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Abstract
A multigrid multilevel Monte Carlo (MGMLMC) method is developed for the stochastic
Stokes–Darcy interface model with random hydraulic conductivity both in the porous media
domain and on the interface. Three interface conditions with randomness are considered on
the interface between Stokes and Darcy equations, especially the Beavers–Joesph interface
condition with random hydraulic conductivity. Because the randomness through the interface
affects the flow in the Stokes domain, we investigate the coupled stochastic Stokes–Darcy
model to improve the fidelity.Under suitable assumptions on the randomcoefficient, we prove
the existence and uniqueness of the weak solution of the variational form. To construct the
numerical method, we first adopt the Monte Carlo (MC) method and finite element method,
for the discretization in the probability space and physical space, respectively. In order to
improve the efficiency of the classical single-level Monte Carlo (SLMC) method, we adopt
the multilevel Monte Carlo (MLMC) method to dramatically reduce the computational cost
in the probability space. A strategy is developed to calculate the number of samples needed in
MLMC method for the stochastic Stokes–Darcy model. In order to accomplish the strategy
for MLMC method, we also present a practical method to determine the variance conver-
gence rate for the stochastic Stokes–Darcy model with Beavers–Joseph interface condition.
Furthermore, MLMC method naturally provides the hierarchical grids and sufficient infor-
mation on these grids for multigrid (MG) method, which can in turn improve the efficiency
of MLMC method. In order to fully make use of the dynamical interaction between this two
methods, we propose a multigrid multilevel Monte Carlo (MGMLMC) method with finite
element discretization for more efficiently solving the stochastic model, while additional
attention is paid to the interface and the random Beavers–Joesph interface condition. The
computational cost of the proposed MGMLMC method is rigorously analyzed and com-
pared with the SLMC method. Numerical examples are provided to verify and illustrate the
proposed method and the theoretical conclusions.
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1 Introduction

The Stokes–Darcy interface model has attracted significant attention from scientists and
engineers due to its wide range of applications, such as interaction between surface
and subsurface flows [25,36,38,67,78], industrial filtrations [45,64], groundwater system
in karst aquifers [24,50,62,63], petroleum extraction [2,42,61,85,122], and many oth-
ers [26,28,34,35,84,100,105,110,124]. Therefore it is not surprising that many different
numerical methods have been proposed and analyzed for the Stokes–Darcy model, includ-
ing domain decomposition methods [14,20,22,30,37,39,40,60,109], Lagrange multiplier
methods [4,51,79], discontinuous Galerkin methods [32,57,71,82,97], multigrid methods
[1,18,87], partitioned time stepping methods [74,88,103,121], coupled finite element meth-
ods [3,19,72,86,101], and many others [8,13,31,44,48,58,65,69,70,81,89,102,112,114].

The above existing works only consider the deterministic Stokes–Darcy model, for which
the problem data, including the model coefficients, the forcing terms, the domain geome-
try, the boundary conditions and the initial conditions, are assumed to be perfectly known.
However, in reality there is a significant amount of uncertainty involved in determining these
real-life data due to measurements and simplifications [33,52,91,104]. Up to the authors’
knowledge, in the literature there is only one existing pioneer work [76] which considers
the stochastic transport problem of Stokes–Darcy model with Beavers–Joseph–Saffmann
interface condition.

In recent years, various numerical methods have been developed to solve stochastic partial
differential equations, such as the polynomial chaos methods [117,118], the collocation
methods [5,6], the sparse grid methods [9,92,93], and many others [7,65,94,111,115,116,
119,123,125]. There also exist many works on the uncertainties of the porous media flow by
assuming the hydraulic conductivity of the porous media is a random field in the second order
elliptic equation [41,49,80,120]. But the Stokes–Darcy model has a much more complicated
system for the uncertainties due to the flow interaction on the interface between the porous
media flow and the free flow in conduits.

Therefore, it is not trivial to study the effect of randomness of the hydraulic conductivity on
thewhole coupled flow performance, which is key component of this paper, especially around
the interface. Furthermore, most of the existing works on Stokes–Darcy model consider the
simplified Beavers–Joseph–Saffmann interface condition, including the pioneer work [76]
for the stochastic transport problem of Stokes–Darcy model. In this paper, we will consider
the original Beavers–Joseph interface condition [12], which is more complicated and brings
more difficulties [21,23]. Starting from the analysis for the wellposedness of the stochastic
Stokes–Darcy model with random Beavers–Joseph condition, we will develop the proposed
method step by step, by following and improving the ideas of the multigrid multilevel Monte
Carlo (MGMLMC) method in [76].

The Monte Carlo method [99] is widely used in a range of stochastic problems, owing to
the dimension independent convergence rate of the sampling error. However, high accuracies
ofMonte Carlomethod require a large number of samples, and the convergence is determined
by the number of the samplings under the Central Limit Theorem. Then the performance of
Monte Carlo method for the stochastic partial differential equations on a fine mesh will lead
to very expensive computational cost. To reduce the computational cost for simulating the
coupled stochastic Stokes–Darcymodel, we adopt themultilevelMonte Carlomethod, which
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is an effective variance reductionmethod. This method is introduced byM. Giles [53,54], and
has been used in many research works [11,27,43,55,77,107]. It is much more costly efficient
by significantly reducing the number of samples on the fine meshes.

However, it is not trivial to determine the number of samples in each level to keep the global
accuracy while minimizing the cost. Therefore, motivated by the idea in [75], in this paper we
particularly develop a strategy based on a detailed analysis to overcome this difficulty for the
stochastic Stokes–Darcymodel with randomBeavers–Joseph interface condition. To perform
this strategy, we also provide a suitable method to determine the variance convergence rate
for calculating the number of samples needed in MLMC method.

Furthermore, the multilevel Monte Carlo method only reduces the computational cost in
the probability space, not in the physical space. Inspired by a fact that the multilevel Monte
Carlo method already has a set of hierarchical grids for the multilevel idea, it is a natural idea
to fullymake use of the same set of hierarchical grids to solve the discrete algebraic system by
using the powerful multigrid method [15,17,108], which can further improve the efficiency
of the proposed multilevel Monte Carlo method. Meanwhile, the saved information of the
multilevel Monte Carlo method on the set of hierarchical grids will also significantly reduce
the computational cost of the multigrid method.

Therefore, we adopt the multigrid multilevel Monte Carlo (MGMLMC) method, which
combines the multilevel Monte Carlo method and the multigrid method on the same set of
hierarchical grids to propose an even more costly efficient method. The MGMLMC method
has been developed for various models, such as the stochastic elliptic variational inequalities
[73], the stochastic elliptic equations [98], the lognormal diffusion problems [75], and the
transport in Stokes–Darcy system [76]. Particularly, the finite volumemethodwas used for the
spatial discretization in [76] to solve the transportmodel,whose velocity field is obtained from
the coupled Stokes–Darcy equation with the Beaver-Joseph-Saffmann interface condition.

In this paper, we develop the MGMLMC method for the stochastic Stokes–Darcy
model with the random Beavers–Joseph interface condition. The randomness in the original
Beavers–Joseph interface condition, which is more complicated than the simplified Beaver-
Joseph-Saffmann interface condition, brings more difficulties to the model. In the proposed
method, finite elements are utilized for the physical space discretization, and the grid based
method [59] is adopted to generate the realizations of the randomhydraulic conductivity in the
probability space. Furthermore, the computational cost of the proposed MGMLMC method
is rigorously analyzed and compared with the SLMCmethod for the stochastic Stokes–Darcy
model with the random Beavers–Joseph condition.

The rest of the paper is organized as follows. In Sect. 2, we briefly recall the deterministic
Stokes–Darcy model. In Sect. 3, we present the stochastic Stokes–Darcy interface model, the
weak formulation of the stochastic Stokes–Darcy model and the proof of the wellposedness.
In Sect. 4, we recall the Monte Carlo method to approximate the numerical moments of
the stochastic solutions, adopt the multilevel Monte Carlo method to reduce the computa-
tional cost in probability space, and then develop the multigrid multilevel Monte Carlo to
further reduce the computational cost. In Sect. 5 we provide numerical examples to verify
the theoretical analysis and illustrate the features of the proposed methods.

