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Abstract— In U.S. electricity markets, energy prices are 
traditionally determined by optimal dual variables 
corresponding to system demand constraints of the economic 
dispatch problem. With fixed unit commitment (UC) 
decisions, however, such prices cannot reflect actual marginal 
costs of serving load, and market participants might not want 
to follow commitment and dispatch decisions made by 
Independent System Operators. To address this, convex hull 
pricing provides a promising way to accurately calculate 
prices and reduce uplift payments in electricity markets. One 
way to find the convex hull prices is to take the dual of the UC 
problem and solve the resulting problem by Lagrangian 
relaxation. In this study, impacts of tightening unit 
formulations on prices from integer relaxation are 
investigated, where formulation tightening is combined with 
the surrogate Lagrangian relaxation method to calculate 
convex hull prices. The performance of the proposed model is 
compared with the conventional UC formulation and the effect 
of integer-relaxation is also studied. IEEE 118 bus system with 
54 units is used for testing. Results demonstrate that the 
tightened formulation can produce accurate prices upon 
integer-relaxation for a smaller 3-hour example and 
approximate prices for a larger 24-hour example. This 
demonstrates the potential of formulation tightening on the 
calculation of convex hull prices. 
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I. INTRODUCTION  
n the U.S. electricity markets, Independent System 
Operators (ISOs) solve unit commitment (UC) and 
economic dispatch problems in their daily operations. 

Prices are traditionally determined by optimal dual variables 
for system demand constraints of the economic dispatch 
problem, with UC decision variables fixed at their optimal 
values [1].  With fixed UC, however, unit start-up and no-load 
costs are not captured, and prices cannot reflect actual 
marginal costs of serving load. These inaccuracies in pricing 
compel the ISOs to make out-of-pocket uplift payments to 
incentivize the generators to follow the dispatch. Such 
payments compromise the transparency of the market and 
discourage new competitors. One of the novel methods to 
overcome these challenges is the convex hull pricing (CHP) 
method introduced by Gribik et. al. [1] in 2007. The core idea 
of this approach is to convexify the nonconvex cost function 
using Fenchel convex conjugate and to form a convex 
envelope over the convex hull of the constraints. This method 
can reduce uplift payments and improves market 
transparency [1].   

Several methods have been used to get CHPs, as reviewed 
in Section II. One type of approach to get CHPs is to develop 
a convex hull of the feasible set and the convex envelope of 
the objective function over the convex hull [2]–[8]. However, 
getting the exact convex hull and envelope is difficult due to 
the presence of a large number of binary decision variables. 
Formulation tightening provides a promising way to obtain the 
convex hull, since tight constraints directly delineate the 
convex hull of the feasible set [9]. In the literature, most 
tightened formulations were presented without providing a 
procedure. The other type of approach to get CHPs is to take 
the dual of the UC problem and solve the resulting problem 
using decomposition and coordination approaches like 
Lagrangian relaxation-based methods [10]–[12]. However, 
this approach involves the high computational effort, and 
multipliers may suffer from zigzagging, resulting in slow 
convergence.  

In this paper, the impacts of formulation tightening on the 
computation of convex hull prices by using decomposition and 
coordination methods are investigated. In section III, a 
standard UC formulation is presented. The problem is solved 
by using our Surrogate Lagrangian Relaxation (SLR) [13] as 
described in Section IV. This method overcame all the major 
difficulties of standard Lagrangian relaxation. It does not 
require all sub-problems to be solved optimally. Therefore, 
computational efforts are reduced, and the surrogate directions 
are smoother, thus multiplier zigzagging is much alleviated. In 
this decomposition and coordination framework, unit-level 
constraints are tightened by using our novel and systematic 
approach [9] to further enhance the quality of CHPs and speed 
up the computational time as well.  

In Section V, three examples based on the IEEE 118-bus 
system are considered with transmission capacity constraints 
ignored for simplicity. The first small example is to illustrate 
the concept of convex hull pricing. The second 3-hour 
example is to demonstrate that with tight unit formulations, the 
integer relaxation problem leads to the same dual variables of 
the original problem.  The third 24-hour example is to show 
that with tighter unit formulations, the prices obtained by 
solving integer relaxation problems are getting closer to 
convex hull prices.   

II. LITERATURE REVIEW 
CHP is a new and emerging area of research, and there are 

limited studies in the literature. In this section, different 
approaches for calculating CHPs are reviewed.  

