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Abstract— In U.S. electricity markets, energy prices are
traditionally ~determined by optimal dual variables
corresponding to system demand constraints of the economic
dispatch problem. With fixed unit commitment (UC)
decisions, however, such prices cannot reflect actual marginal
costs of serving load, and market participants might not want
to follow commitment and dispatch decisions made by
Independent System Operators. To address this, convex hull
pricing provides a promising way to accurately calculate
prices and reduce uplift payments in electricity markets. One
way to find the convex hull prices is to take the dual of the UC
problem and solve the resulting problem by Lagrangian
relaxation. In this study, impacts of tightening unit
formulations on prices from integer relaxation are
investigated, where formulation tightening is combined with
the surrogate Lagrangian relaxation method to calculate
convex hull prices. The performance of the proposed model is
compared with the conventional UC formulation and the effect
of integer-relaxation is also studied. IEEE 118 bus system with
54 units is used for testing. Results demonstrate that the
tightened formulation can produce accurate prices upon
integer-relaxation for a smaller 3-hour example and
approximate prices for a larger 24-hour example. This
demonstrates the potential of formulation tightening on the
calculation of convex hull prices.
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I. INTRODUCTION

In the U.S. electricity markets, Independent System
Operators (ISOs) solve unit commitment (UC) and

economic dispatch problems in their daily operations.
Prices are traditionally determined by optimal dual variables
for system demand constraints of the economic dispatch
problem, with UC decision variables fixed at their optimal
values [1]. With fixed UC, however, unit start-up and no-load
costs are not captured, and prices cannot reflect actual
marginal costs of serving load. These inaccuracies in pricing
compel the ISOs to make out-of-pocket uplift payments to
incentivize the generators to follow the dispatch. Such
payments compromise the transparency of the market and
discourage new competitors. One of the novel methods to
overcome these challenges is the convex hull pricing (CHP)
method introduced by Gribik et. al. [1] in 2007. The core idea
of this approach is to convexify the nonconvex cost function
using Fenchel convex conjugate and to form a convex
envelope over the convex hull of the constraints. This method
can reduce uplift payments and improves market
transparency [1].
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Several methods have been used to get CHPs, as reviewed
in Section II. One type of approach to get CHPs is to develop
a convex hull of the feasible set and the convex envelope of
the objective function over the convex hull [2]-[8]. However,
getting the exact convex hull and envelope is difficult due to
the presence of a large number of binary decision variables.
Formulation tightening provides a promising way to obtain the
convex hull, since tight constraints directly delineate the
convex hull of the feasible set [9]. In the literature, most
tightened formulations were presented without providing a
procedure. The other type of approach to get CHPs is to take
the dual of the UC problem and solve the resulting problem
using decomposition and coordination approaches like
Lagrangian relaxation-based methods [10]-[12]. However,
this approach involves the high computational effort, and
multipliers may suffer from zigzagging, resulting in slow
convergence.

In this paper, the impacts of formulation tightening on the
computation of convex hull prices by using decomposition and
coordination methods are investigated. In section III, a
standard UC formulation is presented. The problem is solved
by using our Surrogate Lagrangian Relaxation (SLR) [13] as
described in Section IV. This method overcame all the major
difficulties of standard Lagrangian relaxation. It does not
require all sub-problems to be solved optimally. Therefore,
computational efforts are reduced, and the surrogate directions
are smoother, thus multiplier zigzagging is much alleviated. In
this decomposition and coordination framework, unit-level
constraints are tightened by using our novel and systematic
approach [9] to further enhance the quality of CHPs and speed
up the computational time as well.

In Section V, three examples based on the IEEE 118-bus
system are considered with transmission capacity constraints
ignored for simplicity. The first small example is to illustrate
the concept of convex hull pricing. The second 3-hour
example is to demonstrate that with tight unit formulations, the
integer relaxation problem leads to the same dual variables of
the original problem. The third 24-hour example is to show
that with tighter unit formulations, the prices obtained by
solving integer relaxation problems are getting closer to
convex hull prices.

II. LITERATURE REVIEW

CHP is a new and emerging area of research, and there are
limited studies in the literature. In this section, different
approaches for calculating CHPs are reviewed.