2 Deterministic Model for Coupled PorousMedia Flowwith Fluid Flow

The coupled Stokes–Darcy system describes the confined flow byDarcy system in the porous
media domain and the free flow by Stokes equations in the conduit domain. Then three
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interface conditions are used to couple the flows in these two domains. In this paper, we
consider the coupled Stokes–Darcy system on a bounded domain Dms = Dm ∪ Ds ⊂ R

d ,
d = 2, 3,where Dm is the porousmedia domain and Ds is the conduit domain.We decompose
the boundary ∂Dms into two parts: Γm = ∂Dm\ΓI , Γs = ∂Ds\ΓI , and denote the interface
as ΓI = ∂Dm ∩ ∂Ds .

In the porous media domain Dm , the flow is governed by the Darcy system [10]

um(x) = −K(x)∇φm(x), in Dm, (1)

∇ · um(x) = fm(x), in Dm, (2)

here, um denotes the specific discharge in the porous media, K is the hydraulic conductivity
tensor of the porousmedia that is symmetric and positive definite in accordance with physical
meaning, φm is the hydraulic head, and fm is the sink/source term.

By substituting (1) into (2), we obtain the second-order form of the Darcy system

− ∇ · (K(x)∇φm(x)) = fm(x), in Dm . (3)

In the conduit domain Ds , the flow is governed by the Stokes equations:

− ∇ · T(us, ps) = fs, in Ds, (4)

∇ · us = 0, in Ds, (5)

where us denotes the fluid velocity, ps is the kinematic pressure, and fs is the external body
force. T is the stress tensor, defined as T(us, ps) = 2νD(us)− psI, where ν is the kinematic
viscosity of the fluid, I is the identity matrix, and D(us) = 1

2 (∇us + (∇us)T ).
On the interface between the porous media domain and the conduit domain, we impose

three interface conditions:

us · ns = (K∇φm) · nm, on ΓI , (6)

−n�
s T(us, ps)ns = g(φm − z), on ΓI , (7)

−τ�
j T(us, ps)ns = αν

√
d√

trace(Π(x))
τ�
j (us + K∇φm), on ΓI , (8)

where nm , ns denote the unit outer normal to the porous media and the conduit regions
at the interface ΓI , respectively, τ j ( j = 1, . . . , d − 1) denote mutually orthogonal unit
tangential vectors to the interface ΓI , z is the hight, g is the gravitational acceleration, and
Π(x) = K(x)ν

g is the intrinsic permeability. The first interface condition (6) is governed by
the conservation of mass, the second interface condition (7) represents the balance of the
kinematic pressure in the matrix and the stress in the free flow at the normal direction along
the interface, and the last interface condition (8) is the famous Beavers–Joseph condition
[12,21,23,24,47,66,68,83,95,103].

3 Stokes–Darcy Interface Model with Random Permeability

To overcome the difficulty of measuring the exact permeability at every point in the porous
media domain, we use an underlying randomfield to describe the intrinsic permeability tensor
Π . Thus the hydraulic conductivity tensor K(x) is also a random field with the relationship
K = gΠ

ν
. Then we obtain the stochastic partial differential equations to describe the coupled

system with the random hydraulic conductivity, based on the deterministic model in the
above section. In this paper, we will investigate the uncertainty in the porous domain and
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the uncertainty transferred to the conduit domain through the interface. In this section, we
will provide the weak formulation and prove the wellposedness of the weak solution of the
coupled stochastic model.

3.1 Functional Spaces and Notations

Before the study of the stochastic coupled problem,we introduce some notations. Throughout
this paper, we adopt the notations in [46] for the classical Sobolev spaces. Let D be an open,
connected, bounded, and convex subset of Rd , d = 2, 3, with polygonal and Lipschitz
continuous boundary ∂D. Following the notations in [46], let r ∈ R, q ∈ Z, and Wr ,q(D)

be a deterministic Sobolev space on D with the standard norm ‖ · ‖Wr,q (D) and semi-norm
| · |Wr,q (D). For q = 2, define the Hilbert space Hr (D) := Wr ,2(D) and Hr

0 (D) := {u : u ∈
Hr (D), u |∂D= 0}with the standard norm ‖·‖Hr (D) and semi-norm | · |Hr (D). For d = 2, 3,
defineHr (D) := (Hr (D))d andLq(D) := (Lq(D))d . For the vector v = (v1, v2, . . . , vn)

�,
n ∈ N

+, 2-norm ‖ · ‖2 of v is ‖v‖2 = (
v21 + v22 + · · · + v2n

)1/2
.

Then we define the stochastic Sobolev space. Let (Ω,F,P) be a complete probability
space. Here Ω is the set of outcomes, F is the σ -algebra of events, and P : F → [0, 1]
is a probability measure. Then the stochastic Sobolev space, which consists of strongly
measurable, r -summable mappings φ : Ω → Wr ,q(D), is denoted as

L2 (Ω;Wr ,q(D)
) := {φ : Ω → Wr ,q(D) | φ strongly measurable, ‖φ‖L2(Ω;Wr,q (D)) < ∞}.

Here ‖ · ‖L2(Ω;Wr,q (D)) is the norm given as, ∀φ ∈ L2 (Ω;Wr ,q(D)),

‖φ‖L2(Ω;Wr,q (D)) :=
(
E

[
‖φ(ω, ·)‖2Wr,q (D)

])1/2 :=
(∫

Ω

‖φ(ω, ·)‖2Wr,q (D)dP(ω)

)1/2

,

which is induced by following inner product, ∀φ,ψ ∈ L2(Ω;Wr ,q(D)),

[φ,ψ]L2(Ω;Wr,q (D)) := E
[
(φ, ψ)Wr,q (D)

] :=
∫

Ω

(φ,ψ)Wr,q (D)dP(ω).

For simplicity, we define

Lq(D) = L2(Ω; Lq(D)), with norm ‖ · ‖Lq (D) = ‖ · ‖L2(Ω;Lq (D)),

Hr (D) = L2(Ω; Hr (D)), with norm ‖ · ‖Hr (D) = ‖ · ‖L2(Ω;Hr (D)),

Lq(D) = L2(Ω;Lq(D)), with norm ‖ · ‖Lq (D) = ‖ · ‖L2(Ω;Lq (D)),

Hr (D) = L2(Ω;Hr (D)), with norm ‖ · ‖Hr (D) = ‖ · ‖L2(Ω;Hr (D)).

3.2 Stochastic Stokes–Darcy Interface Equations

With the complete probability space (Ω,F,P), let K(ω, x), ω ∈ Ω , x ∈ D̄m be a random
hydraulic conductivity tensor. Then in the porous media domain, the stochastic second-order
form of Darcy equation with deterministic sink/source term fm(x) is given as:

− ∇ · (K(ω, x)∇φm(ω, x)
) = fm(x), in Dm . (9)
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And the interface conditions on ΓI with random hydraulic conductivity are

us(ω, x) · ns(x) = (
K(ω, x)∇φm(ω, x)

) · nm(x), (10)

−n�
s T(us, ps)ns = g(φm(ω, x) − z), (11)

−τ�
j T(us, ps)ns = αν

√
d√

trace(Π(ω,x))
τ�
j

(
us(ω, x) + K(ω, x)∇φm(ω, x)

)
. (12)

Due to the randomness transferred from porous media domain through the interface con-
ditions, the Stokes equations in the conduit domain become stochastic as follows

− ∇ · T(us(ω, x), ps(ω, x)) = fs(x), in Ds, (13)

∇ · us(ω, x) = 0, in Ds . (14)

For the boundary conditions, we assume the hydraulic head φm and the fluid velocity us
satisfy deterministic homogeneous Dirichlet boundary condition except on ΓI .

