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ABSTRACT
In marine basins, gas hydrate systems are usually identified by a bottom simulating reflec-

tion (BSR) that parallels the seafloor and coincides with the base of the gas hydrate stability 
zone (GHSZ). We present a newly discovered gas hydrate system, Moby-Dick, located in the 
Ship Basin in the northern Gulf of Mexico. In the seismic data, we observe a channel-levee 
complex with a consistent phase reversal and a BSR extending over an area of ∼14.2 km2, 
strongly suggesting the presence of gas hydrate. In contrast to classical observations, the 
Moby-Dick BSR abnormally shoals 150 m toward the seafloor from west to east, which con-
tradicts the northward-shallowing seafloor. We argue that the likely cause of the shoaling BSR 
is a gradually changing gas mix across the basin, with gas containing heavier hydrocarbons 
in the west transitioning to methane gas in the east. Our study indicates that such abnormal 
BSRs can be controlled by gradual changes in the gas mix influencing the shape of the GHSZ 
over kilometers on a basin scale.

INTRODUCTION
Gas hydrate, a clathrate of natural gas and 

H2O, is stable on continental slopes worldwide 
in a near-seafloor interval called the gas hy-
drate stability zone (GHSZ). The thickness and 
hydrate occurrence in the GHSZ can be used to 
quantify the global hydrate reservoir and under-
stand the influence of that reservoir in the global 
carbon cycle (Wallmann et al., 2012; Ruppel 
and Kessler, 2016). The base of the GHSZ is 
a critical thermodynamic boundary between 
overlying gas hydrate and underlying free gas, 
which is a function of four components: pres-
sure, temperature, gas composition, and salinity 
(Kvenvolden, 1993; Kvenvolden and Lorenson, 
2001). In marine seismic data, the base of the 
GHSZ is often inferred from a bottom simulat-
ing reflection (BSR), a seafloor-parallel seismic 
reflection caused by free gas under the base of 
the GHSZ (Shipley et al., 1979; Haacke et al., 
2007).

In a classical gas hydrate system, the base 
of the GHSZ parallels the seafloor. Assuming 

salinity and gas composition are constant, it is 
possible to estimate the geothermal gradient 
from the BSR depth, and this has been done 
in several locations with varying success (e.g., 
Grevemeyer and Villinger, 2001; Phrampus 
et al., 2017). Yet, in salt tectonic provinces like 
the Gulf of Mexico, salt bodies, fluid flow, and 
faulting can distort the heat flow and salinity 
even on a reservoir scale (Ruppel et al., 2005; 
Forrest et al., 2007; Wilson and Ruppel, 2007; 
Portnov et al., 2020). A BSR deviating from the 
seafloor-parallel depth path suggests that there is 
local heterogeneity in the near-seafloor system, 
which could be caused by variations in tempera-
ture, salinity, and/or gas mix.

Pure methane gas has the shallowest base of 
GHSZ, but it deepens even if a small amount 
of higher-order hydrocarbons, such as ethane 
(C2) or propane (C3), is present (Sloan and 
Koh, 2007). Microbial methane is often found 
in near-seafloor sediments, generated in place by 
microbes consuming organic matter (Floodgate 
and Judd, 1992) or recycled at the base of the 

GHSZ (Nole et al., 2018). In contrast, thermo-
genic gas with higher-order hydrocarbons trans-
ported buoyantly through faults and chimneys 
is often detected in gas chimneys and hydrate 
mounds on the seafloor (Brooks et al., 1984; 
Macdonald et al., 1994; Sassen et al., 2001). 
In seismic data, thermogenic gas is generally 
only inferred at a location due to the presence of 
gas chimneys or double BSRs, i.e., two or more 
stacked reflections indicating shallower meth-
ane and deeper thermogenic boundaries of gas 
hydrate stability (Posewang and Mienert, 1999; 
Andreassen et al., 2000; Foucher et al., 2002; 
Pohlman et al., 2005; Paganoni et al., 2016; Pla-
za-Faverola et al., 2017; Bertoni et al., 2019; 
Minshull et al., 2020).

We argue that in contrast to a double BSR, 
the BSR depth can change gradually across ki-
lometers in a basin reflecting a smooth change 
in gas composition. We used three-dimensional 
(3-D) seismic and well-log data to character-
ize a new gas hydrate system, Moby-Dick, in 
a channel-levee complex in the northern Gulf 
of Mexico. We argue that at Moby-Dick, an in-
crease of thermogenic gas input from gas chim-
neys in the western side of the basin is a likely 
explanation for the smooth westward deepening 
of the GHSZ base.

