
EI SEVIER

Contents lists available at ScienceDirect

Animal Behaviour

journal homepage: www.elsevier.com/locate/anbehav

Body size and canine size do not confer a competitive advantage in male rhesus macaques

Clare M. Kimock a, * , Lauren J. N. Brent b, Constance Dubuc a, James P. Higham a

- ^a Center for the Study of Human Origins, Department of Anthropology, New York University, New York, NY, U.S.A.
- ^b Center for Research in Animal Behaviour, University of Exeter, Exeter, U.K.

ARTICLE INFO

Article history:
Received 7 April 2021
Initial acceptance 17 May 2021
Final acceptance 22 September 2021
Available online 29 March 2022
MS. number: A21-00218R

Keywords: armament mating competition rhesus macaque sexual dimorphism sexual selection Male armaments are hypothesized to have evolved under intrasexual selection. Such traits may function as signals, weapons, or both, in male-male mating competition. Primate sexually dimorphic canine teeth and body size are two potentially weaponized traits whose function as a signal and/or weapon remains unclear, largely due to the difficulty of collecting detailed measurements of morphology on large freeranging mammals. Rhesus macaques, Macaca mulatta, are an interesting study system in which to investigate how such traits function because they experience relatively low levels of direct male-male mating competition compared to other members of their subfamily. Furthermore, male dominance rank is largely based on a queuing system rather than on the outcome of intermale aggressive encounters. We leveraged a novel data set of behavioural observations and morphometric data from freeranging rhesus macaques to investigate the function of sexually dimorphic canine teeth and body mass as weapons and/or signals. We tested whether canine height or body mass was correlated with dominance rank, whether similarity in any of these factors influenced the occurrence or outcome of agonistic interactions between male-male dyads and whether either of these traits predicted the likelihood of winning an agonistic interaction. Neither canine height nor body mass was related to dominance rank. Similarity in dominance rank, but not in morphology, predicted the occurrence of agonism between dyads. Agonistic encounters between males more similar in dominance rank were more likely to be characterized by aggression rather than submission. Dominance rank, but not canine height or body mass, predicted the likelihood of winning an agonistic interaction. Our results suggest that canine height and body mass do not confer a strong competitive advantage in male rhesus macaques and add to a growing body of evidence indicating that weaponized traits do not always seem to function either in fights or as signals in male-male combat.

© 2022 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.

Sexual selection explains the evolution of exaggerated traits across the animal kingdom via intersexual selection (mate choice), intrasexual selection (mate competition), or both (Andersson, 1994; Darwin, 1871; Hunt et al., 2009). Generally, intrasexual selection produces armaments that enhance fighting ability and make individuals better at competing with members of their own sex for mating opportunities (Emlen, 2008; McCullough et al., 2016). Armaments used in direct male—male contest competition, such as large male body size and weaponized traits, are found across many vertebrates and arthropods (e.g. cervid antlers: Clutton-Brock et al., 1979; Hoem et al., 2007; bovid horns: Lundrigan, 1996; Preston et al., 2003; crustacean claws: Caldwell & Dingle, 1979; Jennions

E-mail address: clare.kimock@nyu.edu (C. M. Kimock).

[&]amp; Backwell, 1996; beetle horns: Emlen et al., 2005; reviewed in Emlen, 2008; Rico-Guevara & Hurme, 2019). Armament function exists on a continuum, from traits solely used as weapons to traits that act as both signals and weapons, and finally to traits that are only used as signals (McCullough et al., 2016). Armaments are considered weapons when they are used in fights to intimidate or injure rivals and are considered signals when they function as indicators of fighting ability or strength to intimidate rivals and/or to attract mates (Emlen, 2008; McCullough et al., 2016). This continuum framework can be used to test predictions about selection on armament form in relation to function. Specifically, in contexts in which traits primarily function as weapons, theory predicts that they should be more robust, and where traits function as signals, theory predicts that they should be more elaborate (McCullough et al., 2016). There is substantial evidence that armaments are used in fights; in many cases, males with larger weapons are more

^{*} Corresponding author.

likely to win contests (e.g. monkey beetle *Heterochelus chiragricus* hindfemur size: Rink et al., 2019; giraffe weevil *Trachelophorus giraffa* body length: Painting & Holwell, 2014; red deer, *Cervus elephas*, antlers: Clutton-Brock et al., 1979; northern elephant seal, *Mirounga angustirostris*, body size: Haley et al., 1994).

In contexts in which armaments function as signals, individuals may use trait size or form to assess a rival's competitive ability relative to their own prior to engaging in a costly fight (Arnott & Elwood, 2009). Game theory predicts that animals equally matched in weaponry are more likely to fight, and where there is a large asymmetry in weaponry, animals should avoid physical fights (Smith, 1979). This prediction is generally supported, with some exceptions. For example, size differences predict the likelihood of agonism in caribou, Rangifer tarandus (Barrette & Vandal, 1990), leaf-footed cactus bugs, Narnia femorata (Nolen et al., 2017), and Magellanic penguins, Spheniscus magellanicus (but only before egg laying) (Renison et al., 2002), as well as the duration of agonistic interactions in fiddler crabs (Uca annulipes) (Jennions & Backwell, 1996) and in species of stalk-eyed flies (Diopsidae) (Panhuis & Wilkinson, 1999), suggesting that these traits function as signals. However, body size and weapon size do not always influence fighting behaviour (e.g. fallow deer, Dama dama: Jennings et al., 2006; male snow skinks, Niveoscincus microlepitodus: Olsson & Shine, 2000). These examples, among others, suggest that males may use a range of assessment strategies when deciding whether or not to engage in a fight (e.g. Chapin et al., 2019), such that large male body size and weaponry do not always function as signals in male—male competition. Additional work is necessary to uncover the function of male weaponry across taxa and social/mating

The evolution and function of male weaponry is predicted to relate to mating system variation, particularly male competitive regimes (Clutton-Brock, 2017). The degree to which males compete directly (through fights) versus indirectly (competition without physical fighting, e.g. through endurance rivalry, in which males exclude other males from mating through prolonged periods of mate guarding and mating (Andersson, 1994) or sperm competition (Parker, 1970)) is influenced by group size and mating system, particularly the degree to which males can monopolize access to fertile females (Ostner et al., 2008; van Noordwijk & van Schaik, 2004). In systems where high-ranking males are able to gain a large share of the paternity in a group, males are likely to contest dominance (van Noordwijk & van Schaik, 2004). In such systems, males with the largest weapons or largest body sizes are best able to attain high rank and high reproductive success (Andersson, 1994; Clutton-Brock, 2017). However, where high-ranking males cannot effectively monopolize paternity, and reproductive skew based on dominance rank is relatively low, such as in multimale-multifemale mating systems where females are highly synchronous in their fertile phases, or in large groups, rank is less likely to be contested (van Noordwijk & van Schaik, 2004). Dominance rank acquisition through succession has been observed in wild populations of spotted hyaenas, Crocuta crocuta (East & Hofer, 2001) and Kinda baboons, Papio kindae (Petersdorf et al., 2019), as well as in provisioned populations of Japanese macaques, Macaca fuscata (Yamagiwa & Hill, 1998), and rhesus macaques, Macaca mulatta (Berard, 1999; Manson, 1995). In these populations, males acquire rank by queuing such that male rank is a function of group tenure length rather than competitive ability (van Noordwijk & van Schaik, 2004). Where males obtain dominance rank by queuing, weaponry need not be correlated with dominance rank and direct male—male competition may be a weaker selection pressure overall. Similarly, in multimale-multifemale mating systems with high degrees of female synchrony, males are more likely to compete through sperm competition or endurance rivalry rather than through fights, and weaponry is less likely to mitigate male—male conflict or to influence reproductive success (Andersson, 1994; Parker, 1970). These predictions have rarely been tested, particularly in taxa with reduced direct male—male competition and less exaggerated armaments.

