReLU based sigmoid approximation [28].

Fig. 11. Output probability distribution of each approach with different network structures in terms of the number of hidden neurons: (a) Piecewise linear
approximation [25]; (b) Maclaurin approximation [26]; (c) ReLU based softmax approximation [21], [29]; (d) ReLU based sigmoid approximation [28]; (e) Poly-
nomial based sigmoid approximation [27]; (f) Non approximation in SecureTrain.

Fig. 12. Training loss of different network structures under different approx-
imations: (a) Piecewise linear approximation [25]; (b) Maclaurin approxima-
tion [26]; (c) ReLU based softmax approximation [21], [29]; (d) ReLU based
sigmoid approximation [28]; (e) Polynomial based sigmoid approxima-
tion [27]; (f) Non approximation in SecureTrain.

ZHANG et al.: SECURETRAIN: AN APPROXIMATION-FREE AND COMPUTATIONALLY EFFICIENT FRAMEWORK 199

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

Furthermore, Table VI shows the time cost of the state-of-
the-art scheme and SecureTrain in training phase with batch
size 128. We can see that SecureTrain keeps over 19% higher
accuracy and a 10! training speedup. Meanwhile, Secure-
Train dose not need a Trust Third Party (TTP), which is
another sharp contrast in terms of practical usability as the
TTP is not preferred in practice.

In summary, the softmax function in the last layer, is critical
for the backpropagation in training. All existing approaches
for privacy preserved neural network training must reply on
approximation. However, most of them result in unstable
training, which finally leads to an unusable model. The pro-
posed SecureTrain uses a creative design to enable the secure
implementation of the original softmax function as well as the
updating process in a cost-efficient manner. Therefore, it
maintains all the good features as the plaintext version of
training, including the same model accuracy, the convergence
of training, and better accuracy with a larger, more sophisti-
cated model structure. SecureTrain also significantly outper-
forms all existing approaches in training speed, testing
accuracy, and convergence speed.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel privacy-preserved DL
framework, SecureTrain, which address the two fundamental
challenges faced by privacy-preserved DL model training: (1)
model accuracy loss and training instability due to use of function
approximation, and (2) computation efficiency. The overarching
goal is to eliminate the use of function approximation to carry out
training without accuracy loss and instability, and reduce the use
of Perm operation to improve computation efficiency. Secure-
Train features an innovative design that enables joint linear and
non-linear computation based on the Homomorphic Secret Share
(HSS) [30]–[32] to achieve approximation free of non-polyno-
mial functions. On the other hand, it eliminates the time

consumingHomomorphic permutation operation (Perm) by care-
fully designing the share set to substantially reduce the computa-
tion time. Moreover, SecureTrain exploits the data flow in both
forward propagation and backpropagation to enable an efficient
piggybacking, thus accelerating the overall computation and
reducing the communication cost. We have analyzed the compu-
tation and communication complexity of SecureTrain and proven
its security using the standard simulation approach. We have
implemented SecureTrain and benchmarked its performance
with well-known datasets. Our results have shown that
SecureTrain not only ensures privacy-preserved inference
and training, but also supports a significant speedup and
training stability comparable to plaintext learning. Overall,
SecureTrain is an accurate, efficient and privacy-preserved
framework. To the best of knowledge, this is the first work
that addresses both accuracy and efficiency in privacy-pre-
served deep neural network learning.
The privacy-preserved neural network training is at its early

stage and dramatically developing. SecureTrain takes its initial
effort in this forfront research. As future directions, we plan to
make the system more adaptive to state-of-art network architec-
tures such as support for changing learning rates, optimizers
other than SGD that are required to achieve state-of-the-art per-
formance, and hyperaparameter tuning on a validation set.
Moreover, we plan to strengthen the security level to address
malicious model, e.g., using the Zero-Knowledge proof [72].

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Patt. Recognit., 2016,
pp. 770–778.

[2] O. M. Parkhi et al., “Deep face recognition.” in Brit. Mach. Vis. Assoc.,
vol. 1, no. 3, 2015, p. 6.