DATA AND METHODS
We used a time-migrated 3-D seismic sur-

vey, B-20–92-LA, and 2-D line W-LS-389A_E 
publicly available at the National Archive of Ma-
rine Seismic Surveys (https://walrus.wr.usgs.
gov/namss/; see the Supplemental Material1). 
Resistivity, gamma ray, gas chromatographic 
logs, permit documents, and drilling operations 

1Supplemental Material. Information about the sources and processing characteristics of the public seismic, well log, and gas chromatography data; and time-depth 
conversion parameters, velocity model, and calculations of geothermal gradients. Please visit https://doi.org/10.1130/GEOL.S.15062322 to access the supplemental 
material, and contact editing@geosociety.org with any questions.
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reports from a Deep Gulf Energy (DGE; Hous-
ton, Texas, USA) well (API 608114053100) 
were acquired from the U.S. Bureau of Safety 
and Environmental Enforcement (https://www.
bsee.gov). The velocity model for the seismic-
well tie and all time-depth conversions were 
based on the density and velocity functions de-
rived for marine mud sediments by Cook and 
Sawyer (2015) (see the Supplemental Material). 
Spatial modeling of geothermal gradients over 
the mapped BSR surface was based on the depth 
of the BSR below the seafloor (see the Supple-
mental Material).

RESULTS AND DISCUSSION
Geologic Setting

The Moby-Dick gas hydrate system is locat-
ed in water depths of 1250–1480 m in the Ship 
Basin in the northern Gulf of Mexico (Fig. 1). 
In seismic data, salt bodies are evident at the 
basin margins (>3000 m away from the Moby-
Dick system), yet in the central portion of the 
basin, the salt surface is not resolved, indicating 
that it is extremely deep (>6 s two-way travel-
time [TWT]; Fig. 1B). West of Moby-Dick, a 
group of seven deep-rooted gas chimneys form 
mounds at the seafloor, up to 1000 m wide and 
100 m tall, possibly representing gas hydrate 
pingos or mud volcanos (Fig. 1A).

BSR in a Channel-Levee Complex
The Moby-Dick hydrate system is charac-

terized by a prominent and consistent trough-
leading BSR (Figs. 1B and 2A) extending over 
14.2 km2 (Fig. 1A). The BSR is discontinuous 
at the northern margin of the Ship Basin, yet 
in the central part of our study area, the BSR 
becomes more coherent and crosscuts the sedi-
mentary bedding. The BSR occurs within an 
∼200–250-m-thick seismic unit with high-
amplitude reflections associated with a coarse-

grained channel depositional system (Figs. 2A–
2C). The channel complex is underlain by a 
prominent basal horizon deposited prior to the 
onset of the channel (Figs. 2A–2C). We flat-
tened the seismic volume along the basal hori-
zon to simulate the paleo-seafloor and visualize 
the original configuration of the channel com-
plex (Figs. 2B and 2C). This showed channel 
deposits extending ∼3500 m on both sides of 
an ∼1000-m-wide channel with outer levees up 
to 250 m thick (Figs. 2B and 2C). Frequency 
spectral decomposition showed the high-sinu-
osity axis of the major channel extending in a 
general northwest-southeast direction (inset of 
Fig. 2C), as well as several meandering chan-
nel paths deviating from its primary trajectory 
(inset of Fig. 2C; Fig. 3). The DGE well was 
drilled into the eastern outer levee (Figs. 1B and 
2C) and shows an ∼150-m-thick coarse-grained 
interval with low gamma ray (35–55 API) cor-
responding to a unit in the seismic data inter-
preted as channel deposits (Figs. 1B and 2C). In 
summary, the Moby-Dick system is associated 
with a coarse-grained channel-levee complex 
up to 250 m thick, favorable for gas and hydrate 
accumulations.

The seismic pattern of the channel-levee 
complex comprises several continuous hori-
zons likely corresponding to sand intervals. The 
Whalebone Horizon is the most prominent and 
is present over the entire channel-levee com-
plex (Fig. 3A). In the Whalebone Horizon, we 
observed a change in the seismic response from 
high-amplitude peak-leading reflection above 
the BSR to trough-leading reflection below 
(Figs. 1B and 3A). This phase reversal is sharp 
and consistent and extends over ∼9 km from 
east to west across the basin (Fig. 3A). Such a 
seismic configuration indicates a gas hydrate–
bearing sand associated with the peak-leading 
reflection above the BSR changing to a gas-

bearing sand and a trough-leading reflection 
below the BSR (Boswell et al., 2012; Hillman 
et al., 2017). Below the Whalebone Horizon, we 
observed the peak-leading Ship Horizon with a 
phase reversal (inset of Fig. 3A; Fig. 3B) occu-
pying an approximate area of 2.5 km2. A map of 
peak-leading amplitudes above the BSR surface 
shows the approximate gas hydrate distribution 
above the base of the GHSZ in both horizons 
(Fig. 3B). The strongest peak-leading ampli-
tudes are likely associated with the highest 
hydrate saturation. A similar map for trough-
leading amplitudes below the BSR surface 
shows distribution of free gas below the base 
of the GHSZ (Fig. 3C).