Two understudied traits that might influence the outcome of contests are sexually dimorphic canine teeth and body mass in primates (Plavcan & van Schaik, 1992, 1997a). Although many factors may produce sexual dimorphism in body size, there is evidence that, in primates, large male body size may have evolved under intrasexual selection (Plavcan & van Schaik, 1997a). Across primate species, the level of sexual dimorphism in these traits correlates with the likelihood and intensity of fights between males (Plavcan & van Schaik, 1992, 1997a), yet the function of canine teeth and body size as signals and/or weapons is relatively unknown. To date there is only one published study on body size and agonism in male—male primate dyads, which showed that aspects of mountain gorilla, *Gorilla beringei*, body size influence male—male aggressive interactions (Wright et al., 2019).

Rhesus macaque males are a particularly interesting test case in which to investigate the function of sexually dimorphic canine teeth and body size because they exhibit a competitive regime characterized by reduced direct competition, such that males compete less through physical fights, when compared to other closely related species in their tribe (Papionini) (Higham & Maestripieri, 2014). Rhesus macaques have a polygynandrous mating system and females are highly synchronous in their fertile phases (Dubuc et al., 2011; Melnick & Pearl, 2008). Highranking males are not able to monopolize paternity, leading to lower than predicted reproductive skew based on individual dominance rank compared with other closely related species from their subfamily (Dubuc et al., 2011; Dubuc, Ruiz-Lambides et al., 2014). Males usually queue for dominance rank; they enter groups at the bottom of the hierarchy and their rank increases with group tenure length such that dominance ranks calculated based on agonistic interactions correlate with residency length (Berard, 1999; Manson, 1995). Direct contests over rank may occur, but are rare (Georgiev et al., 2016; Higham & Maestripieri, 2010). As expected in multimale-multifemale groups where males cannot monopolize paternity, males compete indirectly through sperm competition and endurance rivalry; they exhibit large testis volumes for their body size (Bercovitch & Rodriguez, 1993; Sade, 1964) and invest in building fat and energy reserves (Bercovitch, 1992, 1997; Higham et al., 2011; Higham & Maestripieri, 2014).

At the same time, however, rhesus macaques are also moderately sexually dimorphic in body mass (male mean divided by female mean: 1.31) and canine height (male mean divided by female mean: 2.07) (Plavcan & van Schaik, 1997b). These levels of sexual dimorphism indicate some investment in direct competition, but these traits do not predict short-term reproductive success or average annual fecundity, nor do they correlate with ordinal dominance rank (Bercovitch & Nürnberg, 1996; Kimock et al., 2019). Interestingly, although male facial coloration is primarily selected through female mate choice, such that females attend to variation in male facial coloration (Dubuc et al., 2016), females mate preferentially with males with darker faces (Dubuc, Allen et al., 2014), and males with both high dominance rank and darker facial coloration have higher reproductive success (Dubuc, Winters et al., 2014), there is also some evidence to suggest that facial coloration mediates male-male agonistic interactions (Petersdorf et al., 2017). This mix of traits suggests that direct male-male contest competition may play a minor role in influencing the evolution of male rhesus macaque traits relative to indirect competition or female mate choice.

Direct tests of hypotheses about the assumed function of primate sexually dimorphic canine teeth and body mass are relatively rare because, in wild populations, it is difficult to collect good measurements (but see Wright et al., 2019), and in captive populations it is generally not possible to collect naturalistic observations of agonistic behaviour because animals that fight are often kept in separate enclosures. Here, we leverage a unique data set of behavioural and morphometric data collected from free-ranging rhesus macaques to investigate whether sexually dimorphic canine teeth and body size function as weapons, signals, or both. First, we evaluated the relationships between morphometrics and dominance rank (1). Next, we assessed whether these traits function as signals (2) by determining whether differences in canine height, body mass and/or dominance rank predict the occurrence of dyadic agonistic interactions between males. Finally, we tested whether canine teeth and body size function as weapons (3) by evaluating their role in contact aggression specifically (3.1) and determining whether differences in canine height and body mass predict the outcome of agonistic interactions generally, after controlling for dominance rank (3.2). Given that rhesus macaques are neither monomorphic nor strongly dimorphic and that the strength of male competition is only moderate, even though males occasionally do fight, we made a series of alternative predictions. We predicted that morphometrics (Pla) might or (P1b) might not correlate with dominance rank, that differences in canine height, body mass and/or dominance rank (P2a) might or (P2b) might not influence the occurrence of dyadic agonistic interactions between males and that canine height and body mass might (P3.1a) or might not (P3.1b) influence the outcome of contact aggression and might (P3.2a) or might not (P3.2b) predict agonistic interactions more generally.

METHODS

Field Site and Subjects

This study was conducted on the free-ranging rhesus macaque population from Cayo Santiago, a small island located off the eastern coast of Puerto Rico. In 1938, 409 rhesus macaques were brought to the island for research purposes, and since then, the population has grown to over 1800 animals (Kessler & Rawlins, 2016). The Caribbean Primate Research Center (CPRC) monitors the population and maintains detailed long-term demographic (since 1958) and genetic parentage (since 1985) databases (Kessler & Rawlins, 2016). The CPRC also provisions the macaques with commercial monkey chow and water. Although the rhesus macaques are not native, they form naturally occurring social groups and are not inbred (Widdig et al., 2017). We aggregated behavioural data and morphometric data on a subset of males ages 6 years old and above from three social groups (F, R and V). Although male body mass growth is generally incomplete until about age 7, we chose to include males ages 6 and above because male canine teeth are fully erupted by age 6 (Wang, 2012), most males disperse from their natal groups between the ages of 4 and 6 (Drickamer & Vessey, 1973) and males are able to sire offspring from age 5 (Dubuc, Ruiz-Lambides et al., 2014). As such, even though 6-year-olds are not yet fully mature, they are mature enough to be competing for mating opportunities. At the time data for this study were collected, Group F contained 61 adult males and 80 adult females, Group R contained 61 adult males and 70 adult females and Group V contained 51 adult males and 42 adult females. Some of these males appeared in multiple groups over the course of the year; there were 155 unique males across all three groups.

Rehavioural Data

Trained field assistants conducted 10 min continuous focal follows and recorded ad libitum agonistic interactions in the three study groups for a separate, unrelated project. Group F data were collected between late January and mid-October 2016, Group R data were collected between late February and mid-October 2016, and Group V data were collected between early February and mid-October 2016. Field assistants recorded the following behaviours: contact aggression (bite, hit, push, grab), noncontact aggression (lunge, charge, chase), threat (open mouth threat, stare threat, slap, head bob, huh!/bark), displacement, avoid, submit (submissive present, cower/lean), submit/threat and fear grimace. Aggressive behaviours include contact aggression, noncontact aggression, threat and displacement; while avoid, submit and fear grimace are submissive behaviours. Submit/threat was recorded in the ad libitum data when both behaviours were observed simultaneously and therefore cannot be categorized as aggression or submission. Observers recorded the identities (IDs) of both partners in the interaction, along with the direction of the behaviour.