[3] A. I. Maqueda, A. Loquercio, G. Gallego, N. Garc!ıa, and D. Scaramuzza,
“Event-based vision meets deep learning on steering prediction for self-
driving cars,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 5419–5427.

[4] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and wire-
less networking: A survey,” IEEE Commun. Surv. Tut., vol. 21, no. 3,
pp. 2224–2287, 2019.

[5] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Commun. Surv. Tut., vol. 20,
no. 4, pp. 2595–2621, 2018.

TABLE VI
COMPARISON OF TRAINING TIME

Fig. 13. Testing accuracy of different network structures under different
approximations: (a) Piecewise linear approximation [25]; (b) Maclaurin
approximation [26]; (c) ReLU based softmax approximation [21], [29]; (d)
ReLU based sigmoid approximation [28]; (e) Polynomial based sigmoid
approximation [27]; (f) Non approximation in SecureTrain.

Fig. 14. Diagram of sigmoid calculation.

200 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

[6] X. Song, H. Kanasugi, and R. Shibasaki, “Deeptransport: Prediction and
simulation of human mobility and transportation mode at a citywide lev-
el,” in Proc. 25th Int. Joint Conf. Artif. Intell., 2016, pp. 2618–2624.

[7] B. Mao et al., “Routing or computing? the paradigm shift towards intel-
ligent computer network packet transmission based on deep learning,”
IEEE Trans. Comput., vol. 66, no. 11, pp. 1946–1960, Nov. 2017.

[8] V. L. Thing, “IEEE 802.11 network anomaly detection and attack classi-
fication: A deep learning approach,” in Proc. IEEE Wireless Commun.
Netw. Conf., WCNC. 2017, pp. 1–6.

[9] M. A. Wijaya, K. Fukawa, and H. Suzuki, “Intercell-interference cancel-
lation and neural network transmit power optimization for mimo
channels,” in Proc. IEEE 82nd Veh. Technol. Conf., VTC2015-Fall,
2015, pp. 1–5.

[10] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1097–1105.

[11] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” 2014, arXiv:1409.1556.

[12] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compression and
hardware acceleration for neural networks: A comprehensive survey,”
in Proc. IEEE, vol. 108, no. 4, pp. 485–532, Apr. 2020.

[13] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Membership infer-
ence attacks against machine learning models,” in Proc. Secur. Privacy
(SP), IEEE Symp. 2017, pp. 3–18.

[14] F. Tram"er, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in Proc. 25th USENIX
Conf. Secur. Symp., 2016, pp. 601–618.

[15] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proc. 22nd ACM SIGSAC Conf. Comput. Commun. Secur., 2015,
pp. 1322–1333.

[16] G. J. Annas et al., “Hipaa regulations-a new era of medical-record
privacy?,” New Engl. J. Med., vol. 348, no. 15, pp. 1486–1490, 2003.

[17] P. Voigt and A. Von dem Bussche, “The eu general data protection regu-
lation (GDPR),” A Practical Guide, 1st Ed., Cham: Springer, 2017.

[18] A. A. Abd EL-Latif, B. Abd-El-Atty, S. E. Venegas-Andraca, and
W. Mazurczyk, “Efficient quantum-based security protocols for infor-
mation sharing and data protection in 5G networks,” Future Gener.
Comput. Syst., vol. 100, pp. 893–906, 2019.

[19] H. Qiu, K. Kapusta, Z. Lu, M. Qiu, and G. Memmi, “All-or-nothing data
protection for ubiquitous communication: Challenges and perspectives,”
Inf. Sci., vol. 502, pp. 434–445, 2019.

[20] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig, and
J. Wernsing, “Cryptonets: Applying neural networks to encrypted data
with high throughput and accuracy,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 201–210.

[21] P. Mohassel and Y. Zhang, “SecureMLl: A system for scalable privacy-
preserving machine learning,” in Proc. 38th IEEE Symp. Secur. Privacy,
SP, 2017, pp. 19–38.

[22] J. Liu, M. Juuti, Y. Lu, and N. Asokan, “Oblivious neural network pre-
dictions via minionn transformations,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., 2017, pp. 619–631.