At Moby-Dick, there are no wells drilled 
into the potential hydrate-bearing horizons. 
The DGE well was drilled ∼150 m away from 
the closest high-amplitude peak-leading reflec-
tions (Fig. 3A). Due to a flow observed at the 
wellhead when the drill bit approached the base 
of the GHSZ (∼685 m below seafloor, 2031 m 
measured depth [MD]), casing was installed 
over the GHSZ, corrupting the well-log data 
(Figs. S1A and S1B in the Supplemental Mate-
rial). The flow observed at the wellhead could 
have been caused by excess formation pore pres-
sure due to free gas at the base of the GHSZ.

Geothermal Gradient and Gas Composition
If we assume Moby-Dick is a classic meth-

ane hydrate system with 100% methane gas and 
standard seawater salinity of 35 g/L, we estimate 
a 24 °C/km geothermal gradient from the BSR 
depth in the eastern part of Moby-Dick. The 
modeled base of the GHSZ suggests the BSR 
should gradually deepen by ∼25 m from north 
to south due to the southward seafloor deepening 
(Fig. 1A). Instead, the Moby-Dick BSR deepens 
by ∼150 m relative to the seafloor from east to 
west (Fig. 4A).

BA

Figure 1.  (A) Seafloor bathymetry map showing the areal extent of the Moby-Dick gas hydrate system, including a paleochannel, bottom 
simulating reflection (BSR), and deeply rooted gas chimneys that may potentially supply thermogenic gas to the Moby-Dick system. Inset: 
Location of the Moby-Dick system relative to other gas hydrate systems in the Gulf of Mexico. (B) Channel-levee complex in seismic and well-
log data (green dotted interval) is crosscut by bottom simulating reflection (BSR; purple dotted line). Location of cross section a-b is shown 
in Figures 1A and 3A. Inset: Location of channel-levee complex in the central part of the minibasin where salt-related temperature and salinity 
variations are minimal. Location of the cross section a′-b′ is shown in A.
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There are several factors that could cause 
the abnormal BSR depth across the Ship Basin: 
distortion of seismic reflectors in time-migrated 
seismic data, elevated pore pressure in the west, 
significant salinity variations, a variable geother-
mal gradient, and variable gas composition. To 
test the possible distortion of seismic reflectors, 
we constructed a velocity model to convert the 
time-migrated east-west seismic section to depth 
(Figs. S2A and S2B). This model shows that any 
velocity effects within the GHSZ that could ex-
plain the observed BSR configuration are negli-
gible (Figs. S2A and S2B). We also ruled out the 
possible effect of elevated pore pressure, which 
is normally hydrostatic in the near-seafloor sedi-

ments (Osborne and Swarbrick, 1997). More-
over, a gradually elevated pressure would have 
to coincide exactly with the slightly dipping base 
of the GHSZ to provide such an effect at Moby-
Dick. Finally, significant salinity variations are 
not common in the central parts of minibasins; 
in general, a seawater salinity of 35 g/L is typ-
ical for the upper ∼2 km of sediment within 
minibasins (Wilson and Ruppel, 2007; Hanor 
and Mercer, 2010). Due to the distance of the 
Moby-Dick system from the salt bodies (∼3 km) 
and no resistivity decrease in the DGE well log 
indicating high pore-water salinity (Fig. 1B), we 
consider that a gradual salinity increase from 35 
to 67.5 g/L across the basin is unlikely.

Two factors can still explain the observed 
BSR configuration: a variable geothermal gradi-
ent and variable gas composition.

If we assume the gas in the system is 100% 
methane, a geothermal model that causes the 
BSR to deepen 150 m from east to west can be 
explained by a geothermal gradient change from 
∼24 to 19 °C/km from east to west (Fig. 4A). 
Cooling effects from higher sedimentation are 
highly unlikely to cause a geothermal gradient 
change, because seismic data show relatively 
uniform stratigraphic bedding from west to 
east (Figs. S2A and S2B). Nevertheless, such 
steep temperature variations can occur above 
heat-conductive allochthonous salt, which has 