Dominance Rank

Dominance ranks were calculated within social groups using pairwise win-loss data from focal follow and ad libitum observations collected over the entire behavioural sampling period. Ranks were calculated using only data from male-male interactions. These win-loss data included the IDs of the winner and loser of the interaction. Individuals that showed contact aggression, noncontact aggression or a threat or that displaced another individual or received a submission or fear grimace were recorded as winners. Individuals that received contact aggression, noncontact aggression or a threat or were displaced or showed submission or a fear grimace were recorded as losers. Win-loss matrices were constructed using these pairwise data. Briefly, we set winners as columns and losers as rows, and ordered the matrix such that the maximum number of cells containing interaction data fell above the diagonal, following the principle of transitivity (if A outranks B and B outranks C, then A outranks C). We included all males followed for behavioural data collection in the hierarchies, regardless of whether they were sampled for morphometric data collection. Males that were observed for less than two standard deviations below the mean focal time were excluded from the hierarchies. The dominance matrix for Group R contained a large number of reversals (interactions falling below the diagonal), particularly in mid-ranking males, likely due to rank instability throughout the year. We used proportional ranks (the percentage of within-group males that a focal male dominated) in our analyses to control for differences in group size. We also measured the correlation between our dominance ranks and group tenure length at the end of the sampling period, as rhesus macaque males tend to acquire rank through succession (Berard, 1999; Manson, 1995). If a male changed groups during the study period, only tenure in his last group was included in the calculation. Where both data were available, dominance rank and tenure length were weakly, but significantly, correlated across the full data set (Pearson's correlation: r139 = -0.242, P = 0.004), but not significantly correlated in the subset of males measured (r61 = -0.200, P = 0.117). This discrepancy may be due to the observed instability in the Group R dominance hierarchy during the study period.

Morphometric Data

One trained observer collected morphometric data for an unrelated project during the 2015 annual capture—release season

(October-December). This data set contained 66 males from Groups F, R and V who were followed for behavioural data collection in 2016 and for which dominance rank data were available (Table 1). All of these animals were captured and anaesthetized by trained CPRC staff and released back onto Cayo Santiago after data collection. We used two measurements in our analyses: body mass (collected using a hanging scale and converted from pounds to kilograms) and upper canine height (measured as the length of the canine from the gingival margin to the tip of the tooth, in millimetres; Plavcan, 1990). Upper canine height was measured on both the right and left canine teeth; we used the maximum value per animal in our analyses. We included all canine height and body mass data in our analyses, including data from worn and broken teeth (N = 4 males with noted broken teeth). Three males in the sample had body masses above 15 kg, a threshold other studies have used to measure obesity in rhesus macagues (e.g. Hamilton et al., 1972). These three males were between 11.5 and 12.5 years old and therefore in their reproductive prime (Dubuc, Ruiz-Lambides et al., 2014). We have kept them in our sample because we believe these higher body masses represent real biological variation in this population. Canine height and body mass were correlated (Pearson's correlation: $r_{64} = 0.282$, P = 0.029).

Data Aggregation

We aligned morphometric data from the 2015 capture—release period (October—December) with behavioural and rank data from the following mating season and subsequent months (January—October 2016), since male body mass during the birth season best reflects their ability to engage in energetically costly strategies during the mating season (Bercovitch, 1992, 1997; Higham et al., 2011). Rhesus macaque males build condition during the birth season (which coincides with the capture—release period), and then use those energy reserves to compete through endurance rivalry during the mating season; males who are in better condition at the end of the birth season tend to be in better condition during the subsequent mating season (Bercovitch, 1992, 1997; Higham et al., 2011).

In total, the aggregated behavioural and morphometric data set contained data on 482 male-male agonistic interactions (402 focal, 80 ad libitum) between the 66 males for which morphological and dominance rank data were available. Of these interactions, only eight were contact aggression. The rate of agonism among males with morphological and dominance rank data was 1.19 interactions/h (402 focal interactions over 339 focal hours). The mean number of interactions per sampled male was 13 (range 1–53) and the mean number of interactions per sampled dyad was 1.73 (range 1-9). Of these interactions, 186 took place during the mating season. There were 2347 male-male agonistic interactions (1900 focal and 447 ad libitum) in the entire behavioural data set, 61 of which were contact aggression. Of these interactions, 1066 took place during the mating season. The average rate of agonism in the entire data set was 2.49 interactions/h (1881 focal interactions over 755.5 focal hours). The mean number of interactions per male in the entire behavioural data set was 30.36 (range 4-82) and the mean number of interactions per dyad was 1.70 (range 1–14). There was instability in male group membership and in the male dominance

Table 1Summary statistics for morphometric data

Trait	N	Mean	Range	CV (%)
Canine height (mm)	66	18.56	8.03-27.32	15.06%
Body mass (kg)	66	11.23	7.67-16.78	16.86%
Age (years)	66	9.54	6.01-20.7	33.26%

hierarchy in Group R in 2016, which may explain the high rate of agonism in the entire data set. Nevertheless, the data analysed here represent a subset of males and male—male interactions across the three groups (N=19 Group F males, N=31 Group R males, N=19 Group V males). These sample sizes reflect unique male-group combinations, as some males were observed in more than one group during the study period.

Statistical Analyses

We ran all statistical analyses in R v.4.0.3 (R Core Team, 2020). We ran all generalized linear mixed models in the 'glmmTMB' package, v.1.2.0.1 (Brooks et al., 2017) and assessed residual diagnostics using the 'DHARMa' package, v.0.3.3.0 (Hartig, 2020). We used 'DHARMa' functions to check the following diagnostics: normality of residuals, overdispersion of residuals, outliers in the residuals and correlations between residuals and fitted values. These tests revealed only one violation of assumptions for only one model presented in the main text. We provide additional details below regarding this model, and models not presented that violated some of these assumptions.

Morphometrics and dominance rank

We tested whether (1) morphometrics and dominance rank were related using generalized linear models (GLMMs) with a beta error structure. First, we transformed proportional ranks so that they fitted a beta distribution by assigning animals with a proportional rank of 1 to 0.99 and animals with a proportional rank of 0–0.01. We set dominance rank as the response variable, canine height, body mass, age and social group as fixed effects and focal ID as a random effect to account for repeated measures on the same male. This analysis included 69 data points on 66 males. There are some repeated measures because three males dispersed during the course of the study period and therefore appear in data from more than one social group.

Occurrence of agonistic interactions

We tested whether (2) body mass, canine height or dominance rank influenced the occurrence of agonistic interactions between male-male dyads using GLMMs with a binomial (Bernoulli) error structure with a 'cloglog' link function. Analyses had one data point per potentially interacting male—male dyad per focal-day (N = 41728 potential interactions, N = 805 male—male dyads). Males were rarely in close proximity. We assumed that because rhesus macaque groups are relatively stable on a day-to-day basis and group members travel together, all males should have an equal opportunity to interact with all other males in the group. For the purposes of our analyses, we considered two males to be potentially interacting if they were both present in the group on a particular day. We estimated daily presence based on CPRC monthly census files, under the assumption stated above that groups are generally stable, such that monthly presence is a good approximation for daily presence. We set whether or not the dyad interacted agonistically as the response variable, the absolute value of the difference in canine height, body mass and dominance rank per dyad, plus social group as fixed effects, dyad ID and season (mating/birth) as random effects and observation time per focal male per dyad (log) as an offset. DHARMa diagnostic tests on residuals from this model detected some outlying values. We did not alter the data or model structure as the outlier test is conservative, and we believe outlying values represent real variation and should not be removed from analyses.