3.3 Weak Formulation of the Coupled Problem

We denote the pressure spaces on the porous media as

Xm = {φm ∈ H1(Dm) | φm = 0 on Γm},
X0
m = {φm ∈ H0(Dm) | φm = 0 on Γm},

and the velocity-pressure spaces on the conduit domain as

Xs = {us ∈ H1(Ds) | us = 0 on Γs},
X0
s = {us ∈ H0(Ds) | us = 0 on Γs},

Xs,div = {us ∈ Xs | ∇ · us = 0 in Ds},
Qs = {qs ∈ L2(Ds)}.

For convenience, let X1 = X = Xm × Xs , Xdiv = Xm × Xs,div , X0 = X0
m × X0

s , and
u = (φm,us) ∈ X , where φm ∈ Xm , us ∈ Xs . The norms of Xr , r = 0, 1 are given as

‖u‖Xr =
(
E

[
‖u‖2Hr (Dm )×Hr (Ds )

])1/2 =
(
‖φm‖2Hr (Dm ) + ‖us‖2Hr (Ds )

)1/2
. (15)

The projection onto the local tangential plane of the vector u is denoted as Pτ (u) =
u− (u · ns)ns . Then using the boundary conditions (10)-(12), we obtain the following weak
formulation: find (u, ps) ∈ X × Qs , such that

{
A(u, v) − B(v, ps) = F(v), ∀v = (ψm, vs) ∈ X ,

B(u, qs) = 0, ∀qs ∈ Qs,
(16)
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where

A(u, v) = E
[
a(u, v)

] =
∫

Ω

a(u, v)dω, (17)

a(u, v) =
∫

Ds

2νD(us) : D(vs)dx + g
∫

Dm

(K∇φm) · ∇ψmdx (18)

+ g
∫

ΓI

φmvs · nsdΓI +
∫

ΓI

αν
√
d√

trace(Π)
Pτ (K∇φm) · vsdΓI (19)

− g
∫

ΓI

(us · ns)ψmdΓI +
∫

ΓI

αν
√
d√

trace(Π)
Pτ (us) · vsdΓI , (20)

B(v, ps) = E
[
b(v, ps)

] =
∫

Ω

b(v, ps)dω, (21)

b(v, ps) =
∫

Ds

ps∇ · vsdx, (22)

F(v) = E
[
f (v)

] =
∫

Ω

f (v)dω, (23)

f (v) =
∫

Ds

fs · vsdx + g
∫

Dm

fmψmdx +
∫

ΓI

gzvs · nsdΓI . (24)

3.4 Wellposedness of theWeak Solution

The approach to analyze the wellposedness in our paper follows the ideas in [11,24,56,96]. To
ensure the existence and uniqueness of theweak solution,K(ω, x) is assumed to be a diagonal
matrix as diag

(
K11(ω, x), . . . , Kdd(ω, x)

)
, ω ∈ Ω, x ∈ D̄m = Dm ∪ ∂Dm, d = 2, 3, and

satisfy the strong elliptic condition that there are positive lower and upper bounds Kmin ,
Kmax such that

0 < Kmin ≤ {
Kii (ω, x)

}d
i=1 ≤ Kmax < ∞, for (ω, x) ∈ Ω × D̄m . (25)

Then several properties of the weak formulation can be derived.

Lemma 1 With the assumption (25), the bilinear form A(·, ·) is continuous on Xdiv × Xdiv .

Proof By using the Cauchy–Schwarz inequality, trace theorem and (25), we have

A(u, v) ≤2ν‖us‖H1(Ds ))
‖vs‖H1(Ds ))

+ gdKmax‖φm‖H1(Dm )‖ψm‖H1(Dm )

+ g‖φm‖H1(Dm )‖vs‖H1(Ds )
+ α

√
gν√

Kmin
‖us‖H1(Ds )

‖vs‖H1(Ds )

+ g‖ψm‖H1(Dm )‖us‖H1(Ds )
+ αdKmax

√
gν√

Kmin
‖φm‖H1(Dm )‖vs‖H1(Ds )

,

for ∀u, v ∈ Xdiv . Thus the bilinear form A(·, ·) is continuous on the space Xdiv × Xdiv . ��
Lemma 2 The linear form F(·) is continuous on Xdiv .

Proof By using the Cauchy–Schwarz inequality and trace theorem, we have

F(v) ≤ ‖fs‖H1(Ds )
‖vs‖H1(Ds )

+ g‖ fm‖L2(Dm )‖ψm‖H1(Dm ) + gz‖vs‖H1(Ds )
,

for ∀v ∈ Xdiv . Thus the linear form F(·) is continuous on Xdiv . ��
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Lemma 3 With the assumption (25), the bilinear form A(·, ·) is coercive on Xdiv × Xdiv

when the coefficient α in the Beavers–Joseph condition (12) is small enough.

Proof By using the Korn’s inequality, Poincaré inequality, Cauchy–Schwarz inequality, trace
theorem and (25), we have

A(u, u) =
∫

Ω

∫

Ds

2νD(us) : D(us)dDsdΩ + g
∫

Ω

∫

Dm

(
K∇φm

) · (∇φm
)
dDmdΩ

+
∫

Ω

∫

ΓI

αν
√
d√

trace(Π)
(Pτ (us) · us + Pτ (K∇φm) · us) dΓI dΩ

≥ 2C1ν‖us‖2H1(Ds )
+ C2gKmin‖φm‖2H1(Dm )

+ α
√
gν√

Kmax
‖Pτ (us)‖L2(ΓI )

− αdKmax
√
gν√

Kmin
‖φm‖H1(Dm )‖us‖H1(Ds )

≥ 2C1ν‖us‖2H1(Ds )
+ C2gKmin‖φm‖2H1(Dm )

− αdKmax
√
gν√

Kmin
‖φm‖H1(Dm )‖us‖H1(Ds )

≥ C1ν‖us‖2H1(Ds )
+ 1

2
C2gKmin‖φm‖2H1(Dm )

,

where α2 ≤ 2C1C2K 2
min

d2K 2
max

, for ∀u ∈ Xdiv . Thus the bilinear form A(·, ·) is coercive on Xdiv ×
Xdiv when the coefficient α in the Beavers–Joseph (12) condition is small enough. ��

Theorem 1 With the assumption (25), there exists a unique weak solution u = (us, φm) ∈ X
and ps up to an additive constant for the weak formulation (16) of stochastic Stoke-Darcy
interface problem (9)–(14) when the coefficient α in the Beavers–Joseph (12) condition is
small enough.

Proof Based on the Lemmas 1, 2 and 3, there exists a unique weak solution u by the Lax-
Milgram Lemma. Then the assertion about ps is clear, by following the derivations in the
deterministic scenario [56,79,96]. ��

4 Numerical Solution for the Stochastic Coupled Problem

Since the moments are the characteristic functions of the stochastic solution, the object is
to design a numerical method to calculate the moments of the stochastic solution. The main
difficulty in this design is how to represent the stochastic solution by a discrete form in the
probability space and the physical space. For the discrete form in the probability space, we
choose the ensemble representations in samplingmethods, e.g.,Monte Carlo (MC)method in
this paper. But the total computational cost of the classical single-level Monte Carlo (SLMC)
method is very expensive. Then the multilevel Monte Carlo (MLMC) method is adopted
to reduce the total computational cost in the probability space. For the discretization in the
physical space, the finite element method (FEM) is utilized. Furthermore the multigrid (MG)
method is used to reduce the computational cost in the physical space. Finally, the multigrid
multilevel Monte Carlo (MGMLMC) method is developed to reduce the computational cost
both in the probability space and the physical space.
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4.1 Realizations of the RandomHydraulic Conductivity

The realizations of the randomhydraulic conductivityK(ω, x) in a discrete formon the spatial
domain D̄m and the random field Ω are the basis of the numerical method. We adopt the grid
based method in [59] to represent the random field at the discrete points x1, . . . , xM ∈ D̄m .

For simplification, we assume K(ω, x) = diag
(
K11(ω, x), . . . , Kdd(ω, x)

)
, ω ∈ Ω, x ∈

D̄m, d = 2, 3 is a diagonal matrix. The process to generate the realizations of K (ω, x) =
K11(ω, x) is displayed as follows, which is the same as the processes to generate the real-
izations of Kii (ω, x), i = 2, 3.