[23] N. Chandran, D. Gupta, A. Rastogi, R. Sharma, and S. Tripathi, “Ezpc:
programmable, efficient, and scalable secure two-party computation for
machine learning,” Cryptol. ePrint Arch., Tech. Rep. 2017/1109, 2017.

[24] M. S. Riazi, M. Samragh, H. Chen, K. Laine, K. E. Lauter, and
F. Koushanfar, “XONN: XNOR-based oblivious deep neural network
inference,” IACR Cryptol. ePrint Arch., vol. 2019, p. 171, 2019.

[25] T. Chen and S. Zhong, “Privacy-preserving backpropagation neural net-
work learning,” IEEE Trans. Neural Netw., vol. 20, no. 10, pp. 1554–1564,
Oct. 2009.

[26] J. Yuan and S. Yu, “Privacy preserving back-propagation neural net-
work learning made practical with cloud computing,” IEEE Trans. Par-
allel Distrib. Syst., vol. 25, no. 1, pp. 212–221, Jan. 2014.

[27] E. Hesamifard, H. Takabi, M. Ghasemi, and R. N. Wright, “Privacy-
preserving machine learning as a service,” in Proc. Privacy Enhancing
Technol., vol. 2018, no. 3, pp. 123–142, 2018.

[28] P. Mohassel and P. Rindal, “Aby 3: a mixed protocol framework for
machine learning,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2018, pp. 35–52.

[29] S. Wagh, D. Gupta, and N. Chandran, “Securenn: 3-party secure compu-
tation for neural network training,” Proc. Privacy Enhancing Technol.,
vol. 1, no. 3, pp. 26–49, Jul. 2019.

[30] E. Boyle, G. Couteau, N. Gilboa, Y. Ishai, and M. Orr"u, “Homomorphic
secret sharing: optimizations and applications,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2017, pp. 2105–2122.

[31] E. Boyle, N. Gilboa, and Y. Ishai, “Breaking the circuit size barrier for
secure computation under ddh,” inProc. Annu. Int. Cryptol. Conf.. Berlin,
Germany: Springer, 2016, pp. 509–539.

[32] E. Boyle, N. Gilboa, and Y. Ishai, “Group-based secure computation: opti-
mizing rounds, communication, and computation,” in Proc. Annu. Int.
Conf. Theory Appl. Cryptogr. Techn., Berlin, Germany: Springer, 2017,
pp. 163–193.

[33] O. Goldreich, Foundations Of Cryptography: Volume 2, Basic Applica-
tions, Chapter 7. Cambridge, U.K.: Cambridge University Press, 2009.

[34] O. Goldreich, “Secure multi-party computation,” Manuscript. Prelimi-
nary Version, vol. 78, 1998.

[35] E. Chou, J. Beal, D. Levy, S. Yeung, A. Haque, and L. Fei-Fei, “Faster
cryptonets: Leveraging sparsity for real-world encrypted inference,”
2018, arXiv:1811.09953.

[36] X. Jiang, M. Kim, K. Lauter, and Y. Song, “Secure outsourced matrix
computation and application to neural networks,” in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur., 2018, pp. 1209–1222.

[37] Z. Brakerski, C. Gentry, and S. Halevi, “Packed ciphertexts in lwe-based
homomorphic encryption,” in Public-Key Cryptogr.–PKC 2013. Berlin,
Germany: Springer, 2013, pp. 1–13.

[38] B. D. Rouhani, M. S. Riazi, and F. Koushanfar, “Deepsecure: Scalable
provably-secure deep learning,” in Proc. 55th ACM/ESDA/IEEE Des.
Automat. Conf., DAC, 2018, pp. 1–6.

[39] A. C.-C. Yao, “How to generate and exchange secrets,” in Proc. 27th
Annu. Symp. Found. Comput. Sci., SFCS 1986, 1986, pp. 162–167.

[40] L. Wan, W. K. Ng, S. Han, and V. Lee, “Privacy-preservation for gradi-
ent descent methods,” in Proc. 13th ACM SIGKDD Conf. Knowl. Dis-
cov. Data Mining, 2007, pp. 775–783.

[41] F. McKeen et al., “Innovative instructions and software model for iso-
lated execution,” in Proc. 2nd Int. Workshop Hardware Architect.
Support Secur. Privacy, Jun. 2013.