Outcome of contact aggression

As described above, of the 482 agonistic interactions in our data set, only eight were contact aggression, precluding our ability to run models on these data to test whether body mass, canine height or dominance rank influenced the outcome of contact aggression between male—male dyads (3.1). We describe these interactions qualitatively below.

Outcome of all agonistic interactions

We used two approaches to investigate how (3.2) body mass, canine height and dominance rank predicted the outcome of agonistic interactions between males. We used binomial (Bernoulli) GLMMs with a logit link function to investigate whether differences in body mass, canine height or rank influenced the likelihood of aggression or submission occurring between a male-male dyad. We set the type of agonistic interaction (aggression (1)/submission (0)) as the response variable, the difference between males in body mass, canine size and rank (winner value minus loser value), plus social group as fixed effects and dvad ID as a random effect. Both ad libitum and focal data were included in this analysis (N = 478 interactions, N = 277 dyads), but only agonistic interactions that could clearly be categorized as aggressive or submissive were included in this model (submit/threat was excluded). We also used binomial (Bernoulli) GLMMs with a logit link function to test whether body mass, canine height or rank predicted whether a focal male won an agonistic interaction. We set whether or not the focal male won (0/1) as the response variable, canine height, body mass, dominance rank and social group as fixed effects and focal ID as a random effect. Focal ID was used as a random effect because the model did not converge with dyad ID set as a random effect. This model only used focal data to facilitate controlling for the direction of the interaction (N = 402 interactions, N = 65 focal males; one male measured for morphometric data and dominance rank was never a focal male in a male-male agonistic interaction). Dominance rank was used in this model purely to control for its potential effects. We attempted to run a version of this model without dominance rank, but there was heteroscedasticity in the residuals, so we do not present results from that model here.

Ethical Note

This research was conducted following ASAB/ABS guidelines for the ethical treatment of animals. All data were conducted following protocols approved by the University of Puerto Rico Institutional Animal Care and Use Committee (protocol numbers: A150116 and A6850108).

RESULTS

(1) Morphometrics and Dominance Rank

Neither canine height (z = -0.485, P = 0.627) nor body mass (z = 0.415, P = 0.627) predicted dominance rank after controlling for age and social group (Table 2, Fig. 1). Although older males tended to be higher ranking, this relationship was not statistically significant (z = 1.623, P = 0.105) (Table 2).

Table 2 Results from beta models testing relationships between morphometrics and dominance rank (N = 69 unique male-group combinations)

Term	Estimate	SE	Z	P
Intercept	-0.617	1.075	-0.574	0.566
Canine height	-0.021	0.043	-0.485	0.627
Body mass	0.032	0.079	0.415	0.678
Age	0.068	0.042	1.623	0.105
Group (Group F) ¹	-0.477	0.324	-1.474	0.140
Group (Group V) ¹	-0.174	0.318	-0.547	0.584

¹ Group had three levels: F, R and V. Groups F and V were compared to Group R.

(2) Occurrence of Agonistic Interactions

Differences in dominance rank (z=-2.84, P=0.004), but not in canine height (z=-1.53, P=0.125) or body mass (z=0.71, P=0.476), predicted the likelihood of agonism between male—male dyads, after controlling for social group (Table 3, Fig. 2). Males who were more similar in dominance rank were more likely to interact agonistically than males with large differences in dominance rank. There were also differences in slope estimates between Group R and Group V (z=-2.67, P=0.008) (Table 3). The likelihood of agonism was higher in Group R than in Group V, but not different between Groups R and F.

(3.1) Outcome of Contact Aggression

Of the eight instances of contact aggression, the winner was higher ranking in seven cases. Where the winner was not higher ranking, the winner also had lower body mass, but had very slightly larger canines (the winner's canine height was 0.01 mm longer than the loser's canine height). This difference could encompass measurement error. The winner had larger canines in six out of eight cases and higher body mass in five out of eight cases.

(3.2) Outcome of All Agonistic Interactions

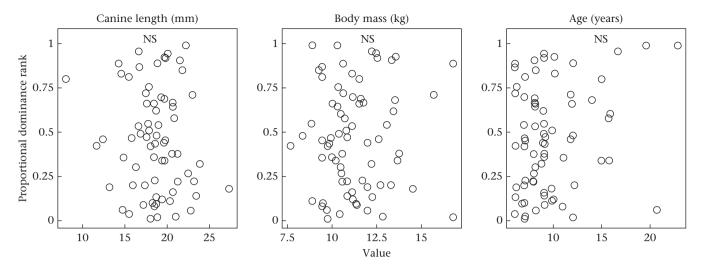
Differences in dominance rank (z = -2.164, P = 0.030), but not in canine height (z = 0.422, P = 0.673) or body mass (z = 0.123, P = 0.902), influenced the likelihood of aggression occurring over submission between male—male dyads, while controlling for social group (Table 4). Interactions between males closer in dominance rank were more often characterized by aggression than submission when compared to interactions where the winner was higher ranking than the loser (Fig. 3).

Dominance rank (z=6.260, P=3.86e-10), but not canine height (z=-0.895, P=0.371) or body mass (z=1.440, P=0.150), predicted the likelihood of the focal male winning an agonistic interaction (Table 5, Fig. 4). Higher-ranking males were more likely to win an agonistic interaction.

DISCUSSION

Our results suggest that body mass and canine height do not play a role in the acquisition of dominance rank, nor do they function as signals or weapons in male-male agonistic interactions, and that therefore, these traits do not confer a strong competitive advantage in male rhesus macaques in the study population. We found that (P1b) neither body mass nor canine size was correlated with dominance rank and that neither morphometric variable predicted the (P2b) occurrence or (P3.2b) outcome of dvadic agonistic interactions between male rhesus macaques after controlling for social group. Agonistic interactions were rarely settled using contact aggression. Anecdotally, males that were higher ranking and larger in body mass and canine height were more likely to win interactions involving contact aggression. Dominance rank influenced the occurrence and outcome of agonistic behaviour independently of canine height or body mass. Males more similar in dominance rank were more likely to interact agonistically than males very different in dominance rank, and when these interactions occurred, they were more often characterized by aggression than submission.

We found that neither canine height nor body mass correlated with dominance rank. If weaponry helped males acquire high rank, we would expect to see a correlation between canine height and/or body mass and dominance rank. Our findings are consistent with predictions about the function of weaponry in groups with reduced



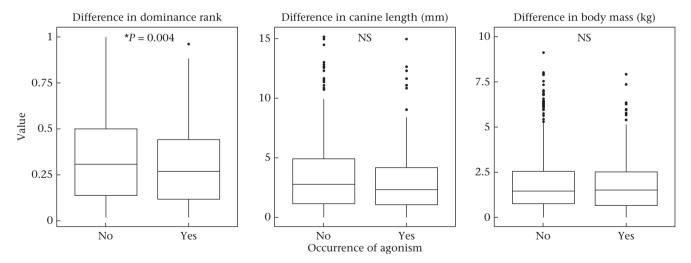

Figure 1. Raw data plots of canine height, body mass and age by dominance rank (N = 69 data points on 66 unique males). NS = nonsignificant predictor ($P \ge 0.05$).

Table 3Results from binomial models testing relationships between morphometrics and the occurrence of agonism between male—male dyads

Term	Estimate	SE	Z	P	Odds ratio
Intercept Difference in dominance rank	-6.988 -0.824	0.174 0.290	-40.03 -2.84	<2e-16 0.004	0.439
Difference in canine height Difference in body mass Group (Group F) ¹ Group (Group V) ¹	-0.039 0.032 -0.225 -0.479	0.025 0.044 0.166 0.179	-1.53 0.71 -1.34 -2.67	0.125 0.476 0.181 0.008	0.962 1.032 0.801 0.619

Statistically significant results (P < 0.05) are bolded.