The first type of approach relies on the convexified UC
problem. However, the convex envelope and convex hull of
the entire UC problem are difficult to formulate. To overcome
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that, the convex envelope and convex hull of each unit are
used to equivalently construct the convexified UC problem.
The difficulty comes down to formulating the convex hull and
convex envelope of each unit. The studies [3], [8] used a
network flow model with integer vertices, whereas in [2] the
authors use a vertex representation polytope to create a
convex hull. These models were able to generate exact
convex hull prices in the absence of ramp rate constraints.
However, they are not practical for UC problems with ramp
rate constraints. Since the unit formulation loses its tightness
in the presence of ramp rates, some researchers have tried to
overcome this problem by enumerating all possible
commitment statuses of units and developing a convex
combination of its constraints [4-7]. In [4], disjunctive
programming is used to enumerate the commitment statuses.
The study [5] also employs an enumeration methodology,
where decision variables indexed by the unit on and off
intervals were introduced. Researchers in [6], [7], used
dynamic programming equations of the conventional UC
problem and transformed them into a linear programming
(LP) problem, where the dual of the LP problem gives the
description of convex hull and convex envelope. These
methods demonstrate that integer relaxation leads to an exact
convex envelope. However, in such enumeration-based
approaches, the computational burden increases dramatically
with the number of periods. To obtain the convex hull,
formulation tightening provides another way since tight
constraints directly delineate the convex hull of the feasible
set. In the literature, most tightened formulations were
presented without providing a procedure [14]-[16]. In our
previous work [9], a systematic approach was developed to
tighten single unit formulations. Tight constraints were
established based on novel integration of “constraint-and-
vertex conversion,” “vertex elimination,” and
“parameterization” processes. Testing results on the IEEE
118-bus and Polish 2383-bus systems demonstrated the
benefits of improving computational efficiency and solution
quality.

In the second type of approach, the Lagrangian dual of the
UC problem is used to get CHPs. The multipliers of the dual
problem corresponding to the system demand constraints are
the CHPs, and there is no need to describe the convex hulls
and convex envelopes. In [10], the authors used a subgradient
simplex cutting plane method to remove non-optimal
solutions using subgradients and dual variables at each
iteration. But this method suffers from multiplier zigzagging
and slow convergence. An extreme point subdifferential
method was used in [11], [12]. Here, the authors minimize the
square error between the demand and generation levels to
obtain the steepest accent direction. However, this method
requires the extreme points of a unit to be calculated in each
iteration, requiring a heavy computational effort. The above
Lagrangian relaxation-based methods involves the high
computational effort, and multipliers may suffer from
zigzagging, resulting in slow convergence. These major
difficulties have been overcome by our recent SLR method
[13]. This method does not require all sub-problems to be
solved optimally, thereby alleviating zigzagging and reducing
computational requirements. It is a promising method with
demonstrable results on different kinds of optimization
problems [17].

III. UC FORMULATION

In this section, a standard UC formulation is presented [9].
Unit-level and system-level constraints are presented in
Subsections A and B, respectively. The objective function is
discussed in Subsection C.

A. Unit-level constraints

For unit & at node 7, at each time ¢, major decision variables
include unit on/off status x (binary), start-up decision u
(binary), and generation level p (continuous). At the unit
level, constraints include generation capacity, offer price
block, start-up, ramp rate, and minimum up/down-time.
Node index i and unit index k are omitted below for brevity.
1). Generation capacity: If a unit is online, its generation level
p should be within its minimum P™" and maximum P™"%,
otherwise, p has to be zero, i.e