Up to a multiplicative constant, K (ω, x) is assumed to be a log-normal distribution to
meet the positivity of K (ω, x) in the physical sense, i.e.,

K (ω, x) = eZ(ω,x), ω ∈ Ω, x ∈ D̄m, (26)

where Z(ω, x) is a mean zero Gaussian random field on D̄m , with the continuous covariance
function r(x, y), x, y ∈ D̄m , i.e.,

E[Z(ω, x)] = 0, ∀x ∈ D̄m, (27)

E[Z(ω, x), Z(ω, y)] = r(x, y), ∀x, y ∈ D̄m . (28)

For xi ∈ D̄m , i = 1, 2, . . . , M , the vector x = (x1, x2, . . . , xM )� represents all
the discrete spatial points in D̄m , on which Z(ω, x) is approximated by its discrete form
Z(ω, x) = (Z1, Z2, . . . , ZM )�, Zi = Z(ω, xi ).

Then the discrete form of the covariance function r(x, y) at the discrete points x is given
by a M × M positive definite matrix R as

R = E
[
Z(ω, x), Z(ω, x)�

] = (
r(xi , x j )

)M
i, j=1. (29)

Let Θ be the Cholesky factorization of R as R = ΘΘ�. Then the random field Z(ω, x)
at the discrete points x is given by

Z(ω, x) = ΘY (ω), (30)

where Y (ω) := (Y1(ω), Y2(ω), . . . , YM (ω))� is a M × 1 vector of independent identically
distributed standard Gaussian random variables. And the discrete form Z(ω, x) is a mean
zero Gaussian random vector with the covariance R, since Z(ω, x) satisfies

E[Z(ω, x)] = E[ΘY ] = ΘE[Y ] = 0,

E[Z(ω, x), Z(ω, x)�] = E[(ΘY )(ΘY )�] = ΘE[YY�]Θ� = ΘΘ� = R.

It is obvious that the approximation Z(ω, x) at the discrete points x will be more accurate
when the number of the discrete points x1, . . . , xM becomes larger and the discrete formof the
covariance function r with matrix R is more accurate. Then the realizations of K (ωi , x), i =
1, 2, . . . , NMC, NMC ∈ Z at the discrete points x are generated as follows:

K (ωi , x) = eZ(ωi ,x), Z(ωi , x) = ΘY (ωi ),

where Y (ωi ), i = 1, 2, . . . , NMC are the realizations of Y (ω).
Since the realizations Y (ωi ) of the standard Gaussian random vector Y are bounded, then

the the realizations Z(ωi , x) are bounded. Hence the realizations of K (ωi , x) are bounded
and positive, which satisfy (25). Some samples of the realizations of the random hydraulic
conductivity K will be displayed in the numerical experiment section.
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4.2 Monte Carlo Methods

TheMonte Carlo method [99] is a classical method to calculate the numerical approximation
of moments. In this paper, we only investigate the process to generate the expected value of
φm , us and ps , which is easy to be used for the high order of moments.

For simplification, the symbol Q(ω, x) is used to substitute the exact solution of the
variable φm , us or ps . Then, let Q�(ω, x) denote the finite element approximation of Q(ω, x)
on the quasi-uniform triangulation mesh T� with the mesh size h�, and Qi

�(x) denote the

realization of Q�(ω, x) with the sample K(ωi , x). Then the approximation Q̂SL
� (x) of the

expected value of Q(ω, x) by SLMC method with NSL
� samples {K(ωi , x)}NSL

�

i=1 is given as:

Q̂SL
� (x) = 1

NSL
�

NSL
�∑

i=1

Qi
�(x). (31)

When no ambiguity arises, we may omit x in Q�(x), Qi
�(x) and Q̂�(x) for convenience.

The mean squared error of the SLMC method is:

MSE(Q̂SL
� ) = E[(Q̂SL

� − E[Q])2]
= E[(Q̂SL

� − E[Q�] + E[Q�] − E[Q])2]
≤ 2E[(Q̂SL

� − E[Q�])2] + 2E[(E[Q�] − E[Q])2]
= 2V[Q�]

NSL
�

+ 2(E[Q�] − E[Q])2.

(32)

Then the error of SLMC method with a given norm ‖ · ‖ is bounded as

‖MSE(Q̂SL
� )‖ ≤ 2‖V[Q�]‖

NSL
�

+ 2‖(E[Q�] − E[Q])2‖, (33)

i.e., the accuracy of SLMC method is based on the sampling error and the FEM error.

4.3 Multilevel Monte Carlo Method

The total computational cost T SL
c of single-level Monte Carlo is

T SL
c = NSL

� C�, (34)

whereC� is the computational cost of one sample with mesh size h�. T SL
c would be very high

when NSL
� and C� are both very large. By the accuracy formulation (33) of SLMC method,

the sampling error and the FEM error should be both small enough, if a small mean squared
error is required. Thus NSL

� should be larger while the mesh size h� becomes smaller. On
the other hand, C� increases exponentially as the mesh size h� becomes smaller. Thus the
total computational cost increases very fast as mesh size h� become smaller. An efficient
algorithm is needed to reduce the total computational cost. Hence we adopt the multilevel
Monte Carlo (MLMC) method.

By the linearity of the expectation operator

E[QL ] = E[Q0] +
L∑

�=1

(
E[Q�] − E[Q�−1]

)
= E[Q0] +

L∑

�=1

E[Q� − Q�−1], (35)
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we can use the hierarchical meshes to construct the MLMC method to generate the expect
value of Q. Let {T�}L�=0 be a sequence of quasi-uniform triangulation meshes with the mesh
sizes {h�}L�=0. These mesh sizes satisfy h� = h0c

−�
h , � = 0, 1, 2, . . . , L . And {NML

� }L�=0 are
the numbers of samples with the mesh sizes {h�}L�=0. Then, from (35) the approximation

Q̂ML
L of the expected value by the MLMC method is given by:

Q̂ML
L = 1

NML
0

NML
0∑

i=1

Qi
0 +

L∑

�=1

1

NML
�

NML
�∑

i=1

(Qi
� − Qi

�−1). (36)

In Sect. 4.4 this formula will be used to compute the expected value in Algorithm 2. When
computing the results for step L , one only needs to solve for Qi

L since all the Qi
� (� =

0, . . . , L − 1) were already solved and saved in the previous steps.
Based on the derivation of the mean squared error of the SLCM method in formula (32),

the corresponding mean squared error of the MLCM method with norm ‖ · ‖ is given by

‖MSE(Q̂ML
L )‖ = ‖E[(Q̂ML

L − E[Q])2]‖

≤ 2
‖V[Q0]‖
NML
0

+ 2
L∑

�=1

‖V[Q� − Q�−1]‖
NML

�

+ 2‖(E[QL ] − E[Q])2‖.

(37)

For simplicity, let Q−1 = 0, h−1 = 0, v� = ‖V[Q� − Q�−1]‖, � = 0, 1, 2, . . . , L . Then
the mean squared error is rewritten as

‖MSE(Q̂ML
L )‖ ≤ 2

L∑

�=0

v�

NML
�

+ 2‖(E[QL ] − E[Q])2‖. (38)

And the total computational cost of MLMC method is given as:

TML
c =

L∑

�=0

NML
� C� . (39)

By the mean squared error of SLMC method (33) and MLMC method (38), the accuracy
of approximation of expected value is based on two parts, i.e., the sampling error and FEM
error. To guarantee the accuracy of the numerical approximations, both the sampling error
and FEM error should be smaller than the required error. We substitute the sampling errors
in SLMC method and MLMC method by:

eSLL = ‖V[QL ]‖
NSL
L

, and eML
L =

L∑

�=0

v�

NML
�

. (40)

For guaranteeing the accuracy of MLMC method to be the same as that of SLMC method,
the following relationship between two sampling errors should be ensured

eML
L ≤ eSLL , i.e.,

v0

NML
0

+ v1

NML
1

+ · · · + vL

NML
L

≤ ‖V[QL ]‖
NSL
L

. (41)

Then we show our strategy to generate the key parameters for MLMC method: the total
number of levels (L), and the number of samples at every level

({NML
� }L�=0

)
.
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We take by L = log2(h0/hL), where the smallest mesh size hL is determined by the
accuracy of FEMrequired by the practical problem, and the largestmesh size h0 is constrained
by the size of the physical area.