(*Papio cynocephalus*), among high-ranking males only: Galbany et al., 2015; body mass in fallow deer: McElligott et al., 2001; body size in northern elephant seals: Haley et al., 1994). Rhesus macaque males, however, experience low levels of direct male—male competition and do not usually contest dominance rank (Higham & Maestripieri, 2014; Manson, 1995; but see Georgiev et al., 2016: Higham & Maestripieri, 2010, for exceptions). As expected given their low degree of reproductive skew based on dominance rank, male rhesus macaques queue for dominance; males enter new groups at the bottom of the hierarchy and their rank increases with group tenure length, as higher-ranking males either secondarily disperse or die (Higham & Maestripieri, 2014; Manson, 1995). In systems where males queue for dominance,

Figure 2. Raw data plots of the absolute value of differences in dominance rank, canine height and body mass by the occurrence of agonistic interactions between dyads (N = 41728 potentially occurring interactions between 805 unique dyads). P values are taken from model output. NS = nonsignificant predictor ($P \ge 0.05$).

levels of male—male competition where males cannot monopolize access to females (van Noordwijk & van Schaik, 2004). Much of the available evidence demonstrates that, in species where male reproductive skew based on dominance rank is high, males contest dominance rank, and body size and weaponry tend to correlate with dominance rank (e.g. crest height and back breadth in mountain gorillas: Wright et al., 2019; canine height in baboons

fighting ability is not necessarily correlated with rank, and weaponry is predicted to be under weaker selection (Higham & Maestripieri, 2014; van Noordwijk & van Schaik, 2004). Our findings that body mass and canine height did not correlate with dominance rank are consistent with this prediction.

We also found that agonistic interactions involving contact aggression were rare, and that neither canine height nor body mass

¹ Group had three levels: F, R and V. Groups F and V were compared to Group R.

Table 4Results from binomial models testing relationships between morphometrics and the likelihood of a focal male winning an agonistic interaction

Term	Estimate	SE	Z	P	Odds ratio
Intercept	-3.372	1.460	-2.310	0.021	_
Focal dominance rank	4.191	0.670	6.260	3.86e-10	66.094
Focal canine height	-0.054	0.061	-0.895	0.371	0.947
Focal body mass	0.151	0.105	1.440	0.150	1.162
Group (Group F) ¹	0.372	0.435	0.855	0.393	1.450
Group (Group V) ¹	0.394	0.442	0.892	0.372	1.483

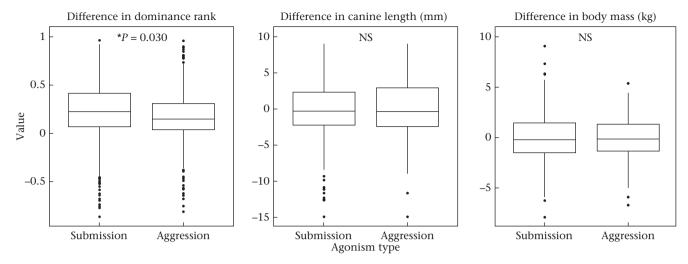
Statistically significant results (P < 0.05) are bolded.

predicted the occurrence or outcome of agonistic interactions among males. The rarity of contact aggression suggests that male-male agonistic interactions are usually not settled by physical fighting, creating less potential for weaponry to influence contest outcomes. However, anecdotally, winners of contact aggression interactions tended to be larger than losers. In species where males compete directly for mating opportunities, body size and weaponry often play a role in settling contests (e.g. mountain gorillas: Wright et al., 2019; caribou: Barrette & Vandal, 1990). However, male weaponry does not always influence fighting behaviour after controlling for rank (e.g. fallow deer: Jennings et al., 2006), highlighting the fact that the outcome of male-male contests is not always determined by size differences alone. Our findings suggest that body size and weaponry are not important in determining the likelihood or outcome of agonism in male rhesus macagues. Instead, dominance rank mitigates the occurrence of agonistic interactions between males independently of body size and weaponry. Our dominance rank results, but not our results from body mass or canine height, are consistent with game theoretic models of animal behaviour (Smith, 1979), which predict that animals closely matched in competitive ability are more likely to fight, while animals with large asymmetries in competitive ability will avoid fights (e.g. savannah baboons, Papio ursinus: Kitchen et al., 2003; mountain gorillas: Wright et al., 2019).

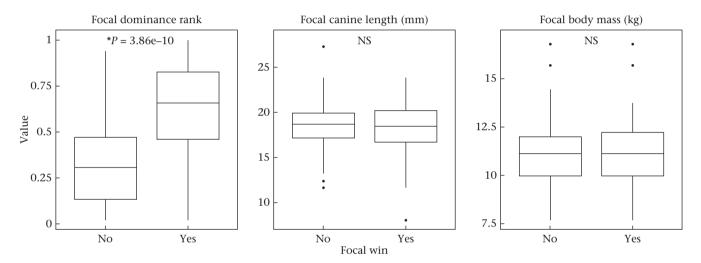
Our findings are also consistent with previous work on sexual selection in rhesus macaque males from Cayo Santiago. Rhesus macaque males primarily compete through indirect mechanisms such as sperm competition (Bercovitch & Rodriguez, 1993; Harcourt et al., 1981) and endurance rivalry (Bercovitch, 1992, 1997; Higham et al., 2011; Higham & Maestripieri, 2014), rather than direct male-male competition. Rhesus macaque males are also able to obtain mating opportunities using different strategies; highranking males often undertake consortships, with varying levels of success (Dubuc et al., 2011, 2012), while low-ranking males mate using sneak copulations (Higham & Maestripieri, 2014). Furthermore, females are able to exercise some degree of direct mate choice (e.g. based on facial coloration: Dubuc, Allen et al., 2014Dubuc, Allen et al., 2014). Interestingly, although neither body mass nor canine size function as signals in male-male agonistic interactions, rhesus macaque male facial coloration does (Petersdorf et al., 2017). Taken together, these results demonstrate that rhesus macaque males have undergone selection on a signal that influences male-male competition, but the signal is colour rather than weaponry. These lines of evidence suggest that there is limited scope for large body size and weaponry to influence male reproductive success, at least in this population. Given the current competitive regime of rhesus macaque males, it is possible that the observed sexual dimorphism in body mass and canine height are evolutionarily lagged traits, which may have influenced male-male contests in the potentially more dimorphic ancestor of rhesus macaques, but which no longer have such a function.