The first type of approach relies on the convexified UC 
problem. However, the convex envelope and convex hull of 
the entire UC problem are difficult to formulate. To overcome 
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that, the convex envelope and convex hull of each unit are 
used to equivalently construct the convexified UC problem. 
The difficulty comes down to formulating the convex hull and 
convex envelope of each unit. The studies [3], [8] used a 
network flow model with integer vertices, whereas in [2] the 
authors use a vertex representation polytope to create a 
convex hull. These models were able to generate exact 
convex hull prices in the absence of ramp rate constraints. 
However, they are not practical for UC problems with ramp 
rate constraints. Since the unit formulation loses its tightness 
in the presence of ramp rates, some researchers have tried to 
overcome this problem by enumerating all possible 
commitment statuses of units and developing a convex 
combination of its constraints [4-7]. In [4], disjunctive 
programming is used to enumerate the commitment statuses. 
The study [5] also employs an enumeration methodology, 
where decision variables indexed by the unit on and off 
intervals were introduced. Researchers in [6], [7], used 
dynamic programming equations of the conventional UC 
problem and transformed them into a linear programming 
(LP) problem, where the dual of the LP problem gives the 
description of convex hull and convex envelope. These 
methods demonstrate that integer relaxation leads to an exact 
convex envelope. However, in such enumeration-based 
approaches, the computational burden increases dramatically 
with the number of periods. To obtain the convex hull, 
formulation tightening provides another way since tight 
constraints directly delineate the convex hull of the feasible 
set. In the literature, most tightened formulations were 
presented without providing a procedure [14]–[16]. In our 
previous work [9], a systematic approach was developed to 
tighten single unit formulations. Tight constraints were 
established based on novel integration of “constraint-and-
vertex conversion,” “vertex elimination,” and 
“parameterization” processes. Testing results on the IEEE 
118-bus and Polish 2383-bus systems demonstrated the 
benefits of improving computational efficiency and solution 
quality. 

In the second type of approach, the Lagrangian dual of the 
UC problem is used to get CHPs. The multipliers of the dual 
problem corresponding to the system demand constraints are 
the CHPs, and there is no need to describe the convex hulls 
and convex envelopes. In [10], the authors used a subgradient 
simplex cutting plane method to remove non-optimal 
solutions using subgradients and dual variables at each 
iteration. But this method suffers from multiplier zigzagging 
and slow convergence. An extreme point subdifferential 
method was used in [11], [12]. Here, the authors minimize the 
square error between the demand and generation levels to 
obtain the steepest accent direction. However, this method 
requires the extreme points of a unit to be calculated in each 
iteration, requiring a heavy computational effort. The above 
Lagrangian relaxation-based methods involves the high 
computational effort, and multipliers may suffer from 
zigzagging, resulting in slow convergence. These major 
difficulties have been overcome by our recent SLR method 
[13].  This method does not require all sub-problems to be 
solved optimally, thereby alleviating zigzagging and reducing 
computational requirements. It is a promising method with 
demonstrable results on different kinds of optimization 
problems [17].   

III. UC FORMULATION  
In this section, a standard UC formulation is presented [9].  

Unit-level and system-level constraints are presented in 
Subsections A and B, respectively.  The objective function is 
discussed in Subsection C.  

A. Unit-level constraints   
For unit k at node i, at each time t, major decision variables 

include unit on/off status x (binary), start-up decision u 
(binary), and generation level p (continuous).  At the unit 
level, constraints include generation capacity, offer price 
block, start-up, ramp rate, and minimum up/down-time.  
Node index i and unit index k are omitted below for brevity.  
1). Generation capacity: If a unit is online, its generation level 
p should be within its minimum Pmin and maximum Pmax; 
otherwise, p has to be zero, i.e  

       𝑥(𝑡)𝑃𝑚𝑖𝑛  ≤  𝑝(𝑡)  ≤  𝑥(𝑡)𝑃𝑚𝑎𝑥  , ∀𝑡            (1)  

2). Offer price block: Assume offer prices are monotonically 
non-decreasing, a few offer price blocks with constant prices 
in each block are considered.  For each block, a continuous 
decision variable 𝑝𝑏is considered, and their sum equals p, i.e.,  

𝑝𝑏(𝑡)  ≤  𝑃𝑏
𝑚𝑎𝑥 , ∑ 𝑝𝑏(𝑡)  =  𝑝(𝑡), ∀𝑡  𝑏          (2) 

where Pmax
b (MW) is the maximum generation of block b. 