A B

C

Figure 2.  (A) Seismic cross section c-d (see Fig. 1A for location) showing bottom simulating reflection (BSR) and phase reversal within the 
channel-levee complex (green dotted interval). Black solid line shows the basal horizon used for seismic volume flattening. (B) Cross section 
c-d in flattened seismic volume showing major elements of depositional and gas hydrate systems. Green solid line shows the depth slice 
used for frequency spectral decomposition. (C) Three-dimensional visualization of the channel-levee complex across an arbitrary section 
e-f (see Fig. 1A) in a flattened seismic cube, blanked above the complex surface. Inset: Channel configuration and location of section e-f in 
frequency spectral decomposition map.
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been previously reported as a significant GHSZ 
distortion factor (Mello et al., 1995; Portnov 
et al., 2020). However, normally such geother-
mal anomalies are negligible or absent within 
central parts of minibasins, far from salt bod-
ies (Wilson and Ruppel, 2007; Portnov et al., 
2020). Furthermore, if such an effect existed 
at Moby-Dick, it would be bilateral due to the 
equidistant location of the salt bodies on either 
side of the gas hydrate system (Fig. 1B). Thus, 
a modeled ∼5 °C/km lateral change in the geo-
thermal gradient over only ∼8 km distance in 
the central part of the basin is unlikely.

If we assume the geothermal gradient across 
the basin is uniform, then there would be a grad-
ual gas composition change from 100% C1 (most 
likely microbial gas) causing a shallower base of 

the GHSZ in the east to a gas mix resulting in a 
deeper base of the GHSZ in the west (Figs. 2B 
and 2C). This assumption is supported by mul-
tiple deep-rooted gas chimneys adjacent to Mo-
by-Dick in the west (Fig. 1A and 3A), which 
likely shuttle thermogenic gas to the seafloor 
and may supply gas to the gas hydrate system. 
Moreover, strongly negative seismic amplitudes 
are much more abundant within the western part 
of the Whalebone Sand (Fig. 3A), confirming 
a higher gas concentration in the proximity of 
the gas chimneys.

In this case, however, many non-unique 
combinations of gas mix could match the BSR 
depth depending on the concentration of heavier 
hydrocarbons (C2–C5) in the total gas composi-
tion. Analyses of the gas chromatographic logs 

from the sub-GHSZ interval in the DGE well 
revealed corrupted C1–C5 records due to incor-
rect machine calibration and failure (Fig. S3). 
Therefore, we modeled a plausible sequence of 
changing synthetic gas mixes along the west-
east shoaling BSR (Figs. 4B and 4C), which 
vary the concentration of C2 and C3 at a 2:1 ratio 
(a realistic ratio for deep-water Gulf of Mexico; 
Thiagarajan et al., 2020). In such scenario, a 
gradual depletion of heavier hydrocarbons will 
smoothly shoal the base of the GHSZ eastward 
and slightly updip. This produces a single shoal-
ing BSR without generating a double BSR, such 
as that observed in other gas hydrate systems of 
possible thermogenic nature (Fig. 4C; Posewang 
and Mienert, 1999; Andreassen et al., 2000; 
Foucher et al., 2002).

A

B C

Figure 3.  (A) Map of instantaneous amplitude along the hydrate-bearing Whalebone Horizon. Blue color defines the extent of peak-leading 
amplitudes associated with gas hydrate. Insets 1–4 show phase reversals across the Moby-Dick system. BSR—bottom simulating reflection. 
(B) Map of average positive amplitudes indicating gas hydrate within 30 ms (∼27 m) above the base of the gas hydrate stability zone (GHSZ). 
(C) Map of negative amplitudes indicating gas within 30 ms (∼27 m) below the base of the GHSZ.
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CONCLUSIONS
The Moby-Dick gas hydrate system includes 

two hydrate-bearing horizons in a channel-levee 
complex. We interpreted the presence of gas hy-
drate from phase reversals and peak-leading re-
flections above the BSR, which occupies an area 

of ∼14.2 km2. The west-to-east shoaling BSR 
does not mimic the seafloor, and we argue that 
this variation in the BSR depth is predominantly 
caused by a change in gas mix containing heavi-
er hydrocarbons in the west to pure methane gas 
in the east. Such a configuration may indicate a 

west-to-east transition from a thermogenic to a 
microbial system. The Moby-Dick system dem-
onstrates that the default assumption of methane 
hydrate may be misleading for hydrate prospect-
ing purposes and broader estimates of the GHSZ 
thickness and volume.

A

B C

Figure 4.  (A) Geothermal gradient model based on observed bottom simulating reflection (BSR) depth (labeled white contours) and microbial 
gas composition (100% C1) range between 23.7 and 19.2 °C/km. Location of line g-h is shown. (B) Gas hydrate phase boundaries from syn-
thetic gas mix including C2 and C3 (2:1 ratio) gradually depleting eastward (mbsf—m below seafloor). Diagram shows possible shoaling of 
the gas hydrate stability zone (GHSZ) lower boundary given uniform geothermal gradient. (C) Possible injection of thermogenic gas into the 
channel-levee complex causes deeper BSR in the west and a gradual transition from a thermogenic to microbial system eastward (line g-h).
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