One important caveat is that environmental conditions on Cavo Santiago differ from conditions in the wild. The rhesus macaques on Cayo Santiago are provisioned and group sizes are larger on average than in the wild. Group sizes on Cayo Santiago range from 50 to 500 animals, while in the wild, groups typically comprise 20-250 individuals (Southwick & Siddigi, 2011). It is possible that the effects of provisioning combined with a lack of predation and, in turn, these large group sizes, have influenced our results, given that group size is one of the key factors in determining female fertile phase synchrony, and, by extension, the nature of male competitive regimes (Emlen & Oring, 1977; McClintock, 1983). Indeed, while rare, there have been some reports of alpha male take-overs in rhesus macaques (Georgiev et al., 2016; Neville, 1968; Vandenbergh, 1967). The prediction that group size may affect dominance acquisition pattern is supported by reports of alpha male take-overs and contests over dominance rank in smaller groups of Japanese macaques, a species often, like rhesus, characterized by large group sizes and males queueing for dominance rank (Hayakawa & Soltis, 2011; Sprague, 1992, 1996; Yamagiwa & Hill, 1998). However, large group size and provisioning alone do not appear sufficient to explain reports of dominance acquisition through succession in species like rhesus macaques and Japanese macagues. Indeed, to our knowledge, such behaviour has never been reported for other populations of papionin species even when these populations are provisioned and group size is large (e.g. captive mandrills, Mandrillus sphinx, at the Centre International de Recherches Médicales de Franceville, Gabon: Setchell & Dixson. 2001: hamadryas baboons, *Papio h. hamadryas*, at the German Primate Center: Zinner & Deschner, 2000). This suggests that queuing for dominance is part of the behavioural repertoire of some species but not others. Furthermore, the idea that rhesus macaques experience lower direct and higher indirect male-male competition than some other papinions is supported by morphological evidence: male rhesus macaques are characterized by relatively low canine and body size dimorphism and large relative testis volume compared to other papionins (Harcourt et al., 1981; Playcan, 2004). Recent studies of Kinda baboons, another species with relatively small body and canine size dimorphism and large relative testis volume, have also found that males of this species queue for dominance (Petersdorf et al., 2019). However, additional studies of the function of male weaponry in wild populations of rhesus macaques are necessary to confirm whether our findings apply to all populations of the species.

A number of outstanding questions remain. Additional work is needed to investigate whether body mass and canine height influence the outcome of agonistic encounters involving contact aggression, given that agonistic interactions involving contact aggression are rare. Furthermore, intersexual selection may have influenced the evolution of male body mass and canine height in rhesus macaques. Female rhesus macaques may prefer males with higher body masses (or larger body size) or larger canines (e.g.


Table 5Results from binomial models testing relationships between morphometrics and the likelihood of aggression or submission between male—male dyads

Term	Estimate	SE	Z	P	Odds ratio
Intercept	-0.499	0.146	-3.414	0.001	
Difference in dominance rank	-0.774	0.357	-2.164	0.030	0.461
Difference in canine height	0.011	0.026	0.422	0.673	1.011
Difference in body mass	0.005	0.046	0.123	0.902	1.006
Group (Group F) ¹	-0.297	0.254	-1.168	0.242	0.743
Group (Group V) ¹	-0.412	0.280	-1.471	0.141	0.662


Statistically significant results (P < 0.05) are bolded.

Group had three levels: F, R and V. Groups F and V were compared to Group R.

Group had three levels: F, R and V. Groups F and V were compared to Group R.

Figure 3. Raw data plots of differences in dominance rank, canine height and body mass (winner value minus loser value) by the occurrence of aggression or submission between dyads (N = 478 interactions, 277 unique dyads). P values are taken from model output. NS = nonsignificant predictor ($P \ge 0.05$).

Figure 4. Raw data plots of dominance rank, canine height and body mass by whether or not a focal male won an agonistic interaction (*N* = 402 interactions, 65 unique focal males). *P* values are taken from model output. NS = nonsignificant predictor (*P* > 0.05).

Berglund et al., 1996). It would be possible to test whether females prefer males with larger body sizes by collecting photogrammetric data on male body size in the field and determining whether females preferentially mate with larger-bodied males. Furthermore, in order for male body size and weaponry to be sexually selected, they should influence reproductive success. To date, although neither body mass nor canine height correlate with average annual fecundity (Kimock et al., 2019), whether these traits influence lifetime reproductive success in rhesus macaques is unknown. More studies on female choice for male weaponry, and on how male weaponry influences reproductive success across a range of timescales, are needed to elucidate why and how male body mass and canine height have evolved in rhesus macaques.

Our results add to growing evidence that weaponry and large body size do not always function as weapons or signals in agonistic interactions between males. They also highlight the need for detailed studies of trait function in order to determine whether male armaments act as signals, weapons, or both, in male—male competition, and which factors best predict the occurrence and outcome of male—male contests.

Data Availability

All data and code required to reproduce analyses and results presented in this manuscript are available on FigShare: https://doi.org/10.6084/m9.figshare.18532205.

Author Contributions

Clare M. Kimock: Conceptualization, Data curation, Formal analysis, Visualization, Writing — original draft, Writing — review and editing; **Lauren J. N. Brent**: Data curation, Funding acquisition, Methodology, Supervision, Writing — review and editing; **Constance Dubuc**: Funding acquisition, Methodology, Writing — review and editing; **James P. Higham**: Conceptualization, Funding acquisition, Methodology, Supervision, Writing — review and editing.

Funding

This work was supported by U.S. National Institute of Mental Health grants (grant numbers R01-MH089484 and R01-

MH096875) to L.J.N.B. and a Leakey Foundation grant to C.D. The Cayo Santiago field station is supported by the University of Puerto Rico and the Office of Research Infrastructure Programs of the U.S. National Institutes of Health (grant number 2 P40 OD012217).

Declaration of Interest

We declare no conflicting interests.

Acknowledgments

We thank Aparna Chandrashekar, Charles Espinosa, Joel Glick, Victoria Johnson, Samuel Larson, Josué Negrón and Daniel Phillips for assistance with data collection and the staff of the Caribbean Primate Research Center for access to the study population and for capturing the animals. The content of this publication is solely the responsibility of the authors and does not necessarily represent the official views of the University of Puerto Rico or the Office of Research Infrastructure Programs of the U.S. National Institutes of Health.

References

- Andersson, M. B. (1994). Sexual selection. Princeton, NJ: Princeton University Press. Arnott, G., & Elwood, R. W. (2009). Assessment of fighting ability in animal contests. Animal Behaviour, 77(5), 991–1004.
- Barrette, C., & Vandal, D. (1990). Sparring, relative antler size, and assessment in male caribou. *Behavioral Ecology and Sociobiology*, 26(6), 383–387.
- Berard, J. (1999). A four-year study of the association between male dominance rank, residency status, and reproductive activity in rhesus macaques (*Macaca mulatta*). *Primates*, 40(1), 159–175.
- Bercovitch, F. B. (1992). Estradiol concentrations, fat deposits, and reproductive strategies in male rhesus macaques. *Hormones and Behavior*, 26(2), 272–282.
- Bercovitch, F. B. (1997). Reproductive strategies of rhesus macaques. *Primates*, 38(3), 247–263.
- Bercovitch, F. B., & Nürnberg, P. (1996). Socioendocrine and morphological correlates of paternity in rhesus macaques (*Macaca mulatta*). *Journal of Reproduction and Fertility*, 107(1), 59–68.
- Bercovitch, F. B., & Rodriguez, J. F. (1993). Testis size, epididymis weight, and sperm competition in rhesus macaques. *American Journal of Primatology*, 30(2), 163–168.
- Berglund, A., Bisazza, A., & Pilastro, A. (1996). Armaments and ornaments: An evolutionary explanation of traits of dual utility. *Biological Journal of the Linnean Society*, *58*(4), 385–399.
- Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M., & Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R Journal, 9(2), 378–400.
- Caldwell, R. L., & Dingle, J. (1979). The influence of size differential on agonistic encounters in the mantis shrimp, *Gonodactylus viridis*. *Behaviour*, 69(3–4), 255–264.
- Chapin, K. J., Peixoto, P. E. C., & Briffa, M. (2019). Further mismeasures of animal contests: A new framework for assessment strategies. *Behavioral Ecology*, 30(5), 1177–1185.
- Clutton-Brock, T. (2017). Reproductive competition and sexual selection. Philosophical Transactions of the Royal Society B, 372(1729), 20160310.
- Clutton-Brock, T. H., Albon, S. D., Gibson, R. M., & Guinness, F. E. (1979). The logical stag: Adaptive aspects of fighting in red deer (*Cervus elaphus L.*). Animal Behaviour, 27, 211–225.
- Darwin, C. (1871). The descent of man and selection in relation to sex. London: J. Murray.
- Drickamer, L. C., & Vessey, S. H. (1973). Group changing in free-ranging male rhesus monkeys. *Primates*, *14*(4), 359–368.
- Dubuc, C., Allen, W. L., Cascio, J., Lee, D. S., Maestripieri, D., Petersdorf, M., Winters, S., & Higham, J. P. (2016). Who cares? Experimental attention biases provide new insights into a mammalian sexual signal. *Behavioral Ecology*, 27(1), 68–74.
- Dubuc, C., Allen, W. L., Maestripieri, D., & Higham, J. P. (2014). Is male rhesus macaque red color ornamentation attractive to females? *Behavioral Ecology and Sociobiology*, 68(7), 1215–1224.
- Dubuc, C., Muniz, L., Heistermann, M., Engelhardt, A., & Widdig, A. (2011). Testing the priority-of-access model in a seasonally breeding primate species. *Behavioral Ecology and Sociobiology*, 65(8), 1615–1627.
- Dubuc, C., Muniz, L., Heistermann, M., Widdig, A., & Engelhardt, A. (2012). Do males time their mate-guarding effort with the fertile phase in order to secure fertilisation in Cayo Santiago rhesus macaques? *Hormones and Behavior*, *61*(5), 696–705.