3). Ramp rate: The change of generation levels between two 
consecutive hours cannot exceed hourly ramp R, and p cannot 
exceed Pmin plus 30-min ramp when the unit is online at the 
first or last hour following standard industrial practice, i.e., 

 𝑝(𝑡) − 𝑝(𝑡 − 1) ≤ (𝑅/2 − 𝑃𝑚𝑖𝑛)𝑥(𝑡 − 1) + (𝑃𝑚𝑖𝑛 +
𝑅/2)𝑥(𝑡),  ∀𝑡 

𝑝(𝑡 − 1) − 𝑝(𝑡) ≤ ( 𝑃𝑚𝑖𝑛 − 𝑅/2)𝑥(𝑡 − 1) + (𝑅/2 − 
𝑃𝑚𝑖𝑛)𝑥(𝑡),  ∀𝑡                              (3) 

4). Start-up: If a unit is turned on at hour t, binary startup 
variable u(t) equals 1, i.e., 

𝑢(𝑡) ≥ 𝑥(𝑡) − 𝑥(𝑡 − 1)                        (4) 
5). Minimum up/down-time: A unit must stay online or offline 
for its minimum up or down time [15], respectively, i.e.,  

∑ 𝑥(𝜏)  =  𝑇𝑀𝑂𝑛𝑀𝑂𝑛
𝜏=1   

∑ 𝑥(𝜏) ≥ 𝑇𝑀𝑈(𝑥(𝑡) − 𝑥(𝑡 − 1)),𝑡+𝑇𝑀𝑈−1
𝜏=1    

𝑡 ∈ [1 + 𝑇𝑀𝑂𝑛 , 𝑇 − 𝑇𝑀𝑈 + 1], 
∑ (𝑥(𝜏) − (𝑥(𝑡) − 𝑥(𝑡 − 1))) ≥ 0,𝑇

𝜏=𝑡       
𝑡 ∈ [𝑇 − 𝑇𝑀𝑈 + 2, 𝑇]          (5) 

where TMU is the minimum up time, and TMOn is the number 
of hours the unit must be on at the beginning of the time 
horizon.  Modeling of minimum down time is similar.  

B. System-level constraints  
At the system level, constraints include system demand 

(power balance), and transmission capacity.   
1). System demand: Total generation equals total demand, i.e.,  

∑ 𝑝𝑖,𝑘(𝑡) = ∑ 𝑃𝑖
𝐷(𝑡), ∀𝑡𝑖𝑖,𝑘             (6) 

where Pi
D(t) is the demand of node i at time t.  

2). Transmission capacity: DC power flow fl(t) of line l, linear 
combinations of nodal injections Pi(t) from all nodes 
weighted by generation shift factors ai,l, cannot exceed 
capacity fl

max, i.e., 
−𝑓𝑙

𝑚𝑎𝑥 ≤ 𝑓𝑙(𝑡) ≤ 𝑓𝑙
𝑚𝑎𝑥 , 𝑓𝑙(𝑡) = ∑ 𝑎𝑖,𝑙𝑃𝑖(𝑡),𝑖   

𝑃𝑖(𝑡) = ∑ 𝑝𝑖,𝑘(𝑡) − 𝑃𝑖
𝐷(𝑡), ∀𝑡𝑘      (7) 

C. Objective function  
The total cost to be minimized is the commitment cost 

plus the dispatch cost, i.e., 
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                  ∑ ∑ ∑ (𝑢𝑖,𝑘(𝑡)𝑆𝑖,𝑘 + 𝑥𝑖,𝑘(𝑡)𝑆𝑖,𝑘
𝑁𝐿)𝑘𝑖𝑡   

 + ∑ ∑ ∑ ∑ 𝐶𝑖,𝑘,𝑏𝑝𝑖,𝑘,𝑏(𝑡)𝑏𝑘𝑖𝑡            (8) 
 

where Si,k, Si,k
NL, and Ci,k,b are start-up, no-load, and 

generation costs, respectively.   

IV. METHODOLOGY 
The above problem is solved by using Surrogate 

Lagrangian Relaxation (SLR) [13] as decried in Subsection A. 
Then unit-level constraints are tightened by using our novel 
and systematic approach [9] as introduced in Section B.  