[42] O. Ohrimenko et al., “Oblivious multi-party machine learning on trusted
processors,” in Proc. 25th USENIX Secur. Symp. (USENIX Security 16),
2016, pp. 619–636.

[43] S. P. Bayerl et al., “Offline model guard: Secure and private ml on mobile
devices,” Design, Automat. & Test Europe Conf. & Exhib., DATE, 2020,
pp. 460–465.

[44] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and
I. Stoica, “Opaque: An oblivious and encrypted distributed analytics
platform,” in Proc. 14th USENIX Symp. Netw. Syst. Des. Implementa-
tion, NSDI 17, 2017, pp. 283–298.

[45] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proc.
22nd ACMSIGSACConf. Comput. Commun. Secur., 2015, pp. 1310–1321.

[46] M. Abadi et al., “Deep learning with differential privacy,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., 2016, pp. 308–318.

[47] N. Phan, Y. Wang, X. Wu, and D. Dou, “Differential privacy preservation
for deep auto-encoders: an application of human behavior prediction,” in
Proc. 30th AAAI Conf. Artif. Intell., Feb. 2016, pp. 1309–1316.

[48] Q. Zhang, C. Wang, H. Wu, C. Xin, and T. V. Phuong, “Gelu-net: A
globally encrypted, locally unencrypted deep neural network for
privacy-preserved learning,” in Proc. Int. Joint Conf. Artif. Intell., 2018,
pp. 3933–3939.

[49] S. Li et al., “Falcon: A fourier transform based approach for fast and secure
convolutional neural network predictions,” 2018, arXiv:1811.08257.

[50] C. Juvekar, V. Vaikuntanathan, and A. Chandrakasan, “Gazelle: A low
latency framework for secure neural network inference,” in Proc. 27th
USENIX Secur. Symp., USENIX Assoc., Aug. 2018, pp. 1651–1668.

[51] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider,
and F. Koushanfar, “Chameleon: A hybrid secure computation frame-
work for machine learning applications,” in Proc. Asia Conf. Comput.
Commun. Secur., 2018, pp. 707–721.

[52] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen: Maliciously
secure coopetitive learning for linear models,” 2019, arXiv:1907.07212.

[53] R. Xu, J. B. Joshi, and C. Li, “Cryptonn: Training neural networks over
encrypted data,” 2019, arXiv:1904.07303.

[54] Y. LeCun et al., “Learning algorithms for classification: A comparison
on handwritten digit recognition,” Neural Netw.: The Statist. Mechanics
Perspective, vol. 261, 1995, Art. no. 276.

[55] O. Russakovsky et al., “Imagenet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[56] Y. Jia et al., “Caffe: Convolutional architecture for fast feature
embedding,” in Proc. 22nd ACM Int. Conf. Multimedia. 2014,
pp. 675–678.

[57] H. Takabi, J. B. Joshi, and G.-J. Ahn, “Security and privacy challenges
in cloud computing environments,” IEEE Secur. Privacy, vol. 8, no. 6,
pp. 24–31, Nov.–Dec. 2010.

ZHANG et al.: SECURETRAIN: AN APPROXIMATION-FREE AND COMPUTATIONALLY EFFICIENT FRAMEWORK 201

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

[58] J. H. Cheon, A. Kim, M. Kim, and Y. Song, “Homomorphic encryption for
arithmetic of approximate numbers,” inProc. Int. Conf. Theory Appl. Cryp-
tology Inf. Secur. Berlin, Germany: Springer, 2017, pp. 409–437.

[59] “Microsoft seal (release 3.2),” Microsoft Research, Redmond, WA,
Feb. 2019. [Online]. Available: https://github.com/Microsoft/SEAL.

[60] B. Wang and N. Z. Gong, “Stealing hyperparameters in machine
learning,” 2018, arXiv:1802.05351.

[61] Y. Liu et al., “Trojaning attack on neural networks,” in Proc. Conf.:
Netw. Distrib. Syst. Secur. Symp., Jan. 2018.

[62] W. Hu and Y. Tan, “Generating adversarial malware examples for
black-box attacks based on gan,” 2017, arXiv:1702.05983.