- Dubuc, C., Ruiz-Lambides, A., & Widdig, A. (2014). Variance in male lifetime reproductive success and estimation of the degree of polygyny in a primate. *Behavioral Ecology*, 25(4), 878–889.
- Dubuc, C., Winters, S., Allen, W. L., Brent, L. J., Cascio, J., Maestripieri, D., Ruiz-Lambides, A. V., Widdig, A., & Higham, J. P. (2014). Sexually selected skin colour is heritable and related to fecundity in a non-human primate. *Proceedings of the Royal Society B: Biological Sciences*, 281(1794), 20141602.
- East, M. L., & Hofer, H. (2001). Male spotted hyenas (*Crocuta crocuta*) queue for status in social groups dominated by females. *Behavioral Ecology*, 12(5), 558–568.
- Emlen, D. J. (2008). The evolution of animal weapons. Annual Review of Ecology, Evolution, and Systematics, 39, 387–413.
- Emlen, D. J., Marangelo, J., Ball, B., & Cunningham, C. W. (2005). Diversity in the weapons of sexual selection: Horn evolution in the beetle genus *Onthophagus* (Coleoptera: Scarabaeidae). *Evolution*, 59(5), 1060–1084.
- Emlen, S., & Oring, L. (1977). Ecology, sexual selection, and the evolution of mating systems. *Science*, 197(4300), 215–223.
- Galbany, J., Tung, J., Altmann, J., & Alberts, S. C. (2015). Canine length in wild male baboons: Maturation, aging and social dominance rank. *PLos One*, 10(5), e0126415.
- Georgiev, A. V., Christie, D., Rosenfield, K. A., Ruiz-Lambides, A. V., Maldonado, E., Emery Thompson, M., & Maestripieri, D. (2016). Breaking the succession rule: The costs and benefits of an alpha-status take-over by an immigrant rhesus macaque on Cayo Santiago. *Behaviour*, 153(3), 325–351.
- Haley, M. P., Deutsch, C. J., & Le Boeuf, B. J. (1994). Size, dominance and copulatory success in male northern elephant seals, *Mirounga angustirostris*. *Animal Behaviour*, 48(6), 1249–1260.
- Hamilton, C. L., Kuo, P. T., & Feng, L. Y. (1972). Experimental production of syndrome of obesity, hyperinsulinemia and hyperlipidemia in monkeys. *Proceedings of the Society for Experimental Biology and Medicine*, 140(3), 1005–1008.
- Harcourt, A. H., Harvey, P. H., Larson, S. G., & Short, R. V. (1981). Testis weight, body weight and breeding system in primates. *Nature*, 293(5827), 55–57.
- Hartig, F. (2020). DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/package=DHARMa.
- Hayakawa, S., & Soltis, J. (2011). Troop takeover and reproductive success of wild male Japanese macaques on Yakushima Island (*Macaca fuscata yakui*). *International Journal of Zoology*, 2011, Article e308469.
- Higham, J. P., Heistermann, M., & Maestripieri, D. (2011). The energetics of male—male endurance rivalry in free-ranging rhesus macaques, *Macaca mulatta*. *Animal Behaviour*, 81(5), 1001–1007.
- Higham, J. P., & Maestripieri, D. (2010). Revolutionary coalitions in male rhesus macaques. *Behaviour*, 147(13–14), 1889–1908.
- Higham, J. P., & Maestripieri, D. (2014). The costs of reproductive success in male rhesus macaques (*Macaca mulatta*) on Cayo Santiago. *International Journal of Primatology*, 35(3–4), 661–676.
- Hoem, S. A., Melis, C., Linnell, J. D., & Andersen, R. (2007). Fighting behaviour in territorial male roe deer *Capreolus capreolus*: The effects of antler size and residence. *European Journal of Wildlife Research*, 53(1), 1–8.
- Hunt, J., Breuker, C. J., Sadowski, J. A., & Moore, A. J. (2009). Male—male competition, female mate choice and their interaction: Determining total sexual selection. *Journal of Evolutionary Biology*, 22(1), 13–26.
- Jennings, D. J., Gammell, M. P., Carlin, C. M., & Hayden, T. J. (2006). Is difference in body weight, antler length, age or dominance rank related to the number of fights between fallow deer (*Dama dama*)? *Ethology*, 112(3), 258–269.
- Jennions, M. D., & Backwell, P. R. Y. (1996). Residency and size affect fight duration and outcome in the fiddler crab *Uca annulipes*. *Biological Journal of the Linnean Society*, 57(4), 293–306.
- Kessler, M. J., & Rawlins, R. G. (2016). A 75-year pictorial history of the Cayo Santiago rhesus monkey colony. American Journal of Primatology, 78(1), 6–43.
- Kimock, C. M., Dubuc, C., Brent, L. J. N., & Higham, J. P. (2019). Male morphological traits are heritable but do not predict reproductive success in a sexuallydimorphic primate. Scientific Reports, 9(1).
- Kitchen, D. M., Seyfarth, R. M., Fischer, J., & Cheney, D. L. (2003). Loud calls as indicators of dominance in male baboons (*Papio cynocephalus ursinus*). Behavioral Ecology and Sociobiology, 53(6), 374–384.
- Lundrigan, B. (1996). Morphology of horns and fighting behavior in the family Bovidae. *Journal of Mammalogy*, 77(2), 462–475.
- Manson, J. H. (1995). Do female rhesus macaques choose novel males? *American Journal of Primatology*, 37(4), 285–296.
- McClintock, M. K. (1983). Pheromonal regulation of the ovarian cycle: Enhancement, suppression, and synchrony. In J. G. Vandenberg (Ed.), *Pheromones and reproduction in mammals* (pp. 113–149). New York: Academic Press.
- McCullough, E. L., Miller, C. W., & Emlen, D. J. (2016). Why sexually selected weapons are not ornaments. *Trends in Ecology & Evolution*, 31(10), 742–751.
- McElligott, A. G., Gammell, M. P., Harty, H. C., Paini, D. R., Murphy, D. T., Walsh, J. T., & Hayden, T. J. (2001). Sexual size dimorphism in fallow deer (*Dama dama*): Do larger, heavier males gain greater mating success? *Behavioral Ecology and Sociobiology*, 49(4), 266–272.
- Melnick, D. J., & Pearl, M. C. (2008). Cercopithecines in multimale groups: Genetic diversity and population structure. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), *Primate societies* (pp. 121–134). University of Chicago Press.
- Neville, M. K. (1968). Ecology and activity of Himalayan foothill rhesus monkeys (Macaca mulatta). Ecology, 49(1), 110–123.