The guideline in designing the number of samples at every level is to minimize the compu-
tational cost under the given sampling error. Then, from (39) we introduce the optimization
problem as follow:

{
Minimize TML

c = NML
0 C0 + NML

1 C1 + · · · + NML
L CL ,

subject to v0
NML
0

+ v1
NML
1

+ · · · + vL
NML
L

= eML
L .

(42)

This optimization problem is solved by the method of Lagrangian multipliers:

L =NML
0 C0 + NML

1 C1 + · · · + NML
L CL

+ λ(
v0

NML
0

+ v1

NML
1

+ · · · + vL

NML
L

− eML
L ).

(43)

Then the equations for {NML
� }L�=0 are

⎧
⎨

⎩

∂L
∂NML

�

= C� − λ
v�

(NML
� )2

= 0, f or � = 0, 1, . . . , L,

∂L
∂λ

= v0
NML
0

+ v1
NML
1

+ · · · + vL
NML
L

− eML
L = 0.

(44)

Then the number of samples at every level is

NML
� =

√
v�

C�

(√
v0C0 + √

v1C1 + · · · + √
vLCL

eML
L

)

, (45)

and the optimal computational cost is

T opt
c = TML

c =
(√

v0C0 + √
v0C0 + · · · + √

vLCL
)2

eML
L

. (46)

In conclusion, based on this strategy, we can obtain the number of samples at every level
while the parameters eML

L , {C�}L�=0, {v�}L�=0 are given.

Furthermore, we assume v� = O(hβ
� ) by the virtue of experience, and C� = O(h−γ

� )with
the reason that the amount of calculated information increases exponentially while the mesh
size becomes smaller. Then with h� = h02−�, � = 0, 1, . . . , L , and (45), for any j > i , the
relationship between the numbers of samples at two levels is given as

NML
j

NML
i

=
√
Ci

vi
· v j

C j
=

√√√√O
((

h j

hi

)β+γ
)

= O
(
2− ( j−i)(β+γ )

2

)
< 1. (47)

Thus the number of samples becomes smaller whilemesh size becomes smaller. The decrease
of NML

� is the reason why the MLMC method can reduce the total computational cost.
Since the computational cost of every sample with the mesh size h0 is low, v0 is easy

to calculate by Monte Carlo method with low computational cost. Then v�, � = 1, . . . , L ,
can be given by v� = O(hβ

� ) with the corresponding parameter β. Thus how to determine
parameter β is a key problem for the MLMC method. In this paper, for the Stokes–Darcy
interface problem with Beavers–Joseph condition, we develop a strategy for calculating the
parameter β in the Sect. 5.2.
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4.4 Combine theMultigrid Method with theMultilevel Monte Carlo Method

The total computational cost is determined by the number of samples and the computational
cost of every sample. Since we have reduced the total computational cost in probability space
with theMLMCmethod by reducing the number of samples, it is a heuristic problemwhether
we could reduce computational cost of every sample to save the total computational cost in
physical space. Inspired by the hierarchical meshes used in the MLMCmethod, we adopt the
multigrid (MG) method to reduce the computational cost of every sample in physical space.

In the physical space, the finite element method (FEM) is chosen to construct the discrete
form of weak formulation (16) under the given samples of hydraulic conductivity. We adopt
the quadratic element in the porous media domain, and the Taylor-Hood element in the
conduit domain. Then for every given sample of hydraulic conductivity K(ω, x), the weak
formulation (16) is discretized into the following matrix-vector form

Lx = b, L =
⎛

⎝
Am B1 0
B2 As B ′

p
0 Bp 0

⎞

⎠ , x =
⎛

⎝
φm

us
p

⎞

⎠ , b =
⎛

⎝
bm
bs
0

⎞

⎠ . (48)

where Am is the matrix corresponding to the discretization of g
∫
Dm

(K∇φm) · ∇ψmdx ,
B1 is the matrix corresponding to the discretization of −g

∫
ΓI

(us · ns)ψmdΓI , B2 is the

matrix corresponding to the discretization of
∫
ΓI

gφmvs ·nsdΓI + ∫
ΓI

αν
√
d√

trace(Π)
Pτ (K∇φm) ·

vsdΓI , As is the matrix corresponding to the discretization of
∫
Ds

2νD(us) : D(vs)dx +
∫
ΓI

αν
√
d√

trace(Π)
Pτ (us) ·vsdΓI , B ′

p is the matrix corresponding to the discretization of
∫
Ds

ps∇ ·
vsdx , bm is the vector corresponding to the discretization of g

∫
Dm

fmψmdx , and bs is the
vector corresponding to the discretization of

∫
Ds

fs · vsdx + ∫
ΓI

gzvs · nsdΓI .
Inspired by the multigrid method for Stokes equations, we adopt the efficient least square

commutator distributive Gauss-Seidel (LSC-DGS) relaxation [29,113] in this paper. The
right-side operatorM is given as:

M =
⎛

⎝
I 0 0
0 I B ′

p
0 0 −(BpB ′

p)
−1Bp As B ′

p

⎞

⎠ . (49)

Multiplying L with M yields

LM =
⎛

⎝
Am B1 B1B ′

p
B2 As W
0 Bp BpB ′

p

⎞

⎠ , with W =
(
I − B ′

p(BpB
′
p)

−1Bp

)
As B

′
p.

By defining S := LM and y := M−1x, the equivalent algebraic equations are given as

Sy = b. (50)

The standardGauss–Seidel method is proposed to solve the equivalent algebraic equations
(50). And the following V-cycle multigrid method is applied to reduce the computational cost
in physical space. As in the MLMC method, the hierarchical quasi-uniform triangulation
meshes are T� with the mesh sizes h� = h0c

−�
h , � = 0, 1, 2, . . . , L . Then the V-cycle

multigrid method on the mesh T� with the mesh size h� is given as [108]:

Algorithm 1 ynew ← V − cycle(S,b, �)

(1) Relax λ1 times on the fine mesh h = h� with the initial guess y to reach yh.
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(2) Obtain the residual on the fine mesh as

rh = b − Syh,

and restrict the residual from the fine mesh h to the coarse mesh H = h�−1 by r H =
RH

h r
h, where RH

h is the restriction matrix.
(3) Solve the corrected error from the residual equation on the coarse mesh H:

– If � = 1, use a direct or fast iterative method to solve SHeH = r H ;
– If � > 1, use the �-grid method to solve SHeH = r H from a zero initial guess on the

mesh T�−1 by eH ← V − cycle(SH , r H , � − 1);

where SH is the approximation of S on the coarse mesh.
(4) Prolongate the corrected error form coarse mesh H to the fine mesh h by eh = Ih

He
H ,

where Ih
H is the interpolation matrix. And correct the approximation by

ynew = yh + eh .

(5) Relax λ2 times on the fine mesh h with the initial guess ynew.

One can also replace the V-cycle byW-cycle or F-cycle [16,17,29,90,106,113]. Further-
more, the solutions calculated on the coarse mesh in the MLMCmethod could be used as the
initial guess on the fine mesh in the MG method to further reduce the computational cost.
Then the following multigird multilevel Monte Carlo (MGMLMC) method is developed to
reduce the computational cost in both the probability space and the physical space.

Algorithm 2 multigrid multilevel Monte Carlo method

(1) On the mesh grid T0 with the mesh size h0, for the 1st to the NML
0 sample of hydraulic

conductivityK(ω, x), solve the numerical approximations Qi
0 by standard Gauss-Seidel

with the initial guess 0, i = 1, 2, . . . , NML
0 ;

(2) For � = 1, 2, . . . , L, consider the mesh grid T� with the mesh size h�. For the 1st to
the NML

� sample of hydraulic conductivityK(ω, x), solve the numerical approximations
Qi

� by V-cycle (� + 1)-grid method (Algorithm 1) with the initial guess Ih
H Qi

�−1, i =
1, 2, . . . , NML

� , where h = h� and H = h�−1;
(3) Based on the numerical solutions Qi

� gained in the above two steps on everymesh grid T�

with each hydraulic conductivity sampleK(ωi , x), i = 1, 2, . . . , NML
� , � = 0, 1, . . . , L,

the approximation Q̂ML
L of the expected value by the MGMLMC method is computed

(36).