x()P™" < p(t) < x(£)P™*, vt €))
2). Offer price block: Assume offer prices are monotonically
non-decreasing, a few offer price blocks with constant prices
in each block are considered. For each block, a continuous
decision variable p,is considered, and their sum equals p, i.e.,
pp(t) < P, Xppp(t) = p(0), Vt (2)
where P, (MW) is the maximum generation of block b.
3). Ramp rate: The change of generation levels between two
consecutive hours cannot exceed hourly ramp R, and p cannot
exceed P™" plus 30-min ramp when the unit is online at the
first or last hour following standard industrial practice, i.e.,
p(t) —p(t—1) < (R/2 — P™M)x(t — 1) + (P™" +
R/2)x(t), Vvt
p(t = 1) —p(t) < (P = R/2)x(t — 1) + (R/2 -
P™Mx(t), Vt 3)
4). Start-up: If a unit is turned on at hour ¢, binary startup
variable u(f) equals 1, i.e.,
u®) =2 x() —x(t—-1) 4)
5). Minimum up/down-time: A unit must stay online or offline
for its minimum up or down time [15], respectively, i.e.,
_IL\'/I=01n X(T) — TMOn
ST (@) = T (x() — x(t - 1),
t €1+ TMo" T —TMU +1],
=t(x (1) = (x(©) —x(t — 1))) 2 0,
te[T—TMY +2,T] (5)
where TV is the minimum up time, and 7V°" is the number
of hours the unit must be on at the beginning of the time
horizon. Modeling of minimum down time is similar.

B. System-level constraints

At the system level, constraints include system demand
(power balance), and transmission capacity.
1). System demand: Total generation equals total demand, i.e.,
YikPis(t) = X PP (t), vt (6)
where PP(f) is the demand of node i at time .
2). Transmission capacity: DC power flow fi(¢) of line /, linear
combinations of nodal injections P(f) from all nodes
weighted by generation shift factors a;;, cannot exceed
capacity f/"*, i.e.,
" < fi(0) < M () = Eiai Pi(o),
Pi(t) = Zipin (&) = PP (6), Vvt (7)

C. Objective function

The total cost to be minimized is the commitment cost
plus the dispatch cost, i.e.,
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where Sir, S and Cixp are start-up, no-load, and
generation costs, respectively.
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IV. METHODOLOGY

The above problem is solved by using Surrogate
Lagrangian Relaxation (SLR) [13] as decried in Subsection A.
Then unit-level constraints are tightened by using our novel
and systematic approach [9] as introduced in Section B.

A. Surrogate Lagrangian Relaxation (SLR) method

The SLR method is a novel decomposition and
coordination algorithm that overcame all the major difficulties
of standard Lagrangian relaxation [13]. The process begins
with the relaxation of system coupling constraints (system
demand and transmission capacity) Lagrangian multipliers.
The relaxed problem is given as:
min L(A(t),p(t)) =

min {{Zt X Zoe@ige (O)Sie + X (OST
+ 3¢ X 2 b CisepPisen (1)}
+ 2 A0 (Zi PP (1) = ZiePie (D))
+ e ©. (©) = f"))
+(ur (- (A = "))} €

With system-wide constraints relaxed, the relaxed problem
can be decomposed into individual unit subproblems. In the
method, not all subproblems are solved at a time and only the
surrogate optimality condition [13] is needed to be satisfied.
Therefore surrogate directions do not change drastically from
one iteration to the next and zigzagging difficulties are thus
alleviated. Multipliers A are updated by the following equation
(time index ¢ is omitted):

Antl — jn 4 Cng(pn)’
w =+ e gt (™),
p =+ g (™), (10)
Where, c" is the positive scalar step size at iteration n and § is
the surrogate subgradient vector given as:
g™ =X PP() = X1kl
gr®") = ay P = ",
g~ (") = —ay, P = " (11
The value of ¢™ is calculated with the following equation

M= (3@l +1g* @D, g~ @™ l,)
" g™z +1g* @™ll2+15~ @™z ’

0<a,<1 (12)
The values of a,, depends upon the given variables:

1 1
——p=1-— M>210<r<1 (I3)

a,=1-

The values of Lagrangian multipliers corresponding to the
system demand constraints (1) of the relaxed problem gives
the required CHPs.

B. Formulation tightening

Formulation tightening is a promising but relatively
overlooked research area. It involves the transformation of the
constraints in the pre-processing stage to directly delineate the
convex hull of the unit. Our approach first generates vertices
of the integer relaxation problem from constraints by using
algebraic manipulation of unit parameters with algorithms
well established in existing software Porta. Then the vertices

of the original convex hull are obtained by the elimination of
vertices with fractional values for binary variables [9]. Then
these vertices are converted back to tight constraints by using
the software Porta as a reverse process of the first step. These
constraints are reusable as numerical coefficients are
converted to unit parameters and stored in look-up tables for
future use. The biggest advantage of this approach is that it
enables the use of linear programming methods to solve the
UC problem. Since it is hard to develop tight formulations of
units for 24 hours, near-tight formulations can be used as good
approximations [2], [9].