- Nolen, Z. J., Allen, P. E., & Miller, C. W. (2017). Seasonal resource value and male size influence male aggressive interactions in the leaf footed cactus bug, *Narnia femorata*. *Behavioural Processes*, 138, 1–6.
- Olsson, M., & Shine, R. (2000). Ownership influences the outcome of male—male contests in the scincid lizard, *Niveoscincus microlepidotus*. *Behavioral Ecology*, 11(6), 587–590.
- Ostner, J., Nunn, C. L., & Schülke, O. (2008). Female reproductive synchrony predicts skewed paternity across primates. *Behavioral Ecology*, 19(6), 1150–1158.
- Painting, C. J., & Holwell, G. I. (2014). Exaggerated rostra as weapons and the competitive assessment strategy of male giraffe weevils. *Behavioral Ecology*, 25(5), 1223–1232.
- Panhuis, T. M., & Wilkinson, G. S. (1999). Exaggerated male eye span influences contest outcome in stalk-eyed flies (Diopsidae). Behavioral Ecology and Sociobiology, 46(4), 221–227.
- Parker, G. A. (1970). Sperm competition and its evolutionary consequences in the insects. Biological Reviews of the Cambridge Philosophical Society, 45(4), 525–567.
- Petersdorf, M., Dubuc, C., Georgiev, A. V., Winters, S., & Higham, J. P. (2017). Is male rhesus macaque facial coloration under intrasexual selection? *Behavioral Ecology*, 28(6), 1472–1481.
- Petersdorf, M., Weyher, A. H., Kamilar, J. M., Dubuc, C., & Higham, J. P. (2019). Sexual selection in the Kinda baboon. *Journal of Human Evolution*, 135, 102635.
- Plavcan, J. M. (1990). Sexual dimorphism in the dentition of extant anthropoid primates (Ph.D. thesis). Durham, NC: Duke University. Ann Arbor, MI: University Microfilms International.
- Plavcan, J. M. (2004). Sexual selection, measures of sexual selection, and sexual dimorphism in primates. In P. M. Kappeler, & C. P. van Schaik (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 230–252). New York: Cambridge University Press.
- Plavcan, J. M., & van Schaik, C. P. (1992). Intrasexual competition and canine dimorphism in anthropoid primates. *American Journal of Physical Anthropology*, 87(4), 461–477.
- Plavcan, J. M., & van Schaik, C. P. (1997a). Intrasexual competition and body weight dimorphism in anthropoid primates. *American Journal of Physical Anthropology*, 103(1), 37–68.
- Plavcan, J. M., & van Schaik, C. P. (1997b). Interpreting hominid behavior on the basis of sexual dimorphism. *Journal of Human Evolution*, 32(4), 345–374.
- Preston, B. T., Stevenson, I. R., Pemberton, J. M., Coltman, D. W., & Wilson, K. (2003). Overt and covert competition in a promiscuous mammal: The importance of weaponry and testes size to male reproductive success. *Proceedings of the Royal Society B: Biological Sciences*, 270(1515), 633–640.
- R Core Team. (2020). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
- Renison, D., Boersma, D., & Martella, M. B. (2002). Winning and losing: Causes for variability in outcome of fights in male Magellanic penguins (*Spheniscus magellanicus*). *Behavioral Ecology*, 13(4), 462–466.

- Rico-Guevara, A., & Hurme, K. J. (2019). Intrasexually selected weapons. *Biological Reviews of the Cambridge Philosophical Society*, 94(1), 60–101.
- Rink, A. N., Altwegg, R., Edwards, S., Bowie, R. C. K., & Colville, J. F. (2019). Contest dynamics and assessment strategies in combatant monkey beetles (Scarabaeidae: Hopliini). *Behavioral Ecology*, 30(3), 713–723.
- Sade, D. S. (1964). Seasonal cycle in size of testes of free-ranging Macaca mulatta. Folia Primatologica, 2(3), 171–180.
- Setchell, J. M., & Dixson, A. F. (2001). Circannual changes in the secondary sexual adornments of semifree-ranging male and female mandrills (*Mandrillus sphinx*). *American Journal of Primatology*, 53(3), 109–121.
- Smith, J. M. (1979). Game theory and the evolution of behaviour. *Proceedings of the Royal Society B: Biological Sciences*, 205(1161), 475–488.
- Southwick, C. H., & Siddiqi, M. F. (2011). India's rhesus populations: Protectionism versus conservation management. In M. D. Gumert, L. Jones-Engel, & A. Fuentes (Eds.), Monkeys on the edge: Ecology and management of long-tailed macaques and their interface with humans (pp. 275–292). New York: Cambridge University Press.
- Sprague, D. S. (1992). Life history and male intertroop mobility among Japanese macaques (Macaca fuscata). International Journal of Primatology, 13(4), 437–454.
- Sprague, D. S. (1996). Variation in social mechanisms by which males attained the alpha rank among Japanese macaques. In J. E. Fa, & D. G. Lindburg (Eds.), *Evolution and ecology of macaque societies* (pp. 444–458). New York: Cambridge University Press.
- van Noordwijk, M. A., & van Schaik, C. P. (2004). Sexual selection and the careers of primate males: Paternity concentration, dominance acquisition-tactics and transfer decisions. In P. M. Kappeler, & C. P. van Schaik (Eds.), Sexual selection in primates: New and comparative perspectives (pp. 208–229). New York: Cambridge University Press.
- Vandenbergh, J. G. (1967). The development of social structure in free-ranging rhesus monkeys. *Behaviour*, 29(2–4), 179–193.
- Wang, Q. (2012). Dental maturity and the ontogeny of sex-based differences in the dentofacial complex of rhesus macaques from Cayo Santiago. In Q. Wang (Ed.), Bones, genetics, and behavior of rhesus macaques (pp. 177–194). New York: Springer.
- Widdig, A., Muniz, L., Minkner, M., Barth, Y., Bley, S., Ruiz-Lambides, A., Junge, O., Mundry, R., & Kulik, L. (2017). Low incidence of inbreeding in a long-lived primate population isolated for 75 years. *Behavioral Ecology and Sociobiology*, 71(1), 18.
- Wright, E., Galbany, J., McFarlin, S. C., Ndayishimiye, E., Stoinski, T. S., & Robbins, M. M. (2019). Male body size, dominance rank and strategic use of aggression in a group-living mammal. *Animal Behaviour*, 151, 87–102.
- Yamagiwa, J., & Hill, D. A. (1998). Intraspecific variation in the social organization of Japanese macaques: Past and present scope of field studies in natural habitats. *Primates*, 39(3), 257–273.
- Zinner, D., & Deschner, T. (2000). Sexual swellings in female hamadryas baboons after male take-overs: 'Deceptive' swellings as a possible female counter-strategy against infanticide. *American Journal of Primatology*, 52(4), 157–168. https://doi.org/10.1002/1098-2345(200012)52:4<157::AID-AJP1>3.0.CO;2-L