4.5 Computational Cost of SLMCMethod andMGMLMCMethod

Based on the conclusions in the Sects. 4.2 and 4.3, we gain the relationships between the
sampling error and the FEM error in the SLMCmethod and the MLMCmethod. Notice that,
the sampling error is determined by the number of samples, and the FEM error is determined
by the mesh size of the quasi-uniform triangulation mesh. Then we can gain the relationships
between the number of samples and the mesh size in the SLMC method and the MLMC
method. Furthermore, the mesh size also determines the computational cost of one sample.
Then we can give an estimate of the total computational costs of the MLMC (or MGMLMC)
method and the SLMC method, with the given mesh size.

First, the numerical error is estimated as follow:
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Proposition 1 With the assumption (25), the solutions of problem (16) satisfy the following
discrete error estimate

‖u − u�‖X0 + ‖ps − p�,s‖L2(Ds )
≤ Ch�

(
‖u‖X1 + ‖ps‖L2(Ds )

)
, (51)

where h� is the mesh size of the given quasi-uniform triangulation mesh T�.

Proof Based on the analysis in [23,24,79], we have

‖us(ω, ·) − u�,s(ω, ·)‖H0(Ds )
+ ‖φm(ω, ·) − φ�,m(ω, ·)‖H0(Dm )

+ ‖ps(ω, ·) − p�,s(ω, ·)‖L2(Ds )

≤ Ch�

(
‖us(ω, ·)‖H1(Ds )

+ ‖φm(ω, ·)‖H1(Dm )

+ ‖ps(ω, ·)‖L2(Ds )

)
, a.e. ω ∈ Ω.

Then the assertion follows with the above conclusion by the definition of the norm ‖ · ‖X0 in
(15). ��

Then the numerical errors of SLMC method and MGMLMC method are bounded by the
mesh size h� and the number of samples N�.

Lemma 4 With the assumption (25), the error bounds of SLMCmethod (31) and MLMC (36)
for the problem (16) are given as follows

‖E[u] − ûSL� ‖X0 + ‖E[ps] − p̂SLs,�‖L2(Ds )
≤ C(u, ps)

(
h� + 1

√
NSL

�

)
, (52)

‖E[u] − ûML
L ‖X0 + ‖E[ps] − p̂ML

s,L‖L2(Ds )
≤ C(u, ps)

(
hL +

L∑

�=0

h�√
NML

�

)
, (53)

where C depends on u and ps , h� is the mesh size of the quasi-uniform triangulation mesh
T�, NSL

� is the number of samples with mesh size h� in SLMC method, NML
� is the number

of samples with mesh size h� in MLMC method, ûSL� , p̂SLs,� are the approximations of expect

value by SLMC method, and ûML
� , p̂ML

s,� are the approximations of expect value by MLMC
method, � = 0, 1, . . . , L.

Proof For simplification, let the symbol Q substitute the variables φm , us or ps . And let
L(V ) denote the corresponding space of Q. Thus L(V ) may denote H1(Dm), L2(Ds) or
H1(Ds), and V may be H1(Dm), L2(Ds) or H1(Ds), which depends on the choice of Q.
Then we analyse the error of the approximation of expect value of φm , us or ps by analysing
E[Q] − Q̂SL

� with the norm ‖ · ‖L(V ) as follow:

‖E[Q] − Q̂SL
� ‖L(V ) = ‖E[Q] − E[Q�] + E[Q�] − Q̂SL

� ‖L(V )

≤ ‖E[Q] − E[Q�]‖L(V ) + ‖E[Q�] − Q̂SL
� ‖L(V ).

(54)

For ‖E[Q] − E[Q�]‖L(V ), we have

‖E[Q] − E[Q�]‖2L(V ) = ‖E[Q − Q�]‖2L(V ) = E
[‖E[Q − Q�]‖2V

]

= ‖E[Q − Q�]‖2V ≤ E[‖Q − Q�‖2V ]
= ‖Q − Q�‖2L(V ).

(55)
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For ‖E[Q�] − Q̂SL
� ‖L(V ), we have

‖E[Q�] − Q̂SL
� ‖2L(V ) = E

[∥
∥
∥E[Q�] − 1

NSL
�

NSL
�∑

i=1

Qi
�

∥
∥
∥
2

V

]

= 1

(NSL
� )2

E

[∥
∥
∥
NSL

�∑

i=1

(
E[Q�] − Qi

�)

∥
∥
∥
2

V

]

≤ 1

(NSL
� )2

E

[ NSL
�∑

i=1

∥
∥
∥E[Q�] − Qi

�

∥
∥
∥
2

V

]

= 1

NSL
�

E
[‖E[Q�] − Q�‖2V

]

≤ 1

NSL
�

‖Q�‖2L(V ).

(56)

The last inequality is based on E[(E[Q�] − Q�)
2] = E[(Q�)

2] − (E[Q�])2 ≤ E[(Q�)
2].

Thus we obtain

‖E[Q] − Q̂SL
� ‖L(V ) ≤ (NSL

� )−1/2‖Q�‖L(V ) + ‖Q − Q�‖L(V ). (57)

Then by the Proposition 1, we have

‖E[u] − ûSL� ‖X0 + ‖E[ps] − p̂SLs,�‖L2(Ds )

≤ (NSL
� )−1/2‖u�‖X0 + ‖u − u�‖X0

+ (NSL
� )−1/2‖ps,�‖L2(Ds )

+ ‖ps − ps,�‖L2(Ds )

≤ C
(
h� + (NSL

� )−1/2
)(

‖u‖X0 + ‖u‖X1 + ‖ps‖L2(Ds )

)

= C(u, ps)
(
h� + (NSL

� )−1/2
)
.

where C(u, ps) depends on ‖u‖X0 , ‖u‖X1 and ‖ps‖L2(Ds )
.

Because the idea to prove the assertion of the MLMC method is the same as that in the
proof of the assertion of the SLMC method, we omit the corresponding proof. ��

By equilibrating the sampling error in probability space and the FEM error in physical
space, and the conclusions in Lemma 4, we have the following two conclusions:

(eSL� )1/2 = O
(
(NSL

� )−1/2) = O
(
h�

)
, (58)

(eML
L )1/2 = O

( L∑

�=0

h�(N
ML
� )−1/2

)
= O

(
hL

)
. (59)

The formula (58) is the relationship between the numbers of samples NSL
� and the mesh sizes

h� in the SLMC method, which is based on the conclusion (52). And the formula (59) is the
relationship between the numbers of samples {NML

� }L�=0 and the mesh sizes {h�}L�=0 in the
MLMC method, which is based on the conclusion (53).

In the SLMC method, by (58), it is easy to see that the number of samples NSL
L on the

finest mesh is determined by the mesh size hL , then the computational cost can be calculated.
In the MLMCmethod, the number of samples {NML

� }L�=0 on every level is determined by the
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formula (45). Since the sampling error is bounded by the formula (59), then the computational
cost can also be calculated.

Theorem 2 With the assumption (25), for the problem (16), if we choose the SLMC method
(31) on the triangulation mesh TL with the mesh size hL , or theMGMLMCmethod Algorithm
2 on the hierarchical quasi-uniform triangulation meshes {T�}L�=0 with mesh sizes h� =
h02−�, � = 0, 1, . . . , L to solve the approximations of expect value, we can evaluate the
computational cost as follows:

T SL
c = O

(
M

2+ 2
d

L

)
, (60)

TMGML
c = O

(
M

1+ 2−β
d

L log(ML)2
βL
2 +d−dL), (61)

where ML is the amount of calculated information for one sample on the mesh TL with the
mesh size hL , d is the dimension of the physical space, and β is the decrease rate of the
variance. Furthermore, the ratio of the computational cost of the SLMC method and the
MGMLMC method is given as

T SL
c /TMGML

c = O
(
22Ld+ βL

2 −d/(Ld)
)
. (62)

Proof Under the assumption M� = O
(
h−d

�

)
and the setting h� = h02−�, M� =

O
(
ML2(�−L)d

)
is given. Since the standard Gauss-Seidel method is chosen to solve the

algebraic equations (50) in the SLMCmethod, the computational cost C� with the mesh size
h� is C� = O

(
M2

L2
2(�−L)d

)
.