[63] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive privacy anal-
ysis of deep learning: Stand-alone and federated learning under passive
and active white-box inference attacks,” 2018, arXiv:1812.00910.

[64] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” 2016, arXiv:1607.02533.

[65] N. Narodytska and S. Kasiviswanathan, “Simple black-box adversarial
attacks on deep neural networks,” in Proc. IEEE Conf. Comput. Vis.
Patt. Recognit. Workshops, CVPRW, 2017, pp. 1310–1318.

[66] S. Gulshad, J. H. Metzen, A. Smeulders, and Z. Akata, “Interpreting
adversarial examples with attributes,” 2019, arXiv:1904.08279.

[67] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok, “Synthesizing robust
adversarial examples,” 2017, arXiv:1707.07397.

[68] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial machine learn-
ing at scale,” 2016, arXiv:1611.01236.

[69] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11,
pp. 612–613, Nov. 1979.

[70] P. Vepakomma, J. Balla, and R. Raskar, “Splintering with distributions: A
stochastic decoy scheme for private computation,” 2020, arXiv:2007.02719.

[71] S. Halevi and V. Shoup, “Algorithms in helib,” in Int. Cryptol. Conf..
Berlin, Germany: Springer, 2014, pp. 554–571.

[72] O. Goldreich, Foundations of Cryptography: Volume 1, Basic Tools,
Chapter 4. Berlin, Germany: Cambridge University Press, 2007.

[73] S. C. Kothari, “Generalized linear threshold scheme,” in Proc. Work-
shop Theory Appl. Cryptogr. Techn., Berlin, Germany: Springer, 1984,
pp. 231–241.

Qiao Zhang received the B.S. and M.S. degrees from
the School of Communication and Information Engi-
neering, Chongqing University of Posts and Tele-
communications, Chongqing, China in 2014 and
2017, respectively. She is currently the Ph.D. candi-
date with the Department of Electrical and Computer
Engineering, Old Dominion University (ODU), Nor-
folk, VA, USA. Her current research focuses on pri-
vacy preserving machine learning.

Chunsheng Xin (Senior Member, IEEE) received the
Ph.D. degree in computer science and engineering from
the State University of New York, Buffalo in 2002. He
is a Professor with the Center for Cybersecurity Educa-
tion and Research, and the Department of Electrical
and Computer Engineering, Old Dominion University.
His research interests include cybersecurity, machine
learning, wireless communications and networking,
cyber-physical systems, and Internet of Things. His
research has been supported by almost 20 NSF and
other federal grants, and results in more than 100 papers

in leading journals and conferences, including three best paper awards, as well as
books, book chapters, and patent. He was Co-Editor-in-Chief/Associate Editors
of multiple international journals, and symposium/track chairs of multiple inter-
national conferences including IEEEGlobecom and ICCCN. .

Hongyi Wu (Fellow, IEEE) received the B.S. degree
in scientific instruments from Zhejiang University,
Hangzhou, China, in 1996, and the M.S. degree in
electrical engineering and the Ph.D. degree in com-
puter science from the State University of New York,
Buffalo in 2000 and 2002, respectively. He is the
Batten Chair of Cybersecurity and the Director with
the Center for Cybersecurity Education and
Research, Old Dominion University (ODU). He is
also a Professor with the Department of Electrical
and Computer Engineering and holds joint appoint-

ment in Department of Computer Science. Before joining ODU, he was an
Alfred and Helen Lamson Endowed Professor with the Center for Advanced
Computer Studies (CACS), University of Louisiana at Lafayette (UL Lafay-
ette). His research interests include networked cyber-physical systems for
security, safety, and emergency management applications, where the devices
are often light-weight, with extremely limited computing power, storage
space, communication bandwidth, and battery supply. He was the recipient of
the NSF CAREER Award in 2004 and UL Lafayette Distinguished Professor
Award in 2011.

202 IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, VOL. 9, NO. 1, JANUARY/FEBRUARY 2022

Authorized licensed use limited to: Old Dominion University. Downloaded on July 25,2022 at 04:14:05 UTC from IEEE Xplore. Restrictions apply.