A. Surrogate Lagrangian Relaxation (SLR) method 
The SLR method is a novel decomposition and 

coordination algorithm that overcame all the major difficulties 
of standard Lagrangian relaxation [13]. The process begins 
with the relaxation of system coupling constraints (system 
demand and transmission capacity) Lagrangian multipliers. 
The relaxed problem is given as:      
𝑚𝑖𝑛 𝐿(𝜆(𝑡), 𝑝(𝑡))  =   

𝑚𝑖𝑛 {{∑ ∑ ∑ (𝑢𝑖,𝑘(𝑡)𝑆𝑖,𝑘 + 𝑥𝑖,𝑘(𝑡)𝑆𝑖,𝑘
𝑁𝐿)𝑘𝑖𝑡   

+ ∑ ∑ ∑ ∑ 𝐶𝑖,𝑘,𝑏𝑝𝑖,𝑘,𝑏(𝑡)𝑏𝑘𝑖𝑡 }  
         + ∑ 𝜆(𝑡)(∑ 𝑃𝑖

𝐷(𝑡) −𝑖 ∑ 𝑝𝑖,𝑘(𝑡)𝑖,𝑘 )𝑡   
         + ∑ ∑ (𝜇𝑙

+(𝑡). (𝑓𝑙(𝑡) − 𝑓𝑙
𝑚𝑎𝑥))𝑡𝑙   

+(𝜇𝑙
−(𝑡). (−𝑓𝑙(𝑡) − 𝑓𝑙

𝑚𝑎𝑥))}              (9) 
With system-wide constraints relaxed, the relaxed problem 

can be decomposed into individual unit subproblems. In the 
method, not all subproblems are solved at a time and only the 
surrogate optimality condition [13] is needed to be satisfied. 
Therefore surrogate directions do not change drastically from 
one iteration to the next and zigzagging difficulties are thus 
alleviated. Multipliers  are updated by the following equation 
(time index t is omitted):        

𝜆𝑛+1 = 𝜆𝑛 + 𝑐𝑛𝑔̃(𝑝𝑛), 
𝜇𝑙

+,𝑛+1 = 𝜇𝑙
+,𝑛 + 𝑐𝑛𝑔̃+(𝑝𝑛), 

𝜇𝑙
−,𝑛+1 = 𝜇𝑙

−,𝑛 + 𝑐𝑛𝑔̃−(𝑝𝑛).                    (10) 
Where, 𝑐𝑛 is the positive scalar step size at iteration n and 𝑔̃ is 
the surrogate subgradient vector given as: 

𝑔̃(𝑝𝑛) = ∑ 𝑃𝑖
𝐷(𝑡) −𝑖 ∑ 𝑝𝑖,𝑘

𝑛
𝑖,𝑘 ,  

𝑔̃+(𝑝𝑛) = 𝑎𝑖,𝑙𝑃𝑖
𝑛 − 𝑓𝑙

𝑚𝑎𝑥 , 
𝑔̃−(𝑝𝑛) = −𝑎𝑖,𝑙𝑃𝑖

𝑛 − 𝑓𝑙
𝑚𝑎𝑥 .                     (11) 

The value of 𝑐𝑛 is calculated with the following equation  

𝑐𝑛 = 𝛼𝑛

𝑐𝑛−1(‖𝑔̃(𝑝𝑛−1)‖
2

+‖𝑔̃+(𝑝𝑛−1)‖
2

+‖𝑔̃−(𝑝𝑛−1)‖
2

)

‖𝑔̃(𝑝𝑛)‖2+‖𝑔̃+(𝑝𝑛)‖2+‖𝑔̃−(𝑝𝑛)‖2
, 

0 < 𝛼𝑛 < 1                                    (12) 
The values of 𝛼𝑛 depends upon the given variables:      

𝛼𝑛 = 1 −
1

𝑀𝑛𝑝 , 𝑝 = 1 −
1

𝑛𝑟  , 𝑀 ≥ 1,0 < 𝑟 < 1      (13) 
         

The values of Lagrangian multipliers corresponding to the 
system demand constraints (𝜆) of the relaxed problem gives 
the required CHPs.  

B. Formulation tightening  
Formulation tightening is a promising but relatively 

overlooked research area. It involves the transformation of the 
constraints in the pre-processing stage to directly delineate the 
convex hull of the unit. Our approach first generates vertices 
of the integer relaxation problem from constraints by using 
algebraic manipulation of unit parameters with algorithms 
well established in existing software Porta. Then the vertices 

of the original convex hull are obtained by the elimination of 
vertices with fractional values for binary variables [9]. Then 
these vertices are converted back to tight constraints by using 
the software Porta as a reverse process of the first step. These 
constraints are reusable as numerical coefficients are 
converted to unit parameters and stored in look-up tables for 
future use. The biggest advantage of this approach is that it 
enables the use of linear programming methods to solve the 
UC problem. Since it is hard to develop tight formulations of 
units for 24 hours, near-tight formulations can be used as good 
approximations [2], [9].  