For the SLMC method, the number of samples on mesh TL with mesh size hL is NSL
L =

O
(
h−2
L

) = O
(
M2/d

L

)
, by the bound of sampling error in (58). Then the computational cost

of the SLMC method is T SL
c = NSL

L CL = O
(
M

2+ 2
d

L

)
.

For the MGMLMC method, the bound of sampling error is eML
L = O

(
h2L

) = O
(
M−2/d

L

)

by (59). Since we adopt the V-cycle multigrid methods in this paper, then the computational
cost [17,106] on mesh T� with mesh size h� is

CMG
� = O

(
ML2

(�−L)d( log(ML) + d(� − L) log(2)
))

≤ O
(
ML2

(�−L)d log(ML)
)
.

(63)

Then by (45), the number of samples at the initial level is

NML
0 =

√
v0

CMG
0

⎛

⎝

√
v0CMG

0 +
√

v1CMG
1 + · · · +

√
vLCMG

L

eML
L

⎞

⎠

≤ O
(
M

2−β
d

L 2βL+ d−Ld
2

)
.

(64)

And by the relationship between the numbers of samples at two different levels (47), the
number of samples on mesh T� with mesh size h� is

NML
� = NML

0

√
CMG
0

v0
· v�

CMG
�

= O
(
M

2−β
d

L 2
βL−dL+d−d�

2

)
. (65)
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Fig. 1 A sketch of two rectangles
domain

Then the computational cost of the MGMLMC method is

TMGML
c =

L∑

�=0

NML
� CMG

� = O
(
M

1+ 2−β
d

L log(ML)2
βL
2 +d−dL). (66)

By hL = h02−L and ML = O
(
h−d
L

)
, we have

T SL
c

TMGML
c

= O
(
2Ld(2+ 2

d )
)

O
(
2Ld(1+ 2−β

d )+ βL
2 +d−dL Ld

) = O
(
22Ld+ βL

2 −d/(Ld)
)
. (67)

��

5 Numerical Experiments

In this section, we use numerical experiments to demonstrate both the features of the
MGMLMC method and the theoretical conclusion. The first part is to generate the real-
izations of random hydraulic conductivityK by the grid based method. The second part is to
determine the key parameter β, which will be used to calculate the {NML

� }L�=0 in the MLMC
method. The last part is to provide the numerical results in detail.

We assume that the domain Dms consists of two rectangles, the upper rectangle is the
porous media domain Dm = (0, 1)× (0, 0.75), and the other rectangle is the conduit domain
Ds = (0, 1)× (−0.25, 0), shown as the Fig. 1. The whole domain Dms = Dm ∪ Ds with the
interface ΓI = (0, 1) × {0}. The boundaries are Γm = {0, 1} × (0, 0.75) ∪ (0, 1) × {0.75}
and Γs = Γs1 ∪ Γs2 ∪ Γs3 , where Γs1 = {0} × (−0.25, 0), Γs2 = (0, 1) × {−0.25}, Γs3 =
{1} × (−0.25, 0). For simplicity, let g = 1, z = 0, α = 1, ν = 1 and K(ω, x) = eZ(ω,x)

I.

The covariance function of Z is r(x, y) = r
(
(x1, x2), (y1, y2)

) = 0.1e− |x1−y1 |
0.2 − |x2−y2 |

0.2 .

5.1 The Realizations of RandomHydraulic Conductivity

Because the diagonal matrix is given asK(ω, x) = eZ(ω,x)
I, it is natural to generate the real-

izations of K (ω, x) = eZ(ω,x), and then copy the realizations d times to constructK(ω, x). As
the hierarchical meshes are used in theMLMCmethod, the realizations of K (ω, x) = eZ(ω,x)

could be first generated on the finest mesh by the grid based method. Then the realizations
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Fig. 2 Four samples of random hydraulic conductivity K (ω, x)

on the coarse mesh can be chosen as a subset of the realizations on the finest mesh. Then the
consistency of hydraulic conductivity K (ω, x) on every mesh could be ensured.

Because the Gauss quadrature is used to compute the integrals in the proposedmethod, we
calculate the value of the approximation of the hydraulic conductivity K (ω, x) on the Gauss
quadrature points by the grid basedmethod. In every triangle of the triangulationmesh TL , the
seven-point Gauss quadrature rule is applied. On the interface, four-point Gauss quadrature
rule is applied.

In this experiment, we generate 4000 samples of the hydraulic conductivity K (ω, x).
Four samples of K (ω, x) are illustrated in Fig. 2, by which the randomness of hydraulic
conductivity is exhibited.

5.2 Determination of the Parameterˇ in MLMCMethod

How to determine the parameter β is a key problem in the numerical implementation of
MLMC method. If one calculates β from the exact variances {v�}L�=0, which come from the
SLMC method with mesh size {h�}L�=0, then the computational cost is higher than that of
the SLMC method with mesh size hL . This contradicts the purpose of the MLMC method.
In this section, we develop the following practical method to approximate the parameter β

without calculating the exact variances {v�}L�=0.
Since the random hydraulic conductivity is only a parameter in the Darcy domain and on

the interface, we assume that the β of the stochastic Darcy problem is an approximation for
the β of the stochastic Stokes–Darcy problem with the same random hydraulic conductivity.
Compared with the coupled stochastic Stokes–Darcy problem, the computational cost of
every sample of the stochastic Darcy problem is much cheaper since the Darcy problem is
much simpler. Furthermore,we can also use themultigridmethod to reduce the computational
cost in generating the approximation of β.
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Fig. 3 0, 40 on x-label in every subgraph is the index of 40 samples of f . The red star ∗ are β with ‖ · ‖L2
norm, the green dot · are β with ‖ · ‖L∞ norm, and the blue circle ◦ are β with ‖ · ‖H1 norm

Table 1 Mean values of β with
different σ and norm

σ ‖ · ‖L2 ‖ · ‖L∞ ‖ · ‖H1

0.02 2.0204 1.6468 1.3030

0.80 2.0216 1.6487 1.3043

1.20 2.0209 1.6511 1.3081

The stochastic Darcy problem is given by
{

−∇ · (K(ω, x)∇φ(ω, x)
) = f (ω, x), (ω, x) ∈ Ω × Dm,

φ(ω, x) = 0, (ω, x) ∈ Ω × ∂Dm .
(68)

where f (ω, x) is a piecewise constant approximation of white noise, i.e.,

f (x) = σ

I∑

i=1

1√
Vi

χi (x)Xi (ω), x ∈ Dm . (69)

Here σ is a given constant, Vi is the volume of non-overlapping tessellation {Di }Ii=1 as
Dm = ∪I

i=1Di , χi (x) is the indicator function corresponding to Di , and {Xi (ω)}Ii=1 is a
given set of independent identically distributed standard Gaussian random variables.

Given the σ and {Xi (ω)}Ii=1 in (69), we could use the SLMC method to calculate
{
v� =

‖V[Q� −Q�−1]‖
}L
�=0 with norm ‖·‖ on the hierarchical quasi-uniform triangulation meshes

{T�}L�=0 withmesh sizes {h�}L�=0.And then the parameterβ is determined from the assumption
{
v� = O(hβ

� )}L�=0. For each σ = 0.02, 0.8, 1.2, we choose 40 samples of f . For every given
σ and one sample of f , three β are calculated with ‖ · ‖L2 , ‖ · ‖L∞ and ‖ · ‖H1 norms. The
results of β with each sample of f and the choice of σ are exhibited in Fig. 3. And the mean
values of β with 40 samples of f are shown in Table 1. One can see that the mean value of
the β changes only in a small range when σ becomes larger. Thus the parameter β is given
as 2.02, 1.65, 1.30 w.r.t. ‖ · ‖L2 , ‖ · ‖L∞ , ‖ · ‖H1 norms.