To illustrate the idea, consider a simple problem with two
binary variables x; and x», and x; + x» > 0.5. In Figure 1(a),
constraints are represented by blue lines, and the convex hull
is described by red lines with vertices represented by solid red
dots. Those red lines are hard to obtain directly. For the
integer relaxation problem in Figure 1(b), constraints are still
blue lines. After constraint-to-vertex conversion, vertices are
represented by blue dots. There are two sets of vertices in
Figure 1(b). One set consists of binary vertices represented by
solid blue dots, and the other set consists of fractional vertices
represented by open blue dots. By dropping the open blue
dots, the remaining binary vertices are the same as the vertices
in Figure 1(a). After vertex-to-constraint conversion, tight
constraints, i.e., red lines, are obtained.

Relax integral requirements

&

Drop fractional vertices 0 Y 1

Figure 1(b): Convex hull of its
integer relaxation problem

X

Figure 1(a): Convex hull of a
problem with binary variables x;, x,

V. TESTING AND RESULTS

In this section, three examples are considered. The first
small example is to illustrate the concept of convex hull
pricing. The IEEE 118 bus system is used in examples 2 and
3. The second 3-hour example is to demonstrate that with
tight unit formulations, the integer relaxation problem leads
to the same dual variables of the original problem. The third
24-hour example is to show that with tighter unit
formulations, the prices obtained by solving integer
relaxation problems are getting closer to convex hull prices.
The system consists of 54 units, 186 branches, and 118 buses.
The experiments are performed using IBM ILOG CPLEX
Optimization Studio V 12.10.0.0 on a PC with 2.30 GHz
Intel(R) Core (TM) i7- 10510U CPU and 16 GB RAM.

Example 1

For the UC problem under consideration, the convex hull
cost function is an alternative well behaved convex
approximation of the total cost function. It produces a supply
function that has marginal cost, i.e., convex hull price,
increasing in load, and provides a lower bound to the total
cost function. To illustrate the idea, consider the two-unit
problem in [1] as an example. The unit parameters are
described in Table I below. For simplicity, P™" is assumed as
0, and R is assumed as infinitely large so that ramp rate
constraints are no longer needed. Also, minimum up/down-
time constraints are not considered. With units A and B, the
total commitment and dispatch cost, and the marginal cost



with respect to system load are shown in Figures 2 and 3,
respectively.

As shown in Figure 2, the total cost curve follows the total
cost curve of unit A until the load level is high enough
(approximately 178 MW) to commit unit B, and then it is
switched to the total cost curve of the combination of units A
and B. Note that in this case, the increase in the rate of the
total cost drops. The marginal cost first increases and then
decreases, and then increases again with the load as shown in
Figure 3. Technically, it is not monotonically increasing.

TABLE I: A TWO-UNIT PROBLEM

Fixed ax o Energy Cost | Energy Cost
Unit | Cost i):bl(i)vc[lzvl) i)fbl((l)\::[lfvz) of block 1 of block 2
® ($/MWh) ($/MWh)
A 0 100 100 65 110
B 6000 100 100 40 90
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Figure 2. Two-unit problem: Total cost
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Figure 3. Two-unit problem: Marginal cost

For the above two-unit problem, the convex hull cost
yields the total commitment and dispatch cost as shown in
Figure 4, and the associated convex hull price curve is shown
in Figure 5. The original total cost and marginal cost (price)
presented earlier are also shown for comparative purposes.
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Figure 4. Two-unit problem: Total cost and convex hull cost

As shown in Figure 4, the convex hull cost is as close as
possible to the total cost. This convex hull approximation will

not reproduce the economic dispatch, but it provides
increasing uniform energy prices. In this case, the marginal
cost, i.e., the convex hull price, is increasing with the load as
shown in Figure 5. It is monotonically increasing.
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—e— Marginal price Convex hull price

Figure 5. Two-unit problem: Marginal cost and convex hull cost
Example 2

In this example, all 54 units of the IEEE 118 bus system
are run for 3 hours only. The motivation behind running it
only for 3 hours is that it is possible to get tight formulation
and exact CHPs for all hours as the computational load is less
due to the smaller time horizon. All units have one offer price
block. Transmission capacity constraints are ignored for
simplicity. The testing consists of four cases. The first one is
a conventional mixed-integer linear programming (MILP)
formulation commonly used in the industry, while its integer-
relaxation forms the second case. The third and fourth cases
are based on our tight formulation presented in [9], case three
is a tight MILP formulation while case four is a tight LP
formulation (through integer relaxation). Three load profiles
are considered, and the results are presented in Tables II, III,
and I'V.