To illustrate the idea, consider a simple problem with two 
binary variables x1 and x2, and x1 + x2 ≥ 0.5. In Figure 1(a), 
constraints are represented by blue lines, and the convex hull 
is described by red lines with vertices represented by solid red 
dots. Those red lines are hard to obtain directly. For the 
integer relaxation problem in Figure 1(b), constraints are still 
blue lines. After constraint-to-vertex conversion, vertices are 
represented by blue dots. There are two sets of vertices in 
Figure 1(b). One set consists of binary vertices represented by 
solid blue dots, and the other set consists of fractional vertices 
represented by open blue dots. By dropping the open blue 
dots, the remaining binary vertices are the same as the vertices 
in Figure 1(a). After vertex-to-constraint conversion, tight 
constraints, i.e., red lines, are obtained.  

 

 
Figure 1(a): Convex hull of a 

problem with binary variables x1, x2 
Figure 1(b): Convex hull of its 
integer relaxation problem 

V. TESTING AND RESULTS 
In this section, three examples are considered. The first 

small example is to illustrate the concept of convex hull 
pricing. The IEEE 118 bus system is used in examples 2 and 
3. The second 3-hour example is to demonstrate that with 
tight unit formulations, the integer relaxation problem leads 
to the same dual variables of the original problem.  The third 
24-hour example is to show that with tighter unit 
formulations, the prices obtained by solving integer 
relaxation problems are getting closer to convex hull prices.  
The system consists of 54 units, 186 branches, and 118 buses. 
The experiments are performed using IBM ILOG CPLEX 
Optimization Studio V 12.10.0.0 on a PC with 2.30 GHz 
Intel(R) Core (TM) i7- 10510U CPU and 16 GB RAM.   

Example 1 
For the UC problem under consideration, the convex hull 

cost function is an alternative well behaved convex 
approximation of the total cost function. It produces a supply 
function that has marginal cost, i.e., convex hull price, 
increasing in load, and provides a lower bound to the total 
cost function. To illustrate the idea, consider the two-unit 
problem in [1] as an example. The unit parameters are 
described in Table I below. For simplicity, Pmin is assumed as 
0, and R is assumed as infinitely large so that ramp rate 
constraints are no longer needed. Also, minimum up/down-
time constraints are not considered. With units A and B, the 
total commitment and dispatch cost, and the marginal cost 
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with respect to system load are shown in Figures 2 and 3, 
respectively.  

As shown in Figure 2, the total cost curve follows the total 
cost curve of unit A until the load level is high enough 
(approximately 178 MW) to commit unit B, and then it is 
switched to the total cost curve of the combination of units A 
and B. Note that in this case, the increase in the rate of the 
total cost drops. The marginal cost first increases and then 
decreases, and then increases again with the load as shown in 
Figure 3. Technically, it is not monotonically increasing. 

TABLE I: A TWO-UNIT PROBLEM 

Unit 
Fixed 
Cost 
($) 

Pmax(MW) 
of block 1 

Pmax(MW) 
of block 2 

Energy Cost 
of block 1 
($/MWh) 

Energy Cost 
of block 2 
($/MWh) 

A 0 100 100 65 110 

B 6000 100 100 40 90 
 

 
Figure 2. Two-unit problem: Total cost 

 

 
Figure 3. Two-unit problem: Marginal cost 

 
For the above two-unit problem, the convex hull cost 

yields the total commitment and dispatch cost as shown in 
Figure 4, and the associated convex hull price curve is shown 
in Figure 5. The original total cost and marginal cost (price) 
presented earlier are also shown for comparative purposes.  

 

 
Figure 4. Two-unit problem: Total cost and convex hull cost  

 
As shown in Figure 4, the convex hull cost is as close as 

possible to the total cost. This convex hull approximation will 

not reproduce the economic dispatch, but it provides 
increasing uniform energy prices. In this case, the marginal 
cost, i.e., the convex hull price, is increasing with the load as 
shown in Figure 5. It is monotonically increasing.  