In the next section for the results of the stochastic Stokes–Darcy model, it can be seen that
the expected accuracy is gained by MGMLMC method with much less samples and compu-
tational cost, compared with the SLMCmethod. Based on the definition and importance of β
discussed in Sect. 4.3, this will indicate that the β determined in this section works well for
theMGMLMCmethod of the stochastic Stokes–Darcy model with Beavers–Joesph interface
condition.

In addition, compared with the traditional SLMC method, this process in MLMCmethod
will give rise to extra computational cost, whose computational cost should be added to the
total computational cost of MLMC method.
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Fig. 4 Four samples of solution and stream lines with h = 1/64. Color represents the speed of flow

Table 2 Computational cost with
different mesh size

h 1/4 1/8 1/16 1/32

Cpu time (s) 0.48 1.84 9.64 245.65

Tic-toc time (s) 0.44 1.43 8.38 240.46

5.3 Main Numerical Results

Let fm = 0, fs = 0, ψ0 = 0, on Γm , us = (1, 0)�, on Γs1 , us = (0, 0)�, on Γs2 , and
us = (1, 0)�, on Γs3 .

For exhibiting the stochastic property of our problem, numerical solutions on the mesh
hL = 1/64 with four different samples ofK(ω, x) are shown in the Fig. 4, by using the flow
speed and the velocity stream lines. From the comparison of the four solutions in the Fig. 4,
one can see the randomness in the porous media and on the interface.

For the hierarchical quasi-uniform triangulation mesh {T�}L�=0, five levels are chosen, i.e.,

h� = 2−�

4 , � = 0, 1, 2, 3, 4 with h0 = 1/4. An explicit numerical method is needed to
determine the parameter γ in calculating {NML

� }4�=0, which is needed for the MGMLMC

method. Based on C� = O(h−γ

� ), � = 0, 1, 2, 3, we can compute γ after the computational
cost {C�}3�=0 of a few samples at every level are recorded. The cpu time and tic-toc time with
different mesh size are shown in the Table 2, and the corresponding γ are 2.0536, 2.4549,
which are illustrated in the Fig. 5. In this paper, we choose γ = 2.4549.

If the variance v0 at the first level is known, the variance {v�}L�=0 at the every level could

be calculated by v� = O(hβ
� ), while the parameter β is approximated by the β of stochastic
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Fig. 5 γ of cpu time and tic-toc time

Table 3 Number of samples at
every level β NSL

4 NML
0 NML

1 NML
2 NML

3 NML
4

2.02 1277 4000 4000 1179 110 8

1.65 1352 4000 4000 2484 262 20

1.30 2221 4000 4000 4000 946 82

Table 4 The required error and the errors of numerical methods

β Required Error Error of SLMC Error of MGMLMC

2.02(‖ · ‖L2 ) 4.00 × 10−4 1.27 × 10−4 1.82 × 10−4

1.65(‖ · ‖L∞ ) 1.20 × 10−3 1.27 × 10−3 1.69 × 10−3

1.30(‖ · ‖H1 ) 1.20 × 10−3 5.16 × 10−3 8.77 × 10−3

Darcy problem in the previous section. The variance v0 at the first level is easy to be calculated
with low computational cost.

Then using the formula (45) with the parameters β and γ we have gained, we can obtain
the number of samples at every level based on the optimization problem (42) under the given
sampling error eL . In this experiment, the sampling error with each choice of β is given as
the square of the required error in the Table 4. And the corresponding numbers of samples on
every level are shown in the Table 3. Since we only generate 4000 samples of the hydraulic
conductivity K (ω, x) in this experiment, the upper bound of the number of samples on every
level is 4000.

For evaluating the accuracy of the SLMCmethod and theMGMLMCmethod, we generate
the reference solution with the mesh size h = 1/128 and 4000 samples of hydraulic con-
ductivity. Then the corresponding errors of the SLMC method and the MGMLMC method
are shown in the Table 4, here these methods are performed with the number of samples in
the Table 3. From the results in the Table 4, we can find that the errors of the SLMC method
and the MGMLMC method have the same order of magnitude. In other words, these two
numerical methods have the same accuracy.

To further numerically verify our claim that the MGMLMC method is as accurate as the
SLMCmethod, we do the following process. At first, we calculate the numerical solution by
theSLMCmethodwith themesh sizehL = 1/64, and record this solution.Andwealso use the
MGMLMC method to gain another numerical solution with the same mesh size hL = 1/64.
Then, it is obvious that the difference between these two numerical solutions will indicate
whether theMGMLMCmethod is as accurate as the SLMCmethod or not. A very simpleway
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Table 5 Relative errors of
solutions by the SLMC method
and the MGMLMC method

β φm (%) u1m (%) u2m (%) ps (%) u1s (%) u2s (%)

2.02 1.63 1.32 0.42 0.03 0.01 0.02

1.65 1.98 1.54 1.84 0.01 0.04 0.02

1.30 3.26 3.11 8.30 0.01 0.02 0.02

Fig. 6 Left: Numerical expectation of speed and stream lines by the SLMC method; Right: Numerical expec-
tation of speed and stream lines by the MGMLMC method. Color represents the speed of flow

to estimate the difference between these two numerical solutions is to calculate their percent
relative errors with a given norm, which are shown in the Table 5. Each row of the Table 5 is
the percent relative errors with different choice of β, and each column of the Table 5 is the
percent relative errors of the unknown parameters in our Stokes–Darcy model. We can find
that the percent relative errors in the Table 5 are small, which indicates that the MGMLMC
method is as accurate as the SLMCmethod. Furthermore, we exhibit the numerical solutions
by these twomethods with the mesh size hL = 1/64 in the Fig. 6, which also shows that there
is a slight difference between the numerical expectations of speed and stream lines by these
two methods, and implies that the MGMLMC method is as accurate as the SLMC method.
Moreover, an interesting finding through the Table 5 is that the percent relative errors of the
parameters (ps, u1s , u

2
s ) in the Stokes equations are much smaller than the percent relative
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Table 6 Efficiency of the MLMC and MGMLMC methods

β T SL
c (s) TML

c (s) TMGML
c (s) TML

c /T SL
c (%) TMGML

c /T SL
c (%)

2.02 1.68 × 107 1.57 × 105 2.53 × 104 0.93 0.15

1.65 1.78 × 107 3.62 × 105 3.80 × 104 2.04 0.21

1.30 2.92 × 107 1.35 × 106 7.24 × 104 4.64 0.25

errors of the parameters (φm, u1m, u2m) in Darcy system, which is corresponding to the setting
that the random hydraulic conductivity is only a parameter in the Darcy domain and on the
interface. Besides, based on the results in the Table 5, the MGMLMC method will be more
accurate when the parameter β becomes larger. An explanation for this finding is given as
follows. Through the results in the Table 3, we can find that more number of samples are
required to capture the information in the probability space when the parameter β becomes
smaller. But the upper bound of the number of samples on every level is fixed in this paper.
Then there will be not enough information on the probability space in the performance of
MGMLMC method when the parameter β becomes smaller. This finding also shows that
how to determine the parameter β is one of the key points in the performance of MLMC
method.

To illustrate the efficiency of the MLMC method and the MGMLMC method, the com-
putational costs of the SLMC method, the MLMC method and the MGMLMC method are
compared in the Table 6. Based on these results, it is easy to see that the MGMLMCmethod
significantly reduce the computational cost with the same accuracy as the SLMC method.

6 Conclusion

In this paper, for the stochastic Stokes–Darcy interface model with random Beavers–Joseph
interface condition,we proved thewellposedness ofweak solution, and developed an accurate
and efficientmultigridmultilevelMonteCarlomethod to solve the numerical approximations.
For the MLMC method, a strategy is constructed to calculate the number of samples on
every level. The computational cost is also analyzed and compared. By using the numerical
examples, we verified the features of the numerical method and the theoretical conclusions.
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