TABLE II: RESULTS OF TESTING EXAMPLE 2 (2 UNITS, 3 HOURS)
WITH SYSTEM DEMAND 1

Case # Model CHPs ($/MWh)
Hour 1 Hour 2 Hour 3
1 MILP (Conventional) 15.025 12.532 13.608
2 LP (Conventional) 15.009 12.539 13.571
3 MILP (Tight) 15.025 12.532 13.608
4 LP (Tight) 15.025 12.532 13.608

TABLE III: RESULTS OF TESTING EXAMPLE 2 (2 UNITS, 3 HOURS)

WITH SYSTEM DEMAND 2
Case # Model CHPs ($/MWh)
Hour 1 Hour 2 Hour 3
1 MILP (Conventional) 14.776 12.857 13.585
2 LP (Conventional) 14.968 12.532 13.650
3 MILP (Tight) 14.776 12.857 13.585
4 LP (Tight) 14.776 12.857 13.585

TABLEIV: RESULTS OF TESTING EXAMPLE 2 (2 UNITS, 3 HOURS)

WITH SYSTEM DEMAND 3
Case # Model CHPs ($/MWh)
Hour 1 Hour 2 Hour 3
1 MILP (Conventional) 15.06 12.382 12.532
2 LP (Conventional) 15.031 12.428 12.644
3 MILP (Tight) 15.06 12.382 12.532
4 LP (Tight) 15.06 12.382 12.532

As shown in the above three tables, the values of the



multipliers for all three hours are exactly the same for cases
1, 3, and 4, and they are CHPs. Only case 2 deviates away
from the prices. With tight unit formulations, the values of the
dual variables corresponding to system demand constraints
for the LP problem are exactly the same as the dual variables,
i.e., CHPs, for the original problem. This demonstrates that
with tight unit formulations, CHPs can be obtained by solving
the LP problem. Thereby, reducing the computational burden
of solving MILP problems.

Example 3

In this example, the UC problem in Example 2 is extended
to 24 hours. The inspiration for this example is to test the
performance of our model against the industrial standard for
UC problems, which are typically calculated one day ahead
for the next day. Figure 6 shows the comparative performance
of the near-tight model presented in this paper with
conventional model and the effect of integer-relaxation on
prices.

15.5

Prices ($/MWh)
=
)

1234567 89101112131415161718192021222324
Time (hours)

..... @« MILP LP LP Tight

Figure 6. Results of testing example 3 (24 hours)

It is observed that the values of the multipliers produced
by near-tight formulations with integer realization are very
close to CHPs obtained by the conventional model. However,
the prices obtained by the conventional model with integer
relaxation deviate considerably, especially for hours 5, 9, and
10. This shows that formulation tightening helps in creating
near-tight formulations which can provide a good
approximation to the exact CHPs. Since it is easier to solve
LP problems than solving MILP programs, this approach
reduces the computational requirements for solving the UC
problem in electrical markets.

VI. CONCLUSION

This paper is to investigate the impacts of tightening unit
formulations on prices obtained from integer relaxation. The
approach of formulation tightening is applied to the UC
problem to calculate prices, and the resulting problem is
solved by using the SLR method. If the tight constraints can
directly delineate the convex hull of the unit, an LP can be
used to solve the UC problem for CHPs. Thereby, reducing
the computational burden in a major way. The performance of
the tightened UC formulation is compared with the
conventional UC formulation used in the industry. The results
of testing demonstrate that the tightened formulation can
produce accurate CHPs upon integer-relaxation for a smaller
problem (3 hours) and can provide approximate CHPs upon
integer-relaxation for a larger problem (24 hours), for the

IEEE 118 bus system with 54 units. This demonstrates the
potential of formulation tightening on calculating CHPs.
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