 

 
Figure 5. Two-unit problem: Marginal cost and convex hull cost  

Example 2 
In this example, all 54 units of the IEEE 118 bus system 

are run for 3 hours only. The motivation behind running it 
only for 3 hours is that it is possible to get tight formulation 
and exact CHPs for all hours as the computational load is less 
due to the smaller time horizon. All units have one offer price 
block. Transmission capacity constraints are ignored for 
simplicity.  The testing consists of four cases. The first one is 
a conventional mixed-integer linear programming (MILP) 
formulation commonly used in the industry, while its integer-
relaxation forms the second case. The third and fourth cases 
are based on our tight formulation presented in [9], case three 
is a tight MILP formulation while case four is a tight LP 
formulation (through integer relaxation). Three load profiles 
are considered, and the results are presented in Tables II, III, 
and IV.   

TABLE II: RESULTS OF TESTING EXAMPLE 2 (2 UNITS, 3 HOURS) 
WITH SYSTEM DEMAND 1 

Case # Model CHPs ($/MWh) 
Hour 1 Hour 2 Hour 3 

1 MILP (Conventional) 15.025 12.532 13.608 

2 LP (Conventional) 15.009 12.539 13.571 

3 MILP (Tight) 15.025 12.532 13.608 

4 LP (Tight) 15.025 12.532 13.608 

TABLE III: RESULTS OF TESTING EXAMPLE 2 (2 UNITS, 3 HOURS) 
WITH SYSTEM DEMAND 2 

Case # Model CHPs ($/MWh) 
Hour 1 Hour 2 Hour 3 

1 MILP (Conventional) 14.776 12.857 13.585 

2 LP (Conventional) 14.968 12.532 13.650 

3 MILP (Tight) 14.776 12.857 13.585 

4 LP (Tight) 14.776 12.857 13.585 

TABLE IV: RESULTS OF TESTING EXAMPLE 2 (2 UNITS, 3 HOURS) 
WITH SYSTEM DEMAND 3 

Case # Model CHPs ($/MWh) 
Hour 1 Hour 2 Hour 3 

1 MILP (Conventional) 
 

15.06 12.382 12.532 

2 LP (Conventional) 15.031 12.428 12.644 

3 MILP (Tight) 
 

15.06 12.382 12.532 

4 LP (Tight) 
 

15.06 12.382 12.532 

 
As shown in the above three tables, the values of the 
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multipliers for all three hours are exactly the same for cases 
1, 3, and 4, and they are CHPs. Only case 2 deviates away 
from the prices. With tight unit formulations, the values of the 
dual variables corresponding to system demand constraints 
for the LP problem are exactly the same as the dual variables, 
i.e., CHPs, for the original problem. This demonstrates that 
with tight unit formulations, CHPs can be obtained by solving 
the LP problem. Thereby, reducing the computational burden 
of solving MILP problems.  

Example 3 
In this example, the UC problem in Example 2 is extended 

to 24 hours. The inspiration for this example is to test the 
performance of our model against the industrial standard for 
UC problems, which are typically calculated one day ahead 
for the next day. Figure 6 shows the comparative performance 
of the near-tight model presented in this paper with 
conventional model and the effect of integer-relaxation on 
prices.  

 

 
Figure 6. Results of testing example 3 (24 hours)  

 
It is observed that the values of the multipliers produced 

by near-tight formulations with integer realization are very 
close to CHPs obtained by the conventional model. However, 
the prices obtained by the conventional model with integer 
relaxation deviate considerably, especially for hours 5, 9, and 
10. This shows that formulation tightening helps in creating 
near-tight formulations which can provide a good 
approximation to the exact CHPs. Since it is easier to solve 
LP problems than solving MILP programs, this approach 
reduces the computational requirements for solving the UC 
problem in electrical markets.  

VI. CONCLUSION 
This paper is to investigate the impacts of tightening unit 

formulations on prices obtained from integer relaxation. The 
approach of formulation tightening is applied to the UC 
problem to calculate prices, and the resulting problem is 
solved by using the SLR method. If the tight constraints can 
directly delineate the convex hull of the unit, an LP can be 
used to solve the UC problem for CHPs. Thereby, reducing 
the computational burden in a major way. The performance of 
the tightened UC formulation is compared with the 
conventional UC formulation used in the industry. The results 
of testing demonstrate that the tightened formulation can 
produce accurate CHPs upon integer-relaxation for a smaller 
problem (3 hours) and can provide approximate CHPs upon 
integer-relaxation for a larger problem (24 hours), for the 

IEEE 118 bus system with 54 units. This demonstrates the 
potential of formulation tightening on calculating CHPs. 
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